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Abstract

In this work we study the asymptotic behavior of solutions of the incompressible two dimensional Euler equations in the exterior
of a single smooth obstacle when the obstacle becomes very thin tending to a curve. We extend results by Iftimie, Lopes Filho and
Nussenzveig Lopes, obtained in the context of an obstacle tending to a point, see [D. Iftimie, M.C. Lopes Filho, H.J. Nussenzveig
Lopes, Two dimensional incompressible ideal flow around a small obstacle, Comm. Partial Differential Equations 28 (1–2) (2003)
349–379].
©
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1. Introduction

The purpose of this work is to study the influence of a thin material obstacle on the behavior of two dimensional
incompressible ideal flows. More precisely, we consider a family of obstacles Ωε which are smooth, bounded, open,
connected, simply connected subsets of the plane, contracting to a smooth curve Γ as ε → 0. Given the geometry of
the exterior domain R2 \ Ωε , a velocity field (divergence free and tangent to the boundary) on this domain is uniquely
determined by the two following (independent) quantities: vorticity and circulation of velocity on the boundary of the
obstacle. Throughout this paper we assume that initial vorticity ω0 is independent of ε, smooth, compactly supported
outside the obstacles Ωε and that γ , the circulation of the initial velocity on the boundary, is independent of ε. From
the work of K. Kikuchi [4], we know that there exists uε = uε(x, t) a unique global solution to the Euler equation
in the exterior domain R2 \ Ωε associated to the initial data described above. Our aim is to determine the limit of uε

as ε → 0. As a consequence, we also obtain the existence of a solution of the Euler equations in the exterior of the
curve Γ .

The study of incompressible fluid flows in presence of small obstacles was initiated by Iftimie, Lopes Filho and
Nussenzveig Lopes [2,3]. The paper [2] treats the same problem as above but with obstacles that shrink homothetically
to a point P , instead of a curve. The case of Navier–Stokes is considered in [3]. In the inviscid case, these authors
prove that if the circulation γ vanishes, then the limit velocity verifies the Euler equation in R2 (with the same initial
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vorticity). If the circulation is non-zero, then the limit equation involves a new term that looks that a fixed Dirac mass
in the point P of strength γ ; the initial vorticity also acquires a Dirac mass in P . In the case of Navier–Stokes, the limit
equation is always Navier–Stokes but the initial vorticity of the limit equation still has an additional Dirac mass in P .

Here we will show that, in the inviscid case, the limit equation is the Euler equation in R2 \ Γ . The initial velocity
for the limit equation is a velocity field which is divergence free in R2, tangent to Γ such that the curl computed in
R2 \ Γ is ω0 and the curl computed in R2 is ω0 + gω0δΓ where gω0 is a density given explicitly in terms of ω0 and γ .
Alternatively, gω0 is the jump of the tangential velocity across Γ .

More precisely, let Φε be a cut-off function in a small ε-neighborhood of the boundary (the precise definition of
Φε is given in Section 4.2) and set ωε = curluε . Our main theorem may be stated as follows:

Theorem 1.1. There exists a subsequence ε = εk → 0 such that

(a) Φεuε → u strongly in L2
loc(R+ × R2);

(b) Φεωε → ω weak-∗ in L∞(R+;L4
loc(R

2));
(c) u is related to ω by means of relation (5.2);
(d) u and ω are weak solutions of ωt + u · ∇ω = 0 in R2 × (0,∞).

The limit velocity u is explicitly given in terms of ω and γ (see Theorem 5.6) and can be viewed as the divergence
free vector field which is tangent to Γ , vanishing at infinity, with curl in R2 \Γ equal to ω and with circulation around
the curve Γ equal to γ . This velocity is blowing up at the endpoints of the curve Γ as the inverse of the square root
of the distance and has a jump across Γ . Moreover, we have curlu = ω + gω(s)δΓ in R2 × [0,∞), where δΓ is the
Dirac function of the curve Γ , and the gω which is defined in Lemma 5.8 depends on ω and the circulation γ . The
function gω is continuous on Γ and blows up at the endpoints of the curve Γ as the inverse of the square root of the
distance. One can also characterize gω as the jump of the tangential velocity across Γ . The presence of the additional
term gω in the expression of curlu, compared of the Euler equation in the full plane, is compulsory to obtain a vector
field tangent to the curve, with a circulation γ around the curve.

There is a sharp contrast between the behavior of ideal flows around a small and thin obstacle. In [2], the authors
studied the vanishing obstacle problem when the obstacle tends homothetically to a point P . Their main result is that
the limit vorticity satisfies a modified vorticity equation of the form ωt + u · ∇ω = 0, with divu = 0 and curlu =
ω + γ δ(x − P). In other words, for small obstacles the correction due to the vanishing obstacle appears as time-
independent additional convection centered at P , whereas in the thin obstacle case, the correction term depends on the
time. Although treating a related problem, the present work requires a different approach. Indeed, in [2], the proofs are
simplified by the fact that the obstacles are homothetic to a fixed domain. Indeed, an easy change of variables y = x/ε

allows in that case to return to a fixed obstacle and to deduce the required estimates. This argument clearly does not
work here and a considerable amount of work is needed to characterize the conformal mapping that sends the exterior
of a small obstacle into the exterior of the unit disk. Moreover, in [2] the authors use the div–curl Lemma to obtain
strong convergence for velocity. This is made possible by the validity of some bounds on the divergence and the curl
of the velocity. A consequence of our work is that these estimates are no longer valid in our case, so this approach
cannot work. We will be able to prove directly strong convergence for the velocity through several applications of the
Lebesgue dominated convergence theorem. We finally observe that, in contrast to the case of [2], the vanishing of the
circulation γ plays no role in our result. The limit velocity will always verify the same type of equation.

We also mention that Lopes Filho treated in [5] the case of several obstacles with one of the obstacles tending to a
point, but the author had to work on a bounded domain. In this case, we do not have explicit formulas anymore, and
the conformal mapping technique is replaced by qualitative analysis using elliptic techniques, including variational
methods and the maximum principle.

The remainder of this work is organized in five sections. We introduce in Section 2 a family of conformal mappings
between the exterior of Ωε and the exterior of the unit disk, allowing the use of explicit formulas for basic harmonic
fields and the Biot–Savart law, which will be really helpful to obtain sharp estimations. In the third part, we precisely
formulate the flow problem in the exterior of a vanishing obstacle. In Section 4, we collect a priori estimates in order
to find the equation limit in Section 5 of this article. The last subsection concerns an existence result of the Euler
equations on the exterior of a curve.

For the sake of clarity, the main notations are listed in an appendix at the end of the paper.
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2. The Laplacian in an exterior domain

2.1. Conformal maps

Let D = B(0,1) and S = ∂D. In what follows we identify R2 with the complex plane C.
We begin this section by recalling some basic definitions on the curve.

Definition 2.1. We call a Jordan arc a curve C given by a parametric representation C: ϕ(t), 0 � t � 1, with ϕ an
injective (= one-to-one) function, continuous on [0,1]. An open Jordan arc has a parametrization C: ϕ(t), 0 < t < 1,
with ϕ continuous and injective on (0,1).

We call a Jordan curve a curve C given by a parametric representation C: ψ(t), t ∈ R, 1-periodic, with ψ an
injective function on [0,1), continuous on R.

Thus a Jordan curve is closed (ϕ(0) = ϕ(1)) whereas a Jordan arc has distinct endpoints. If J is a Jordan curve
in C, then the Jordan Curve Theorem states that C \ J has exactly two components G0 and G1, and these satisfy
∂G0 = ∂G1 = J .

The Jordan arc (or curve) is of class Cn,α (n ∈ N∗,0 < α � 1) if its parametrization ϕ is n times continuously
differentiable, satisfying ϕ′(t) �= 0 for all t , and if |ϕ(n)(t1) − ϕ(n)(t2)| � C|t1 − t2|α for all t1 and t2.

Let Γ : Γ (t), 0 � t � 1, be a Jordan arc. Then the subset R2 \ Γ is connected and we will denote it by Π . The
purpose of this part is to obtain some properties of a biholomorphism T :Π → int Dc. After applying a homothetic
transformation, a rotation and a translation, we can suppose that the endpoints of the curve are −1 = Γ (0) and
1 = Γ (1).

