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Abstract

We consider sign changing solutions of the equation −�m(u) = |u|p−1u in possibly unbounded domains or in R
N . We prove

Liouville type theorems for stable solutions or for solutions which are stable outside a compact set. The results hold true for m > 2
and m− 1 < p < pc(N,m). Here pc(N,m) is a new critical exponent, which is infinity in low dimension and is always larger than
the classical critical one.
© 2008
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1. Introduction and statement of the main results

We consider u ∈ C
1,α
loc (Ω) weak solution of

−�m(u) = |u|p−1u in Ω, (1)

where �m denotes the m-Laplacean operator, m > 1, Ω ⊆ R
N is any domain (bounded or not) and u is a possibly

unbounded function which may change sign.
The main results of this paper will be collected in Theorems 1.5, 1.7–1.10 and 1.11 below and they will be con-

cerned with Liouville type rigidity results for suitable solutions of (1).
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We recall that u is said to be a weak solution of (1) if∫
Ω

|∇u|m−2(∇u,∇ϕ)dx =
∫
Ω

|u|p−1uϕ dx ∀ϕ ∈ C∞
c (Ω). (2)

In some cases we will also consider the problem{
−�m(u) = |u|p−1u in Ω,

u = 0 on ∂Ω.
(3)

We also recall that the C1,α regularity assumption is natural in this setting due to the results in [11,21,27]. See also
[20] for related results. The aim of this paper is to prove various non-linear Liouville type theorems for the above
considered problems (2) and (3).

Liouville type theorems for the semilinear case m = 2 have received much attention in the last decades. We refer to
the papers [17,18] for the case of non-negative solutions and subcritical values of the exponent p (see also [2,4]) and to
the works [14,15] for the case of changing-sign solutions belonging to one of the following families: stable solutions,
finite Morse index solutions or (more generally) solutions stable outside a compact set of Ω (see Definition 1.2 below).
The results proved in [14,15] also cover the case of supercritical values of the exponent p. More precisely, it is proved
that they hold true for 1 < p < pc(N), where pc(N) is a second critical exponent, which is always larger than the
classical critical one.

For the quasilinear case m �= 2, Liouville type theorems for non-negative weak solutions have been proved in [26].
These results hold true for the corresponding subcritical range of values of the exponent p. To the best of our knowl-
edge no Liouville type result is known for changing-sign solutions in the case m �= 2. The main purpose of the present
work is to prove such a kind of results for solutions which are either stable, with finite Morse index or stable outside
a compact set.

The proofs of our results are different from those of [17,18,26,2,4]. Of course, as in the above papers, an important
tool is the choice of suitable test functions and our techniques are inspired by the methods developed by the second
author in [14,15].

We start with the following

Definition 1.1. We recall (see [7,8] and [3]) that, given a bounded domain ω, if ρ ∈ L1(ω), ρ � 0, 1 � p < ∞, the
space H

1,p
ρ (ω) is defined as the completion of C1(ω) (or, equivalently, C∞(ω)) under the norm

‖v‖
H

1,p
ρ

= ‖v‖Lp(ω) + ‖Dv‖Lp(ω,ρ) (4)

where ‖Dv‖p

Lp(ω,ρ) = ∫
ω

|Dv|pρ dx.

In this way H
1,p
ρ (ω) is a Banach space and H 1,2

ρ (ω) is a Hilbert space. We also recall that H
1,p
ρ may be defined as

the space of functions having distributional derivatives represented by a function for which the quantity in (4) is finite.
These two definitions are equivalent if the domain has piecewise regular boundary.

Moreover, we define H
1,p

0,ρ (ω) as the closure of C1
c (ω) (or C∞

c (ω)) in H
1,p
ρ (ω).

The linearized operator of (2) at u is given by

Lu(v,ϕ) =
∫
Ω

|∇u|m−2(∇v,∇ϕ)dx +
∫
Ω

(m − 2)|∇u|m−4(∇u,∇v)(∇u,∇ϕ) − p|u|p−1vϕ dx.

In this paper we will be mostly concerned with the case m > 2. In this case, if we consider

ρ = |∇u|(m−2) (5)

then ρ ∈ L1
loc(Ω) by the C1,α regularity of u. Therefore we can consider v ∈ H

1,2
ρ,loc(Ω) and ϕ ∈ C1

c (Ω) and the
linearized operator is well defined for such (v,ϕ).

Also, by density arguments, we can consider the case v ∈ H
1,2
ρ,loc(Ω) and ϕ ∈ H

1,2
0,ρ (K), for some compact set

K ⊂ Ω , and the linearized operator is well defined for such (v,ϕ).
Observe that, besides the fact that many of our estimates work only in the case m > 2, in the case 1 < m < 2

the weight |∇u|m−2 might not belong to the space L1
loc(Ω). This prevents the use of classical estimates in weighted

Sobolev spaces and in this case it is not even clear which definition of stability would be the natural one.
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Definition 1.2. We say that a weak solution u ∈ C
1,α
loc (Ω)

• is stable if{
Lu(ϕ,ϕ) � 0,

∀ϕ ∈ C1
c (Ω),

• has Morse index equal to K � 1 if K is the maximal dimension of a subspace Z ⊂ C1
c (Ω) such that Lu(ϕ,ϕ) < 0

for any ϕ ∈ Z , ϕ �≡ 0,
• is stable outside a compact set K ⊂ Ω if Lu(ϕ,ϕ) � 0 for every ϕ ∈ C1

c (Ω \ K).

We recall that the stability condition translates into the fact that the second variation of the energy functional is
non-negative. Therefore all the minima of the functional are stable weak solutions of the equation −�m(u) = |u|p−1u.

Remark 1.3. It is well known that, if u has finite Morse index, then u is stable outside a compact set. Also, for future
use, we point out that, if u is stable, for any ϕ ∈ H

1,2
0,ρ (K), for any compact set K ⊂ Ω , we have

p

∫
Ω

|u|p−1ϕ2 � (m − 1)

∫
Ω

|∇u|m−2|∇ϕ|2. (6)

Exploiting the technique introduced in [14,15], we prove the following

Proposition 1.4. Let Ω be a smooth domain bounded or not of R
N . Let u ∈ C

1,α
loc (Ω) be a stable solution of (2) with

p > (m − 1) and m > 2. Then, for every

γ ∈
[

1; 2p − (m − 1) + 2
√

p(p − (m − 1))

(m − 1)

)

and for any integer k with

k � max

{
p + γ

p − (m − 1)
;2

}

there exists a positive constant C = C(p,m,k, γ ) such that∫
Ω

(|∇u|m|u|γ−1ψmk + |u|p+γ ψmk
)
� C

∫
Ω

|∇ψ |m p+γ
p−(m−1) (7)

for all test functions ψ ∈ C1
c (Ω) with 0 � ψ � 1.

