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Abstract

The objective of this article is to present a sharp result to determine when the cut locus for a class of metrics on a two-sphere of
revolution is reduced to a single branch. This work is motivated by optimal control problems in space and quantum dynamics and
gives global optimal results in orbital transfer and for Lindblad equations in quantum control.
© 2008

Résumé

Le but de cet article est de présenter une condition suffisante permettant de garantir que le lieu de coupure d’une classe de
métriques sur la 2-sphère de révolution est réduit à une branche simple. Ce travail est motivé par des problèmes de contrôle optimal
en mécanique spatiale et mécanique quantique. Des résultats globaux d’optimalité sont obtenus en transfert orbital ainsi que dans
le cas des équations de Lindblad en contrôle quantique.
© 2008
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1. Introduction

The purpose of this article is to improve recent advanced results concerning the structure of the conjugate and cut
loci on a two-surface of revolution [20,21] to analyze optimal control problems for both space and quantum control
dynamics.

The determination of the cut and conjugate loci on a complete two-surface of revolution is a standard but difficult
problem in Riemannian geometry. For a real analytic two-sphere, the cut locus at each point is a finite tree, whose
extremities are conjugate points. This was stated by Poincaré [16] and proved by Myers [15]. Fleischmann [14] studied
the behavior of geodesics on various surfaces of revolution in Euclidean space. We refer to [17] for modern tools of
Riemannian manifolds and [19] for the behavior of geodesics on a surface of revolution.

The structure theorem of the cut locus of a point on a 2-dimensional Riemannian manifold was established by
Hebda [12] and generalized by Shiohama and Tanaka [18] for the cut locus of a compact subset in an Alexandrov
surface. By the structure theorem (see [18, Theorem A]), the cut locus is a local tree and is a union of countably many
rectifiable Jordan arcs and the endpoints.

Still, precise computation is difficult and the complexity is in estimating the ramifying branches. Besides, a
construction due to Gluck and Singer [10] proves that there exists a smooth strictly convex surface of revolution,
homeomorphic to S

2, whose cut locus is not stratifiable. The case of the triaxial ellipsoid has only recently been
solved [13].

Even on an ellipsoid of revolution, the computation is not a standard exercise (in [3], the foreseen conjugate and cut
loci were given as a conjecture). On an oblate ellipsoid the cut locus of a point different from the pole is a subarc of
the antipodal parallel. For a prolate ellipsoid, the same holds replacing parallel by opposite half meridian. In the first
case the Gaussian curvature is monotone increasing from the north pole to the equator and decreasing in the second
case.

This result is a consequence of a general result in [21]: given a smooth metric on S
2 of the form dr2 + m2(r) dθ2,

where r is the angle along the meridian and θ the angle of revolution, assume the following:

1. m(2a − r) = m(r) (reflective symmetry with respect to the equator, where 2a is the distance between poles).
2. The Gaussian curvature is monotone non-decreasing (resp. non-increasing) along a meridian from the north pole

to the equator.

Then the cut locus of a point different from the pole is a simple branch located on the antipodal parallel (resp. opposite
half meridian).

This gives a nice computable criterion to decide whether the cut locus is reduced to a simple branch. In parallel, in
recent research projects on geometric optimal control in orbital transfer or quantum control, the optimality analysis can
be reduced to an optimal control problem on a two-sphere of revolution for which the generalization of the previous
result is crucial in several directions: first of all the monotonicity of the Gauss curvature is not satisfied, second the
metric can have singularities. The key step is to relate the simple structure of the cut and conjugate loci to a tame
property of the extremal flow.

The organization of this article is the following. In Section 2, we present the systems from space and quantum
dynamics motivating the analysis. In Section 3, we give the sharp optimality result needed for the analysis in the
Riemannian case, with application to our examples in Section 4. The analysis is extended in Section 5 to deal with
almost Riemannian metrics on two-spheres of revolution encountered in our systems analysis and in extensions of
the Gauss–Bonnet theorem [1]. In a concluding section we discuss in detail the contributions of this article as well as
possible extensions.

It is also worth pointing out that our analysis is related to homotopy methods in optimal control, deforming the
round sphere S

2 and keeping simple conjugate and cut loci, to be compared to the opposite construction of [10] to
generate complex such loci.

2. Motivating examples

2.1. Orbital transfer

The two-input coplanar transfer system [6] is modelled by a 2π -periodic system on a three-dimensional mani-
fold M , of the form:
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dq

dl
= u1F1(q, l) + u2F2(q, l)

where the state q represents the geometric coordinates of the osculating ellipse, e.g. q = (n, e, θ), where n is the mean
motion, e the eccentricity and θ the argument of the pericenter. The angular variable is the longitude l ∈ S

1, while the
trajectories are parameterized by the cumulated longitude l ∈ R. When considering the energy minimization problem,
the maximum principle tells us that minimizers have to be selected among extremal curve solutions of the Hamiltonian

H(q,p, l) = 1

2

(
H 2

1 + H 2
2

)
(q,p, l)

where the Hi ’s are the Hamiltonian lifts Hi(q,p, l) = 〈p,Fi(q, l)〉, i = 1,2. If low thrust is applied, we consider the
long time behavior of the system which is approximated using the averaged Hamiltonian

H̄ (q,p) = 1

2π

2π∫
0

H(q,p, l) dl.

Averaging generates Lie brackets of the initial vector fields, so that the averaged Hamiltonian turns out to be a full
rank quadratic form in the adjoint variable p, thus associated to a Riemannian metric. The computed expression is

ḡ = dn2

9n1/3
+ 2n5/3

5(1 − e2)
de2 + 2n5/3

5 − 4e2
e2 dθ2.

Such a metric can be normalized with n = (5ρ/2)6/5, e = sin r so that:

ḡ = dρ2 + (ρ2/c2)g

where c = √
2/5 and g = dr2 + m2(r) dθ2 with

m2(r) = sin2 r

1 − (4/5) sin2 r
.

By homogeneity, we can restrict our optimality analysis to the Riemannian metric g with r ∈ [0,π/2], where the
pole e = 0 corresponds to circular orbits, while e = 1 corresponds to parabolic orbits. It can be extended to an analytic
metric on a two-sphere of revolution, where (r, θ) are the spherical coordinates.