Proposition 2.2. If Γ is a C2 Jordan arc, such that the intersection with the segment [−1,1] is a finite union of
segments and points, then there exists a biholomorphism T :Π → intDc which verifies the following properties:

• T −1 and DT −1 extend continuously up to the boundary, and T −1 maps S to Γ ,
• DT −1 is bounded,
• T and DT extend continuously up to Γ with different values on each side of Γ , except at the endpoints of the

curve where T behaves like the square root of the distance and DT behaves like the inverse of the square root of
the distance,

• DT is bounded in the exterior of the disk B(0,R), with Γ ⊂ B(0,R),
• DT is bounded in Lp(Π ∩ B(0,R)) for all p < 4 and R > 0.

Proof. We first study the case where the arc is the segment [−1,1]. We can have here an explicit formula for T .
Indeed, the Joukowski function

G(z) = 1

2

(
z + 1

z

)

is a biholomorphism between the exterior of the disk and the exterior of the segment. It maps the circle C(0,R) on
the ellipse parametrized by 1

2 (R + 1/R) cos θ + 1
2 (R − 1/R)i sin θ with θ ∈ [0,2π), and it maps the unit circle on the

segment.
Remarking that G(z) = G(1/z) we can conclude that G is also a biholomorphism between the interior of the disk

minus 0 and the exterior of the segment.
Therefore, any z /∈ [−1,1] has one antecedent of G in D and another one in intDc . For z ∈ [−1,1] the antecedents

are exp(±i arccos z) = z ± i
√

1 − z2. Therefore, there are exactly two antecedents except for −1 and 1. In fact, we
have considered the double covering G from C∗ to C, which is precisely ramified over −1 and 1.

Let T̃ be the biholomorphism between the exterior of the segment and intDc, such that T̃ −1 = G, and let T̃int = 1/T̃

be the biholomorphism between the exterior of the segment and D \ {0}, such that T̃ −1
int = G.

To find an explicit formula of T̃ , we have to solve an equation of degree two. We find two solutions:

T̃+ = z +
√

z2 − 1 and T̃− = z −
√

z2 − 1. (2.1)
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We consider that the function square-root is defined by
√

z = √|z|eiθ/2 with θ , the argument of z, verifying
−π < θ � π . It is easy to observe that T̃ = T̃+ on {z | �(z) > 0} ∪ iR+ and T̃ = T̃− on {z | �(z) < 0} ∪ iR−.
Despite this, T̃ is C∞(C \ [−1,1], intDc) because T̃ = G−1.

Therefore in the segment case, T = T̃ and the first two points are straightforward. An obvious calculation allows
us to find an explicit formula for T̃ ′:

T̃ ′(z) = 1 ± z√
z2 − 1

, (2.2)

with the choice of sign as above. This form shows us that DT̃ blows up at the endpoints of the segment as the inverse
of the square root of the distance, which is bounded in L

p

loc for p < 4. Moreover, a mere verification can be done to
find that for every x ∈ (−1,1), we have

lim
z→x, �(z)>0

T (z) = x + i
√

1 − x2 = T̃+(x)

even if �(z) < 0, and

lim
z→x, �(z)<0

T (z) = x − i
√

1 − x2 = T̃−(x).

In the same way, DT extends continuously up to each side of Γ , which concludes the proposition in the segment case.

Now, we come back to our problem, with any curve Γ . We consider the curve Γ̃ ≡ T̃ (Γ ) ∪ T̃int(Γ ) = T̃+(Γ ) ∪
T̃−(Γ ). We now show that Γ̃ is a C1,1 Jordan curve.

We consider first the case where Γ does not intersect the segment (−1,1). Then γ1 ≡ T̃ (Γ ) ⊂ Dc and γ2 ≡
T̃int(Γ ) ⊂ D are C2 open Jordan arcs, with the endpoints on −1 and 1 (see Fig. 1). So T̃ (−1) = −1 = T̃int(−1) and
we can observe that Γ̃ is a Jordan curve.

We wrote open Jordan curve because the problem with −1 and 1 is that T̃ ′(±1) is not defined. However, if we use
the arclength coordinates

s(t) =
t∫

0

∣∣γ ′
1(τ )

∣∣dτ =
t∫

0

∣∣T̃ ′(Γ (τ)
)∣∣∣∣Γ ′(τ )

∣∣dτ, (2.3)

which are well-defined and bounded because T̃ ′ is bounded in L1
loc, then we have dγ1

ds
= γ ′

1
|γ ′

1| . So to prove the derivative

continuity, we should show that limt→0
γ ′

1
|γ ′

1| and limt→0
γ ′

2
|γ ′

2| exist and are opposite. For that, we will use the following

lemma:

Lemma 2.3. If there exists a neighborhood of 0 where Γ (t) does not intersect the segment (−1,1), then T̃ ′(Γ )

|T̃ ′(Γ )| (t) has

a limit as t → 0.

Proof. First, since T̃ ′(z) = 1 − z/
√

z2 − 1 in a neighborhood of −1, we compute

T̃ ′(Γ )

|T̃ ′(Γ )| (t) = |√Γ 2 − 1|√
Γ 2 − 1

(t)

√
Γ 2 − 1 − Γ

|√Γ 2 − 1 − Γ | (t).

The second fraction tends to 1 as t → 0. We have Γ ′(0) �= 0, so we can write Γ 2(t) = 1 + at + o(t) for a ∈ C∗. If
a /∈ R− then for t small enough {Γ 2(t) − 1} ⊂ C \ R− and

lim
t→0

T̃ ′(Γ )

|T̃ ′(Γ )| (t) =
√|a|√

a
= e−iθ/2 with θ ≡ arga ∈ (−π,π).

For a ∈ R−, as a = (Γ 2)′(0) = 2Γ (0)Γ ′(0), then we have Γ ′(0) ∈ R+ and the curve is tangent to the segment
[−1,1]. We have here two cases:
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• if Γ is over the segment on the neighborhood, then �(Γ 2(t) − 1) < 0 and

lim
t→0

T̃ ′(Γ )

|T̃ ′(Γ )| (t) = i,

• if Γ is below the segment on the neighborhood, then �(Γ 2(t) − 1) > 0 and

lim
t→0

T̃ ′(Γ )

|T̃ ′(Γ )| (t) = −i. �

Fig. 1. Γ does not intersect [−1,1].

Let us continue the proof of Proposition 2.2. Lemma 2.3 allows us to observe that Γ̃ is C1 in −1, because

lim
t→0

γ ′
1

|γ ′
1|

(t) = lim
t→0

T̃ ′(Γ )

|T̃ ′(Γ )| (t)
Γ ′

|Γ ′| (t) = − lim
t→0

−|T̃ 2(Γ )|
T̃ 2(Γ )

(t)
T̃ ′(Γ )

|T̃ ′(Γ )| (t)
Γ ′

|Γ ′| (t) = − lim
t→0

γ ′
2

|γ ′
2|

(t),

because T̃int = 1/T̃ .
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To prove that Γ̃ ′ is Lipschitz, we will show that γ ′
1 and γ ′

2 are C1 with the arclength parametrization denoted by

s and defined in (2.3) (t denotes the variable of the original parametrization). Let f1(s) = dγ1
ds

(s) = γ ′
1(t)

|γ ′
1(t)| , where the

primes denote derivatives with respect to t , then we need to prove that df1
ds

has a limit when s → 0. We have

df1

ds
(s) = γ ′′

1

|γ ′
1|2

− γ ′
1

|γ ′
1|4

〈
γ ′

1, γ
′′
1

〉 = 1

|γ ′
1|2

(
γ ′′

1 − γ ′
1

|γ ′
1|

〈
γ ′

1

|γ ′
1|

, γ ′′
1

〉)
≡ 1

|γ ′
1|2

A.

We compute

γ ′
1 = T̃ ′(Γ )Γ ′,

γ ′′
1 = T̃ ′′(Γ )(Γ ′)2 + T̃ ′(Γ )Γ ′′,

with

T̃ (z) = z −
√

z2 − 1,

T̃ ′(z) = 1 − z/
√

z2 − 1,

T̃ ′′(z) = −1/
√

z2 − 1 + z2/
√

z2 − 1
3
.

We do some Taylor expansions in a neighborhood of zero:

Γ (t) = −1 + at + bt2 + O
(
t3),

Γ 2(t) = 1 − 2at + (
a2 − 2b

)
t2 + O

(
t3),

1/
√

Γ 2 − 1(t) = 1√−2a

1√
t

(
1 − t

(
a2 − 2b

)
/(−4a)

) + O
(
t3/2).

