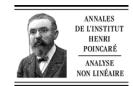


Available online at www.sciencedirect.com

Ann. I. H. Poincaré - AN 22 (2005) 509-519



www.elsevier.com/locate/anihpc

A compactness theorem of *n*-harmonic maps

Un théorème de compacité pour applications n-harmoniques

Changyou Wang¹

Department of Mathematics, University of Kentucky, Lexington, KY 40506, USA

Received 26 August 2004; accepted 28 October 2004

Available online 12 April 2005

Abstract

For $n \ge 3$, let $\Omega \subset \mathbf{R}^n$ be a bounded domain and $N \subset \mathbf{R}^L$ be a compact smooth Riemannian submanifold without boundary. Suppose that $\{u_n\} \subset W^{1,n}(\Omega, N)$ are weak solutions to the (perturbed) *n*-harmonic map equation (1.2), satisfying (1.3), and $u_k \to u$ weakly in $W^{1,n}(\Omega, N)$. Then *u* is an *n*-harmonic map. In particular, the space of *n*-harmonic maps is sequentially compact for the weak- $W^{1,n}$ topology.

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Pour $n \ge 3$, soit $\Omega \subset \mathbb{R}^n$ un domaine borné et soit $N \subset \mathbb{R}^L$ une sous-variété compacte sans bord. Soient $\{u_n\} \subset W^{1,n}(\Omega, N)$ des solutions de l'équation (perturbée) (1.2) pour les applications *n*-harmoniques, telles que $u_k \to u$ faiblement dans $W^{1,n}(\Omega, N)$. Alors *u* est une application *n*-harmonique. En particulier, l'espace des applications *n*-harmoniques est sequentiellement compact dans la topologie $W^{1,n}$ faible.

© 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC: 35K55; 58J35

Keywords: Harmonic maps; Coulomb gauge frame; Compensated-compactness

E-mail address: cywang@ms.uky.edu (C. Wang).

¹ The author is partially supported by NSF.

^{0294-1449/\$ -} see front matter © 2005 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved doi:10.1016/j.anihpc.2004.10.007

1. Introduction

For $n \ge 2$, let $\Omega \subset \mathbf{R}^n$ be a bounded domain, and $N \subset \mathbf{R}^L$ be a compact smooth Riemannian manifold without boundary, isometrically embedded into an Euclidean space \mathbf{R}^L for some $L \ge 1$. For $2 \le p \le n$, the Sobolev space $W^{1,p}(\Omega, N)$ is defined by

$$W^{1,p}(\Omega, N) := \{ u = (u^1, \dots, u^L) \in W^{1,p}(M, \mathbf{R}^L) \mid u(x) \in N \text{ for a.e. } x \in \Omega \}.$$

The Dirichlet *p*-energy functional $E_p: W^{1,p}(\Omega, N) \to \mathbf{R}$ is defined by

$$E_p(u) = \int_{\Omega} |\nabla u|^p \, \mathrm{d}x = \int_{\Omega} \left(\sum_{\alpha=1}^n \left(\frac{\partial u}{\partial x_{\alpha}}, \frac{\partial u}{\partial x_{\alpha}} \right) \right)^{p/2} \, \mathrm{d}x$$

where $\langle \cdot, \cdot \rangle$ is the scalar product of \mathbf{R}^{L} .

Recall that a map $u \in W^{1,p}(\Omega, N)$ is a *p*-harmonic map, if *u* is a critical point of E_p on the space $W^{1,p}(\Omega, N)$, i.e. *u* satisfies the *p*-harmonic map equation:

$$-\operatorname{div}(|\nabla u|^{p-2}\nabla u) = |\nabla u|^{p-2}A(u)(\nabla u, \nabla u)$$
(1.1)

in the sense of distributions, where div is the divergence operator on \mathbf{R}^n and $A(\cdot)(\cdot, \cdot)$ is the second fundamental form of $N \subset \mathbf{R}^L$.

Since the *p*-harmonic map equation (1.1) is a degenerate elliptic system with critical nonlinearity in the gradients, the analysis of both the regularity problem and the weak compactness for *p*-harmonic maps are extremely challenging.

This paper is motivated by the problem:

Question A. For $n \ge 3$ and $2 \le p \le n$, is any weak limit u in $W^{1,p}(\Omega, N)$ of a sequence of p-harmonic maps $\{u_k\} \subset W^{1,p}(\Omega, N)$ a p-harmonic map?

For p = n = 2, the answer to question A is affirmative, due to Hélein's celebrated regularity theorem [12]: *any* 2-harmonic map from a Riemannian surface into any compact Riemannian manifold is smooth.

Question A remains open for $n \ge 3$, although a lot of efforts have been made. We would like to mention some known results in the direction. Schoen–Uhlenbeck [24] (p = 2), Hardt–Lin [15] and Luckhaus [21] ($p \ne 2$) have shown that any weak limit $u \in W^{1,p}$ of a sequence of minimizing *p*-harmonic maps is a strong limit and a minimizing *p*-harmonic map. Question A is true for target manifolds N with symmetry, such as $N = S^{L-1}$ is the unit sphere in \mathbb{R}^L (cf. Chen [3], Shatah [22], Evans [6] §5, and Hélein [13] §2) or $N = \mathbb{G}/\mathbb{H}$ is a compact Riemannian homogeneous manifold (cf. Toro–Wang [26]). Here the symmetry guarantees the existence of Killing tangent vector fields on N, under which the nonlinearity of the *p*-harmonic map equation (1.1) can be reduced to a form with Jacobian structure.

For manifolds N without symmetries, the idea of Coulomb moving frames, due to Hélein [12] (see also [13]), has played extremely important roles on the study of regularity of stationary 2-harmonic maps by Hélein [12] (n = 2) and Bethuel [2] ($n \ge 3$) (see also Evans [5]). The idea in [12] is that one first assumes that N is parallelizable and then uses the variational method to obtain a harmonic moving frame { e_{α} }. It turns out that the nonlinearity of 2-harmonic map equation via a harmonic moving frame contains Jacobian structure. However, it is known that the harmonic moving frame by [12] is insufficient for the compactness of 2-harmonic maps. On the other hand, in the study on existence of wave maps in \mathbb{R}^{2+1} , Freire–Müller–Struwe [9,10] have discovered that for wave maps enjoying the energy monotonicity inequalities in \mathbb{R}^{2+1} , the concentration compactness method of Lions [19,20], in combination with the idea of Coulomb moving frames for wave maps and some end-point analytic estimates, can yield the weak compactness of wave maps enjoying energy monotonicity inequalities in \mathbb{R}^{2+1} . We would like to

point out that Strzelecki, Zatorska-Goldstein [25] have used these ideas from [9,10] and [19,20] to show the weak compactness of weak solutions of higher dimensional *H*-systems.

