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Abstract

Forn � 3, letΩ ⊂ Rn be a bounded domain andN ⊂ RL be a compact smooth Riemannian submanifold without bound
Suppose that{un} ⊂ W1,n(Ω,N) are weak solutions to the (perturbed)n-harmonic map equation (1.2), satisfying (1.3), a
uk → u weakly in W1,n(Ω,N). Thenu is ann-harmonic map. In particular, the space ofn-harmonic maps is sequential
compact for the weak-W1,n topology.

Résumé

Pourn � 3, soitΩ ⊂ Rn un domaine borné et soitN ⊂ RL une sous-variété compacte sans bord. Soient{un} ⊂ W1,n(Ω,N)

des solutions de l’équation (perturbée) (1.2) pour les applicationsn-harmoniques, telles queuk → u faiblement dans
W1,n(Ω,N). Alors uest une applicationn-harmonique. En particulier, l’espace des applicationsn-harmoniques est sequentie
lement compact dans la topologieW1,n faible.

MSC:35K55; 58J35

Keywords:Harmonic maps; Coulomb gauge frame; Compensated-compactness

E-mail address:cywang@ms.uky.edu (C. Wang).
1 The author is partially supported by NSF.

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2004.10.007

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved



510 C. Wang / Ann. I. H. Poincaré – AN 22 (2005) 509–519

out
e

al

gradi-
ly

]:

tion

d

f Killing
d to

]), has

y
wn that
and, in
aps
], in
tes, can
1. Introduction

For n � 2, letΩ ⊂ Rn be a bounded domain, andN ⊂ RL be a compact smooth Riemannian manifold with
boundary, isometrically embedded into an Euclidean spaceRL for someL � 1. For 2� p � n, the Sobolev spac
W1,p(Ω,N) is defined by

W1,p(Ω,N) := {
u = (u1, . . . , uL) ∈ W1,p(M,RL) | u(x) ∈ N for a.e.x ∈ Ω

}
.

The Dirichletp-energy functionalEp :W1,p(Ω,N) → R is defined by

Ep(u) =
∫
Ω

|∇u|p dx =
∫
Ω

(
n∑

α=1

〈
∂u

∂xα

,
∂u

∂xα

〉)p/2

dx

where〈·, ·〉 is the scalar product ofRL.
Recall that a mapu ∈ W1,p(Ω,N) is ap-harmonic map, ifu is a critical point ofEp on the spaceW1,p(Ω,N),

i.e.u satisfies thep-harmonic map equation:

−div
(|∇u|p−2∇u

) = |∇u|p−2A(u)(∇u,∇u) (1.1)

in the sense of distributions, where div is the divergence operator onRn andA(·)(·, ·) is the second fundament
form of N ⊂ RL.

Since thep-harmonic map equation (1.1) is a degenerate elliptic system with critical nonlinearity in the
ents, the analysis of both the regularity problem and the weak compactness forp-harmonic maps are extreme
challenging.

This paper is motivated by the problem:

Question A. For n � 3 and 2� p � n, is any weak limitu in W1,p(Ω,N) of a sequence ofp-harmonic maps
{uk} ⊂ W1,p(Ω,N) ap-harmonic map?

For p = n = 2, the answer to question A is affirmative, due to Hélein’s celebrated regularity theorem [12any
2-harmonic map from a Riemannian surface into any compact Riemannian manifold is smooth.

Question A remains open forn � 3, although a lot of efforts have been made. We would like to men
some known results in the direction. Schoen–Uhlenbeck [24] (p = 2), Hardt–Lin [15] and Luckhaus [21] (p �= 2)
have shown thatany weak limitu ∈ W 1,p of a sequence of minimizingp-harmonic maps is a strong limit an
a minimizingp-harmonic map. Question A is true for target manifoldsN with symmetry, such asN = SL−1 is
the unit sphere inRL (cf. Chen [3], Shatah [22], Evans [6] §5, and Hélein [13] §2) orN = G/H is a compact
Riemannian homogeneous manifold (cf. Toro–Wang [26]). Here the symmetry guarantees the existence o
tangent vector fields onN , under which the nonlinearity of thep-harmonic map equation (1.1) can be reduce
a form with Jacobian structure.