The last expansion holds in any case, except when Γ is tangent to the segment (a ∈ R+) and over the segment on a
neighborhood of −1. In this last case, we should replace 1/

√−2a by i instead of −i.
Then

T̃ ′(Γ ) = 1√−2a

1√
t

+ 1 + O
(
t1/2),

T̃ ′′(Γ ) = 1
√−2a

3

1
√

t
3

+ C1√
t

+ O
(
t1/2).

and

γ ′
1 = a√−2a

1√
t

+ a + O
(
t1/2),

γ ′
1

|γ ′
1|

= a

|a|
|√−2a|√−2a

+ C2
√

t + O(t),

γ ′′
1 = a2

√−2a
3

1√
t
3

+ C3
1√
t

+ O(1).

Now, we can evaluate A:

γ ′′
1 − γ ′

1

|γ ′
1|

〈
γ ′

1

|γ ′
1|

, γ ′′
1

〉
= 1√

t
3

(
a2

√−2a
3

− a

|a|
|√−2a|√−2a

〈
a

|a|
|√−2a|√−2a

,
a2

√−2a
3

〉)
+C4

1

t
+ O

(
t−1/2).

We can easily see that arg(a2/
√−2a

3
) = ±π + arg(a/

√−2a), so

a2

√ 3
− a

|a|
|√−2a|√−2a

〈
a

|a|
|√−2a|√−2a

,
a2

√ 3

〉
= 0
−2a −2a
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and df1/ds = C5 + O(t1/2), which means that df1/ds has a limit as s → 0. This argument holds for γ2, doing the
calculations with T̃int(z) = z + √

z2 − 1. So dγ1/ds and dγ2/ds are C1 on [0,1] and we see that Γ̃ ′ is Lipschitz
because Γ̃ = γ1 ∪ γ2.

Finally, if Γ intersects [−1,1] at one point x = Γ (t0), then T̃ (Γ ) is the union of two Jordan curves with a jump:
T̃ (Γ (t−0 )) = 1/T̃ (Γ (t+0 )) (see Fig. 2). In this case, T̃int(Γ ) is also the union of two Jordan arcs which extend T̃ (Γ ),
indeed

T̃int
(
Γ (t+0 )

) = 1/T̃
(
Γ (t+0 )

) = T̃
(
Γ (t−0 )

)
.

Fig. 2. Γ intersects [−1,1] at one point.

To show the continuity of Γ̃ ′ on T̃ (Γ (t0)), we consider for example that x ∈ (0,1) and that �(Γ (t−0 )) > 0 and
�(Γ (t+0 )) < 0. We can compute

T̃
(
Γ (t−0 )

) = x + i
√

1 − x2,

T̃ ′(Γ (t+0 )
) = 1 + xi/

√
1 − x2, because T̃ = T+ in a neighborhood of x

T̃ ′(Γ (t−)
) = 1 − xi/

√
1 − x2,
0
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to check that −T̃ (Γ (t−0 ))2T̃ ′(Γ (t+0 )) = T̃ ′(Γ (t−0 )), which allows us to conclude that

T̃ ′
int

(
Γ

(
t+0

)) = −1/T̃
(
Γ

(
t+0

))2
T̃ ′(Γ (

t+0
)) = T̃ ′(Γ (

t−0
))

.

We leave to the reader the other cases. Let us do just another case: x = 0 then

T̃
(
Γ (t−0 )

) = ±i,

T̃ ′(Γ (t+0 )
) = 1,

T̃ ′(Γ (t−0 )
) = 1,

and as −(±i)2 = 1 we have the continuity of Γ̃ ′. As Γ̃ ′′ is bounded, Γ̃ ′ is Lipschitz, so the curve Γ̃ is C1,1 and closed.
We have just studied the case of one or zero intersection of Γ with the segment (−1,1) but this argument works in the
general case because we have a finite number of intersection. For example, if Γ ⊂ [−1,1] in a neighborhood of −1,
then G̃ ⊂ S, so G̃ is obviously C1,1 in this neighborhood.

We denote by Π̃ the unbounded connected component of R2 \ Γ̃ . We claim that we can construct T2, a biholo-
morphism between Π and Π̃ , such that T −1

2 = G. Indeed, if we introduce A = Π̃ ∩ D̄ and B = (int Π̃c) ∩ Dc (see
Fig. 1), we observe that B = 1/A, because γ2 = 1/γ1 and 1/S = S. As G(1/z) = G(z), G is bijective on intDc and
1/(∂D ∩ Π̃) ⊂ Π̃c then G is bijective on Π̃ and G(Π̃) = R2 \ Γ . Therefore, we have an function T2 mapping the
exterior of the Jordan arc to the exterior of the inner domain of a C1,1 Jordan curve, such that T −1

2 (z) = 1/2(z+ 1/z).
Next, we just have to use the Riemann mapping Theorem and we find a conformal mapping F between Π̃ and Dc,

such that T ≡ F ◦ T2 maps Π to Dc and F(∞) = ∞. To finish the proof, we use the Kellogg–Warschawski Theorem
(see Theorem 3.6 of [6], which can be applied for the exterior problems), to observe that F and F ′ have a continuous
extension up to the boundary. Therefore, adding the fact that DF and DF−1 are bounded at infinity (see Remark 2.5),
we find the same properties as in the segment case, in particular that DT blows up at the endpoints of the curve like
the inverse of the square root of the distance (see (2.2)). �
Remark 2.4. If Γ intersects the segment [−1,1] infinitely many times, the curve Γ̃ may not be even C1. For ex-
ample a curve which starts as t �→ (t − 1; e1/t2

sin(1/t)), t ∈ [0,1/4], has two sequences tn → 0 and t̃n → 0 such
T̃ ′(Γ )/|T̃ ′(Γ )| tends to i and −i.

Remark 2.5. If we have a biholomorphism H between the exterior of an open connected and simply connected
domain A and Dc, such that H(∞) = ∞, then there exists a non-zero real number β and a holomorphic function
h :Π → C such that:

H(z) = βz + h(z)

with

h′(z) = O

(
1

|z|2
)

, as |z| → ∞.

This property can be applied for the F above to see that DF and DF−1 are bounded.

Proof. Indeed, after a translation we can suppose that 0 ∈ intA, and we consider W(z) = 1/H(1/z). The function
W is holomorphic in a neighborhood of 0 and can be written as W(z) = a0 + a1z + a2z

2 + · · · . We have W(0) = 0
so a0 = 0. Now we want to prove that a1 �= 0 thanks to the univalence. Indeed, if a1 = 0, we consider the first non-
zero ak , and we observe that there exists R > 0 such that |W(z) − akz

k| � |ak||zk| in B(0,R). Next, we denote by
g(z) = akz

k . On ∂B(0,R), |W(z)−g(z)| � |ak|Rk � |g(z)|. Then we can apply the Rouché Theorem to conclude that
W and g have the same number of zeros in B(0,R), which is a contradiction with the fact that W is a biholomorphism
and g not. Therefore a1 �= 0 and H(z) = z/a1 + b0 + b1/z + · · · , which ends the proof. Multiplying H by |a1|/ā1,
we can assume that β = 1/a1 is real number. �
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2.2. The Biot–Savart law

Let Ω0 be a bounded, open, connected, simply connected subset of the plane, the boundary of which, denoted by Γ0,
is a C∞ Jordan curve. We will denote by Π0 the unbounded connected component of R2 \ Γ0, so that Ωc

0 = Π0.
We denote by GΠ0 = GΠ0(x, y) the Green’s function, whose the value is:

GΠ0(x, y) = 1

2π
log

|T0(x) − T0(y)|
|T0(x) − T0(y)∗||T0(y)| (2.4)

writing x∗ = x/|x|2. The Green’s function is the unique function which verifies:⎧⎨
⎩

�yGΠ0(x, y) = δ(y − x) for x, y ∈ Π0,

GΠ0(x, y) = 0 for y ∈ Γ0,

GΠ0(x, y) = GΠ0(y, x).

(2.5)

Then the kernel of the Biot–Savart law is KΠ0 = KΠ0(x, y) ≡ ∇⊥
x GΠ0(x, y). With (x1, x2)

⊥ = ( −x2
x1

)
, the explicit

formula of KΠ0 is given by

KΠ0(x, y) = ((T0(x) − T0(y))DT0(x))⊥

2π |T0(x) − T0(y)|2 − ((T0(x) − T0(y)∗)DT0(x))⊥

2π |T0(x) − T0(y)∗|2 . (2.6)

We require information on far-field behavior of KΠ0 . We will use several times the following general relation:∣∣∣∣ a

|a|2 − b

|b|2
∣∣∣∣ = |a − b|

|a||b| , (2.7)

which can be easily checked by squaring both sides.
We now find the following inequality:

∣∣KΠ0(x, y)
∣∣ � C

|T0(y) − T0(y)∗|
|T0(x) − T0(y)||T0(x) − T0(y)∗| .