There is a main difficulty that one encounters for *p*-harmonic maps for $p \neq 2$, namely the appropriate construction of Coulomb moving frames. Notice that neither minimizers of $\int |\langle de_{\alpha}, e_{\beta} \rangle|^p$ nor minimizers of $\int |\nabla u|^{p-2} |\langle de_{\alpha}, e_{\beta} \rangle|^2$ seem to work here. Instead, we observe that for p = n case Uhlenbeck's construction of Coulomb gauges for Yang–Mills fields [27] can be adopted to obtain Coulomb moving frames along u^*TN under the smallness of $E_n(u)$. This kind of observation has been utilized by Wang [29,30] in the context of biharmonic maps. With such a Coulomb moving frame along u^*TN , we can modify the analytic techniques by [10] to show the weak compactness of a Palais–Smale sequence of the Dirichlet *n*-energy functional E_n on $W^{1,n}(\Omega, N)$.

We first recall

Definition. A sequence of maps $\{u_k\} \subset W^{1,n}(\Omega, N)$ is a Palais–Smale sequence for the Dirichlet *n*-energy functional E_n , if (a) $u_k \to u$ weakly in $W^{1,n}(\Omega, N)$, and (b) $E'_n(u_k) \to 0$ in $(W^{1,n}(\Omega, N))^*$. Here $(W^{1,n}(\Omega, N))^*$ is the dual of $W^{1,n}(\Omega, N)$.

Notice that (b) is equivalent to that u_k satisfies the perturbed *n*-harmonic map equation:

$$-\operatorname{div}(|\nabla u_k|^{n-2}\nabla u_k) = |\nabla u_k|^{n-2}A(u_k)(\nabla u_k, \nabla u_k) + \Phi_k,$$
(1.2)

in the sense of distributions, and

$$\lim_{k \to \infty} \|\Phi_k\|_{(W^{1,n}(\Omega,N))^*} = 0.$$
(1.3)

The question is whether any weak limit u of a Palais–Smale sequence is an n-harmonic map. This is highly nontrivial. Since E_n is conformally invariant and the conformal group is non-compact, E_n does not satisfy the Palais–Smale condition (cf. [23]). Our main result is

Theorem B. For $n \ge 3$, assume that $\{u_k\} \subset W^{1,n}(\Omega, N)$ satisfy Eqs. (1.2), (1.3), and converge weakly to u in $W^{1,n}(\Omega, N)$, then $u \in W^{1,n}(\Omega, N)$ is an n-harmonic map.

We would like to remark that for n = 2, Theorem B has first been proven by Bethuel [1], later reproved by Freire–Müller–Struwe [10], and also by Wang [28]. For $n \ge 3$, Hungerbhler [14] has obtained the existence of global weak solutions to the *n*-harmonic map flow. Theorem B is applicable to the *n*-harmonic map flow by [14] at time infinity.

As a corollary, we answer Question A in the affirmative for $p = n \ge 3$.

Corollary C. For $n \ge 3$, assume that $\{u_k\} \subset W^{1,n}(\Omega, N)$ are a sequence of *n*-harmonic maps converging weakly to *u* in $W^{1,n}(\Omega, N)$, then *u* is an *n*-harmonic map.

The paper is written as follows. In Section 2, we outline the construction of Coulomb moving frames. In Section 3, we first recall $\mathcal{H}^1(\mathbf{R}^n)$ -estimate for functions with Jacobian structure by [4], the duality between $\mathcal{H}^1(\mathbf{R}^n)$ and BMO(\mathbf{R}^n) by [11], and then give a proof of Theorem B.

In this paper, we will use the following notations. For a ball $B = B_r(x) \subset \mathbb{R}^n$, denote $\alpha B = B_{\alpha r}(x)$ for any $\alpha > 0$. For $1 \le i \le n$, denote $\wedge^i(\mathbb{R}^n)$ as the *i*th wedge product of \mathbb{R}^n , $C^{\infty}(\mathbb{R}^n, \wedge^i(\mathbb{R}^n))$ as the space of smooth *i*th forms on \mathbb{R}^n , and $W^{m,p}(\mathbb{R}^n, \wedge^i(\mathbb{R}^n))$ as the space of *i*th forms on \mathbb{R}^n with $W^{m,p}(\mathbb{R}^n)$ coefficients, for nonnegative integers *m* and $1 . Denote by <math>\mathcal{D}'(\Omega)$ the dual of $C_0^{\infty}(\Omega)$. Denote *d* as the exterior differential operator on \mathbb{R}^n and δ as the adjoint operator of *d*.

2. The construction of Coulomb moving frames

This section is devoted to the construction of Coulomb moving frames along u^*TN , under the smallness condition on $E_n(u)$.

For any open set $U \subset \mathbb{R}^n$ and $u \in W^{1,n}(U, N)$, denote u^*TN as the pull-back bundle of TN by u over U. For $l = \dim(N)$, we say that $\{e_{\alpha}\}_{\alpha=1}^{l}$ is a moving frame along u^*TN , if $\{e_{\alpha}(x)\}_{\alpha=1}^{l}$ is an orthonormal base of $T_{u(x)}N$, the tangent space of N at the point u(x), for a.e. $x \in U$.

We now express the perturbed *n*-harmonic map equation, via a moving frame, as follows.

Lemma 2.1. For $n \ge 3$ and $u \in W^{1,n}(\Omega, N)$, let $\{e_{\alpha}\}_{\alpha=1}^{l}$ be a moving frame along u^*TN . Then u is a weak solution to the perturbed n-harmonic map equation:

$$-\operatorname{div}(|\nabla u|^{n-2}\nabla u) = |\nabla u|^{n-2}A(u)(\nabla u, \nabla u) + \Phi$$
(2.1)

if and only if for any $1 \leq \alpha \leq l$ *, the following equation*

$$-\operatorname{div}(\langle |\nabla u|^{n-2} \nabla u, e_{\alpha} \rangle) = \sum_{\beta=1}^{l} \langle |\nabla u|^{n-2} \nabla u, e_{\beta} \rangle \langle \nabla e_{\alpha}, e_{\beta} \rangle + \langle \Phi, e_{\alpha} \rangle$$
(2.2)

holds in the sense of distributions. Here $\Phi \in (W^{1,n}(\Omega, N))^*$.