Proposition 1.4 provides an important estimate on the integrability of u and ∇u. As we will see, our non-existence
results will follow by showing that the right-hand side of (7) vanishes under the right assumptions on p and Ω . More
precisely, as a corollary of Proposition 1.4, we can state our first Liouville type theorem.

Theorem 1.5. Let u ∈ C
1,α
loc (RN) be a stable solution of (2) with m > 2. Assume that⎧⎪⎨

⎪⎩
(m − 1) < p < ∞, if N � m(m + 3)

m − 1
,

(m − 1) < p < pc(N,m), if N >
m(m + 3)

m − 1
,

with

pc(N,m) = [(m − 1)N − m]2 + m2(m − 2) − m2(m − 1)N + 2m2√(m − 1)(N − 1)

(N − m)[(m − 1)N − m(m + 3)] . (8)

Then, u ≡ 0.
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We observe that the critical exponent pc(N,m) is always greater than the classic critical exponent N(m−1)+m
N−m

.
When m = 2 it reduces to the one found in [15], namely

pc(N,2) = pc(N) = (N − 2)2 − 4N + 8
√

N − 1

(N − 2)(N − 10)

if N > 10, which appears also in the study of the bifurcation diagram for positive radial solutions of the equation
(see [19]).

In our setting the operator is non-linear and the equation has to be understood in the weak sense. Also the solutions
are not C2, this causing some technical difficulties that we overcome by an iterate use of Young’s inequality and
Hölder’s inequality, that allows us to carry on the proofs considering the equation only in the weak sense.

We now point out a useful variation of Proposition 1.4:

Proposition 1.6. Let Ω be a domain bounded or not of R
N . Let u ∈ C

1,α
loc (Ω) be a stable solution of (2). Assume

m > 2 and p > m − 1. Then, for any

γ ∈
[

1; 2p − (m − 1) + 2
√

p(p − (m − 1))

(m − 1)

)
and for any integer k

k � max

{
p + γ

p − 1
;2

}
there exists a positive constant C = C(p,m,k, γ ) such that∫

Ω

(|∇u|m−2
∣∣∇(|u| γ−1

2 u
)∣∣2 + |u|p+γ

)
ψ2k � C

∫
Ω

(|∇u|m−2|∇ψ |2) p+γ
p−1 (9)

for all ψ ∈ C1
c (Ω) with 0 � ψ � 1.

We observe that Proposition 1.6 is a weighted version of Proposition 1.4, because of the presence of the weight
|∇u|m−2 in (9). We note that this weight is 1 when m = 2, and that, in this case, Proposition 1.6 reduces to the above
Proposition 1.4. As a consequence of Proposition 1.6 we obtain a bound on the possible decay of the gradient of stable
solutions of (2), according to the following

Theorem 1.7. Let u ∈ C
1,α
loc (RN) be a stable solution of (2) with m > 2. Assume that there exists a suitable constant

C > 0 such that∣∣∇u(x)
∣∣ � C|x|β

for x ∈ R
N and large |x|.

If

N + (
β(m − 2) − 2

)(p + γ

p − 1

)
< 0

for some

γ ∈
[

1; 2p − (m − 1) + 2
√

p(p − (m − 1))

(m − 1)

)
,

then u ≡ 0.

We recall that all the minima of the energy functional are stable solutions. Also it is possible to show that a solution
which is monotone in some direction, is stable (see Lemma 6.2 here or Lemma 7.1 in [16]). This allows us to prove
that, if Ω is a smooth coercive epigraph then any positive solution is monotone thanks to the moving plane technique,
and therefore it is stable.

Consequently, a classification result for non-negative solutions follows when the assumptions of Theorem 1.5 are
fulfilled and Ω is a smooth coercive epigraph, without assuming that the solution is stable. More precisely we have
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Theorem 1.8. Let Ω be a smooth domain in R
N . Assume that Ω is a C

2,α
loc -smooth coercive epigraph, meaning that

Ω = {
(x′, xN) ∈ R

N : ϕ(x′) < xN

}
where ϕ ∈ C

2,α
loc (RN−1,R) and

lim
|x′|→+∞

ϕ(x′) = +∞.

Suppose that m > 2. Let u be a non-negative solution of (3) with⎧⎪⎨
⎪⎩

(m − 1) < p < ∞, if N � m(m + 3)

m − 1
,

(m − 1) < p < pc(N,m), if N >
m(m + 3)

m − 1
,

where pc(N,m) is given in (8). Then u ≡ 0.

We remark that the assumption that the coercive epigraph is C
2,α
loc -smooth in Theorem 1.8 is needed for the moving

plane technique.
A Liouville type result for solutions stable outside a compact set is somewhat more complicated, since suitable

integrability estimates need to interplay with an appropriate Pohozaev type identity. The Pohozaev identity [22] has
been extended to quasilinear degenerate operators by P. Pucci and J. Serrin [23], and by M. Degiovanni, A. Musesti
and M. Squassina [10]. We give here (see Corollary 8.3 below) a self-contained proof which can be carried out in our
case with simple arguments.

These tools will allow us to obtain the following

Theorem 1.9. Let u ∈ C
1,α
loc (RN) be a solution of (2) which is stable outside the compact set K. Assume m > 2 and{

(m − 1) < p < ∞, if N � m,

(m − 1) < p <
N(m − 1) + m

N − m
, if N > m.

(10)

Then u ≡ 0.

The result of Theorem 1.9 is sharp: if p = N(m−1)+m
N−m

, we will prove in Proposition 10.1 that there exist positive
radial solutions of the form

uλ

(|x|) = uλ(r) = λ

(
λ

1
m−1 (N

1
m (N−m

m−1 )
m−1
m )

λ
m

m−1 + r
m

m−1

)N−m
m

, λ > 0, (11)

which are stable outside a sufficiently large ball. The proof of the stability of such solutions depend on Hardy’s
inequality.