If we now come back to the original system modelling coplanar orbital transfer and fix the direction of the control,
we obtain a single-input periodic system of the form:

dq

dl
= uF(q, l)

and an interesting case motivated by cone constraint due to electro-ionic propulsion is the so-called tangential case
where the control has to be directed by velocity. Averaging, we obtain again a full rank Hamiltonian. A remarkable
feature is that the same geometric coordinates remain orthogonal for the new metric [5]

gt = dn2

9n1/3
+ n5/3

[
1 + √

1 − e2

4(1 − e2)3/2
de2 + 1 + √

1 − e2

4(1 − e2)
e2 dθ2

]
.

In the two-input case, the change of variables e = sin r only consisted in lifting the Poincaré disk on which (e, θ) are
polar coordinates onto S

2, where (r, θ) are the standard angles. To normalize now, we again set n = (5ρ/2)6/5 and
slightly twist the previous lifting according to

e = sin r
√

1 + cos2 r

to obtain the normal form

gt = dρ2 + (ρ2/ct )gt

with ct = c2 = 2/5 and gt = dr2 + m2
t (r) dθ2:

m2
t = sin2 r

(
1 − (1/2) sin2 r

2

)2

.

1 − sin r
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In both cases we can define a homotopy deforming the round metric on S
2, introducing gλ = dr2 + XRλ(X)dθ2,

setting X = sin2 r , while R0 = 1, Rλ(X) = R(λX) and we get the

• bi-input case R(X) = 1/(1 − X) in which we have for λ ∈ [0,1] a homotopy from the round metric λ = 0 to the
orbital transfer for which λ = 4/5, while the limit case λ = 1 is singular, since R has a pole at X = 1;

• tangential case R(X) = {(1 −X/2)/(1 −X)}2 in which we have for λ ∈ [0,1] a homotopy from the round metric
λ = 0 to the orbital transfer which is singular, since R has a pole of order two at X = 1.

2.2. Quantum control

We consider a dissipative two-level quantum system whose dynamics is governed by the Lindblad equation, see
[22,7] for the details:

q̇1 = −Γ q1 + u2q3,

q̇2 = −Γ q2 − u1q3,

q̇3 = γ− − γ+q3 + (u1q2 − u2q1)

where the state space q = (q1, q2, q3) is restricted to the Bloch ball: q2
1 + q2

2 + q2
3 � 1, and the control is of the form

u = u1 + iu2, u1, u2 being two real functions, |u| � 1 and the three parameters Γ , γ−, γ+ describing the interaction
with the environment and satisfying constraints: Γ � γ+

2 � 0, γ+ � |γ−|.
To minimize the effect of dissipation, we consider the problem of minimizing time of transfer, but the energy

minimization problem shares similar properties.
The system is written

q̇ = F0(q) + u1F1(q) + u2F2(q)

and introducing the Hamiltonian lifts Hi = 〈p,Fi(q)〉, i = 0,1,2, outside the switching surface Hi = 0, i = 1,2, the
maximal principle tells us that time optimal control trajectories are extremal solutions of the Hamiltonian vector field:

H(q,p) = H0(q,p) +
(

2∑
i=1

H 2
i (q,p)

)1/2

.

Since |u| � 1, the problem is invariant by change of coordinates and feedback transformations of the form u = β(q)v,
where β(q) is an orthogonal matrix.

We consider only the case where γ− = 0. Since the Bloch ball is invariant, we introduce the spherical coordinates
q3 = r cosφ, q1 = r sinφ cos θ , q2 = r sinφ sin θ , using the relations

r2 = q2
1 + q2

2 + q2
3 ,

ρ = ln r,

θ = arctanq2/q1,

φ = arccosq3/r

and the feedback transformation v1 = cos θu1 + u2 sin θ , v2 = − sin θu1 + u2 cos θ . The system then takes the form

ρ̇ = −(Γ sin2 φ + γ+ cos2 φ),

θ̇ = −(cotanφ)v1,

φ̇ = v2 + sin 2φ

2
(γ+ − Γ ).

If we consider the Hamiltonian system describing the evolution of generic extremals we get

H = −pρ(Γ sin2 φ + γ+ cos2 φ) + pφ

sin 2φ

2
(γ+ − Γ ) + R,

where R is respectively (H 2
1 + H 2

2 )1/2 in the time minimization case and 1
2 (H 2

1 + H 2
2 ) in the energy minimization

case, with:
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H1 = −pθ cotanφ,

H2 = pφ.

We observe the following:

• If γ+ = Γ , both extremal flows are a suspension of the extremal flows associated to the metric on the two-sphere
S

2 with coordinates (r = φ, θ) given by

g = dr2 + (tan2 r) dθ2,

which corresponds to the limit case λ = 1 for the homotopy of the previous section, in the bi-input case.
• If γ+ �= Γ , the Hamiltonians admit ρ and θ as cyclic coordinates, hence pρ and pθ are first integrals. A deeper

analysis reveals that the optimality analysis is related to a geometric perturbation of the previous case for which:
• For fixed pρ , the reduced Hamiltonians are associated with a one parameter family of optimal control problems

on the two-sphere of revolution.
• For each such problem, the extremal flow shares similar properties to the case γ+ = Γ , which makes the

computation of the conjugate and cut loci tractable.

3. Conjugate and cut loci on a two-sphere of revolution

The objective of this section is to characterize when the cut locus of a point different from the pole on a two-sphere
of revolution is reduced to a single segment and the conjugate locus has the standard astroid shape. This is based
mainly on the analysis in [21] but extensions are decoded from the properties of the extremal flow only. This is not
restrictive since in complete Riemannian 2D-manifolds the computation of the cut locus is obtained by evaluating the
separating line of a point q0, L(q0) where minimizers starting from q0 are intersecting while the conjugate locus is
the set of limit points of intersecting neighboring extremals or equivalently the envelope of such extremals.

A compact Riemannian manifold (M,g) homeomorphic to a 2-sphere is called a 2-sphere of revolution, if M ad-
mits a point p such that for any two points q1, q2 on M with d(p,q1) = d(p,q2), where d(·,·) denotes the Riemannian
distance function, there exists an isometry f on M satisfying f (q1) = q2 and f (p) = p. The point p is called a pole
of M . It is proved in [21] that each pole of a 2-sphere of revolution has a unique cut point, which is also a pole of the
2-sphere. By fixing a pole p on a 2-sphere M of revolution, we introduce geodesic polar coordinates (r, θ) around the
pole p. The Riemannian metric g is expressed as g = dr2 + m(r)2 dθ2 on M \ {p,q}, where

m
(
r(x)

) :=
√

g

((
∂

∂θ

)
x

,

(
∂

∂θ

)
x

)
, (1)

and q denotes the unique cut point of p. The Gaussian curvature G at a point x ∈ M \ {p,q} is equal to

G(x) = −m′′(r(x))

m(r(x))
. (2)

Each unit speed geodesic μ : R → M passing through the pole p is called a meridian. Since q is the unique cut point
of p, μ passes through q . It is easily checked that μ is periodic, i.e., μ(r + 4a) = μ(r), where 2a := d(p,q). Each
curve r = c ∈ (0,2a) is called a parallel.