Proof. Observe that for a.e. $x \in \Omega$, we have

$$\langle e_{\alpha}(x), A(u(x))(\nabla u(x), \nabla u(x)) \rangle = 0, \quad 1 \leq \alpha \leq l,$$

for $e_{\alpha}(x) \in T_{u(x)}N$ and $A(u(x))(\nabla u(x), \nabla u(x)) \perp T_{u(x)}N$. Then straightforward calculations deduce the equivalence between (2.2) and (2.1). \Box

We now state the construction of a Coulomb moving frame along u^*TN with estimates on its connection form. It is inspired by an earlier result of Wang [29,30] in the context of biharmonic maps and Uhlenbeck's Coulomb gauge construction for Yang–Mills fields [27].

Proposition 2.2. For $n \ge 3$ and any ball $B \subset \mathbb{R}^n$, there exists an $\epsilon_0 > 0$ such that if $u \in W^{1,n}(2B, N)$ satisfies

$$\|\nabla u\|_{L^{n}(2B)} \leqslant \epsilon_{0} \tag{2.3}$$

then there exists a Coulomb moving frame $\{e_{\alpha}\}_{\alpha=1}^{l}$ along $u^{*}TN$ in $W^{1,n}(B, \mathbf{R}^{L})$ such that its connection form $A = (\langle de_{\alpha}, e_{\beta} \rangle)$ satisfies

$$\delta A = 0 \quad in B; \qquad x \cdot A = 0 \quad on \, \partial B \tag{2.4}$$

and

$$\|A\|_{L^{n}(B)} + \|\nabla A\|_{L^{n/2}(B)} \leq C \|\nabla u\|_{L^{n}(B)}^{2}.$$
(2.5)

Proof. Since the argument is very similar to that of [30] Proposition 3.2, we only sketch it briefly. First, it is well-known (cf. [24]) that the standard mollification process and the nearest point projection map yield that if $\epsilon_0 > 0$ in (2.3) is chosen sufficiently small, then there exist a sequence of smooth maps $\{u_k\} \subset C^{\infty}(B, N)$ such that $u_k \to u$ strongly in $W^{1,n}(B, N)$. In particular, there exists a $k_0 \ge 1$ such that

$$\sup_{k \ge k_0} \|\nabla u_k\|_{W^{1,n}(B)} \le 2\epsilon_0.$$

$$(2.6)$$

Next, since $u_k^*TN|_B$ are trivial smooth vector bundles, there exist smooth moving frames $\{e_{\alpha}^k\}_{\alpha=1}^l$ along u_k^*TN on B. Let $A_k = (\langle de_{\alpha}^k, e_{\beta}^k \rangle)_{1 \le \alpha, \beta \le l}$ and $F(A_k)$ be the connection form and curvature form of $u_k^* T N$ with respect to the frame $\{e_{\alpha}^k\}_{\alpha=1}^l$ respectively. Then the same computation as in [30] Proposition 3.2 implies that

$$\left|F(A_k)\right|(x) \leqslant C |\nabla u_k|^2(x), \quad \forall x \in B.$$
(2.7)

This, combined with (2.6), implies

$$\sup_{k \ge k_0} \|F(A_k)\|_{L^{n/2}(B)} \le C \sup_{k \ge k_0} \|\nabla u_k\|_{L^n(B)}^2 \le C\epsilon_0^2.$$
(2.8)

Hence, for $k \ge k_0$, Uhlenbeck's theorem [27] implies that there are gauge transformation maps $\{R_k\} \subset$ $W^{1,n}(B, \mathbf{SO}(l))$ such that the connection forms $\overline{A_k} = (\langle de_{\alpha}^k, e_{\beta}^k \rangle)_{1 \le \alpha, \beta \le l}$ and the curvature forms $F(\overline{A_k})$ of the new moving frames $\overline{e_{\alpha}^{k}} = \sum_{\beta=1}^{l} R_{k}^{\alpha\beta} e_{\beta}^{k}, 1 \leq \alpha \leq l$, satisfy

$$\delta \overline{A_k} = 0 \quad \text{in } B, \qquad x \cdot \overline{A_k} = 0, \quad \text{on } \partial B,$$
(2.9)

$$\|\overline{A_k}\|_{L^n(B)} + \|\nabla\overline{A_k}\|_{L^{n/2}(B)} \leq C \|F(A_k)\|_{L^{n/2}(B)} \leq C \|\nabla u_k\|_{L^n(B)}^2 \leq C\epsilon_0.$$
(2.10)

Finally, we want to take limit $k \to \infty$. For this, we need to estimate $\|\nabla \overline{e_{\alpha}^{k}}\|_{L^{n}(B)}$ for $1 \leq \alpha \leq l$. For $y \in N$, let $P^{\perp}(y) : \mathbf{R}^{L} \to (T_{y}N)^{\perp}$ denote the orthogonal projection from map \mathbf{R}^{L} to the normal space $(T_v N)^{\perp}$. Then we have

$$\nabla \overline{e_{\alpha}^{k}} = \sum_{\beta=1}^{l} \langle \nabla \overline{e_{\alpha}^{k}}, \overline{e_{\beta}^{k}} \rangle \overline{e_{\beta}^{k}} + P^{\perp}(u_{k})(\nabla \overline{e_{\alpha}^{k}}) = \sum_{\beta=1}^{l} \langle \nabla \overline{e_{\alpha}^{k}}, \overline{e_{\beta}^{k}} \rangle \overline{e_{\beta}^{k}} - A(u_{k})(\overline{e_{\alpha}^{k}}, \nabla u_{k})$$
(2.11)

where we have used

$$P^{\perp}(u_k)(\nabla \overline{e_{\alpha}^k}) = -\nabla \left(P^{\perp}(u_k) \right)(\overline{e_{\alpha}^k}) = -A(u_k)(\overline{e_{\alpha}^k}, \nabla u_k)$$

for $P^{\perp}(u_k)(\overline{e_{\alpha}^k}) = 0$. Therefore we have, for $k \ge k_0$,

$$|\nabla e_{\alpha}^{k}|(x) \leq C(|A_{k}| + |\nabla u_{k}|)(x), \quad \text{for a.e. } x \in B.$$

$$(2.12)$$

This, combined with (2.6) and (2.10), yields

$$\sum_{\alpha=1}^{l} \|\nabla \overline{e_{\alpha}^{k}}\|_{L^{n}(B)} \leqslant C\left(\|A_{k}\|_{L^{n}(B)} + \|\nabla u_{k}\|_{L^{n}(B)}\right) \leqslant C\epsilon_{0}.$$
(2.13)

Therefore, after taking subsequences, we can assume that $\overline{e_{\alpha}^k} \to e_{\alpha}$ weakly in $W^{1,n}(B)$, strongly in $L^n(B)$, and a.e. in *B*. Since $u_k \to u$ strongly in $W^{1,n}(B)$, we have that $\{e_{\alpha}\}_{\alpha=1}^l \subset W^{1,n}(B)$ is a moving frame along u^*TN on *B*. Moreover, (2.10) implies that $A_k \to A \equiv (\langle de_\alpha, e_\beta \rangle)$, the connection form of $\{e_\alpha\}_{\alpha=1}^l$, weakly in $W^{1,n/2}(B)$. Hence (2.9) and (2.10) imply that A satisfies (2.4) and (2.5). The proof of Proposition 2.2 is complete. \Box

3. Proof of Theorem B

This section is devoted to the proof of Theorem B. First we recall some basic facts on the Hardy space $\mathcal{H}^1(\mathbf{R}^n)$ and the BMO space $BMO(\mathbf{R}^n)$.