For f ∈ C∞
c (Π0), we introduce the notation

KΠ0 [f ] = KΠ0[f ](x) ≡
∫
Π0

KΠ0(x, y)f (y) dy.

It is easy to see, for large |x|, that |KΠ0 [f ]|(x) � C1/|x|2 where C1 depends on the size of the support of f . We
used here the explicit formulas for the biholomorphism T0 (Remark 2.5).

Lemma 2.6. The vector field u = KΠ0 [f ] is a solution of the elliptic system:⎧⎪⎨
⎪⎩

divu = 0 in Π0,

curlu = f in Π0,

u · n̂ = 0 on Γ0,

lim|x|→∞ |u| = 0.

The proof of this lemma is straightforward.

2.3. Harmonic vector fields

We will denote by n̂ the unit normal exterior to Π0 at Γ0. In what follows all contour integrals are taken in the
counter-clockwise sense, so that

∫
F · ds = − ∫

F · n̂⊥ds.

Γ0 Γ0
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Proposition 2.7. There exists a unique classical solution H = HΠ0 of the problem:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

divH = 0 in Π0,

curlH = 0 in Π0,

H · n̂ = 0 on Γ0,

lim|x|→∞ |H | = 0,∫
Γ0

H · ds = 1.

(2.8)

Moreover, HΠ0 = O(1/|x|) as |x| → ∞.

To prove this, one can check that HΠ0(x) = 1
2π

∇⊥ log|T0(x)| is the unique solution. The details can be found in [2].

3. Flow in an exterior domain

Let us formulate precisely here the small obstacle limit.

3.1. The initial-boundary value problem

Let u = u(x, t) = (u1(x1, x2, t), u2(x1, x2, t)) be the velocity of an incompressible, ideal flow in Ωc
0 . We assume

that u is tangent to Γ0 and u → 0 as |x| → ∞. The evolution of such a flow is governed by the Euler equations:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∂tu + u · ∇u = −∇p in Π0 × (0,∞),

divu = 0 in Π0 × [0,∞),

u · n̂ = 0 in Γ0 × [0,∞),

lim|x|→∞ |u| = 0 for t ∈ [0,∞),

u(x,0) = u0(x) in Ωc,

(3.1)

where p = p(x, t) is the pressure. An important quantity for the study of this problem is the vorticity:

ω = curl(u) = ∂1u2 − ∂2u1.

The velocity and the vorticity are coupled by the elliptic system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

divu = 0 in Π0 × [0,∞)

curlu = ω in Π0 × [0,∞),

u · n̂ = 0 in Γ0 × [0,∞),

lim|x|→∞ |u| = 0 for t ∈ [0,∞).

Lemma 2.6 and Proposition 2.7 assure us that the general solution of this system is given by u = u(x, t) =
KΠ0[ω(·, t)](x) + αHΠ0(x) for a function α = α(t). However, using the fact that the circulation γ of u around Γ

is conserved, we prove that α does not depend on the time, and α(t) = γ + ∫
Π0

curlu0(x) (see [2]). Therefore, if we
give the circulation, then we have the uniqueness of the solution of the previous system.

Finally, we can now write the vorticity formulation of this problem as:⎧⎨
⎩

∂tω + u · ∇ω = 0 in Π0 × (0,∞),

u = KΠ0[ω] + αHΠ0 in Π0 × [0,∞),

ω(x,0) = curlu0(x) in Π0.

(3.2)

3.2. The evanescent obstacle

We will formulate in this subsection a family of problems, parametrized by the size of the obstacle. Therefore, we
fix ω0 such that its support is compact and does not intersect Γ .

We will consider a family of domain Ωε , containing Γ , with ε small enough, such that the support of ω0 does
not intersect Ωε . If we denote by Tε the biholomorphism between Πε ≡ Ωc

ε and Dc , then we suppose the following
properties:
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Assumption 3.1. The biholomorphism family {Tε} verifies

(i) ‖Tε − T ‖L∞(B(0,R)∩Πε) → 0 for any R > 0,
(ii) det(DT −1

ε ) is bounded in Πε independently of ε,
(iii) ‖DTε − DT ‖L3(B(0,R)∩Πε)

→ 0 for any R > 0,
(iv) there exist R > 0 and C > 0 such that |DTε(x)| � C|x| on B(0,R)c .

Remark 3.2. We can observe that point (iii) implies that for any R, DTε is bounded in Lp(B(0,R) ∩ Πε) indepen-
dently of ε, for p � 3.

Just before going on, we give here one example of an obstacle family.

Example 3.3. We consider Ωε ≡ T −1(B(0,1 + ε) \ D). In this case, Tε = 1
1+ε

T verifies the previous assumption. If
Γ is a segment, then Ωε is the interior of an ellipse around the segment.

The problem of this example is that the shape of the obstacle is the same of Γ .
We naturally denote by Γε = ∂Ωε and Πε = intΩc

ε . We denote also by Gε ,Kε and Hε the previous functions
corresponding at Πε .

Consider also the following problem:{
∂tω

ε + uε · ∇ωε = 0 in Πε × (0,∞),

uε = Kε[ωε] + αHε in Πε × [0,∞),

ωε(x,0) = ω0(x) in Πε.

It follows from the work of Kikuchi [4] that, for any ε > 0, if ω0 is sufficiently smooth then this system has a
unique solution.

We now write the explicit formulas for Kε and Hε:

Kε = 1

2π
DT t

ε (x)

(
(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 − (Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2
)

(3.3)

and

Hε = 1

2π
DT t

ε (x)

(
(Tε(x))⊥

|Tε(x)|2
)

. (3.4)

We introduce in the same way, K and H , replacing Tε by T .
The regularity of T implies that Hε is bounded in L2

loc, which is really better than the punctual limit for the obstacle
(see [2]) where Hε is just L1

loc. In our case, the limit is easier to see when Tε → T , and this extra regularity will allow
us the passing to the limit.

4. A priori estimates

These estimates are important to conclude on the asymptotic behavior of the sequences (uε) and (ωε). The transport
nature of (3.3) gives us the classical estimates for the vorticity: ‖ωε(·, t)‖Lp(Πε) = ‖ω0‖Lp(R2) and for p ∈ [1,+∞].
In this article, we suppose that ω0 is L∞ and compactly supported. Moreover we choose ε small enough, so that the
support of ω0 does not intersect Πε .

4.1. Velocity estimate

We begin by recalling a result found in [1].

Lemma 4.1. Let a ∈ (0,2), S ⊂ R2 and h :S → R+ be a function in L1(S) ∩ L∞(S). Then∫
S

h(y)

|x − y|a dy � C‖h‖1−a/2
L1(S)

‖h‖a/2
L∞(S).
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The goal of this subsection is to find a velocity estimate thanks to the explicit formula of uε in function of ωε and γ

(Section 3.2):

uε(x, t) = 1

2π
DT t

ε (x)(I1 + I2) + αHε(x) (4.1)

with

I1 =
∫
Πε

(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 ωε(y, t) dy, (4.2)

and

I2 = −
∫
Πε

(Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2 ωε(y, t) dy. (4.3)

We begin by estimating I1 and I2.

Lemma 4.2. Let a ∈ (0,2) and h :Πε → R+ be a function in L1(Πε) ∩ L∞(Πε). We introduce

I1,a =
∫
Πε

|h(y)|
|Tε(x) − Tε(y)|a dy, (4.4)

Ĩ2 =
∫
Πε

|h(y)|
|Tε(x) − Tε(y)∗| dy. (4.5)

There exists a constant C > 0 depending only on the shape of Γ , such that

|I1,a| � C‖h‖1−a/2
L1 ‖h‖a/2

L∞ and |Ĩ2| � C
(‖h‖1/2

L1 ‖h‖1/2
L∞ + ‖h‖L1

)
.

Remark 4.3. It will be clear from the proof that similar estimates hold true with Tε replaced by T .

Proof. We start with the I1,a estimate. Let J = J (ξ) ≡ |det(DT −1
ε )(ξ)| and z = Tε(x). Making also the change of

variables η = Tε(y), we find

|I1,a| �
∫

|η|�1

1

|z − η|a
∣∣h(

T −1
ε (η)

)∣∣J (η)dη. (4.6)

Next, we introduce f ε(η) = |h(T −1
ε (η))|J (η)χ{|η|�1}, with χE the characteristic function of the set E. Changing

variables back, we get∥∥f ε
∥∥

L1(R2)
= ‖h‖L1 .