Let γ (s) = (r(s), θ(s)) be a unit speed geodesic on the manifold M . Then, there exists a constant ν such that

m
(
r(s)

)2 · θ ′(s) = m
(
r(s)

)
cosη(s) = ν (3)

holds for any s, where η(s) denotes the angle � (γ̇ (s), (∂/∂θ)γ (s)) made by γ̇ (s) := dγ (∂/∂s) and (∂/∂θ)γ (s). The
relation (3) is called the Clairaut relation, and the constant ν is called the Clairaut constant of γ . Since γ is unit
speed, it follows from (3) that

r ′(s) = ε
(
r ′(s)

)√
m(r(s))2 − ν2

, (4)

m(r(s))
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where ε(r ′(s)) denotes the sign of r ′(s). In particular, r ′(s) = 0 if and only if m(r(s)) = |ν|. Hence, the geodesic γ

stays in the closure of a connected component of (m ◦ r)−1(|ν|,∞), and if m(r(s)) = |ν| at s = s0, then γ is tangent
to the parallel r = r(s0). It follows from (3) and (4) that

θ(s2) − θ(s1) ≡ ε
(
r ′(s)

) r(s2)∫
r(s1)

f (r, ν) dr mod 2π (5)

holds, where

f (r, ν) = ν

m(r)
√

m(r)2 − ν2
,

if r ′(s) �= 0 on (s1, s2), and moreover the length L(γ |[s1, s2]) of γ |[s1, s2] equals

L(γ |[s1, s2]) = ε
(
r ′(s)

) r(s2)∫
r(s1)

m(r)√
m(r)2 − ν2

dr (6)

if r ′(s) �= 0 on (s1, s2). Hereafter, we assume that the function m satisfies

m(r) = m(2a − r) (7)

for any r ∈ (0,2a), where 2a = d(p,q). The parallel r = a is called the equator of M . By (7), M is reflectively
symmetric with respect to the equator.

For technical reasons, we introduce the Riemannian universal covering manifold

M̃ := (
(0,2a) × R, dr̃2 + m(r̃)2 dθ̃2)

of (M \ {p,q}, dr2 + m(r)2 dθ2). Note that Eqs. (3), (4), and (6) hold for geodesics on M̃ . Eq. (5) is replaced by

θ̃
(
γ̃ (s2)

) − θ̃
(
γ̃ (s1)

) = ε
(
(r̃ ◦ γ̃ )′(s)

) r̃(γ̃ (s2))∫
r̃(γ̃ (s1))

f (r, ν) dr. (8)

Here, we assume that (r̃ ◦ γ̃ )′(s) �= 0 on (s1, s2). For each ν ∈ [0,m(a)], let γ̃ν denote a unit speed geodesic on M̃

with the Clairaut constant ν emanating from a point on r̃−1(a). Since γ̃ν satisfies the Clairaut relation,

� ( ˙̃γ ν(0), (∂/∂θ̃)γ̃ν (0)

) = arccos
ν

m(a)

holds.

Lemma 3.1. If m′ �= 0 on (0, a), then for each ν ∈ (0,m(a)), the geodesic γ̃ν intersects r̃ = a again at a point
γ̃ν(t0(ν)), and the function, which is called the half period function of M̃,

ϕ(ν) := 2

a∫
ξ(ν)

ν

m(r)
√

m(r)2 − ν2
dr (9)

is well-defined and is equal to θ̃ (γ̃ν(t0(ν))) − θ̃ (γ̃ν(0)). Here, ξ(ν) := (m|[0,a])−1(ν).

Proof. Choose any ν ∈ (0,m(a)) and fix it. We may assume that (r̃ ◦ γ̃ν)
′(0) < 0, since (7) holds. It is clear from (4)

that γ̃ν stays in r̃−1[ξ(ν),2a − ξ(ν)]. Since m′ �= 0 on (0, a), it follows from [19, Lemma 7.1.7] that (r̃ ◦ γ̃ν)
′(t1) = 0

for some t1 > 0, i.e., γ̃ν is tangent to the parallel arc r̃ = ξ(ν) at γ̃ν(t1). From (8), we get

θ̃
(
γ̃ν(t1)

) − θ̃
(
γ̃ν(0)

) = 1

2
ϕ(ν). (10)

Since (r̃ ◦ γ̃ν)
′(t) > 0 for any t > t1 sufficiently close to t1 and (r̃ ◦ γ̃ν)

′(t) �= 0 on (t1, t) if r̃ ◦ γ̃ν < 2a − ξ(ν), there
exists t0(ν) (> t1) such that r̃ ◦ γ̃ν(t0(ν)) = a and r̃ ◦ γ̃ν < a on (t1, t0(ν)). Hence γ̃ν intersects r̃ = a again at the point
γ̃ν(t0(ν)). Since θ̃ (γ̃ν(t0(ν))) − θ̃ (γ̃ν(t1)) is equal to ϕ(ν)/2, the proof of our lemma is complete. �
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It is not difficult to calculate the parameter value t0(ν) in Lemma 3.1. From (6) and (7), we get

t0(ν) = 2

a∫
ξ(ν)

m(r)√
m(r)2 − ν2

dr. (11)

Since

m√
m2 − ν2

=
√

m2 − ν2

m
+ ν2

m
√

m2 − ν2
,

we obtain

t0(ν) = 2

a∫
ξ(ν)

√
m(r)2 − ν2

m(r)
dr + νϕ(ν). (12)

Lemma 3.2. If the cut locus of a point q on the equator r = a is a subset of the equator, then the function ϕ(ν) is
well-defined and monotone non-increasing on (0,m(a)).