If in Theorem 1.9 we assume that m < N and that p is supercritical with respect to the classic critical exponent,
while it is subcritical with respect to the new critical exponent pc(N,m), i.e.,⎧⎪⎨

⎪⎩
N(m − 1) + m

N − m
< p < ∞, if N � m(m + 3)

m − 1
,

N(m − 1) + m

N − m
< p < pc(N,m), if N >

m(m + 3)

m − 1
,

(12)

we are not able to conclude that any solution stable outside a compact set is the trivial one (we recall that this is true
when m = 2, as proved in [15]). In any case, we are able to prove that any such solution decay at infinity faster than
radial solutions (which are classified in [1]):

Theorem 1.10. Let u ∈ C
1,α
loc (RN) be a solution of (2) which is stable outside the compact set K. Assume that m > 2

and assume that (12) holds. Then

lim|x|→∞ |x| m
p−m+1 u(x) = 0. (13)
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As a consequence, we will obtain:

Theorem 1.11. Let u ∈ C
1,α
loc (RN) be a radial solution of (2) which is stable outside a compact set K and m > 2.

Assume that⎧⎪⎨
⎪⎩

N(m − 1) + m

N − m
< p < ∞, if N � m(m + 3)

m − 1
,

N(m − 1) + m

N − m
< p < pc(N,m), if N >

m(m + 3)

m − 1
,

with pc(N,m) as in Theorem 1.5. Then u ≡ 0.

Finally, we note that for p � pc(N,m), positive bounded radial solutions always exist (see [1,13]). For m = 2 all
these solutions are stable as it was shown in [15].

The rest of the paper is organized as follows. Sections 2 and 3 contain the proofs of the auxiliary integrability
estimates of Propositions 1.4 and 1.6. Sections 4, 5, 7, 9, 11 and 12 are devoted to the proofs of the main results.
Section 6 discusses the relation between monotone and stable solutions. The Pohozaev type Identity needed for our
purposes is contained in Section 8. Section 10 contains the example that shows the sharpness of Theorem 1.9.

2. Proof of Proposition 1.4

The proof is inspired by the techniques developed in [14,15] for the semilinear case m = 2.

Step 1. We claim that for any γ � 1 and for any 0 < ε <
√

γ , there exists a constant Cε possibly depending on ε

and m, such that

(
γ − ε2)∫

Ω

|∇u|m|u|γ−1ϕm �
∫
Ω

|u|p+γ ϕm + Cε

∫
Ω

|∇ϕ|m|u|γ+(m−1) (14)

for any non-negative ϕ ∈ C∞
c (Ω).

To prove this, let us consider Φ = |u|γ−1uϕm. We use Φ as test function in (2). Since

∇Φ = m|u|γ−1uϕm−1∇ϕ + γ |u|γ−1(∇u)ϕm

we get

γ

∫
Ω

|∇u|m|u|γ−1ϕm = −m

∫
Ω

|∇u|m−2(∇u,∇ϕ)|u|γ−1uϕm−1 +
∫
Ω

|u|p+γ ϕm

and therefore

γ

∫
Ω

|∇u|m|u|γ−1ϕm � m

∫
Ω

|∇u|m−1|∇ϕ||u|γ ϕm−1 +
∫
Ω

|u|p+γ ϕm.

Writing |u|γ = |u|[(γ−1) m−1
m

+ γ+(m−1)
m

] and exploiting Young’s inequality with exponents m and m
m−1 we have

γ

∫
Ω

|∇u|m|u|γ−1ϕm � ε2
∫
Ω

|∇u|m|u|γ−1ϕm + Cε

∫
Ω

|∇ϕ|m|u|γ+(m−1) +
∫
Ω

|u|p+γ ϕm

that is (14).

Step 2. We set

α = αε = p −
(

(γ + 1)2

+ ε2
)

1
2

(15)

m − 1 4 γ − ε
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and we claim that there exists a positive constant β = β(p,m,γ, ε) such that

α

∫
Ω

|u|p+γ ϕm � β

∫
Ω

|∇ϕ|m|u|γ+(m−1) (16)

for any non-negative ϕ ∈ C∞
c (Ω).

To prove this, we use the stability assumption with Φ̃ = |u| γ−1
2 uϕ

m
2 . Since

∇Φ̃ =
(

γ + 1

2

)
|u| γ−1

2 ϕ
m
2 ∇u + m

2
|u| γ−1

2 uϕ
m
2 −1∇ϕ

recalling (6), we get

p

m − 1

∫
Ω

|u|p+γ ϕm �
(

1 + γ

2

)2 ∫
Ω

|∇u|m|u|γ−1ϕm + m2

4

∫
Ω

|∇u|m−2|u|γ+1|∇ϕ|2ϕm−2

+ m
γ + 1

2

∫
Ω

|∇u|m−1|u|γ ϕm−1|∇ϕ|. (17)

By writing |u|γ+1 = |u|[(γ−1)
(m−2)

m
+2 (γ+(m−1))

m
] and using Young’s inequality with exponents m

m−2 and m
2 (recall that

m > 2), we get

m2

4

∫
Ω

|u|γ+1ϕm−2|∇u|m−2|∇ϕ|2 � ε2

2

∫
Ω

|∇u|m|u|γ−1ϕm + C′
ε

∫
Ω

|∇ϕ|m|u|γ+(m−1).

Also, by Young’s inequality with exponents m
m−1 and m, we obtain

m
γ + 1

2

∫
Ω

|∇u|m−1|u|γ ϕm−1|∇ϕ| � ε2

2

∫
Ω

|∇u|mϕm|u|γ−1 + C′′
ε

∫
Ω

|∇ϕ|m|u|γ+(m−1).

As a consequence of (17), we get

p

m − 1

∫
Ω

|u|p+γ ϕm �
[(

γ + 1

2

)2

+ ε2
]∫

Ω

|∇u|m|u|γ−1ϕm + (C′
ε + C′′

ε )

∫
Ω

|∇ϕ|m|u|γ+(m−1). (18)

By (14) and (18),

p

m − 1

∫
Ω

|u|p+γ ϕm �
[(

γ + 1

2

)2

+ ε2
]

1

γ − ε2

(∫
Ω

|u|p+γ ϕm + Cε

∫
Ω

|∇ϕ|m|u|γ+(m−1)

)

+ (C′
ε + C′′

ε )

∫
Ω

|∇ϕ|m|u|γ+(m−1)

�
[(

γ + 1

2

)2

+ ε2
]

1

γ − ε2

∫
Ω

|u|p+γ ϕm + C′′′
ε

∫
Ω

|∇ϕ|m|u|γ+(m−1)

where we take C′′′
ε = (C′

ε + C′′
ε ) + [( γ+1

2 )2 + ε2] 1
(γ−ε2)

Cε , so that

[
p

m − 1
−

(
(γ + 1)2

4
+ ε2

)
1

γ − ε2

]∫
Ω

|u|p+γ ϕm � C′′′
ε

∫
Ω

|∇ϕ|m|u|γ+(m−1).

