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Abstract

Forn > 3, let2 ¢ R" be a bounded domain amd c RE be a compact smooth Riemannian submanifold without boundary.
Suppose thatu, } C wln(2, N) are weak solutions to the (perturbedharmonic map equation (1.2), satisfying (1.3), and
ur — u weakly in Wl (2, N). Thenu is ann-harmonic map. In particular, the spacemsharmonic maps is sequentially
compact for the weak-W" topology.
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Résumé

Pourn > 3, soit2 C R" un domaine borné et soif ¢ RL une sous-variété compacte sans bord. SdigfitcC wln@, N)
des solutions de I'équation (perturbée) (1.2) pour les applicaticharmoniques, telles que; — u faiblement dans
wln (2, N). Alors u est une application-harmonique. En particulier, 'espace des applicatioh@rmoniques est sequentiel-

lement compact dans la topologie:” faible.
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1. Introduction

Forn > 2, let2 c R" be a bounded domain, ad c R: be a compact smooth Riemannian manifold without
boundary, isometrically embedded into an Euclidean spdcéor someL > 1. For 2< p < n, the Sobolev space
wlr(2, N)is defined by

WhP(2,N) = {u= @t ..., u") e WP (M,R") |u(x) € N fora.e.x € 22}

The Dirichletp-energy functionak , : wLr(£2, N) — Ris defined by

"\ du  du Pz
A A o o

a=1

where(-, -) is the scalar product d®”.
Recall that a map € W17 (82, N) is a p-harmonic map, if is a critical point ofE, onthe spac&V L’ (2, N),
i.e. u satisfies thep-harmonic map equation:

—div(IVulP~2Vu) = |VulP "2 Au)(Vu, Vu) (1.1)

in the sense of distributions, where div is the divergence operat®’amd A(-)(-, -) is the second fundamental
form of N c RE.

Since thep-harmonic map equation (1.1) is a degenerate elliptic system with critical nonlinearity in the gradi-
ents, the analysis of both the regularity problem and the weak compactngssiésmonic maps are extremely
challenging.

This paper is motivated by the problem:

Question A.Forn > 3 and 2< p < n, is any weak limitx in W7(£2, N) of a sequence op-harmonic maps
{u} c WP (2, N) a p-harmonic map?

For p =n = 2, the answer to question A is affirmative, due to Hélein’s celebrated regularity theorerarf$2]:
2-harmonic map from a Riemannian surface into any compact Riemannian manifold is smooth

Question A remains open for > 3, although a lot of efforts have been made. We would like to mention
some known results in the direction. Schoen—Uhlenbeck [24} ), Hardt—Lin [15] and Luckhaus [21](# 2)
have shown thaany weak limitu € W17 of a sequence of minimizing-harmonic maps is a strong limit and
a minimizing p-harmonic map. Question A is true for target manifoldswith symmetry, such ad/ = st~1is
the unit sphere irR% (cf. Chen [3], Shatah [22], Evans [6] 85, and Hélein [13] §2)\oe= G/H is a compact
Riemannian homogeneous manifold (cf. Toro-Wang [26]). Here the symmetry guarantees the existence of Killing
tangent vector fields oV, under which the nonlinearity of the-harmonic map equation (1.1) can be reduced to
a form with Jacobian structure.

For manifoldsV without symmetries, the idea of Coulomb moving frames, due to Hélein [12] (see also [13]), has
played extremely important roles on the study of regularity of stationary 2-harmonic maps by Héleim{12) (
and Bethuel [2] £ > 3) (see also Evans [5]). The idea in [12] is that one first assumes\Mthiatparallelizable
and then uses the variational method to obtain a harmonic moving ffayhelt turns out that the nonlinearity
of 2-harmonic map equation via a harmonic moving frame contains Jacobian structure. However, it is known that
the harmonic moving frame by [12] is insufficient for the compactness of 2-harmonic maps. On the other hand, in
the study on existence of wave mapsRA+1, Freire—Miiller—Struwe [9,10] have discovered that for wave maps
enjoying the energy monotonicity inequalitiesRA*1, the concentration compactness method of Lions [19,20], in
combination with the idea of Coulomb moving frames for wave maps and some end-point analytic estimates, can
yield the weak compactness of wave maps enjoying energy monotonicity inequaliRésinWe would like to
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point out that Strzelecki, Zatorska-Goldstein [25] have used these ideas from [9,10] and [19,20] to show the weak
compactness of weak solutions of higher dimensidifalystems.