Proof. If the cut locus Cq of q consists of a single point, then it is clear that ϕ(ν) is constant. Thus, we may assume
that Cq is a subarc of the equator. Let q0 be an endpoint of Cq . First we will prove that q0 := γm(a)(t0) is conjugate
to q := γm(a)(0) along γm(a), where γm(a) denotes the subarc of the equator joining q to q0. Since γm(a) does not
contain a cut point of q in its interior, it is a minimal geodesic segment joining q to q0. If γm(a) is the unique minimal
geodesic segment joining q to q0, then it is clear that q0 is conjugate to q along γm(a). Hence we suppose that there
exists a minimal geodesic segment α : [0, t0] → M joining q and q0 which bounds a disc domain D together with
γm(a)|[0,t0]. Here, we may assume that (r ◦ α)′(0) < 0 and (r ◦ γm(a))

′(0) < 0 by (7). Since D has no cut point of q ,
any geodesic segment β emanating from q with (r ◦β)′(0) < 0 must pass through the point q0, if � (β̇(0), γ̇m(a)(0)) <
� (α̇(0), γ̇m(a)(0)). Thus, we get a geodesic variation of γm(a)|[0,t0], which is a family of geodesic segments joining q

to q0. Hence, we have proved that q0 is a conjugate point of q along γm(a). This implies that the Gaussian curvature
G is positive on the equator. Since m′′(a) = −G(q)m(a) < 0 by (2) and m′(a) = 0, m′ is positive on (a − δ, a) for
some δ > 0. Suppose that m′(b) = 0 for some b ∈ (0, a). From [19, Lemma 7.1.4], the parallel r = b is a geodesic. By
choosing the maximal b(< a) satisfying m′(b) = 0, we may assume that m′ is positive on (b, a). Thus, m(r) > m(b)

on (b, a]. Suppose that the geodesic γm(b) is tangent to a parallel. Here, for each ν ∈ [0,m(a)), γν denotes the unit
speed geodesic emanating from q with the Clairaut constant ν satisfying (r ◦ γν)

′(0) < 0. From (4), the possible
parallel, to which γm(b) is tangent, is the geodesic parallel r = b, but γm(b) cannot be tangent to another geodesic
r = b. Hence, (r ◦ γm(b))

′(0) �= 0, and in particular, γm(b) does not intersect the equator again (see [19, Fig. 7.1.2] on
the behavior of such a geodesic). Since M is compact, there exists a cut point of q along γm(b). This contradicts the
assumption that Cq is a subarc of the equator. Therefore, m′ is non-zero on (0, a) and the function ϕ(ν) is well-defined
on (0,m(a)). It is now clear that γν intersects the equator again at γν(t0(ν)) and θ(γν(t)) � π for any ν ∈ (0,m(a))

and any t ∈ (0, t0(ν)]. Here, for a technical reason, the geodesic polar coordinates (r, θ) are chosen so as to satisfy
θ(γν(0)) = θ(q) = 0. In particular, ϕ(ν) � π for any ν ∈ (0,m(a)).

Next, we will prove that ϕ is monotone non-increasing. Choose any two numbers ν1 < ν2 in (0,m(a)) and fix
them. By the Clairaut relation and the inequality,

arccos
ν1

m(a)
> arccos

ν2

m(a)
,

the geodesic γν2 |(0,δ) lies in the domain Dν1 bounded by the equator and γν1 |[0,t0(ν1)] for some δ > 0. Since Cq is a
subset of the equator, the geodesic segment γν2 lying in Dν1 does not pass through γν1 |(0,t0(ν1)), but passes through the
equator and intersects at γν2(t0(ν2)). Thus, γν2(t0(ν2)) is a point on the subarc of the equator with endpoints γν1(0)

and γν1(t0(ν1)), and in particular, ϕ(ν2) � ϕ(ν1) holds. �
Lemma 3.3. If m′ �= 0 on (0, a) and the function ϕ : (0,m(a)) → R is monotone non-increasing, then the cut locus of
each point on the equator r = a is a subset of the equator.
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Proof. Let γν , ν ∈ [0,m(a)], denote the geodesic emanating from a point q on the equator that was defined in the proof
of Lemma 3.2. It follows from Lemma 3.1 that for each ν ∈ [0,m(a)), γν intersects the equator again at γν(t0(ν)).
Choose any ν ∈ (0,m(a)) and fix it. It follows from [19, Proposition 7.2.3] that γν(t1) is the first conjugate point of q

along γν if and only if

∂θ

∂ν

(
r
(
γν(t1)

)
, ν

) = 0, (13)

where

θ(r, ν) :=
a∫

ξ(ν)

f (r, ν) dr +
r∫

ξ(ν)

f (r, ν) dr. (14)

Notice that it follows from [19, Proposition 7.2.2] and [19, Corollary 7.2.1] that there is no conjugate point of q along
γν |[0,t], if (r ◦ γν)

′ �= 0 on [0, t). It is clear from (7) that

θ(r, ν) = ϕ(ν) −
a∫

r

f (r, ν) dr (15)

holds. Hence,

∂θ

∂ν

(
r ◦ γν(t), ν

) = ϕ′(ν) −
a∫

r(γν(t))

fν(r, ν) dr < 0, (16)

if r ◦ γν(t) < a, since ϕ′(ν) � 0 on (0,m(a)). Note that

fν(r, ν) = m(r)

(m(r)2 − ν2)3/2
> 0.

Thus, there is no conjugate point of q along γν |[0,t], if γν([0, t]) ⊂ r−1(0, a). By taking the limit in (16), we may
prove that there is no conjugate point of q along γm(0)|[0,t], if γm(0)([0, t]) ⊂ r−1[0, a). Therefore, we have proved
that there is no conjugate point of q along γν |[0,t], if γν([0, t]) ⊂ r−1[0, a) and ν ∈ [0,m(a)).

Suppose that there exists a cut point x /∈ r−1(a) of q . From (7), we may assume that x is a point in r−1[0, a).
Let γν1 : [0, d(q, x)] → M denote a minimal geodesic segment joining q to x. We may assume that x is conjugate to
q along γν1 . Otherwise, there exists a minimal geodesic segment γν1 |[0,d(q,x)], ν2 ∈ [0,m(a)) \ {ν1}, joining q to x.
Thus, both geodesic segments bound a disc domain D. Since the cut locus Cq in D has no circle, we may find an
endpoint y ∈ r−1(0, a) in Cq ∩ D. The endpoint y is conjugate to q along any minimal geodesic segment joining q

to y. Therefore, by exchanging x and y, we may assume that x is conjugate to q along γν1 . This contradicts the fact
that there is no conjugate point of q along γν |[0,t], if γν([0, t]) ⊂ r−1[0, a). Therefore, the cut locus of q is a subset of
the equator. �

Choose any point q in M, which is not a pole. We introduce geodesic polar coordinates (r, θ) around the pole p on
M satisfying θ(q) = 0. Put u := r(q) ∈ (0,2a). For each ν ∈ (0,m(u)], let αν,βν : [0,∞) → M denote the geodesics
emanating from q = αν(0) = βν(0) with the Clairaut constant ν satisfying

(r ◦ αν)
′(0) � 0 � (r ◦ βν)

′(0).