Recall that $f \in L^1(\mathbf{R}^n)$ belongs to the Hardy space $\mathcal{H}^1(\mathbf{R}^n)$ if

$$f_* := \sup_{\epsilon > 0} |\phi_{\epsilon} * f| \in L^1(\mathbf{R}^n)$$

where $\phi_{\epsilon}(x) := \epsilon^{-n} \phi(\frac{x}{\epsilon})$ for a fixed nonnegative $\phi \in C_0^{\infty}(\mathbf{R}^n)$ with $\int_{\mathbf{R}^n} \phi \, dy = 1$. Note that $\mathcal{H}^1(\mathbf{R}^n)$ is a Banach space with the norm

$$||f||_{\mathcal{H}^1(\mathbf{R}^n)} := ||f||_{L^1(\mathbf{R}^n)} + ||f_*||_{L^1(\mathbf{R}^n)}$$

An important property of $f \in \mathcal{H}^1(\mathbb{R}^n)$ is the cancellation identity $\int_{\mathbb{R}^n} f \, dy = 0$ (cf. [11]).

Recall also that $f \in L^1_{loc}(\mathbf{R}^n)$ belongs to the BMO space BMO(\mathbf{R}^n) (cf. John–Nirenberg [18]), if

$$||f||_{\text{BMO}(\mathbf{R}^n)} := \sup\left\{\frac{1}{|B|} \int_{B} |f - f_B| \, \mathrm{dy}: \text{ any ball } B \subset \mathbf{R}^n\right\} < \infty$$

where $f_B = \frac{1}{|B|} \int_B f \, dy$ is the average of f over B. By the Poincaré inequality we have $W^{1,n}(\mathbf{R}^n) \subset BMO(\mathbf{R}^n)$ and

$$\|f\|_{\text{BMO}(\mathbf{R}^n)} \leqslant C \|\nabla f\|_{L^n(\mathbf{R}^n)}.$$
(3.1)

The celebrated theorem of Fefferman–Stein [11] says that the dual of $\mathcal{H}^1(\mathbf{R}^n)$ is BMO(\mathbf{R}^n). Moreover

$$\left| \int_{\mathbf{R}^n} fg \, \mathrm{d}y \right| \leq C \|f\|_{\mathcal{H}^1(\mathbf{R}^n)} \|g\|_{\mathrm{BMO}(\mathbf{R}^n)}.$$
(3.2)

Now we recall an important result of Coifman-Lions-Meyer-Semmes [4], see also [5].

Proposition 3.1 [4]. For any $1 , denote <math>p' = \frac{p}{p-1}$. Let $f \in W^{1,p}(\mathbb{R}^n)$, $g \in W^{1,p'}(\mathbb{R}^n, \wedge^1(\mathbb{R}^n))$, and $h \in W^{1,n}(\mathbb{R}^n)$. Then $df \cdot \delta g \in \mathcal{H}^1(\mathbb{R}^n)$ and

$$\|\mathbf{d}f\cdot\delta g\|_{\mathcal{H}^{1}(\mathbf{R}^{n})} \leqslant C \|\nabla f\|_{L^{p}(\mathbf{R}^{n})} \|\nabla g\|_{L^{p'}(\mathbf{R}^{n})}.$$
(3.3)

In particular, we have

$$\left| \int_{\mathbf{R}^{n}} \langle \mathrm{d}f \cdot \delta g, h \rangle \, \mathrm{d}y \right| \leqslant C \|\nabla f\|_{L^{p}(\mathbf{R}^{n})} \|\nabla g\|_{L^{p'}(\mathbf{R}^{n})} \|\nabla h\|_{L^{n}(\mathbf{R}^{n})}.$$
(3.4)

We also recall the following pointwise convergence result, which is essentially due to Hardt–Lin–Mou [16] (see also [8]).

Lemma 3.2 [16]. Suppose that $\{u_k\} \subset W^{1,n}(\Omega, \mathbf{R}^L)$ are weak solutions to

$$-\operatorname{div}(|\nabla u_k|^{n-2}\nabla u_k) = f_k + \Phi_k, \tag{3.5}$$

where $f_k \to 0$ in $L^1(\Omega, \mathbf{R}^L)$, and $\Phi_k \to 0$ in $(W^{1,n}(\Omega, \mathbf{R}^L))^*$. Assume that $u_k \to u$ weakly in $W^{1,n}(\Omega, \mathbf{R}^L)$. Then, after taking possible subsequences, we have $\nabla u_k \to \nabla u$ a.e. in Ω . In particular, $\nabla u_k \to \nabla u$ strongly in $L^q(\Omega, \mathbf{R}^L)$ for any $1 \leq q < n$.

After these preparations, we are ready to give a proof of Theorem B. It turns out the crucial step is to show the following weak compactness under the smallness condition on E_n .

Lemma 3.3 (ϵ -weak compactness). For any $n \ge 3$, there exists an $\epsilon_1 > 0$ such that if $\{u_k\} \subset W^{1,n}(2B, N)$ satisfy both Eq. (1.2) and the condition (1.3) with Ω replaced by 2B, $u_k \rightarrow u$ weakly in $W^{1,n}(2B, N)$, and satisfy

$$\int_{2B} |\nabla u_k|^n \, \mathrm{d}x \leqslant \epsilon_1^n, \quad \forall k \ge 1.$$
(3.6)

Then $u \in W^{1,n}(B, N)$ is an n-harmonic map.

Proof. For the convenience, we will write both equation (1.1) and (1.2) by using d and δ from now on.