By setting C′′′
ε = β and recalling (15), we get (16).
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Remark 2.1. We have that

lim
ε→0

[
p

m − 1
−

(
(γ + 1)2

4
+ ε2

)
1

γ − ε2

]
= p

m − 1
− (γ + 1)2

4γ

and, as follows by elementary calculus p
m−1 − (γ+1)2

4γ
> 0 for

γ ∈
[

1; 2p − (m − 1) + 2
√

p(p − (m − 1))

(m − 1)

)
Therefore under our assumption, we can assume that α > 0 for ε small.

Remark 2.2. Combining (14) and (16), we get that∫
Ω

|∇u|m|u|γ−1|ϕ|m � 1

γ − ε2

∫
Ω

|u|p+γ |ϕ|m + Cε

γ − ε2

∫
Ω

|∇ϕ|m|u|γ+(m−1)

� C̃ε

∫
Ω

|∇ϕ|m|u|γ+(m−1) (19)

for example with C̃ε = Cε

γ−ε2 + 1
γ−ε2

β
α

.

Step 3. We claim that there exists a constant C = C(p,m,k, γ ) > 0 such that∫
Ω

|u|p+γ ψmk � C

∫
Ω

|∇ψ |m p+γ
p−(m−1) . (20)

To prove this, let ψ ∈ C∞
c (Ω) with 0 � ψ � 1 and take ϕ = ψk . Note that ∇ϕ = kψk−1∇ψ and so, by (16),∫

Ω

|u|p+γ ψmk � C

∫
Ω

|u|γ+(m−1)ψm(k−1)|∇ψ |m

� C

[∫
Ω

(|u|γ+(m−1)ψm(k−1)
) p+γ

γ+(m−1)

] γ+(m−1)
p+γ

[∫
Ω

(|∇ψ |m) p+γ
p−(m−1)

] p−(m−1)
p+γ

(21)

where this makes sense since p > m − 1. Also

m(k − 1)

(
p + γ

γ + (m − 1)

)
� mk (22)

since we assumed k � p+γ
p−(m−1)

. Consequently, recalling that 0 � ψ � 1, we have

∫
Ω

|u|p+γ ψmk � C

[∫
Ω

|u|p+γ ψmk

] γ+(m−1)
p+γ

[∫
Ω

|∇ψ |m p+γ
p−(m−1)

] p−(m−1)
p+γ

and consequently∫
Ω

|u|p+γ ψmk � C

∫
Ω

|∇ψ |m p+γ
p−(m−1)

that is (20).

Step 4. There exists a constant C = C(p,m,k, γ ) > 0 such that∫
|∇u|m|u|γ−1ψmk � C

∫
|∇ψ |m p+γ

p−(m−1) (23)
Ω Ω
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for any ψ ∈ C∞
c (Ω) such that 0 � ψ � 1. Indeed, we consider (19) for ϕ = ψk (thence ∇ϕ = kψk−1∇ψ ), obtaining∫

Ω

|∇u|m|u|γ−1ψmk � C

∫
Ω

|u|γ+(m−1)ψm(k−1)|∇ψ |m

� C

[∫
Ω

(|u|γ+(m−1)ψm(k−1)
) p+γ

γ+(m−1)

] γ+(m−1)
p+γ

[∫
Ω

|∇ψ |m p+γ
p−(m−1)

] p−(m−1)
p+γ

and so, by taking into account (20), we get (23).

Conclusion. The thesis of Proposition 1.4 follows by collecting the estimates in (20) and (23).

Arguing exactly as above (see [14,15] for related results when m = 2), we can also state and prove the following

Proposition 2.3. Let Ω be a smooth domain bounded or not of R
N . Let u ∈ C

1,α
loc (Ω) be a solution of (3) which is

stable outside a compact set K ⊂ Ω with p > (m − 1) and m > 2. Then, for every

γ ∈
[

1; 2p − (m − 1) + 2
√

p(p − (m − 1))

(m − 1)

)

and for any integer k with

k � max

{
p + γ

p − (m − 1)
;2

}
.

Then there exists a positive constant C = C(p,m,k, γ ) such that∫
Ω

|∇u|m|u|γ−1ψmk + |u|p+γ ψmk � C

∫
Ω

|∇ψ |m p+γ
p−(m−1) (24)

for all test functions ψ ∈ C1
c (RN \ K) with 0 � ψ � 1.

Proof. The proof is exactly the same as in Proposition 1.4. We only have to note that here, even if ψ ∈ C1
c (RN \ K)

does not have compact support in Ω , all the test-functions used in the proof of Proposition 1.4 are good test-functions
since u fulfills the zero Dirichlet boundary condition. �
3. Proof of Proposition 1.6

We will follow very closely the proof of Proposition 1.4. For shortness, we will assume that Cε = C(p,m,k, γ, ε) >

0 is a generic constant (which, as usual, may take different values on different occurrences).

Step 1. We have that for any γ � 1 and for any 0 < ε <
√

γ , there exists a constant Cε such that

4

(γ + 1)2

(
γ − ε2)∫

Ω

|∇u|m−2
∣∣∇(|u| γ−1

2 u
)∣∣2

ϕ2 �
∫
Ω

|u|p+γ ϕ2 + Cε

∫
Ω

|∇u|m−2|u|γ+1|∇ϕ|2 (25)

for any ϕ ∈ C∞
c (Ω).

To prove this, let us consider Φ = |u|γ−1uϕ2, so that

∇Φ = 2|u|γ−1uϕ∇ϕ + γ |u|γ−1(∇u)ϕ2.

Taking Φ as test function in (2), we have

γ

∫
|∇u|m−2|∇u|2|u|γ−1ϕ2 = −2

∫
|∇u|m−2(∇u,∇ϕ)|u|γ−1uϕ +

∫
|u|p+γ ϕ2.
Ω Ω Ω
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Thence

γ

∫
Ω

|∇u|m−2|u|γ−1|∇u|2ϕ2 �
∫
Ω

|u|p+γ ϕ2 + ε2
∫
Ω

|∇u|m−2|u|γ−1|∇u|2ϕ2 + Cε

∫
Ω

|∇u|m−2|∇ϕ|2|u|γ+1

and therefore we get (25).

Step 2. Now we set 4
(γ+1)2 (γ − ε2) = Aε = A,

p

m − 1
− 1 + ε2

A
= αε = α

and we prove that for some positive constant, say β , we have

α

∫
Ω

|u|p+γ ϕ2 dx � β

∫
Ω

|∇u|m−2|u|γ+1|∇ϕ|2 dx. (26)

Indeed, exploiting (6) with Φ = |u| γ−1
2 uϕ, we get

p

m − 1

∫
Ω

|u|p+γ ϕ2 �
(
1 + ε2)∫

Ω

|∇u|m−2
∣∣∇(|u| γ−1

2 u
)∣∣2

ϕ2 + Cε

∫
Ω

|∇u|m−2|u|γ+1|∇ϕ|2.