Hence, from the Clairaut relation,

� (
α̇ν(0), (∂/∂θ)q

) = � (
β̇ν(0), (∂/∂θ)q

) = arccos
ν

m(u)
.

From (7), the geodesics αν and βν intersect again at (r, θ)−1(2a−u,ϕ(ν)) = αν(t0(ν)) = βν(t0(ν)) (see [21], or [11]).

Lemma 3.4. Assume that m′ �= 0 on (0, a) and that ϕ is monotone non-increasing. Then, for each ν ∈ (0,m(u)],
αν |[0,t0(ν)] is minimal. Furthermore, each point of r−1(2a − u) ∩ θ−1[ϕ(m(u)),π] is a cut point of q .
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Proof. Since the geodesic γm(0) meets the equator again at the antipodal point of γm(0)(0), we have limν↓0 ϕ(ν) = π .
Thus, 0 < ϕ(ν) � π for any ν ∈ (0,m(a)), since ϕ is monotone non-increasing. If ϕ(m(u)) = π, then ϕ(ν) = π

for any ν ∈ [0,m(u)]. Hence the cut locus of q consists of a single point. It is now clear that both geodesics
α|[0,t0(ν)] and β|[0,t0(ν)] are minimal for any ν ∈ [0,m(u)]. Hence we may assume that ϕ(m(u)) < π . Choose any
point x ∈ r−1(2a − u) ∩ θ−1[ϕ(m(u)),π). From (6), the length t1 of α equals

2a−ξ(ν1)∫
u

m(r)√
m(r)2 − ν2

1

dr +
2a−ξ(ν1)∫
2a−u

m(r)√
m(r)2 − ν2

1

dr (17)

(if α = βν1 |[0,t1]), or to

u∫
ξ(ν1)

m(r)√
m(r)2 − ν2

1

dr +
2a−u∫

ξ(ν1)

m(r)√
m(r)2 − ν2

1

dr (18)

(if α = αν1 |[0,t1]). By (7) and (11), both Eqs. (17) and (18) equal

t1 = 2

a∫
ξ(ν1)

m(r)√
m(r)2 − ν2

dr = t0(ν1). (19)

Therefore, αν1 |[0,t0(ν1)] and βν1 |[0,t0(ν1)] are minimal geodesic segments joining q to x. Furthermore, for any ν ∈
ϕ−1(θ(x)), αν |[0,t0(ν)] and βν |[0,t0(ν)] are minimal, since t ′0(ν) = νϕ′(ν) by (12). Since x is arbitrarily taken, this
implies that αν |[0,t0(ν)] and βν |[0,t0(ν)] are minimal for any ν ∈ (0,m(u)] with ϕ(ν) < π, hence for any ν ∈ (0,m(u)]
from the limit argument. Therefore, αν |[0,t0(ν)] is minimal for all ν ∈ (0,m(u)). The second claim is clear, since each
point of r−1(2a − u) ∩ θ−1(ϕ(m(u)),π ] is joined by two minimal geodesic segments αν |[0,t0(ν)] and βν |[0,t0(ν)] for
some ν ∈ [0,m(u)), and the cut locus is closed. �
Theorem 3.5. Let (M,dr2 + m(r)2 dθ2) denote a 2-sphere of revolution, where m : (0,2a) → (0,∞) is a smooth
function satisfying (7). If the cut locus of a point on r = a is a subset of r = a, then, the cut locus of a point q with
r(q) ∈ (0,2a) \ {a} is a subset of the antipodal parallel r = 2a − r(q).

Proof. Let q ∈ r−1((0,2a) \ {a}) be any point, and set u := r(q). Since M is reflectively symmetric with respect to
the meridian passing through q , the set r−1(2a − u) ∩ θ−1[ϕ(m(u)),2π − ϕ(m(u))] is a subset of Cq by Lemma 3.4.
Choose any cut point x of q . Then, we have a minimal geodesic segment γ joining q to x. Since we may assume that
0 < θ(x) � π , γ is equal to αν1 , or βν1 for some ν1 ∈ [0,m(u)]. Here ν1 denotes the Clairaut constant of γ . The point
x is not an interior point of αν1 |[0,t0(ν1)], or βν1 |[0,t0(ν1)], since both segments are minimal. Furthermore, γ is a subarc
of αν1 |[0,t0(ν1)], or βν1 |[0,t0(ν1)], since γ is minimal. Hence,

x = αν1

(
t0(ν1)

) (= βν1

(
t0(ν1)

))
.

Since r(αν1(t0(ν1))) = 2a − u and ϕ(m(u)) � ϕ(ν1) = θ(x) � π , any cut point of q is a point of r−1(2a − u) ∩
θ−1[ϕ(m(u)),2π − ϕ(m(u))], which is a subarc of the antipodal parallel of q . �
Theorem 3.6. Let (M,dr2 + m(r)2 dθ2) denote a 2-sphere of revolution, where m : (0,2a) → (0,∞) is a smooth
function satisfying (7). Assume that the cut locus of a point on r = a is a subset of r = a. If the half period function ϕ

defined by (9) is such that ϕ′′(ν) � 0 on (0,m(a)) and ϕ′′(ν) > 0 whenever ϕ′(ν) = 0, then the first conjugate locus
of any point q which is not a pole of M has exactly four cusps.

Proof. Choose any point q ∈ M which is not a pole. Set u := r(q) ∈ (0,2a). It follows from [19, Proposition 7.2.3]
that αν(tc(ν)) is the first conjugate point of q along αν if and only if

∂θα (
r
(
αν

(
tc(ν)

))
, ν

) = 0, (20)

∂ν
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where

θα(r, ν) =
u∫

ξ(ν)

f (r, ν) dr +
r∫

ξ(ν)

f (r, ν) dr. (21)

From (7), it is clear that

θα(r, ν) = ϕ(ν) −
2a−u∫
r

f (r, ν) dr (22)

holds. Hence,

∂θα

∂ν
(r, ν) = ϕ′(ν) −

2a−u∫
r

fν(r, ν) dr, (23)

where

fν(r, ν) = m(r)

(m(r)2 − ν2)
3
2

.