For manifoldsN without symmetries, the idea of Coulomb moving frames, due to Hélein [12] (see also [13
played extremely important roles on the study of regularity of stationary 2-harmonic maps by Hélein [12] (n = 2)
and Bethuel [2] (n � 3) (see also Evans [5]). The idea in [12] is that one first assumes thatN is parallelizable
and then uses the variational method to obtain a harmonic moving frame{eα}. It turns out that the nonlinearit
of 2-harmonic map equation via a harmonic moving frame contains Jacobian structure. However, it is kno
the harmonic moving frame by [12] is insufficient for the compactness of 2-harmonic maps. On the other h
the study on existence of wave maps inR2+1, Freire–Müller–Struwe [9,10] have discovered that for wave m
enjoying the energy monotonicity inequalities inR2+1, the concentration compactness method of Lions [19,20
combination with the idea of Coulomb moving frames for wave maps and some end-point analytic estima
yield the weak compactness of wave maps enjoying energy monotonicity inequalities inR2+1. We would like to
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point out that Strzelecki, Zatorska-Goldstein [25] have used these ideas from [9,10] and [19,20] to show th
compactness of weak solutions of higher dimensionalH -systems.

There is a main difficulty that one encounters forp-harmonic maps forp �= 2, namely the appropriat
construction of Coulomb moving frames. Notice that neither minimizers of

∫ |〈deα, eβ〉|p nor minimizers of∫ |∇u|p−2|〈deα, eβ〉|2 seem to work here. Instead, we observe that forp = n case Uhlenbeck’s construction
Coulomb gauges for Yang–Mills fields [27] can be adopted to obtain Coulomb moving frames alongu∗T N under
the smallness ofEn(u). This kind of observation has been utilized by Wang [29,30] in the context of biharm
maps. With such a Coulomb moving frame alongu∗T N , we can modify the analytic techniques by [10] to sh
the weak compactness of a Palais–Smale sequence of the Dirichletn-energy functionalEn onW1,n(Ω,N).

We first recall

Definition. A sequence of maps{uk} ⊂ W1,n(Ω,N) is a Palais–Smale sequence for the Dirichletn-energy func-
tional En, if (a) uk → u weakly inW1,n(Ω,N), and (b)E′

n(uk) → 0 in (W1,n(Ω,N))∗. Here(W1,n(Ω,N))∗ is
the dual ofW1,n(Ω,N).

Notice that (b) is equivalent to thatuk satisfies the perturbedn-harmonic map equation:

−div
(|∇uk|n−2∇uk

) = |∇uk|n−2A(uk)(∇uk,∇uk) + Φk, (1.2)

in the sense of distributions, and

lim
k→∞‖Φk‖(W1,n(Ω,N))∗ = 0. (1.3)

The question is whether any weak limitu of a Palais–Smale sequence is ann-harmonic map. This is highly
nontrivial. SinceEn is conformally invariant and the conformal group is non-compact,En does not satisfy the
Palais–Smale condition (cf. [23]). Our main result is

Theorem B. For n � 3, assume that{uk} ⊂ W1,n(Ω,N) satisfy Eqs.(1.2), (1.3), and converge weakly tou in
W1,n(Ω,N), thenu ∈ W1,n(Ω,N) is ann-harmonic map.

We would like to remark that forn = 2, Theorem B has first been proven by Bethuel [1], later reprove
Freire–Müller–Struwe [10], and also by Wang [28]. Forn � 3, Hungerbhler [14] has obtained the existence
global weak solutions to then-harmonic map flow. Theorem B is applicable to then-harmonic map flow by [14] a
time infinity.

As a corollary, we answer Question A in the affirmative forp = n � 3.

Corollary C. For n � 3, assume that{uk} ⊂ W1,n(Ω,N) are a sequence ofn-harmonic maps converging weak
to u in W1,n(Ω,N), thenu is ann-harmonic map.