By (25)

p

m − 1

∫
Ω

|u|p+γ ϕ2 � 1 + ε2

A

∫
Ω

|u|p+γ ϕ2 + Cε

∫
Ω

|∇u|m−2|u|γ+1|∇ϕ|2

hence (26) follows. Note that, as in Remark 2.1, we can take ε so small that αε > 0.

Step 3. Let now ψ ∈ C∞
c (Ω) such that 0 � ψ � 1. We show that∫

Ω

|u|p+γ ψ2k � Cε

∫
Ω

(|∇u|m−2|∇ψ |2) p+γ
p−1 . (27)

To prove this, we use (26) with ϕ = ψk , so that

α

∫
Ω

|u|p+γ ψ2k � βk2
∫
Ω

|∇u|m−2ψ2k−2|∇ψ |2|u|γ+1

with α, β > 0 as above, and, as a consequence, by Hölder’s inequality,

∫
Ω

|u|p+γ ψ2k � Cε

[∫
Ω

(|u|γ+1ψ2k−2) p+γ
1+γ

] γ+1
p+γ

[∫
Ω

(|∇u|m−2|∇ψ |2) p+γ
p−1

] p−1
p+γ

.

Now we recall that k � max{p+γ
p−1 ;2} and so

ψ
(2k−2)(p+γ )

γ+1 � ψ2k (28)

since 0 � ψ � 1.
Therefore,∫

Ω

|u|p+γ ψ2k � Cε

[∫
Ω

|u|p+γ ψ2k

] γ+1
p+γ

[∫
Ω

(|∇u|m−2|∇ψ |2) p+γ
p−1

] p−1
p+γ

.

Hence, (27) follows at once.
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Step 4. We have∫
Ω

|∇u|m−2
∣∣∇(|u| γ−1

2 u
)∣∣2

ψ2k � Cε

∫
Ω

(|∇u|m−2|∇ψ |2) p+γ
p−1 . (29)

To prove this, note that by (25) and (26)∫
Ω

|∇u|m−2(∣∣∇(|u| γ−1
2 u

)∣∣2)
ϕ2 � Cε

∫
Ω

|∇u|m−2|u|γ+1|∇ϕ|2

and so, for ϕ = ψk ,∫
Ω

|∇u|m−2
∣∣∇(|u| γ−1

2 u
)∣∣2

ψ2k � Cε

∫
Ω

|∇u|m−2|u|γ+1ψ2k−2|∇ψ |2.

Therefore, using again (28), we have

∫
Ω

|∇u|m−2
∣∣∇(|u| γ−1

2 u
)∣∣2

ψ2k � Cε

[∫
Ω

(|u|γ+1ψ2k−2) p+γ
γ+1

] γ+1
p+γ

[∫
Ω

(|∇u|m−2|∇ψ |2) p+γ
p−1

] p−1
p+γ

� Cε

[∫
Ω

|u|p+γ ψ2k

] γ+1
p+γ

[∫
Ω

(|∇u|m−2|∇ψ |2) p+γ
p−1

] p−1
p+γ

.

In this way, (29) follows from (27).

Conclusion. By collecting the estimates in (27) and (29), we get (9).

4. Proof of Theorem 1.5

Let ψ ∈ C∞
c (RN) be a cut-off function such that 0 � ψ � 1 everywhere and

ψ ≡ 1, in B(0,R),

ψ ≡ 0, outside B(0,2R),

|∇ψ | � C

R
.

Consequently, Proposition 1.4 gives∫
Ω

(|∇u|m|u|γ−1 + |u|p+γ
)
ψmk � CR

N−m
p+γ

p−(m−1) . (30)

When N − m
p+γ

p−(m−1)
< 0, the desired claim follows by letting R → ∞.

Let us now consider the case in which N − m
p+γ

p−(m−1)
< 0.

Define, for t > m − 1,

γ̄ (t) = 2t − (m − 1) + 2
√

t (t − (m − 1))

m − 1

and set

g(t) = m(t + γ̄ (t))

t − (m − 1)
.

We have that g(t) is decreasing. Also,

lim
t→∞g(t) = (m + 3)m

m − 1
and lim + g(t) = +∞.
t→(m−1)
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Therefore, if

N � (m + 3)m

m − 1

then N < g(t) for any t > m − 1, hence if we fix γ ∈ [1, γ̄ (p)), suitably near γ̄ (p), we obtain

N − m(p + γ )

p − (m − 1)
< 0.

For this reason, the desired result follows by letting R → ∞ in (30).
Assume now N >

(m+3)m
m−1 . Since g is decreasing, we get in this case a critical value pc(N,m) such that

N − m(p + γ̄ (p))

p − (m − 1)
< 0

for p < pc(N,m).
From this, the desired result follows again by letting R → ∞ in (30).
Of course, pc(N,m) may be deduced from the equation N − m(p+γ )

p−(m−1)
= 0, giving the value in (8).

5. Proof of Theorem 1.7

The proof is an application of Proposition 1.6.
Let ψ ∈ C∞

c (RN) be a cut-off function such that 0 � ψ � 1 everywhere and

ψ ≡ 1, in B(0,R),

ψ ≡ 0, outside B(0,2R),

|∇ψ | � C

R
.

Then, Proposition 1.6 gives∫
Ω

(|∇u|m−2
∣∣∇(|u| γ−1

2 u
)∣∣2 + |u|p+γ

)
ψ2k � CR

N+(β(m−2)−2)(
p+γ
p−1 )

.

The desired claim follows by letting R → ∞.

6. Monotonicity and stability

When m = 2 it is a well-known fact that monotone solutions are stable. The same holds in our contest as shown by
the following simple considerations.

Definition 6.1. We say that the Weak Maximum Principle (WMP) holds for the linearized operator Lu in Ω , if, given
v ∈ H 1,2

ρ (Ω) ∩ C0(Ω) such that{
Lu(v,ϕ) � 0 for ϕ ∈ C1

c (Ω)

v � 0 on ∂Ω
(31)

it follows that v � 0 in Ω .

Lemma 6.2. Let u be a solution of (2) in Ω (possibly unbounded). Assume that the derivative of u in some direction
is positive, say for example ∂xN

u > 0. Then,

u is stable.