Let $\epsilon_1 > 0$ be the same constant as in Proposition 2.2. Then we have that for any $k \ge 1$ there is a Coulomb moving frame $\{e_{\alpha}^k\}_{\alpha=1}^l$ along u_k^*TN such that the connection form $A_k = (\langle de_{\alpha}^k, e_{\beta}^k \rangle)$ satisfies

$$\delta A_k = 0 \quad \text{in } B; \qquad x \cdot A_k = 0 \quad \text{on } \partial B \tag{3.7}$$

and

$$\|A_k\|_{L^n(B)} + \|\nabla A_k\|_{L^{n/2}(B)} \leq C \|\nabla u_k\|_{L^n(B)}^2.$$
(3.8)

Moreover, similar to (2.19), we have

$$\prod_{\alpha=1}^{l} \|\nabla e_{\alpha}^{k}\|_{L^{n}(B)} \leqslant C \|\nabla u_{k}\|_{L^{n}(B)} \leqslant C\epsilon_{1}, \quad \forall k \ge 1.$$

$$(3.9)$$

Therefore we may assume, after passing to subsequences, that $e_{\alpha}^{k} \to e_{\alpha}$ weakly in $W^{1,n}(B, \mathbf{R}^{L})$ and strongly in $L^{n}(B, \mathbf{R}^{L})$, $A_{k} \to A$ weakly in $W^{1,n/2}(B)$ and strongly in $L^{n/2}(B)$. It is easy to see that $\{e_{\alpha}\}_{\alpha=1}^{l}$ is a moving frame along $u^{*}TN$, and $A = (\langle de_{\alpha}, e_{\beta} \rangle)$ satisfies

$$\delta A = 0 \quad \text{in } B; \qquad x \cdot A = 0 \quad \text{on } \partial B, \tag{3.10}$$

and

$$\|A\|_{L^{n}(B)} + \|\nabla A\|_{L^{n/2}(B)} \leq C \liminf_{k} \|\nabla u_{k}\|_{L^{n}(B)}^{2} \leq C\epsilon_{1}^{2}.$$
(3.11)

Using these moving frames, Lemma 2.1 yields that for any $1 \le \alpha \le l$

$$-\delta\left(\left(|\mathrm{d}u_k|^{n-2}\,\mathrm{d}u_k,e_\alpha^k\right)\right) = \sum_{\beta=1}^l \left(|\mathrm{d}u_k|^{n-2}\,\mathrm{d}u_k,e_\beta^k\right) \cdot \left\langle \mathrm{d}e_\alpha^k,e_\beta^k\right\rangle + \left\langle \Phi_k,e_\alpha^k\right\rangle.$$
(3.12)

It follows from Lemma 3.2 that we can assume that $\nabla u_k \to \nabla u$ strongly in $L^q(\Omega)$ for any $1 \leq q < n$. Therefore we have

$$|\mathrm{d}u_k|^{n-2} \,\mathrm{d}u_k \to |\mathrm{d}u|^{n-2} \,\mathrm{d}u, \quad \text{weakly in } L^{n/(n-1)}(2B).$$
 (3.13)

This implies

$$-\delta((|du_k|^{n-2} du_k, e^k_{\alpha})) \to -\delta((|du|^{n-2} du, e_{\alpha})), \quad \text{in } \mathcal{D}'(B)$$
(3.14)

as $k \to \infty$, for all $1 \leq \alpha \leq l$.

It is readily seen that for any $\phi \in C_0^{\infty}(B)$ we have

$$\left| \langle \Phi_k, e^k_{\alpha} \phi \rangle_{\{(W^{1,n})^*, W^{1,n}\}} \right| \leq \| \Phi_k \|_{(W^{1,n}(B,N))^*} \| e^k_{\alpha} \phi \|_{W^{1,n}(B)} \to 0, \quad \text{as } k \to \infty.$$
(3.15)

In order to prove that *u* is an *n*-harmonic map, it suffices to prove that for any $1 \le \alpha, \beta \le l$

$$\left\langle |\mathrm{d}u_k|^{n-2} \,\mathrm{d}u_k, e_\beta^k \right\rangle \cdot \left\langle \mathrm{d}e_\alpha^k, e_\beta^k \right\rangle \to \left\langle |\mathrm{d}u|^{n-2} \,\mathrm{d}u, e_\beta \right\rangle \left\langle \mathrm{d}e_\alpha, e_\beta \right\rangle, \quad \text{in } \mathcal{D}'(B).$$
(3.16)

To prove (3.16), we first let $\bar{u}_k \in W^{1,n}(\mathbf{R}^n, \mathbf{R}^L)$ and $\bar{e}_{\alpha}^k \in W^{1,n}(\mathbf{R}^n, \mathbf{R}^L)$ be the extensions of u_k and e_{α}^k from *B* respectively such that

$$\|\nabla \bar{u}_k\|_{L^n(\mathbf{R}^n)} \leqslant C \|\nabla u_k\|_{L^n(B)}, \qquad \|\nabla (\overline{e_\alpha^k})\|_{L^n(\mathbf{R}^n)} \leqslant C \|\nabla e_\alpha^k\|_{L^n(B)}.$$
(3.17)

For $\langle |d\bar{u}_k|^{n-2} d\bar{u}_k, \overline{e_{\beta}^k} \rangle \in L^{n/(n-1)}(\mathbf{R}^n, \wedge^1(\mathbf{R}^n))$, the Hodge decomposition theorem (cf. Iwaniec–Martin [17]) implies that there are $f_{\beta}^k \in W^{1,n/(n-1)}(\mathbf{R}^n)$ and $g_{\beta}^k \in W^{1,n/(n-1)}(\mathbf{R}^n, \wedge^2(\mathbf{R}^n))$ such that $dg_{\beta}^k = 0$,

$$\left\langle \left| \mathrm{d}\bar{u}_k \right|^{n-2} \mathrm{d}\bar{u}_k, \overline{e_\beta^k} \right\rangle = \mathrm{d}f_\beta^k + \delta g_\beta^k, \tag{3.18}$$

and

$$\|\nabla f_{\beta}^{k}\|_{L^{n/(n-1)}(\mathbf{R}^{n})} + \|\nabla g_{\beta}^{k}\|_{L^{n/(n-1)}(\mathbf{R}^{n})} \leqslant C \|\nabla u_{k}\|_{L^{n}(B)}^{n-1}.$$
(3.19)

It follows from (3.19) that we may assume $f_{\beta}^k \to f_{\beta}, g_{\beta}^k \to g_{\beta}$ weakly in $W_{\text{loc}}^{1,n/(n-1)}(\mathbf{R}^n)$. Therefore, by taking k to infinity, (3.18) implies

$$\langle |\mathrm{d}u|^{n-2} \,\mathrm{d}u, e_\beta \rangle = \mathrm{d}f_\beta + \delta g_\beta; \quad \mathrm{d}g_\beta = 0, \quad \text{in } B.$$
 (3.20)

Moreover, (3.18) gives

$$\left\langle |\mathrm{d}u_k|^{n-2} \,\mathrm{d}u_k, e_\beta^k \right\rangle \cdot \left\langle \mathrm{d}e_\alpha^k, e_\beta^k \right\rangle = \mathrm{d}f_\beta^k \cdot \left\langle \mathrm{d}e_\alpha^k, e_\beta^k \right\rangle + \delta g_\beta^k \cdot \left\langle \mathrm{d}e_\alpha^k, e_\beta^k \right\rangle, \quad \text{in } B.$$
(3.21)