The paper is written as follows. In Section 2, we outline the construction of Coulomb moving frames. I
tion 3, we first recallH1(Rn)-estimate for functions with Jacobian structure by [4], the duality betweenH1(Rn)

and BMO(Rn) by [11], and then give a proof of Theorem B.
In this paper, we will use the following notations. For a ballB = Br(x) ⊂ Rn, denoteαB = Bαr(x) for any

α > 0. For 1� i � n, denote∧i (Rn) as theith wedge product ofRn, C∞(Rn,∧i (Rn) as the space of smoothith
forms onRn, andWm,p(Rn,∧i (Rn) as the space ofith forms onRn with Wm,p(Rn) coefficients, for nonnegativ
integersm and 1< p < ∞. Denote byD′(Ω) the dual ofC∞

0 (Ω). Denoted as the exterior differential operato
on Rn andδ as the adjoint operator ofd .
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2. The construction of Coulomb moving frames

This section is devoted to the construction of Coulomb moving frames alongu∗T N , under the smallness con
dition onEn(u).

For any open setU ⊂ Rn andu ∈ W1,n(U,N), denoteu∗T N as the pull-back bundle ofT N by u overU . For
l = dim(N), we say that{eα}lα=1 is a moving frame alongu∗T N , if {eα(x)}lα=1 is an orthonormal base ofTu(x)N ,
the tangent space ofN at the pointu(x), for a.e.x ∈ U .

We now express the perturbedn-harmonic map equation, via a moving frame, as follows.

Lemma 2.1. For n � 3 and u ∈ W 1,n(Ω,N), let {eα}lα=1 be a moving frame alongu∗T N . Thenu is a weak
solution to the perturbedn-harmonic map equation:

−div
(|∇u|n−2∇u

) = |∇u|n−2A(u)(∇u,∇u) + Φ (2.1)

if and only if for any1� α � l, the following equation

−div
(〈|∇u|n−2∇u, eα

〉) =
l∑

β=1

〈|∇u|n−2∇u, eβ

〉〈∇eα, eβ〉 + 〈Φ,eα〉 (2.2)

holds in the sense of distributions. HereΦ ∈ (W 1,n(Ω,N))∗.

Proof. Observe that for a.e.x ∈ Ω , we have〈
eα(x),A

(
u(x)

)(∇u(x),∇u(x)
)〉 = 0, 1� α � l,

for eα(x) ∈ Tu(x)N andA(u(x))(∇u(x),∇u(x)) ⊥ Tu(x)N . Then straightforward calculations deduce the equ
lence between (2.2) and (2.1).�

We now state the construction of a Coulomb moving frame alongu∗T N with estimates on its connection form
It is inspired by an earlier result of Wang [29,30] in the context of biharmonic maps and Uhlenbeck’s Co
gauge construction for Yang–Mills fields [27].

Proposition 2.2.For n � 3 and any ballB ⊂ Rn, there exists anε0 > 0 such that ifu ∈ W1,n(2B,N) satisfies

‖∇u‖Ln(2B) � ε0 (2.3)

then there exists a Coulomb moving frame{eα}lα=1 along u∗T N in W1,n(B,RL) such that its connection form
A = (〈deα, eβ〉) satisfies

δA = 0 in B; x · A = 0 on∂B (2.4)

and

‖A‖Ln(B) + ‖∇A‖Ln/2(B) � C‖∇u‖2
Ln(B). (2.5)

Proof. Since the argument is very similar to that of [30] Proposition 3.2, we only sketch it briefly. First
well-known (cf. [24]) that the standard mollification process and the nearest point projection map yield
ε0 > 0 in (2.3) is chosen sufficiently small, then there exist a sequence of smooth maps{uk} ⊂ C∞(B,N) such
thatuk → u strongly inW1,n(B,N). In particular, there exists ak0 � 1 such that

sup‖∇uk‖W1,n(B) � 2ε0. (2.6)

k�k0
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Next, sinceu∗
kT N |B are trivial smooth vector bundles, there exist smooth moving frames{ek