Proof. Let ϕ ∈ C1
c (Ω). Since ∂xN

u > 0, we have that ∇u �= 0 everywhere. Therefore the linearized operator is non-
degenerate. Since also ∂xN

u > 0 is a solution of the linearized equation, it follows that the WMP holds for Lu in
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B(0,R) for any R > 0. Let us now take R > 0 such that supp(ϕ) ⊂ B(0,R). We have that the first eigenvalue of Lu

in B(0,R) is positive and therefore Lu(ϕ,ϕ) � 0. �
Further details about monotonicity and stabilities are given in Section 7 of [16].

7. Proof of Theorem 1.8

Since u � 0, by the Strong Maximum Principle (see [28,24]) we have that either u > 0 or u = 0. If u = 0 we
are done. If else u > 0 we are in the position of using the moving plane method (see [7–9,12]) and prove that u has
positive derivative in some direction. We recall that, for uniformly elliptic operators, the moving plane technique has
been extended to the case of domains which are coercive epigraphs in [12]. We refer to [7,8] for the case of equations
involving the m-Laplace operator in bounded domains. Combining the arguments in [12,7] it is easily seen that the
moving plane technique applies in our case. Therefore the monotonicity of u shows that u is stable by Lemma 6.2,
and the result follows by repeating the proof of Theorem 1.5. The only difference is that the use of Proposition 1.4 in
Theorem 1.5 is replaced by the use of Proposition 2.3 here.

8. Pohozaev type identity

We consider u ∈ C1,α to be weak solution of

−�m(u) = g(u) in Ω

where Ω ⊆ R
N is bounded and smooth. Therefore we have∫

Ω

|∇u|m−2(∇u,∇ϕ)dx =
∫
Ω

g(u)ϕ dx ∀ϕ ∈ C∞
c (Ω). (32)

Assume that g(·) is locally Lipschitz continuous. We will use η(x) to indicate the unit outward normal vector to ∂Ω

at a point x ∈ ∂Ω .
Also, we will use the notation uη(x) = ∂u

∂η
(x) and we define

G(t) =
t∫

0

g(s) ds.

Lemma 8.1. Let u ∈ C1,α(Ω) ∩ C0(Ω) be a weak solution of

−�m(u) = g(u) in Ω

where Ω ⊆ R
N is bounded and smooth and g is locally Lipschitz continuous. Then we have

−�m(u) = g(u), a.e. in Ω.

More precisely the equation is fulfilled in the classic sense for almost every x ∈ Ω .

Proof. We recall (see for example [7]) that

|∇u|m−2∇u ∈ W
1,2
loc

(
R

N
)
.

Thus, by (32), integrating by parts, we get∫
Ω

−�m(u)ϕ dx =
∫
Ω

g(u)ϕ dx ∀ϕ ∈ C∞
c (Ω)

and the thesis. �
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Proposition 8.2. Let u ∈ C1,α(Ω) be a weak solution of

−�m(u) = g(u) in Ω

where Ω ⊆ R
N is bounded and smooth and g is locally Lipschitz continuous. Then we have

N

∫
Ω

G(u)dx − N − m

m

∫
Ω

|∇u|m dx =
∫

∂Ω

[
G(u)(x · η) + |∇u|m−2(x · ∇u)uη − |∇u|m

m
(x · η)

]
dS. (33)

Proof. Since by Lemma 8.1 we have −�m(u) = g(u) a.e. in Ω , then∫
Ω

div
(|∇u|m−2∇u

)
(x · ∇u)dx =

∫
Ω

�m(u)(x · ∇u)dx =
∫
Ω

−g(u)(x · ∇u)dx. (34)

We note now that∫
Ω

−g(u)(x · ∇u)dx =
N∑

i=1

∫
Ω

−xi

(
G(u)

)
i
dx = N

∫
Ω

G(u)dx −
∫

∂Ω

G(u)(x · η)dS. (35)

Also, since div(|∇u|m−2∇u)(ui · xi) ∈ L1(Ω) by the regularity results in [7], and (|∇u|m−2∇u)ui · xi ∈ C0(Ω) by
assumption, then we can exploit the divergence theorem (see [5]) obtaining∫

Ω

div
(|∇u|m−2∇u

)
(x · ∇u)dx

= −
∫
Ω

|∇u|m dx +
∫

∂Ω

|∇u|m−2(x · ∇u)uη dS −
N∑

i=1

∫
Ω

|∇u|m−2(∇u,∇ui)xi dx

= −
∫
Ω

|∇u|m dx +
∫

∂Ω

|∇u|m−2(x · ∇u)uη dS −
N∑

i=1

∫
Ω

1

m

(
∂

∂xi

|∇u|m
)

· xi dx

= −
∫
Ω

|∇u|m dx + N

m

∫
Ω

|∇u|m dx +
∫

∂Ω

|∇u|m−2(x · ∇u)uη dS −
∫

∂Ω

|∇u|m
m

(x · η)dS

so that∫
Ω

div
(|∇u|m−2∇u

)
(x · ∇u)dx − N − m

m

∫
Ω

|∇u|m dx

=
∫

∂Ω

|∇u|m−2(x · ∇u)uη dS −
∫

∂Ω

|∇u|m
m

(x · η)dS. (36)

Exploiting (34), (35) and (36), we get the thesis. �
Corollary 8.3. Let u ∈ C

1,α
loc (RN) be a weak solution of the equation −�m(u) = g(u) where g is locally Lipschitz

continuous. Assume that

|∇u| ∈ Lm
(
R

N
)

and G(u) ∈ L1(
R

N
)
.

Then,

N

∫
RN

G(u)dx = N − m

m

∫
RN

|∇u|m dx.
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Proof. By assumption,∫
RN

(∣∣G(u)
∣∣ + |∇u|m)

dx < ∞

and so
∞∫

0

∫
∂B(0,r)

(∣∣G(u)
∣∣ + |∇u|m)

dS dr < ∞.

For this reason,

lim inf
r→∞ r

∫
∂B(0,r)

(∣∣G(u)
∣∣ + |∇u|m)

dS = 0. (37)

If now we exploit Proposition 8.2 with Ω = B(0, r) we get the thesis noticing that the boundary term in (33) vanishes
at infinity thanks to (37). �
Remark 8.4. If, in Corollary 8.3, we consider the case

g(u) = |u|p−1u

and we assume u ∈ Lp+1(RN), we get

N

p + 1

∫
RN

|u|p+1 dx = N − m

m

∫
RN

|∇u|m dx.