Since $df_{\beta}^{k} \to df_{\beta}$ weakly in $L^{n/(n-1)}(B)$, $\langle de_{\alpha}^{k}, e_{\beta}^{k} \rangle \to \langle de_{\alpha}, e_{\beta} \rangle$ weakly in $L^{n}(B)$, and $\delta \langle de_{\alpha}^{k}, e_{\beta}^{k} \rangle = 0$ in *B*, we can apply the Div–Curl lemma (cf. [6] page 53) to conclude

$$\mathrm{d}f_{\beta}^{k} \cdot \langle \mathrm{d}e_{\alpha}^{k}, e_{\beta}^{k} \rangle \to \mathrm{d}f_{\beta} \cdot \langle \mathrm{d}e_{\alpha}, e_{\beta} \rangle, \quad \text{in } \mathcal{D}'(B).$$
(3.22)

In fact, (3.22) follows directly from the integrations by parts: for any $\phi \in C_0^{\infty}(B)$,

$$\int_{\mathbf{R}^n} \mathrm{d} f_{\beta}^k \cdot \langle \mathrm{d} e_{\alpha}^k, e_{\beta}^k \rangle \phi \, \mathrm{d} x = - \int_{\mathbf{R}^n} f_{\beta}^k \langle \mathrm{d} e_{\alpha}^k, e_{\beta}^k \rangle \cdot \mathrm{d} \phi \, \mathrm{d} x$$
$$\rightarrow - \int_{\mathbf{R}^n} f_{\beta} \langle \mathrm{d} e_{\alpha}, e_{\beta} \rangle \cdot \mathrm{d} \phi \, \mathrm{d} x = \int_{\mathbf{R}^n} \mathrm{d} f_{\beta} \cdot \langle \mathrm{d} e_{\alpha}, e_{\beta} \rangle \phi$$

as $k \to \infty$. Here we have used both (3.7) and (3.10), i.e. $\delta \langle de_{\alpha}^{k}, e_{\beta}^{k} \rangle = \delta \langle de_{\alpha}, e_{\beta} \rangle = 0$, in *B*. Now we need the compensated compactness result (cf. Lions [19,20]), which was developed by Freire–Müller– Struwe [9,10] in the context of wave maps on \mathbf{R}^{2+1} .

Lemma 3.4. Under the same notations. After taking possible subsequences, we have

$$\delta g_{\beta}^{\kappa} \cdot \langle \mathrm{d} e_{\alpha}^{\kappa}, e_{\beta}^{\kappa} \rangle \to \delta g_{\beta} \cdot \langle \mathrm{d} e_{\alpha}, e_{\beta} \rangle + \nu, \quad in B$$
(3.23)

where v is a signed Radon measure given by

$$\nu = \sum_{j \in J} a_j \delta_{x_j} \tag{3.24}$$

where J is at most countable, $a_j \in \mathbf{R}$, $x_j \in B$, and $\sum_{j \in J} |a_j| < +\infty$.

Proof. For the simplicity, we only outline a proof based on suitable modifications of [10].

First we observe that

$$\begin{split} \delta g_{\beta}^{k} \cdot \langle \mathrm{d} e_{\alpha}^{k}, e_{\beta}^{k} \rangle &- \delta g_{\beta} \cdot \langle \mathrm{d} e_{\alpha}, e_{\beta} \rangle \\ &= \delta (g_{\beta}^{k} - g_{\beta}) \cdot \left\langle \mathrm{d} (e_{\alpha}^{k} - e_{\alpha}), e_{\beta}^{k} \right\rangle + \delta g_{\beta} \cdot \left\langle \mathrm{d} (e_{\alpha}^{k} - e_{\alpha}), e_{\beta}^{k} \right\rangle + \left(\delta g_{\beta}^{k} \cdot \langle \mathrm{d} e_{\alpha}, e_{\beta}^{k} \rangle - \delta g_{\beta} \cdot \langle \mathrm{d} e_{\alpha}, e_{\beta} \rangle \right) \\ &= \delta (g_{\beta}^{k} - g_{\beta}) \cdot \left\langle \mathrm{d} (e_{\alpha}^{k} - e_{\alpha}), e_{\beta}^{k} \right\rangle + I_{k} + II_{k}. \end{split}$$

The dominated convergence theorem implies

 $I_k, II_k \to 0$, in $L^1(B)$, as $k \to \infty$.

Therefore (3.23) and (3.24) is equivalent to

$$\delta(g_{\beta}^{k} - g_{\beta}) \cdot \left\langle \mathsf{d}(e_{\alpha}^{k} - e_{\alpha}), e_{\beta}^{k} \right\rangle \to \nu \tag{3.25}$$

where ν is the Radon measure given by (3.24). Since $|\nabla(e_{\alpha}^{k} - e_{\alpha})|^{n}$, $|\nabla(g_{\beta}^{k} - g_{\beta})|^{n/(n-1)}$ are bounded in $L^{1}(B)$, we may assume, after taking subsequences, that there is a nonnegative Radon measure μ on B such that

$$\left(\sum_{\alpha=1}^{l} \left|\nabla(e_{\alpha}^{k}-e_{\alpha})\right|^{n}+\sum_{\beta=1}^{l} \left|\nabla(g_{\beta}^{k}-g_{\beta})\right|^{n/(n-1)}\right) \mathrm{d}x \to \mu$$

as convergence of Radon measures on B.

Let $S = \{x \in B: \mu(\{x\}) \equiv \lim_{r \to 0} \mu(B_r(x)) > 0\}$. Then it follows from $\mu(B) < +\infty$ that S is at most a countable set. Now we want to show

 $\operatorname{supp}(\nu) \subset \mathcal{S}.$ (3.26)

It is easy to see that (3.26) yields (3.24) and hence the conclusion of Lemma 3.4.