α}lα=1 alongu∗
kT N

on B. Let Ak = (〈dek
α, ek

β〉)1�α,β�l andF(Ak) be the connection form and curvature form ofu∗
kT N with respect

to the frame{ek
α}lα=1 respectively. Then the same computation as in [30] Proposition 3.2 implies that∣∣F(Ak)

∣∣(x) � C|∇uk|2(x), ∀x ∈ B. (2.7)

This, combined with (2.6), implies

sup
k�k0

∥∥F(Ak)
∥∥

Ln/2(B)
� C sup

k�k0

‖∇uk‖2
Ln(B) � Cε2

0. (2.8)

Hence, for k � k0, Uhlenbeck’s theorem [27] implies that there are gauge transformation maps{Rk} ⊂
W1,n(B,SO(l)) such that the connection formsAk = (〈dek

α, ek
β〉)1�α,β�l and the curvature formsF(Ak) of the

new moving framesek
α = ∑l

β=1 R
αβ
k ek

β , 1� α � l, satisfy

δAk = 0 in B, x · Ak = 0, on∂B, (2.9)

‖Ak‖Ln(B) + ‖∇Ak‖Ln/2(B) � C‖F(Ak)‖Ln/2(B) � C‖∇uk||2Ln(B) � Cε0. (2.10)

Finally, we want to take limitk → ∞. For this, we need to estimate‖∇ek
α‖Ln(B) for 1� α � l.

For y ∈ N , let P ⊥(y) : RL → (TyN)⊥ denote the orthogonal projection from mapRL to the normal spac
(TyN)⊥. Then we have

∇ek
α =

l∑
β=1

〈∇ek
α, ek

β〉ek
β + P ⊥(uk)(∇ek

α) =
l∑

β=1

〈∇ek
α, ek

β〉ek
β − A(uk)(ek

α,∇uk) (2.11)

where we have used

P ⊥(uk)(∇ek
α) = −∇(

P ⊥(uk)
)
(ek

α) = −A(uk)(ek
α,∇uk)

for P ⊥(uk)(ek
α) = 0. Therefore we have, fork � k0,

|∇ek
α|(x) � C

(|Ak| + |∇uk|
)
(x), for a.e.x ∈ B. (2.12)

This, combined with (2.6) and (2.10), yields

l∑
α=1

‖∇ek
α‖Ln(B) � C

(‖Ak‖Ln(B) + ‖∇uk‖Ln(B)

)
� Cε0. (2.13)

Therefore, after taking subsequences, we can assume thatek
α → eα weakly in W1,n(B), strongly inLn(B), and

a.e. inB. Sinceuk → u strongly inW1,n(B), we have that{eα}lα=1 ⊂ W1,n(B) is a moving frame alongu∗T N

onB. Moreover, (2.10) implies thatAk → A ≡ (〈deα, eβ〉), the connection form of{eα}lα=1, weakly inW1,n/2(B).
Hence (2.9) and (2.10) imply thatA satisfies (2.4) and (2.5). The proof of Proposition 2.2 is complete.�

3. Proof of Theorem B

This section is devoted to the proof of Theorem B. First we recall some basic facts on the Hardy spaceH1(Rn)

and the BMO space BMO(Rn).
Recall thatf ∈ L1(Rn) belongs to the Hardy spaceH1(Rn) if

f∗ := sup|φε ∗ f | ∈ L1(Rn)

ε>0
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6] (see

how the
whereφε(x) := ε−nφ(x
ε
) for a fixed nonnegativeφ ∈ C∞

0 (Rn) with
∫

Rn φ dy = 1. Note thatH1(Rn) is a Banach
space with the norm

‖f ‖H1(Rn) := ‖f ‖L1(Rn) + ‖f∗‖L1(Rn).