The second point of Assumption 3.1 allows us to write∥∥f ε
∥∥

L∞(R2)
� C‖h‖L∞ .

So we apply the previous lemma for f and we finally find

|I1,a| �
∫
R2

1

|z − η|a f ε(η) dη � C1
∥∥f ε

∥∥1−a/2
L1

∥∥f ε
∥∥a/2

L∞ . (4.7)

This concludes the estimate for I1,a .
Let us estimate Ĩ2:

|Ĩ2| �
∫

1

|Tε(x) − Tε(y)∗|
∣∣h(y)

∣∣dy.
Πε
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We use, as before, the notations J , z and the change of variables η

|Ĩ2| �
∫

|η|�1

1

|z − η∗|
∣∣h(

T −1
ε (η)

)∣∣J (η)dη. (4.8)

Next, we again change variables writing θ = η∗, to obtain:

|Ĩ2| �
∫

|θ |�1

1

|z − θ |
∣∣h(

T −1
ε (θ∗)

)∣∣J (θ∗) dθ

|θ |4

=
( ∫

|θ |�1/2

+
∫

1/2�|θ |�1

)
≡ I21 + I22.

First we estimate I21. As z = Tε(x), one has that |z| � 1, and if |θ | � 1/2 then |z − θ | � 1/2. Hence

|I21| �
∫

|θ |�1/2

2
∣∣h(

T −1
ε (θ∗)

)∣∣J (θ∗) dθ

|θ |4 (4.9)

= 2
∫

|η|�2

∣∣h(
T −1

ε (η)
)∣∣J (η)dη � 2‖h‖L1 . (4.10)

Finally, we estimate I22. Let gε(θ) = |h(T −1
ε (θ∗))|J (θ∗)/|θ |4. We have

I22 =
∫

1/2�|θ |�1

1

|z − θ |g
ε(θ) dθ.

As above, we deduce by changing variables back that∥∥gε
∥∥

L1(1/2�|θ |�1)
� ‖h‖L1 .

It is also trivial to see that∥∥gε
∥∥

L∞(1/2�|θ |�1)
� C‖h‖L∞ .

By Lemma 4.1

|I22| =
∫

1/2�|θ |�1

1

|z − θ |g
ε(θ) dθ (4.11)

� C
∥∥gε

∥∥1/2
L1(1/2�|θ |�1)

∥∥gε
∥∥1/2

L∞(1/2�|θ |�1)
� C‖h‖1/2

L1 ‖h‖1/2
L∞ . � (4.12)

Since |Tε(x)| � 1, one can easily see from (3.4) that |Hε(x)| � |DTε(x)|. Moreover, applying the previous lemma
with a = 1 and h = ωε ∈ L1 ∩ L∞, we get that

|I1| � C
∥∥ωε

∥∥1/2
L1

∥∥ωε
∥∥1/2

L∞ and |I2| � C
(∥∥ωε

∥∥1/2
L1

∥∥ωε
∥∥1/2

L∞ + ∥∥ωε
∥∥

L1

)
.

Thanks to the explicit formula (4.1), we can deduce directly the following theorem:

Theorem 4.4. uε is bounded in L∞(R+,L2
loc(Πε)) independently of ε. More precisely, there exists a constant C > 0

depending only on the shape of Γ and the initial conditions ‖ω0‖L1 , ‖ω0‖L∞ , such that∥∥uε(·, t)∥∥
Lp(S)

� C‖DTε‖Lp(S), for all p ∈ [1,∞] and for any subset S of Πε.

The difference with [2] is that we have an estimate L
p

loc instead of L∞, but in our case, this estimate concerns all
the velocity uε . It is one of the reason of the use of a different method to the velocity convergence.
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4.2. Cutoff function

If we want to compare the different velocity and vorticity, the issue is that uε and ωε are defined on an ε-dependent
domain. For this reason we extend the velocity and vorticity on R2 by multiplying by an ε-dependent cutoff function
for a neighborhood of Ωε .

Let Φ ∈ C∞(R) be a non-decreasing function such that 0 � Φ � 1, Φ(s) = 1 if s � 2 and Φ(s) = 0 if s � 1. Then
we introduce

Φε = Φε(x) = Φ

( |Tε(x)| − 1

ε

)
.

Clearly Φε is C∞(R2) vanishing in a neighborhood of Ωε .
We require some properties of ∇Φε which we collect in the following lemma.

Lemma 4.5. The function Φε defined above has the following properties:

(a) Hε · ∇Φε ≡ 0 in Πε ,
(b) there exists a constant C > 0 such that the Lebesgue measure of the support of Φε − 1 is bounded by Cε.

Proof. First, we remark that

Hε(x) = 1

2π
∇⊥ log

∣∣Tε(x)
∣∣ = 1

2π |Tε(x)|∇
⊥∣∣Tε(x)

∣∣,
and

∇Φε = 1

ε
Φ ′

( |Tε(x)| − 1

ε

)
∇∣∣Tε(x)

∣∣ (4.13)

what gives us the first point.
Finally, the support of Φε − 1 is contained in the subset {x ∈ Πε | 1 � |Tε(x)| � 1 + 2ε}. The Lebesgue measure

can be estimated as follows:∫
1�|Tε(x)|�1+2ε

dx =
∫

1�|z|�1+2ε

∣∣det
(
DT −1

ε

)∣∣(z) dz � C1ε

for ε small enough. �
We introduced the cutoff function Φε in order to extend the velocity and the vorticity to R2. One needs to make

sure that the limit velocity and vorticity are not affected by the way the extension is constructed. We observe that our
method of extension does not produce an error in the limit velocity and vorticity. Indeed, we denote by ũε , respec-
tively ω̃ε , the extension of uε , respectively ωε , by 0 inside the obstacle and we prove that limε→0 ũε = limε→0 Φεuε

and limε→0 ω̃ε = limε→0 Φεωε in D′(R2). Indeed, using Theorem 4.4 and Remark 3.2, point (b) of the previous
lemma allows us to state that∥∥Φεuε − uε

∥∥
L2(Πε)

� C‖DTε‖L3(supp(Φε−1))|Cε|1/6

and ∥∥Φεωε − ωε
∥∥

Lp(Πε)
� C‖ω0‖L∞|Cε|1/p

for all p ∈ [1,∞).
In the case where the limit is a point [2], the Lebesgue measure of the support of ∇Φε is bounded by Cε2,

which implies that the norm L1 of this gradient tends to 0. Moreover, the authors use a part of velocity vε bounded
independently of ε, so they can compute the limit of vε · ∇Φε and vε · ∇⊥Φε which is necessary for the calculation
of the curl and div. Finally they conclude thanks to the Div–Curl Lemma.

In our case, for 1 � p < 4 we have ‖∇Φε‖Lp � Cp/ε, and we cannot compute the limit of uε · ∇⊥Φε . For this
reason we cannot use a similar proof as in [2].

However, the following lemma gives us a piece of information about the limit behavior.
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Lemma 4.6. uε · ∇Φε → 0 strongly in L1(R2) and uniformly in time, when ε → 0.

Proof. Using the explicit formulas (4.1)–(4.3) and (4.13), we write

uε(x) · ∇Φε(x) = uε⊥(x) · ∇⊥Φε(x) = − 1

2πε
Φ ′

( |Tε(x)| − 1

ε

)

×
∫
Πε

(
Tε(x) − Tε(y)

|Tε(x) − Tε(y)|2 − Tε(x) − Tε(y)∗

|Tε(x) − Tε(y)∗|2
)

ωε(y, t) dyDTε(x)DT t
ε (x)

Tε(x)⊥

|Tε(x)| .

But Tε is holomorphic, so DTε is of the form
(

a b
−b a

)
and we can check that DTε(x)DT t

ε (x) = (a2 + b2) Id =
|det(DTε)(x)| Id, so

uε(x) · ∇Φε(x) = Φ ′((|Tε(x)| − 1)/ε)|det(DTε)(x)|
2πε|Tε(x)|

∫
Πε

(
Tε(y) · Tε(x)⊥

|Tε(x) − Tε(y)|2 − Tε(y)∗ · Tε(x)⊥

|Tε(x) − Tε(y)∗|2
)

ωε(y, t) dy.

We compute the L1 norm, next we change variables twice η = Tε(y) and z = Tε(x), to have

∥∥uε · ∇Φε
∥∥

L1 = 1

2πε

∫
|z|�1

∣∣∣∣Φ ′
( |z| − 1

ε

)∣∣∣∣
∣∣∣∣

∫
|η|�1

(
η · z⊥/|z|
|z − η|2 − η∗ · z⊥/|z|

|z − η∗|2
)

J (η)ωε
(
T −1

ε (η), t
)
dη

∣∣∣∣dz,

where J (η) = |det(DT −1
ε )(η)|.