9. Proof of Theorem 1.9

We claim that there exist positive constants A,B and R0, possibly depending on u, such that, for r > R0 + 3 and

γ ∈
[

1; 2p − (m − 1) + 2
√

p(p − (m − 1))

(m − 1)

)
we have ∫

{R0+2<|x|<r}

(|∇u|m|u|γ−1 + |u|p+γ
)
dx � A + Br

N− m(p+γ )
p−(m−1) . (38)

To prove this, let us first fix R0 so that B(0,R0) ⊃ K. Given r > R0 + 3 we consider

φr(x) ≡
{0 if |x| < R0 + 1,

1 if R0 + 2 < |x| < r,

0 if |x| > 2r

and we may and do assume that 0 � φr(x) � 1, and |∇φr(x)| � C in B(0,R0 + 2) \ B(0,R0 + 1), and |∇φr(x)| � C
r

in B(0,2r) \ B(0, r). Therefore, exploiting Proposition 1.4, we get∫
{R0+2<|x|<r}

(|∇u|m|u|γ−1 + |u|p+γ
)
dx � C

∫
{R0+1<|x|<R0+2}

∣∣∇φr(x)
∣∣ m(p+γ )

p−(m−1) dx

+ C

∫
{r<|x|<2r}

∣∣∇φr(x)
∣∣ m(p+γ )

p−(m−1) dx

from which (38) plainly follows.
Taking γ = 1 in (38), recalling assumption (10), it follows that

N − m(p + γ )
< 0.
p − (m − 1)
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Therefore, letting r → ∞, we conclude that

|∇u| ∈ Lm
(
R

N
)

and u ∈ Lp+1(
R

N
)
.

This gives the right summability needed to exploit Pohozaev identity (see Corollary 8.3 and Remark 8.4), that gives

N

p + 1

∫
RN

|u|p+1 dx = N − m

m

∫
RN

|∇u|m dx. (39)

Let us now consider

ϕR(x) ≡
{

1 if |x| < R,

0 if |x| > 2R

with 0 � ϕR(x) � 1, and |∇ϕR(x)| � C
R

for R < |x| < 2R. Using u · ϕR as test function in (2), we get∫
B(0,2R)

|∇u|mϕR dx +
∫

B(0,2R)

|∇u|m−2(∇u,∇ϕR)udx =
∫

B(0,2R)

|u|p+1ϕR dx. (40)

Note now that∣∣∣∣
∫

B(0,2R)

|∇u|m−2(∇u,∇ϕR)udx

∣∣∣∣ �
∫

B(0,2R)

|∇u|m−1|∇ϕR||u|dx

� const

( ∫
RN

|∇u|m dx

)m−1
m

( ∫
RN

|u|p+1 dx

) 1
p+1

R
N(p+1−m)

m(p+1)
−1

and so, letting R → ∞ and noticing that N(p+1−m)
m(p+1)

−1 < 0, since N − m(p+1)
p−(m−1)

< 0 under our assumptions, we gather
that

lim
R→∞

∣∣∣∣
∫

B(0,2R)

|∇u|m−2(∇u,∇ϕR)udx

∣∣∣∣ = 0.

As a consequence, (40) becomes∫
RN

|∇u|m dx =
∫

RN

|u|p+1 dx. (41)

Combining (39) and (41) we get(
N − m

m
− N

p + 1

) ∫
RN

|u|p+1 dx = 0.

Since under our assumptions (N−m
m

− N
p+1 ) �= 0, we obtain the desired thesis.

10. A counterexample for the critical case

In this section we show the existence of positive radial solutions for (2), which are stable outside a compact set, for
the limit case

p = N(m − 1) + m

N − m

assuming 2 < m < N (the case m = 2 was treated in [14,15]). Recalling the classification results in [1] (see Theo-
rem 6.1 therein), we know that the non-constant global radial solutions of

−�m(u) = |u|p−1u in R
N
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are positive (or negative), and they are given by

uλ

(|x|) = uc(r) = c

(
r

m
m−1 + 1

N

(
m − 1

N − m

)(m−1)

c( m2
N−m

)

)m−N
m

, c > 0.

Equivalently,

uλ

(|x|) = uλ(r) = λ

(
λ

1
m−1 (N

1
m (N−m

m−1 )
m−1
m )

λ
m

m−1 + r
m

m−1

)N−m
m

, λ > 0. (42)

In particular the exact behavior of uλ and ∇uλ at infinity is known and is given by

uλ(r) ≈ const

(
1

r

)N−m
m−1

and

∣∣∇uλ(r)
∣∣ ≈ const

(
1

r

)N−1
m−1

.

Proposition 10.1. Let u = uλ be a positive radial solution of (2), given by (42). Then there exists R0 > 0 such that

u is stable outside B(0,R0).

Proof. Given R0 > 0, let us consider Ψ ∈ C1
c (RN \ B(0,R0)). We will show that, if R0 is sufficiently large, then∫

RN\B(0,R0)

|∇u|m−2|∇Ψ |2 + (m − 2)|∇u|m−4(∇u,∇Ψ )2 − pup−1Ψ 2 dx � 0

recalling that u = |u| since we assumed that u is positive.
We note now that

up−1 = O

(
1

r

)N(m−2)+2m
m−1 = o

(
1

r

)N(m−2)+m
m−1

.

Therefore for R0 sufficiently large we may assume that

pup−1Ψ 2 � C̃ · Ψ 2

|x|τ
where C̃ may be taken as small as we like (the value of C̃ will be fixed in (44) below).

Moreover τ = τ(N,m) = N(m−2)+m
m−1 . It follows now that∫

RN\B(0,R0)

|∇u|m−2|∇Ψ |2 + (m − 2)|∇u|m−4(∇u,∇Ψ )2 − pup−1Ψ 2 dx

�
∫

RN\B(0,R0)

|∇u|m−2|∇Ψ |2 − C̃ · Ψ 2

|x|τ dx (43)

where we also used that m > 2. Exploiting the weighted Hardy’s inequality (see for example Lemma 2.3 in [6]), we
get that ∫

RN\B(0,R0)

Ψ 2

|x|τ dx �
(

2

N − τ

)2 ∫
RN\B(0,R0)

|∇Ψ |2
|x|τ−2

dx

where τ < N since m < N . Moreover, recalling that

|∇u|m−2 ≈
(

1
)(N−1) m−2

m−1 =
(

1
)τ−2
|x| |x|
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we have

|∇u|2−m

|x|τ−2
� K(N,m,u)

for R0 large and a suitable constant K(N,m,u). Therefore∫
RN\B(0,R0)

C̃ · Ψ 2

|x|τ dx � C̃ · K(N,m,u)

∫
RN \B(0,R0)

|∇u|m−2|∇Ψ |2 dx.