An important property off ∈ H1(Rn) is the cancellation identity
∫

Rn f dy = 0 (cf. [11]).
Recall also thatf ∈ L1

loc(R
n) belongs to the BMO space BMO(Rn) (cf. John–Nirenberg [18]), if

‖f ‖BMO(Rn) := sup

{
1

|B|
∫
B

|f − fB |dy: any ballB ⊂ Rn

}
< ∞

wherefB = 1
|B|

∫
B

f dy is the average off overB. By the Poincaré inequality we haveW1,n(Rn) ⊂ BMO(Rn)

and

‖f ‖BMO(Rn) � C‖∇f ‖Ln(Rn). (3.1)

The celebrated theorem of Fefferman–Stein [11] says that the dual ofH1(Rn) is BMO(Rn). Moreover∣∣∣∣
∫
Rn

fg dy

∣∣∣∣ � C‖f ‖H1(Rn)‖g‖BMO(Rn). (3.2)

Now we recall an important result of Coifman–Lions–Meyer–Semmes [4], see also [5].

Proposition 3.1 [4]. For any 1 < p < ∞, denotep′ = p
p−1 . Let f ∈ W1,p(Rn), g ∈ W1,p′

(Rn,∧1(Rn)), and

h ∈ W1,n(Rn). Thendf · δg ∈ H1(Rn) and

‖df · δg‖H1(Rn) � C‖∇f ‖Lp(Rn)‖∇g‖
Lp′

(Rn)
. (3.3)

In particular, we have∣∣∣∣
∫
Rn

〈df · δg,h〉dy

∣∣∣∣ � C‖∇f ‖Lp(Rn)‖∇g‖
Lp′

(Rn)
‖∇h‖Ln(Rn). (3.4)

We also recall the following pointwise convergence result, which is essentially due to Hardt–Lin–Mou [1
also [8]).

Lemma 3.2[16]. Suppose that{uk} ⊂ W1,n(Ω,RL) are weak solutions to

−div
(|∇uk|n−2∇uk

) = fk + Φk, (3.5)

wherefk → 0 in L1(Ω,RL), and Φk → 0 in (W1,n(Ω,RL))∗. Assume thatuk → u weakly inW1,n(Ω,RL).
Then, after taking possible subsequences, we have∇uk → ∇u a.e. inΩ . In particular, ∇uk → ∇u strongly in
Lq(Ω,RL) for any1� q < n.

After these preparations, we are ready to give a proof of Theorem B. It turns out the crucial step is to s
following weak compactness under the smallness condition onEn.

Lemma 3.3(ε-weak compactness). For anyn � 3, there exists anε1 > 0 such that if{uk} ⊂ W1,n(2B,N) satisfy
both Eq.(1.2)and the condition(1.3)with Ω replaced by2B, uk → u weakly inW1,n(2B,N), and satisfy∫

2B

|∇uk|n dx � εn
1, ∀k � 1. (3.6)

Thenu ∈ W1,n(B,N) is ann-harmonic map.
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Proof. For the convenience, we will write both equation (1.1) and (1.2) by using d andδ from now on.
Let ε1 > 0 be the same constant as in Proposition 2.2. Then we have that for anyk � 1 there is a Coulomb

moving frame{ek
α}lα=1 alongu∗

kT N such that the connection formAk = (〈dek
α, ek

β〉) satisfies

δAk = 0 in B; x · Ak = 0 on∂B (3.7)

and

‖Ak‖Ln(B) + ‖∇Ak‖Ln/2(B) � C‖∇uk‖2
Ln(B). (3.8)

Moreover, similar to (2.19), we have

l
max
α=1

‖∇ek
α‖Ln(B) � C‖∇uk‖Ln(B) � Cε1, ∀k � 1. (3.9)

Therefore we may assume, after passing to subsequences, thatek
α → eα weakly in W1,n(B,RL) and strongly in

Ln(B,RL), Ak → A weakly inW1,n/2(B) and strongly inLn/2(B). It is easy to see that{eα}lα=1 is a moving frame
alongu∗T N , andA = (〈deα, eβ〉) satisfies

δA = 0 in B; x · A = 0 on∂B, (3.10)

and

‖A‖Ln(B) + ‖∇A‖Ln/2(B) � C lim inf
k

‖∇uk‖2
Ln(B) � Cε2

1. (3.11)