To see (3.26), we proceed as follows. For $\phi \in C_0^{\infty}(B)$, we have

$$\langle \nu, \phi^{3} \rangle = \lim_{k \to \infty} \int \phi \delta(g_{\beta}^{k} - g_{\beta}) \cdot \langle \phi d(e_{\alpha}^{k} - e_{\alpha}), \phi e_{\beta}^{k} \rangle dx$$

$$= \lim_{k \to \infty} \int \left[\delta \left(\phi(g_{\beta}^{k} - g_{\beta}) \right) - d\phi \cdot (g_{\beta}^{k} - g_{\beta}) \right] \cdot \left\langle \left[d(\phi(e_{\alpha}^{k} - e_{\alpha})) - (e_{\alpha}^{k} - e_{\alpha}) d\phi \right], \phi e_{\beta}^{k} \right\rangle dx$$

$$= \lim_{k \to \infty} \int _{\mathbf{R}^{n}} \delta \left(\phi(g_{\beta}^{k} - g_{\beta}) \right) \cdot \left\langle d \left(\phi(e_{\alpha}^{k} - e_{\alpha}) \right), \phi e_{\beta}^{k} \right\rangle dx$$

$$(3.27)$$

where we have used

$$\lim_{k \to \infty} \int_{\mathbf{R}^n} \left[(g_{\beta}^k - g_{\beta}) \, \mathrm{d}\phi \cdot \left\langle \phi d(e_{\alpha}^k - e_{\alpha}), \phi e_{\beta}^k \right\rangle - \delta \left(\phi(g_{\beta}^k - g_{\beta}) \right) \cdot \left\langle (e_{\alpha}^k - e_{\alpha}) \, \mathrm{d}\phi, \phi e_{\beta}^k \right\rangle \right] \mathrm{d}x = 0.$$

Note that Proposition 3.1 implies $H_k \equiv \delta(\phi(g_{\beta}^k - g_{\beta})) \cdot d(\phi(e_{\alpha}^k - e_{\alpha}))$ is bounded in $\mathcal{H}^1(\mathbf{R}^n)$, and (3.22) implies $H_k \to 0$ in $\mathcal{D}'(\mathbf{R}^n)$. Therefore we have that $H_k \to 0$ weak* in $\mathcal{H}^1(\mathbf{R}^n)$. On the other hand, since $\phi e_\beta \in W^{1,n}(\mathbf{R}^n)$, we have $\phi e_\beta \in \text{VMO}(\mathbf{R}^n)$, where $\text{VMO}(\mathbf{R}^n) \subset \text{BMO}(\mathbf{R}^n)$ is the closure of $C_0^{\infty}(\mathbf{R}^n)$ in the BMO norm. It is wellknown [11] that the dual of VMO(\mathbf{R}^n) is $\mathcal{H}^1(\mathbf{R}^n)$. Hence we have

$$\lim_{k \to \infty} \int_{\mathbf{R}^n} \delta(\phi(g_{\beta}^k - g_{\beta})) \cdot \langle \mathrm{d}(\phi(e_{\alpha}^k - e_{\alpha})), \phi e_{\beta} \rangle \mathrm{d}x = 0.$$
(3.28)

Putting (3.28) together with (3.27) and applying (3.4), we have

$$\begin{split} |\langle \nu, \phi^{3} \rangle| &\leq C \lim_{k \to \infty} \left\| \nabla \left(\phi(e_{\beta}^{k} - e_{\beta}) \right) \right\|_{L^{n}(\mathbf{R}^{n})} \left\| \nabla \left(\phi(e_{\alpha}^{k} - e_{\alpha}) \right) \right\|_{L^{n}(\mathbf{R}^{n})} \left\| \nabla \left(\phi(g_{\beta}^{k} - g_{\beta}) \right) \right\|_{L^{n/(n-1)}(\mathbf{R}^{n})} \\ &\leq C \lim_{k \to \infty} \left\{ \left[\left\| \phi \nabla (e_{\beta}^{k} - e_{\beta}) \right\|_{L^{n}(\mathbf{R}^{n})} + \left\| \nabla \phi \right\|_{L^{\infty}} \right\| e_{\beta}^{k} - e_{\beta} \right\|_{L^{n}(B)} \right] \\ &\times \left[\left\| \phi \nabla (e_{\alpha}^{k} - e_{\alpha}) \right\|_{L^{n}(\mathbf{R}^{n})} + \left\| \nabla \phi \right\|_{L^{\infty}} \right\| e_{\alpha}^{k} - e_{\alpha} \right\|_{L^{n}(B)} \right] \\ &\times \left[\left\| \phi \nabla (g_{\beta}^{k} - g_{\beta}) \right\|_{L^{n/(n-1)}(\mathbf{R}^{n})} + \left\| \nabla \phi \right\|_{L^{\infty}} \right\| g_{\beta}^{k} - g_{\beta} \right\|_{L^{n/(n-1)}(B)} \right] \right\} \\ &\leq C \left(\langle \mu, \phi^{n} \rangle \right)^{1/n} \left(\langle \mu, \phi^{n} \rangle \right)^{1/n} \left(\langle \mu, \phi^{n/(n-1)} \rangle \right)^{(n-1)/n}$$
(3.29)

where we have used

$$\lim_{k \to \infty} \left(\| e_{\alpha}^{k} - e_{\alpha} \|_{L^{n}(B)} + \| g_{\beta}^{k} - g_{\beta} \|_{L^{n/(n-1)}(B)} \right) = 0$$

By choosing $\phi_i \in C_0^{\infty}(B)$ such that $\phi_i \to \lambda_{B_r(y)}$, the characteristic function of a ball $B_r(y)$, we then have

$$\nu(B_r(y)) \leqslant C\mu(B_r(y))^{(n+1)/n}.$$
(3.30)

Therefore v is absolutely continuous with respect to μ . Moreover, for any $y \notin S$, the Radon–Nikodyn derivative

$$\frac{\mathrm{d}\nu}{\mathrm{d}\mu}(y) = \lim_{r \to 0} \frac{\nu(B_r(y))}{\mu(B_r(y))} \leqslant C \lim_{r \to 0} \mu(B_r(y))^{1/n} = 0.$$

Therefore the support of ν is contained in S. This proves (3.26) and hence (3.24). The proof of Lemma 3.4 is complete. \Box

Now we return to the proof of Lemma 3.3. By putting (3.14), (3.20), (3.22), and (3.23) together, we have, for any $1 \le \alpha \le l$,

$$-\delta(\langle |\mathrm{d}u|^{n-2}\,\mathrm{d}u, e_{\alpha}\rangle) = \sum_{\alpha=1}^{l} \langle |\mathrm{d}u|^{n-2}\,\mathrm{d}u, e_{\beta}\rangle \cdot \langle \mathrm{d}e_{\alpha}, e_{\beta}\rangle + \sum_{j\in J} a_{j}\delta_{x_{j}}$$
(3.31)

where J is at most countable, $a_j \in \mathbf{R}$, $x_j \in B$, and $\sum_{j \in J} |a_j| < +\infty$.

In order to conclude that u is an *n*-harmonic map, one has to show that $a_j = 0$ for all $j \in J$. In fact, (3.31) implies that $\sum_{j \in J} a_j \delta_{x_j} \in W^{-1,n}(B) + L^1(B)$. One the other hand, it is well-known that $\delta_x \notin W^{-1,n}(B) + L^1(B)$ for any $x \in B$. Hence $a_j = 0$ for $j \in J$. The proof of Lemma 3.3 is complete. \Box

Based on Lemma 3.3, we can give a proof of Theorem B as follows.