Hence, taking C̃ so that

C̃ · K(N,m,u) < 1 (44)

we gather that∫
RN\B(0,R0)

|∇u|m−2|∇Ψ |2 − C̃ · Ψ 2

|x|τ dx � 0.

Then, the result follows from (43). �
11. The supercritical case: Proof of Theorem 1.10

In this section we will assume that m < N and p is supercritical with respect to the classic critical exponent, while
it is subcritical with respect to the new critical exponent. More precisely we assume here to be in the range given
by (12), with pc(N,m) as in (8).

Let us prove some preliminary results:

Lemma 11.1. Let m > 2 and u ∈ C
1,α
loc (RN) be a solution of (2) which is stable outside the compact set K. Assume

that (12) holds.
Then, there exists a constant C such that, if

γ ∈
[

1; 2p − (m − 1) + 2
√

p(p − (m − 1))

(m − 1)

)
and B(y,2R) ⊂ (B(0,R0))

c ⊂ Kc, then we have∫
B(y,R)

(|∇u|m|u|γ−1 + |u|p+γ
)
dx � CR

N− m(p+γ )
p−(m−1) . (45)

Proof. Let us consider

ΨR,y(x) ≡
{

1 if |x − y| < R,

0 if |x − y| > 2R

assuming also that 0 � ΨR,y(x) � 1, and |∇ΨR,y(x)| � C
R

for R < |x − y| < 2R. Exploiting Proposition 1.4 and
following the proof in Step 1 of Theorem 1.9, we get (45). �
Lemma 11.2. Let m > 2 and u ∈ C

1,α
loc (RN) be a solution of (2) which is stable outside the compact set K. Assume

that K ⊂ B(0,R0) and that (12) holds.
We can always set

(p − m + 1)
N

m
= p + γ1 (46)

for some γ1 with 1 � γ1 < γM(m,p) = 2p−(m−1)+2
√

p(p−(m−1))
(m−1)

, and

1 � (p − m + 1)
N

m − ε
− p < γM(m,p) (47)

for a small ε ∈ (0,1].
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Then there exists R1 = R1(p,m,N) > R0 such that u ∈ L[(p−m+1) N
m

](RN \ B(0,R1)). In particular, for every
η > 0, eventually taking a larger R1, we can always assume that∫

|x|�R1

|u|(p−m+1) N
m dx < η. (48)

Proof. Eq. (47) can be easily deduced by (46) for ε sufficiently small. Let us consider (46).
Note that the assumption p � N(m−1)+m

N−m
implies that (p − m + 1)N

m
− p � 1. Also, arguing as in the proof of

Theorem 1.5, we can check that (p − m + 1)N
m

− p < γM(m,p).
By Step 1 in Theorem 1.9 we know that there exist constants A, B , possibly depending on u, such that, for

r > R0 + 3 we have∫
{R0+2<|x|<r}

(|u|(p−m+1) N
m
)
dx =

∫
{R0+2<|x|<r}

(|u|p+γ1
)
dx

� A + Br
N− m(p+γ1)

p−(m−1) = A + Br0 (49)

so that u ∈ L[(p−m+1) N
m

](RN \ B(0,R1)) follows. �
We are now in the position of ending the proof of Theorem 1.10. For this, we strongly use the results by J. Serrin

in [25] to deduce a result on the decay of solutions which are stable outside compact sets and we follow some ideas
used in [15] for the semilinear case m = 2.

Let R0 as above, with K ⊂ B(0,R0) and define

p + γ2 = (p − m + 1)
N

m − ε

with 1 � γ2 < γM(m,p) = 2p−(m−1)+2
√

p(p−(m−1))
(m−1)

. This is possible in view of (47). We look at our equation in the
following form

−�m(u) = d(x)|u|m−2u

with d(x) = |u|p−m+1.
We now consider y ∈ R

n with |y| > 10R1 > 10R0 and set R = |y|
4 . Note that

B(y,2R) ⊂ {
x ∈ R

N : |x| > R1
} ⊂ {

x ∈ R
N : |x| > R0

}
.

Also, by (48),∫
|x|�R1

|u|(p−m+1) N
m dx � η

and d(x) ∈ L
N

m−ε (B(y,2R)).
Therefore, we can exploit Theorem 1 in [25] to get that

‖u‖L∞(B(y,R)) � CS

1

R
N
m

‖u‖Lm(B(y,2R)), (50)

where the constant CS may depend on p,m,N and Rε‖d‖
L

N
m−ε (B(y,2R))

.

Here below we show that it is possible to control the dependence of CS on Rε‖d‖
L

N
m−ε (B(y,2R))

. Indeed, we have

Rε‖d‖
L

N
m−ε (B(y,2R))

= Rε

( ∫
B(y,2R)

(|u|(p−m+1) N
m−ε

)
dx

)m−ε
N

= Rε

( ∫
B(y,2R)

(|u|p+γ2
)
dx

)m−ε
N

� constRε
(
R

N−m
p+γ2

p−m+1
)m−ε

N ,

due to Lemma 11.1.
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Since (N − m
p+γ2

p−m+1 ) · m−ε
N

= −ε, we get

Rε‖d‖
L

N
m−ε (B(y,2R))

� const

where the above constant does not depend on R.
As a consequence, CS depends only on p, m and N .
We now exploit (50) to get that

‖u‖L∞(B(y,R)) � CS

1

R
N
m

‖u‖Lm(B(y,2R)) � CS C(N,p,m)
1

R
m

p−m+1
‖u‖

L[(p−m+1) N
m ](B(y,2R))

� const
1

R
m

p−m+1
‖u‖

L[(p−m+1) N
m ](B(y,2R))

,

where the constant does not depend on R because of (48) and the fact that we proved that CS does not depends on R.
We now recall that |y| = 4R and therefore

|y| m
p−m+1

∣∣u(y)
∣∣ � |y| m

p−m+1 ‖u‖L∞(B(y,R)) � const
|y| m

p−m+1

R
m

p−m+1
‖u‖

L[(p−m+1) N
m ](B(y,2R))

� const‖u‖
L[(p−m+1) N

m ](RN\B(0,R))
.

Accordingly, recalling (48), we obtain

lim|y|→∞ |y| m
p−m+1

∣∣u(y)
∣∣ � lim

R→∞ const‖u‖
L[(p−m+1) N

m ](RN\B(0,R))
= 0,

as desired. This ends the proof of Theorem 1.10.

12. Proof of Theorem 1.11

The proof follows directly from the classifications results in [1] where it is shown that radial solutions decay exactly
as 1

|x|
m

p−m+1
, which is a contradiction with (13) (see Theorem 1.10) unless u ≡ 0.
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