Using these moving frames, Lemma 2.1 yields that for any 1� α � l

−δ
(〈|duk|n−2 duk, e

k
α

〉) =
l∑

β=1

〈|duk|n−2 duk, e
k
β

〉 · 〈dek
α, ek

β〉 + 〈Φk, e
k
α〉. (3.12)

It follows from Lemma 3.2 that we can assume that∇uk → ∇u strongly inLq(Ω) for any 1� q < n. Therefore
we have

|duk|n−2 duk → |du|n−2 du, weakly inLn/(n−1)(2B). (3.13)

This implies

−δ
(〈|duk|n−2 duk, e

k
α

〉) → −δ
(〈|du|n−2 du, eα

〉)
, in D′(B) (3.14)

ask → ∞, for all 1� α � l.
It is readily seen that for anyφ ∈ C∞

0 (B) we have∣∣〈Φk, e
k
αφ〉{(W1,n)∗,W1,n}

∣∣ � ‖Φk‖(W1,n(B,N))∗‖ek
αφ‖W1,n(B) → 0, ask → ∞. (3.15)

In order to prove thatu is ann-harmonic map, it suffices to prove that for any 1� α,β � l〈|duk|n−2 duk, e
k
β

〉 · 〈dek
α, ek

β〉 → 〈|du|n−2 du, eβ
〉〈deα, eβ〉, in D′(B). (3.16)

To prove (3.16), we first let̄uk ∈ W1,n(Rn,RL) andek
α ∈ W1,n(Rn,RL) be the extensions ofuk andek

α from B

respectively such that

‖∇ūk‖Ln(Rn) � C‖∇uk‖Ln(B),
∥∥∇(ek

α)
∥∥

Ln(Rn)
� C‖∇ek

α‖Ln(B). (3.17)

For 〈|dūk|n−2 dūk, e
k
β〉 ∈ Ln/(n−1)(Rn,∧1(Rn)), the Hodge decomposition theorem (cf. Iwaniec–Martin [17])

plies that there aref k
β ∈ W1,n/(n−1)(Rn) andgk

β ∈ W1,n/(n−1)(Rn,∧2(Rn)) such that dgkβ = 0,〈|dū |n−2 dū , ek
〉 = dfk + δgk , (3.18)
k k β β β
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Müller–
and

‖∇f k
β ‖Ln/(n−1)(Rn) + ‖∇gk

β‖Ln/(n−1)(Rn) � C‖∇uk‖n−1
Ln(B). (3.19)

It follows from (3.19) that we may assumef k
β → fβ,gk

β → gβ weakly inW
1,n/(n−1)

loc (Rn). Therefore, by takingk
to infinity, (3.18) implies〈|du|n−2 du, eβ

〉 = dfβ + δgβ; dgβ = 0, in B. (3.20)

Moreover, (3.18) gives〈|duk|n−2 duk, e
k
β

〉 · 〈dek
α, ek

β〉 = dfk
β · 〈dek

α, ek
β〉 + δgk

β · 〈dek
α, ek

β〉, in B. (3.21)

Since dfkβ → dfβ weakly inLn/(n−1)(B), 〈dek
α, ek

β〉 → 〈deα, eβ〉 weakly inLn(B), andδ〈dek
α, ek

β〉 = 0 in B, we
can apply the Div–Curl lemma (cf. [6] page 53) to conclude

dfk
β · 〈dek

α, ek
β〉 → dfβ · 〈deα, eβ〉, in D′(B). (3.22)

In fact, (3.22) follows directly from the integrations by parts: for anyφ ∈ C∞
0 (B),∫

Rn

dfk
β · 〈dek

α, ek
β〉φ dx = −

∫
Rn

f k
β 〈dek

α, ek
β〉 · dφdx

→ −
∫
Rn

fβ〈deα, eβ〉 · dφdx =
∫
Rn

dfβ · 〈deα, eβ〉φ

ask → ∞. Here we have used both (3.7) and (3.10), i.e.δ〈dek
α, ek

β〉 = δ〈deα, eβ〉 = 0, in B.
Now we need the compensated compactness result (cf. Lions [19,20]), which was developed by Freire–

Struwe [9,10] in the context of wave maps onR2+1.