From (20) and (23), it follows that

ϕ′(ν) =
2a−u∫

uα(ν)

fν(r, ν) dr, (24)

where uα(ν) = r(αν(tc(ν))). Hence, the first conjugate point of q along αν is given by

θ = θα

(
uα(ν), ν

)
, r = uα(ν). (25)

Since we assume that ϕ′(ν) � 0 for each ν ∈ (0,m(u)),

2a − u � uα(ν) (26)

by (24). Furthermore, ϕ′(ν) = 0 if and only if 2a − u = uα(ν). By differentiating (24) with respect to ν, we have

ϕ′′(ν) +
uα(ν)∫

2a−u

fνν(r, ν) dr = −fν

(
uα(ν), ν

)
u′

α(ν). (27)

Since fνν(r, ν) = 3νm(r)(m(r)2 − ν2)−5/2 > 0 and ϕ′′(ν) � 0, u′
α(ν) � 0 on (0,m(u)). If u′

α(ν) = 0, then, by (27),
ϕ′′(ν) = 0 and 2a − u = uα(ν). This implies that ϕ′′(ν) = ϕ′(ν) = 0. This contradicts the assumption of our theorem.
Therefore, u′

α(ν) < 0 on (0,m(u)). In particular, there is no cusp on the open arc defined by (25), ν ∈ (0,m(u)). Let
ν ∈ (0,m(u)) be any fixed number. The velocity vector vα(ν) of the curve defined by (25) is given by

vα(ν) = f
(
uα(ν), ν

)
u′

α(ν)

(
∂

∂θ

)
αν(tc(ν))

+ u′
α(ν)

(
∂

∂r

)
αν(tc(ν))

. (28)

Hence, vα(ν) is parallel to

f
(
uα(ν), ν

)( ∂

∂θ

)
αν(tc(ν))

+
(

∂

∂r

)
αν(tc(ν))

.

Since limν↓0 f (uα(ν), ν) = 0 and limν↑m(u) f (uα(ν), ν) = ∞,

lim
ν↓0

1

‖vα(ν)‖vα(ν) =
(

∂

∂r

)
α0(tc(0))

(29)

and

lim
ν↑m(u)

1

‖vα(ν)‖vα(ν) = 1

m(αm(u)(tc(m(u))))

(
∂

∂θ

)
, (30)
αm(u)(tc(m(u)))
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where ‖vα(ν)‖ := √
g(vα(ν), vα(ν)). Hence the subarc of the conjugate locus given by (25) is tangent to the parallel

r = r(αm(0)(tc(0))) at αm(0)(tc(0)) and to the opposite half meridian θ−1(π) at αm(u)(tc(m(u))).
Next, we will argue about the first conjugate locus of q along βν, ν ∈ (0,m(u)). It follows from [19, Proposi-

tion 7.2.3] that βν(tf (ν)) is the first conjugate point of q along βν if and only if

∂θβ

∂ν

(
r
(
βν

(
tf (ν)

))
, ν

) = 0, (31)

where

θβ(r, ν) =
2a−ξ(ν)∫

u

f (r, ν) dr +
2a−ξ(ν)∫

r

f (r, ν) dr. (32)

From (7), it is clear that

θβ(r, ν) = ϕ(ν) +
2a−u∫
r

f (r, ν) dr (33)

holds. Hence, we have

ϕ′(ν) +
2a−u∫

uβ(ν)

fν(r, ν) dr = 0, (34)

where uβ(ν) := r(βν(tf (ν))). By using the same argument as above, we may conclude that u′
β(ν) > 0 on (0,m(u)).

In particular, there is no cusp on the open arc defined by

θ = θβ

(
uβ(ν), ν

)
, r = uβ(ν), (35)

on ν ∈ (0,m(u)). It is easy to prove that

lim
ν↓0

1

‖vβ(ν)‖vβ(ν) =
(

∂

∂r

)
β0(tf (0))

(36)

and

lim
ν↑m(u)

1

‖vβ(ν)‖vβ(ν) = 1

m(βm(u)(tf (m(u))))

(
∂

∂θ

)
βm(u)(tf (m(u)))

, (37)

where vβ(ν) denotes the velocity vector of the curve defined by (35). Since βm(u) = αm(u), by (30) and (37), we get

lim
ν↑m(u)

1

‖vβ(ν)‖vβ(ν) = lim
ν↑m(u)

1

‖vα(ν)‖vα(ν). (38)

Therefore, the point αm(u)(tc(m(u))) = βm(u)(tf (m(u))) is a cusp of the first conjugate locus of q . Since M has a
reflective symmetry with respect to the meridian passing through q , the points αm(0)(tc(m(u))) and βm(0)(tc(m(u)))

lying on the opposite half meridian to q are cusps of the conjugate locus. Therefore, the conjugate locus of q has
exactly four cusps which consist of one pair lying on the parallel r = 2a − r(q), the other lying on the opposite half
meridian to q . �

The following dual to Theorem 3.6 is also true, but we do not know examples satisfying the assumption in the
theorem. We can at least say that numerical experiments very strongly suggest that such examples exist, e.g. m(r) =
sin r − (1/100) sin3 r + (1/500) sin5 r .

Theorem 3.7. Let (M,dr2 + m(r)2 dθ2) denote a 2-sphere of revolution, where m : (0,2a) → (0,∞) is a smooth
function satisfying (7). Assume that ϕ : (0,m(a)) → R is well-defined, i.e., m′ �= 0 on (0, a), and the half period
function ϕ is monotone non-decreasing on (0,m(a)). If ϕ′′(ν) � 0 on (0,m(a)) and ϕ′′(ν) < 0 whenever ϕ′(ν) = 0,
then the first conjugate locus of any point q which is not a pole of M has exactly four cusps and the cut locus of q is
a subarc of the opposite half meridian to q .
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Proof. It is proved in Theorem 3.6 that the first conjugate point of q along αν , βν , ν ∈ (0,m(u)), is given by

θ = θα

(
uα(ν), ν

)
, r = uα(ν),

and

θ = θβ

(
uβ(ν), ν

)
, r = uβ(ν),

respectively. By making use of the assumption that ϕ′(ν) � 0, we may prove that

u′
α(ν) > 0 and u′

β(ν) < 0 (39)

on (0,m(u)). The first claim is now clear from the argument in the proof of Theorem 3.6.
Since

∂θα

∂ν

(
uα(ν), ν

) = 0 and
∂θβ

∂ν

(
uβ(ν), ν

) = 0,

we get

∂

∂ν
θα

(
uα(ν), ν

) = u′
α(ν)f

(
uα(ν), ν

)
,

∂

∂ν
θβ

(
uβ(ν), ν

) = −u′
β(ν)f

(
uβ(ν), ν

)
. (40)

Hence, by (39), both functions θα(uα(ν), ν) and θβ(uβ(ν), ν) are strictly monotone increasing. In particular,

θα

(
uα(ν), ν

)
> lim

ν↓0
θα

(
uα(ν), ν

)
, θβ

(
uβ(ν), ν

)
> lim

ν↓0
θβ

(
uβ(ν), ν

)
(41)

for any ν ∈ (0,m(u)]. Since the first conjugate points of αm(0) and βm(0) lie in θ−1(π) respectively,

lim
ν↓0

θα

(
uα(ν), ν

) = lim
ν↓0

θβ

(
uβ(ν), ν

) = π.