There is a main difficulty that one encounters fetharmonic maps forp # 2, namely the appropriate
construction of Coulomb moving frames. Notice that neither minimizerg ey, eg)|”? nor minimizers of
f |Vu|P~2|(dey, eﬁ>|2 seem to work here. Instead, we observe thatffet n case Uhlenbeck’s construction of
Coulomb gauges for Yang—Mills fields [27] can be adopted to obtain Coulomb moving frames:albNgunder
the smallness of, (u). This kind of observation has been utilized by Wang [29,30] in the context of biharmonic
maps. With such a Coulomb moving frame alarig’" N, we can modify the analytic techniques by [10] to show
the weak compactness of a Palais—Smale sequence of the Diriettetrgy functionak, on W1 (£2, N).

We first recall

Definition. A sequence of mapg} ¢ W17 (£2, N) is a Palais—Smale sequence for the Dirichlenergy func-
tional E,, if (&) ux — u weakly in WL (2, N), and (b)E/ (ux) — 0 in (WH"(2, N))*. Here(Wl"(£2, N))* is
the dual of W1 (82, N).

Notice that (b) is equivalent to thaj, satisfies the perturbegharmonic map equation:
—div(IVue""2Vug) = [Vurl "2 A () (Vug, Vug) + P, (1.2)
in the sense of distributions, and

The question is whether any weak limitof a Palais—Smale sequence isrgaharmonic map. This is highly
nontrivial. SincekE, is conformally invariant and the conformal group is non-compagtdoes not satisfy the
Palais—Smale condition (cf. [23]). Our main result is

Theorem B. For n > 3, assume thafu;} ¢ W1"(£2, N) satisfy Eqs(1.2), (1.3), and converge weakly ioin
win(2,N), thenu € W (2, N) is ann-harmonic map.

We would like to remark that fon = 2, Theorem B has first been proven by Bethuel [1], later reproved by
Freire—Muller—Struwe [10], and also by Wang [28]. FoE= 3, Hungerbhler [14] has obtained the existence of
global weak solutions to the-harmonic map flow. Theorem B is applicable to thbarmonic map flow by [14] at
time infinity.

As a corollary, we answer Question A in the affirmative foe=n > 3.

Corollary C. For n > 3, assume thafu;} ¢ W1 (2, N) are a sequence af-harmonic maps converging weakly
tou in W (2, N), thenu is ann-harmonic map.

The paper is written as follows. In Section 2, we outline the construction of Coulomb moving frames. In Sec-
tion 3, we first recallH!(R")-estimate for functions with Jacobian structure by [4], the duality betwe¢siR")
and BMOR") by [11], and then give a proof of Theorem B.

In this paper, we will use the following notations. For a bl B, (x) C R", denotea B = B, (x) for any
a > 0. For 1<i < n, denoten’ (R") as theith wedge product oR”, C*(R", Al(R") as the space of smootth
forms onR”", andW”?(R", Al (R") as the space ath forms onR” with W7 (R") coefficients, for nonnegative
integersm and 1< p < oo. Denote byD’(£2) the dual ofC3°(£2). Denoted as the exterior differential operator
onR™ and§ as the adjoint operator af.
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2. The construction of Coulomb moving frames

This section is devoted to the construction of Coulomb moving frames altfigy, under the smallness con-
dition on E,, (u).

For any open selt/ c R" andu € W (U, N), denoteu*T N as the pull-back bundle af N by u overU. For
[ =dim(N), we say thafe, }2:1 is a moving frame along*T N, if {e, (x)}fx=1 is an orthonormal base @f, )N,
the tangent space of at the pointu(x), fora.ex e U.

We now express the perturbeeharmonic map equation, via a moving frame, as follows.

Lemma 2.1.For n >3 andu € W1 (2, N), let {ea}fle be a moving frame along*T N. Thenu is a weak
solution to the perturbed-harmonic map equation:
—div(IVul""2Vu) = [Vu|" 2 A(u)(Vu, Vi) + @ (2.1)

if and only if for anyl < o </, the following equation
I
— div((|Vu|”_2Vu, ea>) = Z<|Vu|”_2Vu, eﬁ)(Vea, eg) + (D, eq) (2.2)
p=1

holds in the sense of distributions. Hatec (W17 (2, N))*.