Lemma 3.4.Under the same notations. After taking possible subsequences, we have

δgk
β · 〈dek

α, ek
β〉 → δgβ · 〈deα, eβ〉 + ν, in B (3.23)

whereν is a signed Radon measure given by

ν =
∑
j∈J

aj δxj
(3.24)

whereJ is at most countable,aj ∈ R, xj ∈ B, and
∑

j∈J |aj | < +∞.

Proof. For the simplicity, we only outline a proof based on suitable modifications of [10].
First we observe that

δgk
β · 〈dek

α, ek
β〉 − δgβ · 〈deα, eβ〉

= δ(gk
β − gβ) · 〈d(ek

α − eα), ek
β

〉 + δgβ · 〈d(ek
α − eα), ek

β

〉 + (
δgk

β · 〈deα, ek
β〉 − δgβ · 〈deα, eβ〉)

= δ(gk
β − gβ) · 〈d(ek

α − eα), ek
β

〉 + Ik + II k.

The dominated convergence theorem implies

Ik, II k → 0, in L1(B), ask → ∞.

Therefore (3.23) and (3.24) is equivalent to

δ(gk − g ) · 〈d(ek − e ), ek
〉 → ν (3.25)
β β α α β
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-

whereν is the Radon measure given by (3.24).
Since|∇(ek

α − eα)|n, |∇(gk
β − gβ)|n/(n−1) are bounded inL1(B), we may assume, after taking subsequen

that there is a nonnegative Radon measureµ onB such that(
l∑

α=1

∣∣∇(ek
α − eα)

∣∣n +
l∑

β=1

∣∣∇(gk
β − gβ)

∣∣n/(n−1)

)
dx → µ

as convergence of Radon measures onB.
Let S = {x ∈ B: µ({x}) ≡ limr→0 µ(Br(x)) > 0}. Then it follows fromµ(B) < +∞ thatS is at most a count

able set. Now we want to show

supp(ν)⊂ S. (3.26)

It is easy to see that (3.26) yields (3.24) and hence the conclusion of Lemma 3.4.
To see (3.26), we proceed as follows. Forφ ∈ C∞

0 (B), we have

〈ν,φ3〉 = lim
k→∞

∫
Rn

φδ(gk
β − gβ) · 〈φd(ek

α − eα),φek
β

〉
dx

= lim
k→∞

∫
Rn

[
δ
(
φ(gk

β − gβ)
) − dφ · (gk

β − gβ)
] · 〈[d(φ(ek

α − eα)
) − (ek

α − eα)dφ
]
, φek

β

〉
dx

= lim
k→∞

∫
Rn

δ
(
φ(gk

β − gβ)
) · 〈d(

φ(ek
α − eα)

)
, φek

β

〉
dx (3.27)

where we have used

lim
k→∞

∫
Rn

[
(gk

β − gβ)dφ · 〈φd(ek
α − eα),φek

β

〉 − δ
(
φ(gk

β − gβ)
) · 〈(ek

α − eα)dφ,φek
β

〉]
dx = 0.

Note that Proposition 3.1 impliesHk ≡ δ(φ(gk
β −gβ)) ·d(φ(ek

α −eα)) is bounded inH1(Rn), and (3.22) implies

Hk → 0 in D′(Rn). Therefore we have thatHk → 0 weak∗ in H1(Rn). On the other hand, sinceφeβ ∈ W1,n(Rn),
we haveφeβ ∈ VMO(Rn), where VMO(Rn) ⊂ BMO(Rn) is the closure ofC∞

0 (Rn) in the BMO norm. It is well-
known [11] that the dual of VMO(Rn) is H1(Rn). Hence we have

lim
k→∞

∫
Rn

δ
(
φ(gk

β − gβ)
) · 〈d(

φ(ek
α − eα)

)
, φeβ

〉
dx = 0. (3.28)

Putting (3.28) together with (3.27) and applying (3.4), we have∣∣〈ν,φ3〉∣∣ � C lim
k→∞

∥∥∇(
φ(ek

β − eβ)
)∥∥

Ln(Rn)