Here, we should recall that the geodesic polar coordinates (r, θ) are chosen so as to satisfy θ(q) = π . Therefore,
by (41), there is no conjugate point of q in M \ θ−1(π). This implies that the cut locus of q is a subarc of the opposite
half meridian θ−1(π). �
4. Applications

Next, we apply our results to the problems introduced in Section 2.
Let gλ be the family of analytic metrics on S

2 defined by

gλ = dr2 + m2
λ(r) dθ2

with

mλ(r) = √
λ + 1 sin r/

√
1 + λ cos2 r, λ � 0. (42)

It is clear that mλ satisfies

mλ(r) = mλ(π − r),

so the Riemannian manifold Mλ := (S2, gλ) is a 2-sphere of revolution that is reflectively symmetric with respect
to the equator r = π/2. This family of metrics contains the metric ḡ associated with the averaged controlled Kepler
equation introduced in Section 2 (set λ = 4), and defines a path between the following two remarkable metrics:

The case λ = 0 corresponds to the standard metric g0 = dr2 + sin2 r dθ2 on S
2 with Gaussian curvature equal to unity,

which is obtained by restricting the Euclidean metric on R
3 to the sphere.

The case λ = ∞. In the limit case, the metric becomes

g∞ = dr2 + tan2 r dθ2

and is singular along the equator r = π/2. The Gaussian curvature is −2/ cos2 r , which is strictly negative on each
hemisphere and tends to −∞ when r tends to π/2.
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Lemma 4.1. The Gaussian curvature Gλ of Mλ is given by

Gλ(q) = (λ + 1)(1 − 2λ cos2 r(q))

(1 + λ cos2 r(q))2
(43)

at a point q ∈ Mλ. Furthermore, we have(
∂

∂r

)
q

Gλ = 2λ(λ + 1) sin 2r(q)

(1 + λ cos2 r(q))3

(
2 − λ cos2 r(q)

)
. (44)

In particular, if λ > 2, then Gλ is not monotone along a meridian from a pole to the point on the equator.

Proof. By (42), we have

m′
λ(r) = (λ + 1) cos r

(1 + λ cos2 r) sin r
mλ(r). (45)

Since

Gλ(q) = −m′′
λ(r(q))

mλ(r(q))

for q ∈ r−1(0,2π), it follows from (45) that

Gλ(q) = (λ + 1)(1 − 2λ cos2 r(q))

(1 + λ cos2 r(q))2
. (46)

By making use of (46), it is easy to show (44). �
Lemma 4.2. Let a, b, c be positive numbers satisfying c > b. Then,∫

1

x(x + a)
√

(x − b)(c − x)
dx = 2

a

{
1√
bc

arctan

(√
c

b
t

)
− 1√

(a + c)(a + b)
arctan

(√
a + c

a + b
t

)}
(47)

holds, where

t =
√

x − b

c − x
.

In particular,

c∫
b

1

x(x + a)
√

(x − b)(c − x)
dx = π

a

{
1√
bc

− 1√
(a + c)(a + b)

}
holds.

Proof. From direct computation, we get

d

dx

{
1√
bc

arctan

(√
c

b
t

)
− 1√

(a + c)(a + b)
arctan

(√
a + c

a + b
t

)}
= a

2
· 1

x(x + a)
√

(x − b)(c − x)
.

Hence, we obtain (47). �
Proposition 4.3. For the 2-sphere of revolution Mλ, we get

ϕ(ν) = π − λπν√
λ + 1

√
λ + 1 + λν2

(48)

for each ν ∈ [0,mλ(π/2)].
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Proof. By putting x = mλ(r)
2, we have, from (42) and (45),

dr = (1 + λ cos2 r) tan r

2(λ + 1)x
dx. (49)

Since

x = mλ(r)
2 = (λ + 1)(1 − cos2 r)

1 + λ cos2 r
, (50)

we obtain

cos2 r = λ + 1 − x

λx + λ + 1
. (51)

Since

tan2 r = 1

cos2 r
− 1,

we have

tan2 r = (λ + 1)x

λ + 1 − x
. (52)

Combining (49), (51), and (52), we obtain

dr = (λ + 1)
3
2

2(λx + λ + 1)
√

x(λ + 1 − x)
dx. (53)

Hence, we get

ϕ(ν) = (λ + 1)
3
2 ν

λ+1∫
ν2

1

x(λx + λ + 1)
√

(x − ν2)(λ + 1 − x)
dx. (54)

It follows from Lemma 4.2 that

ϕ(ν) = π − λπν√
λ + 1

√
λ + 1 + λν2

. �
Theorem 4.4. If λ > 0, then, for each point q of Mλ distinct from a pole, the cut locus of q is a subarc of the antipodal
parallel to q and the first conjugate locus of q has exactly four cusps.

Proof. It is clear that

ϕ′(ν) = −λπ
√

λ + 1

(λ + 1 + λν2)
3
2

and

ϕ′′(ν) = 3πλ2ν
√

λ + 1

(λ + 1 + λν2)
5
2

.

In particular,

ϕ′(ν) < 0 < ϕ′′(ν)

on (0,mλ(π/2)), if λ > 0. The claims of Theorem 4.4 are now clear from Lemma 3.3, Theorems 3.5 and 3.6. �
Remark 1. If λ > 2, then the Gaussian curvature of Mλ is not monotone along a meridian from a pole to the point on
the equator. Therefore, the family Mλ,λ > 2, is a new example which has the simple cut locus structure.
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Fig. 1. Conjugate locus (black) and cut locus (white) in averaged orbital transfer (λ = 4) for an initial condition, indicated by a white cross, away
from the poles.

Fig. 2. Conjugate locus (black) and cut locus (white) in the singular case (λ = ∞) for an initial condition, indicated by a white cross, not on the
equator and away from the poles.