Proof of Theorem B. Since $|\nabla u_k|^n$ is bounded in $L^1(\Omega)$, we may assume, after passing to subsequences, that there is a nonnegative Radon measure μ on Ω such that

 $|\nabla u_k|^n \,\mathrm{d} x \to \mu$

as convergence of Radon measures. Let $\epsilon_1 > 0$ be the same constant as in Lemma 3.3 and define $\Sigma \subset \Omega$ by

$$\Sigma = \left\{ x \in \Omega \colon \mu(\{x\}) \geqslant \epsilon_1^n \right\}.$$

Then Σ is a finite subset and

$$|\Sigma| \leq C\epsilon_1^{-n}, \quad C \equiv \limsup_{k \to \infty} \int_{\Omega} |\nabla u_k|^n \, \mathrm{d}x < +\infty.$$

For any $x_0 \in \Omega \setminus \Sigma$, there exists an $r_0 > 0$ such that $\mu(B_{4r_0}(x_0)) < \epsilon_1^n$. Since

$$\limsup_{k\to\infty}\int_{B_{2r_0}(x_0)}|\nabla u_k|^n\,\mathrm{d} x\leqslant \mu\big(B_{4r_0}(x_0)\big),$$

we can assume that there exists $k_0 \ge 1$ such that $\int_{B_{2r_0}(x_0)} |\nabla u_k|^2 dx \le \epsilon_1^n$, $\forall k \ge k_0$. Therefore Lemma 3.3 implies that *u* is an *n*-harmonic map in $B_{r_0}(x_0)$. Since $x_0 \in \Omega \setminus \Sigma$ is arbitrary, we conclude that *u* is an *n*-harmonic map in $\Omega \setminus \Sigma$. Since Σ is finite, it is standard to show that *u* is also an *n*-harmonic map in Ω (cf. [7,26]). \Box

References

 F. Bethuel, Weak limits of Palais–Smale sequences for a class of critical functionals, Calc. Var. Partial Differential Equations 1 (3) (1993) 267–310.

- [2] F. Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993) 417-443.
- [3] Y.M. Chen, The weak solutions to the evolution problems of harmonic maps, Math. Z. 201 (1) (1989) 69-74.
- [4] R. Coifman, P. Lions, Y. Meyer, S. Semmes, Compensated compactness and Hardy spaces, J. Math. Pures Appl. 72 (1993) 247-286.
- [5] L.C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991) 101–113.
- [6] L.C. Evans, Weak Convergence Methods for Nonlinear Partial Differential Equations, CBMS Regional Conf. Ser. in Math., vol. 74, 1990.
- [7] L.C. Evans, R. Gariepy, Measure Theory and Fine Properties of Functions, Stud. Adv. Math., CRC Press, Boca Raton, FL, 1992.
- [8] C. Fefferman, E. Stein, H^p spaces of several variables, Acta Math. 129 (1972) 137–193.
- [9] A. Freire, S. Müller, M. Struwe, Weak convergence of wave maps from (1 + 2)-dimensional Minkowski space to Riemannian manifolds, Invent. Math. 130 (3) (1997) 589–617.
- [10] A. Freire, S. Müller, M. Struwe, Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (6) (1998) 725–754.
- [11] M. Fuchs, The blow-up of p-harmonic maps, Manuscripta Math. 81 (1-2) (1993) 89-94.
- [12] F. Hélein, Regularite des applications faiblement harmoniques entre une surface et variete riemannienne, C. R. Acad. Sci. Paris 312 (1991) 591–596.
- [13] R. Hardt, F.H. Lin, Mappings minimizing the L^p norm of the gradient, Comm. Pure Appl. Math. 40 (5) (1987) 555–588.
- [14] R. Hardt, F.H. Lin, L. Mou, Strong convergence of *p*-harmonic mappings, in: Progress in Partial Differential Equations: The Metz Surveys, 3, in: Pitman Res. Notes Math. Ser., vol. 314, Longman Sci. Tech., Harlow, 1994, pp. 58–64.
- [15] F. Hélein, Harmonic Maps, Conservation Laws and Moving Frames, second ed., Cambridge Tracts in Math., vol. 150, Cambridge Univ. Press, Cambridge, 2002.
- [16] N. Hungerbhler, m-harmonic flow, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24 (4) (1997) 593-631 (1998).
- [17] T. Iwaniec, G. Martin, Quasiregular mappings in even dimensions, Acta Math. 170 (1) (1993) 29-81.
- [18] F. John, L. Nirenberg, On functions of bounded mean oscillation, Comm. Pure Appl. Math. 14 (1961) 415-426.
- [19] P.L. Lions, The concentration-compactness principle in the calculus of variations: the limit case, I, Rev. Mat. Iberoamericana 1 (1) (1985) 145–201.
- [20] P.L. Lions, The concentration-compactness principle in the calculus of variations: the limit case, II, Rev. Mat. Iberoamericana 1 (2) (1985) 45–121.
- [21] S. Luckhaus, Convergence of minimizers for the *p*-Dirichlet integral, Math. Z. 213 (3) (1993) 449–456.
- [22] J. Sacks, K. Uhlenbeck, The existence of minimal immersions of 2-spheres, Ann. of Math. 113 (1981) 1–24.
- [23] R. Schoen, K. Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geom. 17 (2) (1982) 307–335.
- [24] J. Shatah, Weak solutions and development of singularities of the SU(2) σ -model, Comm. Pure Appl. Math. 41 (4) (1988) 459–469.
- [25] P. Strzelecki, A. Zatorska-Goldstein, A compactness theorem for weak solutions of higher-dimensional H-systems, Duke Math. J. 121 (2) (2004) 269–284.
- [26] T. Toro, C.Y. Wang, Compactness properties of weakly p-harmonic maps into homogeneous spaces, Indiana Univ. Math. J. 44 (1) (1995) 87–113.
- [27] K. Uhlenbeck, Connections with L^p -bounds on curvature, Comm. Math. Phys. 83 (1982) 31–42.
- [28] C.Y. Wang, Bubble phenomena of certain Palais–Smale sequences from surfaces to general targets, Houston J. Math. 22 (3) (1996) 559– 590.
- [29] C.Y. Wang, Stationary biharmonic maps from \mathbf{R}^n into a Riemannian manifold, Comm. Pure Appl. Math. LVII (2004) 0419–0444.
- [30] C.Y. Wang, Biharmonic maps from \mathbf{R}^4 into a Riemannian manifold, Math. Z. 247 (1) (2004) 65–87.