∥∥∇(
φ(ek

α − eα)
)∥∥

Ln(Rn)

∥∥∇(
φ(gk

β − gβ)
)∥∥

Ln/(n−1)(Rn)

� C lim
k→∞

{[∥∥φ∇(ek
β − eβ)

∥∥
Ln(Rn)

+ ‖∇φ‖L∞‖ek
β − eβ‖Ln(B)

]
× [∥∥φ∇(ek

α − eα)
∥∥

Ln(Rn)
+ ‖∇φ‖L∞‖ek

α − eα‖Ln(B)

]
× [∥∥φ∇(gk

β − gβ)
∥∥

Ln/(n−1)(Rn)
+ ‖∇φ‖L∞‖gk

β − gβ‖Ln/(n−1)(B)

]}
� C

(〈µ,φn〉)1/n(〈µ,φn〉)1/n(〈µ,φn/(n−1)
〉)(n−1)/n (3.29)

where we have used

lim
(‖ek − eα‖Ln(B) + ‖gk − gβ‖ n/(n−1)

) = 0.

k→∞ α β L (B)
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.4 is

ve, for

, that

s

) (1993)
By choosingφi ∈ C∞
0 (B) such thatφi → λBr(y), the characteristic function of a ballBr(y), we then have

ν
(
Br(y)

)
� Cµ

(
Br(y)

)(n+1)/n
. (3.30)

Thereforeν is absolutely continuous with respect toµ. Moreover, for anyy /∈ S , the Radon–Nikodyn derivative

dν

dµ
(y) = lim

r→0

ν(Br(y))

µ(Br(y))
� C lim

r→0
µ

(
Br(y)

)1/n = 0.

Therefore the support ofν is contained inS . This proves (3.26) and hence (3.24). The proof of Lemma 3
complete. �

Now we return to the proof of Lemma 3.3. By putting (3.14), (3.20), (3.22), and (3.23) together, we ha
any 1� α � l,

−δ
(〈|du|n−2 du, eα

〉) =
l∑

α=1

〈|du|n−2 du, eβ
〉 · 〈deα, eβ〉 +

∑
j∈J

aj δxj
(3.31)

whereJ is at most countable,aj ∈ R, xj ∈ B, and
∑

j∈J |aj | < +∞.
In order to conclude thatu is ann-harmonic map, one has to show thataj = 0 for all j ∈ J . In fact, (3.31)

implies that
∑

j∈J aj δxj
∈ W−1,n(B) + L1(B). One the other hand, it is well-known thatδx /∈ W−1,n(B) + L1(B)

for anyx ∈ B. Henceaj = 0 for j ∈ J . The proof of Lemma 3.3 is complete.�
Based on Lemma 3.3, we can give a proof of Theorem B as follows.

Proof of Theorem B. Since|∇uk|n is bounded inL1(Ω), we may assume, after passing to subsequences
there is a nonnegative Radon measureµ onΩ such that

|∇uk|n dx → µ

as convergence of Radon measures. Letε1 > 0 be the same constant as in Lemma 3.3 and defineΣ ⊂ Ω by

Σ = {
x ∈ Ω: µ

({x}) � εn
1

}
.

ThenΣ is a finite subset and

|Σ | � Cε−n
1 , C ≡ lim sup

k→∞

∫
Ω

|∇uk|n dx <+∞.

For anyx0 ∈ Ω \ Σ , there exists anr0 > 0 such thatµ(B4r0(x0)) < εn
1 . Since

lim sup
k→∞

∫
B2r0(x0)

|∇uk|n dx � µ
(
B4r0(x0)

)
,

we can assume that there existsk0 � 1 such that
∫
B2r0(x0)

|∇uk|2 dx � εn
1, ∀k � k0. Therefore Lemma 3.3 implie

thatu is ann-harmonic map inBr0(x0). Sincex0 ∈ Ω \ Σ is arbitrary, we conclude thatu is ann-harmonic map
in Ω \ Σ . SinceΣ is finite, it is standard to show thatu is also ann-harmonic map inΩ (cf. [7,26]). �
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