Proof. Observe that for a.e. € £2, we have

(ea(x), A(u(x))(Vu(x), Vu(x))) =0, 1<a<l,
for eq (x) € Tuy N and A(u(x))(Vu(x), Vu(x)) L T, N. Then straightforward calculations deduce the equiva-
lence between (2.2) and (2.1)O

We now state the construction of a Coulomb moving frame algifgV with estimates on its connection form.
It is inspired by an earlier result of Wang [29,30] in the context of biharmonic maps and Uhlenbeck’s Coulomb
gauge construction for Yang—Mills fields [27].
Proposition 2.2.For n > 3 and any ballB c R, there exists alg > 0 such that ifu € W1 (2B, N) satisfies
IVullLr@28) < €0 (2.3)

then there exists a Coulomb moving fral{rag}fx:l alongu*T N in Wl (B, RE) such that its connection form
A = ((deq, eg)) satisfies

8A=0 inB; x-A=0 ondB (2.4)
and

1Al L8y + IV Al a2y < CIVuUllZ - (2.5)
Proof. Since the argument is very similar to that of [30] Proposition 3.2, we only sketch it briefly. First, it is
well-known (cf. [24]) that the standard mollification process and the nearest point projection map yield that if

€0 > 0 in (2.3) is chosen sufficiently small, then there exist a sequence of smooth{mdpus C*° (B, N) such
thatuy — u strongly inWl(B, N). In particular, there exists/g > 1 such that

sup || Vullyingy < 2€o. (2.6)
k>ko
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Next, sinceu; T N|p are trivial smooth vector bundles, there exist smooth moving fraa{gﬁ)g , alongu; TN
onB. LetA; = ( dé‘ e Ni<e.p<i @and F(Ag) be the connection form and curvature formugf’ N with respect
to the frame{ea}él:1 respectlvely. Then the same computation as in [30] Proposition 3.2 implies that

|F(A)|(x) < CIVug[*(x), Vx e B. (2.7)
This, combined with (2.6), implies

sup| F(Ax) <C sup ||Vuk||L,1(B) cel. (2.8)

k>ko

L”/Z(B)

Hence, fork > ko, Uhlenbeck’s theorem [27] implies that there are gauge transformation ff&dsC
WL (B, SO(l)) such that the connection formf, = ((de, €g>)1<a’ﬂ<1 and the curvature formg (A;) of the
new moving framesf, = ngzl ,‘:ﬁeg, 1<« <1, satisfy

3Ar=0 inB, x-Ay=0, ondB, (2.9
||A_k||L”(B) + ||VA—k||Ln/2(B) < C||F(Ak)||Ln/2(B) < C”V“kH%n(B) < Cep. (2-10)
Finally, we want to take limik — occ. For this, we need to estimat&e || 1) for 1 <o <.

Fory e N, let P-(y):RL — (TyN)L denote the orthogonal projection from mR% to the normal space
(TyN)*. Then we have

I ! _ _
Vek = Z ok + PLup) (Vek) = Y (Vek, ek)ek — A ek, Vi) (2.11)
B=1 B=1
where we have used

P (Vek) = =V (P () (eh) = — A (e, Vug)
for PL(uk)(e_g) = 0. Therefore we have, fdr> ko,

IVek|(x) < C(I1Axl + [Vurl) (), for a.e.x € B. (2.12)
This, combined with (2.6) and (2.10), yields

> Vel < C(I Al sy + I VukliLns)) < Ceo. (2.13)

Therefore, after taking subsequences, we can assumetthate, weakly in win(B), strongly inL"(B), and
a.e. inB. Sinceu; — u strongly in Wl (B), we have tha{eo,}fy=l c wi(B) is a moving frame along*T N
on B. Moreover, (2.10) implies that, — A = ((dey, eg)), the connection form ofe, },_,, weakly inwl/2(B).
Hence (2.9) and (2.10) imply that satisfies (2.4) and (2.5). The proof of Proposition 2.2 is complete.