Thanks to Lemma 4.5, we know that ‖ 1
ε
Φ ′( |z|−1

ε
)‖L1 � C. So it is sufficient to prove that∥∥∥∥

∫
|η|�1

(
η · z⊥/|z|
|z − η|2 − η∗ · z⊥/|z|

|z − η∗|2
)

J (η)ωε
(
T −1

ε (η), t
)
dη

∥∥∥∥
L∞(1+ε�|z|�1+2ε)

→ 0 (4.14)

as ε → 0, uniformly in time.
Let

A = η · z⊥/|z|
|z − η|2 − η∗ · z⊥/|z|

|z − η∗|2 .

We compute

A =
(

(|z|2 − 2z · η/|η|2 + 1/|η|2) − 1/|η|2(|z|2 − 2z · η + |η|2)
|z − η|2|z − η∗|2

)
η · z⊥

|z|
= (|z|2 − 1)(1 − 1/|η|2)

|z − η|2|z − η∗|2 η · z⊥

|z| .
We now use that |z| � 1, to write

|z − η∗| � 1 − 1

|η| .
Moreover, |η∗| � 1 allows to have

|z − η∗| � |z| − 1.

We can now estimate A by:

|A| � (|z| + 1)(1 + 1/|η|)(|z| − 1)b

|z − η|2|z − η∗|b
∣∣∣∣η · z⊥

|z|
∣∣∣∣

with 0 � b � 1, to be chosen later. We remark also that η · z⊥
|z| = (η − z) · z⊥

|z| and the Cauchy–Schwarz inequality gives∣∣∣∣η · z⊥ ∣∣∣∣ � |η − z|.
|z|
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We now use the fact that |z| − 1 � 2ε, to estimate (4.14):∣∣∣∣
∫

|η|�1

AJ(η)ωε
(
T −1

ε (η), t
)
dη

∣∣∣∣ � (2 + 2ε) · 2 · (2ε)b
∫

|η|�1

J (η)|ωε(T −1
ε (η), t)|

|z − η||z − η∗|b dη.

In the same way we passed from (4.6) to (4.7), we obtain for p < 2:∥∥∥∥J (η)1/p|ωε(T −1
ε (η), t)|1/p

|z − η|
∥∥∥∥

Lp

=
( ∫

|η|�1

J (η)|ωε(T −1
ε (η), t)|

|z − η|p
)1/p

� Cp.

Moreover, as we passed from (4.8) to (4.10) and (4.12), we obtain for bq = 1:∥∥∥∥J (η)1/q |ωε(T −1
ε (η), t)|1/q

|z − η∗|b
∥∥∥∥

Lq

=
( ∫

|η|�1

J (η)|ωε(T −1
ε (η), t)|

|z − η∗|
)1/q

� Cq.

We choose b > 0, 1/p + 1/q = 1, and using the Hölder inequality we finish the proof. For example if we fix
b = 1/4, q = 4 and p = 4/3, we obtain∥∥uε · ∇Φε

∥∥
L1 � C(2 + 2ε) · 2 · (2ε)1/4C4/3C4

which tends to zero when ε tends to zero. �
If the proof is a little bit technical, the idea is natural. On the boundary, the velocity uε is tangent to Γε , whereas

∇Φε is normal. To see that, we can check that A = 0 when x ∈ Γε (which means that |z| = |Tε(x)| = 1).
Before going to the last section, we derive directly from the PDE a temporal estimate for the vorticity.

4.3. Temporal estimate

If we fix T > 0, we remark that there exists R1 > 0 such that the support of ωε(·, t) is contained in B(0;R1) for all
0 � t � T.

To see that, let R0 be such that B(0;R0) contains the support of ω0. Eq. (3.2) means that ωε is transported by the
velocity field uε and the trajectory of a particle moving with the flow verifies

∂tX = uε(X, t).

Moreover, Theorem 4.4 states |uε(x)| � C|DTε(x)| and the last point of Assumption 3.1 states that there exist
R > 0 and C1 > 0 such that DTε is bounded by C1|x| outside B(0,R). If a material particle reaches the region
B(0,max(R0,R))c , its velocity is uniformly bounded by CC1|x|, and we obtain the following inequality:

∂t |X|2 = X · ∂tX � CC1|X|2,
that holds true in such a region. Applying Gronwall Lemma, we observe that the trajectory of a material particle is
bounded independently of ε (up to the fixed time T).

Lemma 4.7. There exists a constant C, which does not depend on t ∈ [0,T] and ε such that∥∥Φε∂tω
ε
∥∥

H−2 � C.

Proof. We write the equation verified by Φεωε:

Φε∂tω
ε = −Φεuε · ∇ωε = −div

(
Φεuεωε

) + ωεuε · ∇Φε

which is bounded in H−2 for the following reason. Note that Φε and ωε are uniformly bounded, uε is bounded in
L2(B(0,R1)) thanks to Theorem 4.4, Remark 3.2 and the previous remark. Moreover ∇Φε · uε → 0 in L1 according
to the previous Lemma. We finally conclude, bearing in mind that L1 and H−1 are embedded into H−2. �
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5. Passing to the limit

5.1. Strong compactness in velocity

Fix T > 0. We will need the following lemmas to the passing to the strong limit L2
loc([0,T] × R2) of the sequence

Φεuε .
As in the previous subsection, let R1 > 0 be such that the support of ωε(·, t) is contained in B(0;R1) for all

0 � t � T and 0 < ε < ε0.

Lemma 5.1. For all fixed x ∈ Π , there exists εx > 0 such that x ∈ Πε for all ε � εx . The two following functions

fx,ε(y) = Tε(x) − Tε(y)

|Tε(x) − Tε(y)|2 and gx,ε(y) = Tε(x) − Tε(y)∗

|Tε(x) − Tε(y)∗|2
are bounded in L4/3(B(0,R1) ∩ Πε) independently of ε � εx (but not necessarily independent of x).

Moreover,

fx(y) = T (x) − T (y)

|T (x) − T (y)|2 and gx(y) = T (x) − T (y)∗

|T (x) − T (y)∗|2
are bounded in L4/3(B(0,R1)).

Proof. Bearing in mind the properties of T and that Tε → T uniformly in B(0,R1), we know that Tε(B(0,R1)) ⊂
B(0, R̃), for some R̃ > 0 independent of ε.

To bound fx,ε , we change variables η = Tε(y) and denote by z = Tε(x):∫
B(0,R1)∩Πε

1

|Tε(x) − Tε(y)|4/3
dy �

∫
1�|η|�R̃

|det(DT −1
ε )|(η)

|z − η|4/3
dη

� 2πC

|z|+R̃∫
0

1

r1/3
dr

� C1(x).

For the second function, we begin in the same way, next we change again variables with θ = η∗:∫
B(0,R1)∩Πε

1

|Tε(x) − Tε(y)∗|4/3
dy �

∫
1�|η|�R̃

|det(DT −1
ε )|(η)

|z − η∗|4/3
dη

� C

∫
1/R̃�|θ |�1

1

|z − θ |4/3

dθ

|θ |4

� C̃

∫
|θ |�1

1

|z − θ |4/3
dθ

� C2(x)

with C2 not depending on ε.
Replacing T by Tε , one can obtain the bounds for fx and gx . �
We now consider the limit of Φεωε . As Φεωε ∈ L∞([0,∞),L1 ∩L∞(R2)) and Φε∂tω

ε ∈ L∞
loc([0,∞),H−2(R2)),

we can extract a subsequence such that Φεωε → ω weak-∗ in L∞([0,∞),L4(R2)) with ω ∈ L∞([0,∞),L1 ∩
L∞(R2)) and ∂tω ∈ L∞([0,∞),H−2(R2)). Moreover, we want that Φεωε(·, t) → ω(·, t) weak L4 for all t . As
‖Φεωε(·, t)‖L4(R2) � ‖ω0‖L4 < ∞, and thanks to Alaoglu’s Theorem, for all t we can extract a subsequence which
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verifies Φεωε(·, t) → ω(·, t) weak L4. The problem is that the subsequence depends on the time. Let us look for a
common subsequence for all t . We observe that ω(t) is defined for all t � 0. Indeed, ∂tω ∈ L∞([0,∞),H−2(R2)),
so ω ∈ C0([0,∞),H−2(R2)). Moreover, since ω ∈ L∞([0,∞),L1 ∩ L∞(R2)) we also have that ω(t) ∈ Lp(R2) for
all t � 0, and supt�0 ‖ω(t)‖Lp(R2) < ∞ for all p > 1.