In Fig. 1 we present conjugate and cut loci in averaged orbital transfer (λ = 4). Since to lose optimality an extremal
trajectory has to cross the equator, e = 1, we conclude that extremals are optimal in the physical elliptic domain. The
conjugate and cut loci for λ = ∞ are given in Figs. 2 and 3. In this singular case, since the curvature outside the
equator is strictly negative, geodesics starting from a point not on the equator have to cross it to have conjugate points,
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Fig. 3. Conjugate and cut loci in the singular case (λ = ∞) for an initial condition on the equator.

the cut locus still being included in the antipodal parallel. For a point on the equator, the conjugate and cut loci
accumulate near the point itself, and the cut locus is the equator minus the point. The first two cusps of the conjugate
locus disappear and are replaced by a contact of order two at the initial point [1,8].

5. The singular case

In this section, we outline the analysis of the case where the metric g = dr2 + m2(r) dθ2 on the 2-sphere of
revolution is singular on the equator and we refer to [8] for more details. The singularity encountered coming from
the Grusin model example was analyzed by [1] and is described near the point identified to 0 by the local model:

gs = dx2 + dy2

x2

and the analysis can be extended to the case of order p:

gs = dx2 + p2 dy2

x2p

called a generalized Grusin singularity.
While the Riemannian metric and the Gaussian curvature explode when approaching the y-axis, still the extremal

curves are still described by a smooth Hamiltonian system

H = 1

2

(
p2

x + x2p

p2
p2

y

)
.

They are associated to SR-geometry in dimension 3.
Indeed, the case p = 1 is deduced from the Heisenberg case with corresponding Hamiltonian

H = 1

2

[(
p2

x + p2
y

) − 2pz(xpy − ypx) + (x2 + y2)p2
z

]
since using cylindrical coordinates

H = 1(
p2

r + (pθ/r − rpz)
2).
2
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As θ is cyclic, pθ is a first integral and for pθ = 0, the reduced Hamiltonian in the (r, z) space has the desired
singularity:

H = 1

2

(
p2

r + r2p2
z

)
.

Similarly, the case of order 2 can be deduced from the so-called Martinet flat case, with Hamiltonian

H = 1

2

((
px + y2

2
pz

)2

+ p2
y

)
.

As x is cyclic, px is a first integral and for px = 0, the reduced Hamiltonian is of the form

H = 1

2

(
p2

y + y4

4
p2

z

)
.

In particular in both cases p = 1,2 the extremal flow, the conjugate and cut loci can be deduced from the analysis of
the SR-problem, see [9].

• The case p = 1: The extremal trajectories with initial condition x(0) = y(0) = 0 and parameterized by arc-length
are given, with κ = py(0) � 0, by:
• κ = 0: x(t) = ±t , y(t) = 0,
• κ > 0: x(t) = ±(sinκt)/κ , y(t) = t/(2κ) − (sin 2κt)/(4κ2)

while extremals for κ < 0 are obtained by reflection with respect to the x-axis.
For κ > 0, the first conjugate time is at t1c = τ/κ , τ � 4.5, while, due to symmetry, optimality is lost at time π/κ ,
when crossing the y-axis.

• The case p = 2: The extremal trajectories with initial condition x(0) = y(0) = 0 and parameterized by arc-length,
with κ = py(0) � 0 are:
• κ = 0: x(t) = t , y(t) = 0,
• κ > 0: x(t) = −(2k/

√
κ ) cnu, y(t) = (2/(3κ3/2))[(2k2 − 1)(E(u) − E(K)) + k′2t

√
κ + 2k2 sinu cnudnu],

where u = K + t
√

κ , k2 = k′2 = 1/2, and the curves deduced from the previous ones using the reflections with
respect to the x and y-axis.
For κ > 0, the first conjugate time is at time t1c � 3K/

√
κ , while due to symmetries optimality is lost at time

2K/
√

κ , when crossing the y-axis.

Hence, for both cases, we have the same geometric situation, optimality is lost due to the symmetry with respect to
the y-axis and the conjugate and cut loci are disjoint, because the first conjugate point occurs after the crossing of the
y-axis. It can be generalized to any order using quasi-homogeneity [8].

Proposition 5.1. Consider a metric of the form gs = dx2 + p2 dy2/x2p . Then at the origin the conjugate and cut loci
are disjoint, the cut locus is the y-axis minus 0, while the conjugate locus is a set of the form y = ±cpxp+1 minus 0.

Hence, the model gives locally the cut and conjugate loci of a point of the equator observed in Fig. 3, which
corresponds to a singularity of order 1.

Having resolved the singularity at the equator, we can extend the result of the regular case.

Definition 5.2. Consider a metric on a 2-sphere of revolution of the form dr2 + m2(r) dθ2, with m′ non-zero
on (0,π/2) and m(π − r) = m(r), smooth everywhere but the equator for which we have a Grusin singularity.
The extremal flow is called tame if the half period function ϕ(ν) of Section 3 is monotone non-increasing for
ν ∈]0,m(π/2) = +∞[.

Since the extremal flow remains smooth, the analysis of the regular case can be extended.

Proposition 5.3. In the tame case, we have

1. The cut locus of a point different from a pole and not on the equator is a subset of the antipodal parallel.
2. The cut locus of a point on the equator is a subset of the equator accumulating at the point.
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6. Conclusion

The contribution of this article is twofold. First of all we give a simple and computable criterion to decide whether
the cut and conjugate loci on a surface of revolution are the simplest possible. It is based on two case studies in optimal
control, in the framework of Hamiltonian dynamics. Such specialized results are important because even on a surface
of revolution the computation of these objects is in general intractable. This provides a bridge between Riemannian
geometry and optimal control, with promising extensions to the singular case and the Zermelo navigation problem on
Riemannian manifolds [2]. Secondly, we give a neat proof of the structure of the conjugate and cut loci in coplanar
orbital transfer, which were previously computed in [4] using the explicit parameterization of the extremal flow for
each initial point where it is sufficient to consider the half period mapping. In the tangential case, they were obtained
using a normal form and numerical simulations. Applications and generalizations of these results, using Hamiltonian
formalism, will provide very significant improvements in the understanding of Lindblad equations describing the
interaction of a two-level quantum system controlled by a laser with an environment. Based on the theoretical concept
and results of our analysis in the Riemannian case, this will be analyzed in a forthcoming article. Roughly speaking,
if the interaction is weak, it defines a Zermelo navigation problem on a two-sphere of revolution for which conjugate
and cut loci have a similar simple structure.
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