3. Proof of Theorem B

This section is devoted to the proof of Theorem B. First we recall some basic facts on the Hardy/$(Rite
and the BMO space BM@").
Recall thatf € L1(R") belongs to the Hardy spadél(R") if

fxi=suplge * fl € LYR")

e>0
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whereg. (x) := e "¢ (%) for a fixed nonnegative € C5°(R") with fRn ¢ dy = 1. Note that#(R") is a Banach
space with the norm
||f||H1(Rn) = ||f||L1(Rn) + ||f*||L1(Rn)-
An important property off € H1(R") is the cancellation identity,, f dy=0 (cf. [11]).
Recall also thayf € L} (R") belongs to the BMO space BM&") (cf. John—Nirenberg [18]), if

1

Il fllBMOR?) == SUD{—

/|f—f3|dy2 any ballB C R"} < 00
B

where fp = % fB f dy is the average of over B. By the Poincaré inequality we havé'"(R") c BMO(R")
and

Il fllBMO®RY) < CIV fllLnRny- (3.1)
The celebrated theorem of Fefferman—Stein [11] says that the d&&i(@") is BMO(R"). Moreover

/fg dy‘ < Cllfllparny llgllIBMOR?) - (3.2)
Rn

Now we recall an important result of Coifman—Lions—Meyer—-Semmes [4], see also [5].

Proposition 3.1[4]. For any 1 < p < oo, denotep’ = ;2. Let f € wLrRm), ¢ € W' (R", AY(R")), and
h e W (R™"). Thendf - 8g € H1(R") and

Idf - 08llparny < CIV fllLe@)IVEILy Rey- (3.3)
In particular, we have

’ /(df'587h>dy’ SCIVFllLr@)IVEN Ly gy IVAI L2 Rr). (3-4)
Rll

We also recall the following pointwise convergence result, which is essentially due to Hardt—Lin—Mou [16] (see
also [8]).
Lemma 3.2[16]. Suppose thafu;} ¢ W (£2, RL) are weak solutions to
— div(|Vuk|”72Vuk) = fr + Py, (3.5

where f; — 0in L1(£2,RE), and @, — 0in (W1 (22, RE))*. Assume thaty, — u weakly in Wb (2, RL).
Then, after taking possible subsequences, we Raye— Vu a.e. in£2. In particular, Vuy — Vu strongly in
L9(2,RE) foranyl< g <n.

After these preparations, we are ready to give a proof of Theorem B. It turns out the crucial step is to show the
following weak compactness under the smallness conditiof,on

Lemma 3.3(e-weak compactness). For any> 3, there exists am; > 0 such that if{u;} ¢ W1 (2B, N) satisfy

both Eq.(1.2) and the conditior{1.3)with £2 replaced by2B, u; — u weakly inw1(2B, N), and satisfy
/|Vuk|” dr<e], Vk>1. (3.6)
2B

Thenu € W1(B, N) is ann-harmonic map.
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Proof. For the convenience, we will write both equation (1.1) and (1.2) by using @ &mwman now on.
Let €1 > O be the same constant as in Proposition 2.2. Then we have that fdrarlythere is a Coulomb
moving frame{e}},,_, alongu;7 N such that the connection forrty. = ((def, f)) satisfies

3A; =0 inB; x-Ar=0 onoB 3.7
and

I Akllr ) + IV Akl o2y < CIIVukIILn(B) (3.8)
Moreover, similar to (2.19), we have

max||Ve ”L”(B) < C||Vuk||Ln(B) Cel, Vk > 1. (39)

Therefore we may assume, after passing to subsequences’ that, weakly in W (B, RF) and strongly in
L"(B,RL), Ay — A weakly inWl"/2(B) and strongly inL"/2(B). Itis easy to see thd,}! _, is a moving frame
alongu*T N, andA = ((dey, eg)) satisfies

§A=0 inB; x-A=0 onaB, (3.10)
and

Using these moving frames, Lemma 2.1 yields that for aryol< [

I
=8 ((|dux "2 dug., €f)) = > (Idux|" "2 dug, ef) - (dey, es) + (Dy, ef). (3.12)
p=1
It follows from Lemma 3.2 that we can assume tWat, — Vu strongly inL4(£2) for any 1< g < n. Therefore
we have

|dug "2 du — |du"?du, weakly inL™ "D 2B). (3.13)
This implies
—8({|dur " dug, ek)) — —8({|dul""?du, &,)), InD'(B) (3.14)

ask — oo, forall 1< o <.
It is readily seen that for any € C3°(B) we have

|<@k, es(p){(wl,n)*’wl.n} < ”¢k”(W1*”(B,N))* ||€§¢||Wln(3) — 0, ask — oo. (315)
In order to prove that is anrn-harmonic map, it suffices to prove that for angkr, 8 <!
(1du "2 duag, efy) - (e, ely) — (|dul*"?du, eg)(dea. eg), inD'(B). (3.16)
To prove (3.16), we first lef;, € W1"(R", RL) andek € Wi (R", RE) be the extensions af, ande from B
respectively such that