Proposition 5.2. There exists a subsequence of Φεωε (again denoted by Φεωε) such that Φεωε(·, t) → ω(·, t) weak
L4(R2) for all t .

Proof. We can choose a common subsequence for all rational times, by the diagonal extraction, because Q is count-
able. We now prove that this subsequence converges for any t .

Let ϕ ∈ C∞
c (R2), and

fε(t) =
∫
R2

ϕ
(
Φεωε − ω

)
dx.

Then fε → 0 for all t ∈ Q. Moreover

f ′
ε(t) =

∫
R2

ϕ
(
Φε∂tω

ε − ∂tω
)
dx,

which allows us to state that the family {fε} is equicontinuous, using the temporal estimate (Lemma 4.7) and that
ϕ ∈ H 2.

Therefore, we have an equicontinuous family which tends to 0 on a dense subset, so it tends to 0 for all t .
To finish, let ϕ ∈ L4/3(R2). The set C∞

c being dense into L4/3, there exists a sequence ϕn ∈ C∞
c (R2) which

converges to ϕ in L4/3. We introduce fn,ε in the same way as fε , replacing ϕ by ϕn. Let t be fixed, we have by the
first part

for all n, fn,ε → 0 as ε → 0. (5.1)

Moreover

fε − fn,ε =
∫
R2

(ϕ − ϕn)
(
Φεωε − ω

)
dx,

|fε − fn,ε| �
(
‖ω0‖L4 + sup

t�0

∥∥ω(t)
∥∥

L4

)
‖ϕ − ϕn‖L4/3 .

Therefore fε − fn,ε tends to 0 uniformly in ε, which according to (5.1) allows to conclude that fε → 0. This
completes the proof. �
Lemma 5.3. The two following functions:

fε(x) =
∫
R2

(T (x) − T (y))⊥

|T (x) − T (y)|2
(
Φε(y)ωε(y) − ω(y)

)
dy

and

gε(x) =
∫
R2

(T (x) − T (y)∗)⊥

|T (x) − T (y)∗|2
(
Φε(y)ωε(y) − ω(y)

)
dy

tend to 0 as ε → 0 in L2([0,T],L6
loc(R

2)).

Proof. Let K be a compact set of R2. Firstly, we fix t ∈ [0,T] and we prove that the norm L6(K) of fε tends to 0.
For all x ∈ K \ Γ ,

fε(x) =
∫

2

fx(y)⊥
(
Φε(y)ωε(y) − ω(y)

)
dy,
R
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with fx given in Lemma 5.1. Furthermore, Lemma 5.1 states that fx is bounded in L4/3 and as Φεωε → ω weak L4,
we obtain that for fixed x,

fε(x) → 0 as ε → 0.

Moreover, we can apply Lemma 4.2 (estimate of I1,a) to fε , with h(y) = Φε(y)ωε(y) − ω(y) and we obtain a
bound for fε independently of x, t and ε.

Then, f 6
ε → 0 almost everywhere as ε → 0, and |f 6

ε | is uniformly bounded. We can apply the dominated conver-
gence theorem to conclude that for fixed t and K a bounded set∫

K

∣∣fε(x)
∣∣6

dx → 0.

We now let t vary and we apply again the dominated convergence theorem to obtain the result on fε .
Using the estimate of Ĩ2 in Lemma 4.2, we proceed in the same manner to prove the result for gε . �
Moreover, we need two last lemmas which are a consequence of the convergence of Tε to T (Assumption 3.1).

Lemma 5.4. For all fixed x ∈ Π ,

(Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2 − (T (x) − T (y)∗)⊥

|T (x) − T (y)∗|2 → 0 as ε → 0

in L4/3(B(0,R1) ∩ Πε) (where the norm is taken with respect to y).

Proof. Let x be fixed. Using the relation (2.7) we have∫
B(0,R1)∩Πε

( |(T (x) − Tε(x)) − (T (y)∗ − Tε(y)∗)|
|T (x) − T (y)∗||Tε(x) − Tε(y)∗|

)4/3

dy ≡
∫

B(0,R1)∩Πε

hx,ε(y) dy.

By Assumption 3.1, we know that hx,ε(y) → 0 pointwise as ε → 0. Moreover, if x /∈ Γ then |T (x)| > 1, and as
|Tε(x)| → |T (x)| �= 1 we can write∣∣T (x) − T (y)∗

∣∣ �
∣∣T (x)

∣∣ − 1 > 0,∣∣Tε(x) − Tε(y)∗
∣∣ �

∣∣Tε(x)
∣∣ − 1 � 1/2

(∣∣T (x)
∣∣ − 1

)
> 0,

for ε small enough (depending on x). Then hx,ε can be bounded by a constant which does not depend on y and ε,
which allows us to apply the dominated convergence theorem to deduce that

∫
B(0,R1)∩Πε

hx,ε(y) dy → 0 as ε → 0. �
Lemma 5.5. One has that

Φε(x)

∫
R2

(
(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 − (T (x) − T (y))⊥

|T (x) − T (y)|2
)

Φε(y)ωε(y) dy → 0

in L∞
loc([0,∞) × R2) as ε → 0.

Proof. Let x ∈ B(0,R) and y ∈ suppωε . Using the relation (2.7) we can introduce and bound

h̃x,ε ≡ |(Tε(x) − T (x)) − (Tε(y) − T (y))|
|Tε(x) − Tε(y)||T (x) − T (y)|

�
√

2 sup
B(0,R2)∩Πε

(|Tε − T |)( 1√|Tε(x) − Tε(y)||T (x) − T (y)| + 1

|Tε(x) − Tε(y)|√|T (x) − T (y)|
)

where R2 = max(R,R1).
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Using Lemma 4.2 with a = 5/4 and a = 5/3 we conclude by the Hölder inequality:∫
R2

h̃x,ε(y)Φε(y)
∣∣ωε(y)

∣∣dy �
√

2 sup
B(0,R2)∩Πε

(|Tε − T |)(∥∥∥∥ (ωε)2/5

√|Tε(x) − Tε(y)|
∥∥∥∥

L5/2

∥∥∥∥ (ωε)3/5

|T (x) − T (y)|
∥∥∥∥

L5/3

+
∥∥∥∥ (ωε)3/5

|Tε(x) − Tε(y)|
∥∥∥∥

L5/3

∥∥∥∥ (ωε)2/5

√|T (x) − T (y)|
∥∥∥∥

L5/2

)

� C
√

sup
B(0,R2)∩Πε

(|Tε − T |).
Therefore, the uniform convergence of Tε (Assumption 3.1) allows us to conclude. �

Theorem 5.6. One has that Φεuε → u strongly in L2
loc([0,∞) × R2), with

u(x) = 1

2π
DT t (x)

∫
R2

(
(T (x) − T (y))⊥

|T (x) − T (y)|2 − (T (x) − T (y)∗)⊥

|T (x) − T (y)∗|2
)

ω(y, t) dy + αH(x). (5.2)

Proof. We recall the explicit formula for Φεuε:

Φεuε = 1

2π
Φε(x)DT t

ε (x)

∫
Πε

(
(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 − (Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2
)

ωε(y, t) dy + αΦε(x)Hε(x).

Next we decompose:

(
Φεuε − u

)
(x) = 1

2π

(
DT t

ε (x) − DT t(x)
)
Φε(x)

∫
Πε

(
(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 − (Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2
)

ωε(y) dy

+ 1

2π
DT t(x)Φε(x)

∫
Πε

(
(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 − (Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2
)

ωε(y)
(
1 − Φε(y)

)
dy

+ 1

2π
DT t(x)Φε(x)

∫
R2

(
(Tε(x) − Tε(y))⊥

|Tε(x) − Tε(y)|2 − (T (x) − T (y))⊥

|T (x) − T (y)|2
)

Φε(y)ωε(y) dy

+ 1

2π
DT t(x)

(
Φε(x) − 1

)∫
R2

(T (x) − T (y))⊥

|T (x) − T (y)|2 Φε(y)ωε(y) dy

+ 1

2π
DT t(x)

∫
R2

(T (x) − T (y))⊥

|T (x) − T (y)|2
(
Φε(y)ωε(y) − ω(y)

)
dy

− 1

2π
DT t(x)Φε(x)

∫
R2

(
(Tε(x) − Tε(y)∗)⊥

|Tε(x) − Tε(y)∗|2 − (T (x) − T (y)∗)⊥

|T (x) − T (y)∗|2
)