< ClIVekliinp). (3.17)

IVitgllLrrry < CllVuklln(s), |V (k) Ln (R

For (|dizx |2 ditg, € ) e L"=D(R" AL(R™)), the Hodge decomposition theorem (cf. Iwaniec—Martin [17]) im-
plies that there arg”‘ wln/@=1)(Rm) andg/’g e wln/m=D(Rn A2(R")) such that dg =0,

(1ditx "2 dit., e ) dfs +dg. (3.18)
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and
IV £4 1l -y + 1V EE Nl pwro-v ey < ClIVug ) (3.19)

It follows from (3.19) that we may assunfd — f5, g5 — gp weakly in WI1 1/(1=1) Ry Therefore, by taking
to infinity, (3.18) implies

<|du|”72du, eg)=dfs+3gp; dgg=0, inB. (3.20)
Moreover, (3.18) gives

(|duk|” 2duk,eﬁ) (dea, eﬁ dfﬂ ellf}) +8gll§ . (deé,ek), in B. (3.21)
Since d £ — dfz weakly in L/ =D (B), (dek, e — (deg, eg) weakly in L"(B), ands(dék, eg) =0in B, we
can apply the Div—Curl lemma (cf. [6] page 53) to conclude

dff - (des. ef) — dfs - (dew. ep), InD'(B). (3.22)

In fact, (3.22) follows directly from the integrations by parts: for gng C5°(B),

/dfﬁ (def. ef)pdx = — /fﬁ ef) - dpdx

Rn

— —/fﬁ(dea,eﬁ) -d¢dx =/df,3 - (dey, )¢
Rn Rn

ask — oo. Here we have used both (3.7) and (3.10),d(e’, e’g) =§(dey, eg) =0, in B.
Now we need the compensated compactness result (cf. Lions [19,20]), which was developed by Freire—Muller—
Struwe [9,10] in the context of wave maps BAL.

Lemma 3.4.Under the same notations. After taking possible subsequences, we have

8g//§ (de eﬁ) — 6gp - (dey,eg) +v, InB (3.23)
wherev is a signed Radon measure given by
v=>"a;d (3.24)
jeJ

whereJ is at most countable;; e R, x; € B, andzjej laj| < +oo.

Proof. For the simplicity, we only outline a proof based on suitable modifications of [10].
First we observe that

8gp - (des. el) — dgp - (dew. ep)
_ k k k k
= S(gﬁ —8p)- <d(ea —eq), eﬁ) +3gp - (d(ea —eq), eﬁ) + (8gﬁ (dey, 3,3) dgp - (dey, gﬂ))
=5(g5 — 8p) - (d(ey —ea). ) + T+ 11k
The dominated convergence theorem implies
Ll —0, inLYB), ask — .
Therefore (3.23) and (3.24) is equivalent to
8(g}1§ —8p)- (d(e](; —ey), eg) —> v (3.25)
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wherev is the Radon measure given by (3.24).

Since|V(ek — e, |V(g/’_fj — gp)I" =1 are bounded ir.(B), we may assume, after taking subsequences,
that there is a nonnegative Radon meaguoan B such that

1 I
(Zlv(efi —e)|"+ > |Vigh - gﬁ)!"/("_l)> dx —

a=1 p=1
as convergence of Radon measuresion

LetS={x € B: u({x}) =lim,_ou(B,(x)) > 0}. Then it follows fromu(B) < +o0 thatS is at most a count-
able set. Now we want to show

supp(v)C S. (3.26)
Itis easy to see that (3.26) yields (3.24) and hence the conclusion of Lemma 3.4.
To see (3.26), we proceed as follows. ot C3°(B), we have

(v, ¢°) = lim / $5(8f; — gp) - (Bd(€, — ea). pef)dx
Rn
= lim_ / [8(¢(gh — gp)) —do- (gf — gp)] - {[d((ch — ea)) — (e — ea) d]. pef) dx
Rll

:kimw/8(¢(gll§ - gﬁ)) ~(d(¢>(e(]§ — ea)), ¢>ell§>dx (3.27)
Rn
where we have used

Jim f [(gh — gp) do- (pd(es — ea), pefs) — 8(d (g — 2p)) - (el — ea) b, pef)] dx = 0.
R)l

Note that Proposition 3.1 impligd; = §(¢ (g/’g —gp)) -d(¢(ek —ey)) is bounded ir{}(R"), and (3.22) implies
Hi — 0in D' (R"). Therefore we have thdf;, — 0 weak in H1(R"). On the other hand, singfeg € win(Rm),
we havepes € VMO (R"), where VMQR") ¢ BMO(R") is the closure o’3°(R") in the BMO norm. Itis well-
known [11] that the dual of VMO(R) is H1(R"). Hence we have

kli_)moo/b‘((ﬁ(gg —gp)) - (d(#(ek — er)), peg)dx =0. (3.28)

Rn
Putting (3.28) together with (3.27) and applying (3.4), we have

|<"7 ¢3>| < Ck'LmOOIIV(W'é —ep)) ”L”(R") HV(¢’("§ —ea)) “L”(R") |}V(¢>(g/’§ —8p)) HL"/(n—l)(R”)
<C lim {[[¢V(es —ep)

x [|#V(el — ex)

x [|¢V (& = 2| Lo-vegey + IVBI2llgh — &8l vy ]}

< C((ws )Y (s )Y (1, @/ DY) 7D (3.29)
where we have used

iy T IVOlL<lles — epllins]

gy F IVl lel = eallnim]

- k k _
k||—>moo(“ea —eallnp) + 118 — gﬂ”Ln/(n_l)(B)) =0.
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By choosingg; € C;°(B) such thay; — Ap,(y), the characteristic function of a bah. (y), we then have

v(B: () < Cu(Br ()", (3.30)
Thereforev is absolutely continuous with respectiio Moreover, for anyy ¢ S, the Radon—Nikodyn derivative
: v(B () ; /n
—( )= lim ———= < Clim u(B,(y))”" =0.
My B, o < € o5 0)

Therefore the support af is contained inS. This proves (3.26) and hence (3.24). The proof of Lemma 3.4 is
complete. O

Now we return to the proof of Lemma 3.3. By putting (3.14), (3.20), (3.22), and (3.23) together, we have, for
any 1< o </,

l
—8((|du|"72 du, ea)) = Z(|du|n72 du, 3/3) - (dey, eg) + Zajsxf (3.31)

a=1 jelJ

whereJ is at most countables; € R, x; € B, and)_ ;. laj| < +oo.

In order to conclude that is ann-harmonic map, one has to show tlat= 0 for all j € J. In fact, (3 31)
implies that)_" ;. ; a;8,; € W=1"(B) + L*(B). One the other hand, it is well-known tht¢ W—"(B) + L*(B)
foranyx € B. Hencea, =0for j € J. The proof of Lemma 3.3 is completen

Based on Lemma 3.3, we can give a proof of Theorem B as follows.
Proof of Theorem B. Since|Vu|" is bounded inL1(£2), we may assume, after passing to subsequences, that
there is a nonnegative Radon meaguren §2 such that
|Vug|" dx — p
as convergence of Radon measures.ciet 0 be the same constant as in Lemma 3.3 and déefines2 by
Y ={xe: u(fx}) =€t}
Then X is a finite subset and

|Z1<Ce”, C=limsup [ [Vug|" dx < +oo.

k— 00

For anyxp € 2\ X, there exists anyg > 0 such thaj. (B4, (x0)) < €7. Since

limsup |Vug|" dx < p(Barg (x0)),
k— 00
B2y (x0)

we can assume that there exikgs> 1 such thath 4 (x0) |Vug|?dx < €1, Yk > ko. Therefore Lemma 3.3 implies

thatu is ann-harmonic map inB,,(xo). Sincexg € .Q \ X' is arbitrary, we conclude thatis ann-harmonic map
in £2\ X. SinceX is finite, it is standard to show thatis also am-harmonic map in2 (cf. [7,26]). O
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