Φε(y)ωε(y) dy

− 1

2π
DT t(x)

(
Φε(x) − 1

)∫
R2

(T (x) − T (y)∗)⊥

|T (x) − T (y)∗|2 Φε(y)ωε(y) dy

− 1

2π
DT t(x)

∫
R2

(T (x) − T (y)∗)⊥

|T (x) − T (y)∗|2
(
Φε(y)ωε(y) − ω(y)

)
dy

+ α
1

2π

(
Φε(x)DT t

ε (x)
Tε(x)⊥

|Tε(x)|2 − DT t(x)
T (x)⊥

|T (x)|2
)

≡ J1 + · · · + J9.
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In every Ji , we use the fact that DT is bounded in L3
loc (see Proposition 2.2). We also use the estimates of the

integrals I1 and I2 independently of x, ε, t (see Lemma 4.2).
For J4 and J7, we remark that (Φε(x) − 1) → 0 in L6, DT is bounded in L3

loc and the integral is bounded
independently of x, ε and t (see Remark 4.3), which is sufficient to conclude that J4 and J7 converge to zero in
L2

loc([0,∞) × R2).
A similar argument holds true for J1, since DTε → DT in L3

loc by Assumption 3.1.
For J2, Lemma 5.1 states that for fixed x, the fractions are bounded in L4/3(B(0,R1)) independently of ε. Moreover

ωε is bounded independently of t , ε and 1−Φε(y) → 0 in L4. Therefore, for fixed x /∈ Γ , the integral tends pointwise
to 0. Moreover this integral is bounded (see Lemma 4.2) and using the dominated convergence theorem, we can
observe that it tends to 0 in L6

loc. So, we have the convergence of J2 to zero because DT is bounded in L3
loc.

The convergence of J3 to 0 is a direct consequence of Lemma 5.5. Next, DT belongs to L3
loc(R

2), and thanks to
Lemma 5.3, we know that the integrals in J5 and J8 tend to zero in L2

loc([0,∞),L6
loc(R

2)). So J5 and J8 tend to zero
in L2

loc.
We now go to J6. Applying Lemma 5.4 and reasoning as we did for the second term: for fixed x and t , the

integral tends pointwise to 0 because ωε is bounded in L4 independently of t . Moreover, it is uniformly bounded by
Lemma 4.2, and we can apply twice the dominated convergence theorem to obtain that the integral in J6 converges to
0 in L2

loc([0,∞),L6
loc(R

2)). Using again the boundness of DT in L3
loc we get the desired conclusion for J6.

The convergence of J9 can be done more easily, because 1/|T | � 1. Indeed we can decompose

J9 = α

2π

(
DT t

ε (x) − DT t(x)
)
Φε(x)

Tε(x)⊥

|Tε(x)|2 + α

2π
Φε(x)DT t (x)

(
Tε(x)⊥

|Tε(x)|2 − T (x)⊥

|T (x)|2
)

+ α

2π

(
Φε(x) − 1

)
DT t(x)

T (x)⊥

|T (x)|2 ,

and the convergence to zero of J9 is a direct consequence of points (i) and (iii) of Assumption 3.1. �
The previous theorem provides an explicit formula expressing the limit velocity in terms of the limit vorticity. From

this formula, we can deduce a few properties of the limit velocity u.

Proposition 5.7. Let u be given as in Theorem 5.6. For fixed t , the velocity

(i) is continuous on R2 \ Γ ;
(ii) is continuous up to Γ \ {−1;1}, with different values on each side of Γ ;

(iii) blows up at the endpoints of the curve like C/
√|x − 1||x + 1|, which belongs to L

p

loc for p < 4;
(iv) is tangent to the curve.

Proof. To show that, we now prove that

A(x) ≡
∫
R2

T (x) − T (y)

|T (x) − T (y)|2 ω(y)dy and B(x) ≡
∫
R2

T (x) − T (y)∗

|T (x) − T (y)∗|2 ω(y)dy

are continuous on R2 \Γ as ω ∈ L1 ∩L∞. As in the proof of Lemma 4.2, we change variables, we introduce f (η, t) =
ω(T −1(η), t)J (η)χ{|η|�1} and z = T (x). Then we have Ã(z) ≡ A(x) = ∫

|η|�1
z−η

|z−η|2 f (η, t) dη, which is continuous

for f ∈ L1 ∩ L∞. In the same way we estimated I2 in the proof of Lemma 4.2, we write

B(x) =
∫

|η|�2

z − η∗

|z − η∗|2 f (η, t) dη +
∫

1/2�|θ |�1

z − θ

|z − θ |2 g(θ, t) dθ ≡ B1(z) + B2(z),

with g(θ, t) = ω(T −1(θ∗), t)J (θ∗)/|θ |4. As for A, we observe that B2 is continuous. For B1, taking a sequence
fn ∈ C∞

c such that fn → f (·, t) strongly in L1, we see that B1,n ≡ ∫
|η|�2

z−η∗
|z−η∗|2 fn(η, t) dη is continuous. As |z −

η∗| � 1/2, we can conclude, after remarking that ‖Bn − B1‖L∞ � 2‖fn − f ‖L1 , that B1 is continuous.
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Moreover, Ã, B1 and B2 are continuous up to the boundary. As A(x) = Ã(T (x)) and B(x) = B1(T (x)) +
B2(T (x)), with T continuous up to Γ \ {−1;1}, with different values on each side of Γ (see Proposition 2.2), we
proved (i) and (ii).

The blowing up at the endpoints is the consequence of the expression of DT (see (2.2)), and the fact that A(x) and
B(x) is bounded by Lemma 4.2.

Finally, to show that the velocity is tangent to the curve, we do a simplified, but similar calculation to the one in
Lemma 4.7. Indeed, as |T (x)| = 1 on the curve Γ , ∇|T (x)| is orthogonal to the curve. According to Proposition 2.2,
∇|T (x)| is continuous up to the curve Γ with different values on each side. Let x ∈ Γ \ {−1;1}, then for a sequence
xn ∈ Π which tends to x, we can make the same calculation than in the beginning of the proof of Lemma 4.6, to get:

u(xn) · ∇∣∣T (xn)
∣∣ = u(xn)

⊥ · ∇⊥∣∣T (xn)
∣∣

= − 1

2π

∫
R2

(
T (xn) − T (y)

|T (xn) − T (y)|2 − T (xn) − T (y)∗

|T (xn) − T (y)∗|2
)

ω(y, t) dyDT (xn)DT t (xn)
T (xn)

⊥

|T (xn)|

+ α
∇|T (xn)|
|T (xn)| · ∇⊥∣∣T (xn)

∣∣
= 1

2π |T (xn)| det(DT )(xn)

∫
R2

An(y)ω(y, t) dy

with

An(y) = T (y) · T (xn)
⊥

|T (xn) − T (y)|2 − T (y)∗ · T (xn)
⊥

|T (xn) − T (y)∗|2

= |T (xn) − T (y)∗|2 − |T (xn) − T (y)|2/|T (y)|2
|T (xn) − T (y)|2|T (xn) − T (y)∗|2 T (y) · T (xn)

⊥

= (1 − 1/|T (y)|2)(|T (xn)|2 − 1)

|T (xn) − T (y)|2|T (xn) − T (y)∗|2 T (y) · T (xn)
⊥.

If xn tends to x on one side of the curve, then |T (xn)| → 1 and An(y) → 0. So Anω(·, t) tends pointwise to zero, and as
the integral is bounded by Remark 4.3, we can conclude by the dominated convergence theorem that u(x) ·∇|T (x)| =
0 and that the velocity, on each side, is tangent to the curve. �

Therefore we have a weak-∗ limit for the vorticity, and a strong limit for the velocity. We now study the relation
between curlu and ω.

5.2. Calculation of curl and div of the velocity

We first remark that divu = 0, which is obvious since the velocity is the orthogonal gradient of a function. Indeed
u = ∇⊥ψ with ψ(x) = ∫

Gπ(x, y)ω(y)dy + 1
2π

log|T (x)|.
We now compute the curl of the limit velocity.
Recall that the curve Γ goes from −1 to 1. Let �τ = Γ ′/|Γ ′| the tangent vector of Γ , uup the limit of u(Γ (s)+ρ �τ⊥)

as ρ → 0+ and udown the limit as ρ → 0−.

Lemma 5.8. There exists a function gω which depends on Γ and ω such that

curlu = ω + gω(s)δΓ ,

in the sense of distributions.
Moreover gω = (udown − uup) · �τ which corresponds to the jump of the velocity on the curve.

Proof. This proof is divided in two part. The first step consists to show that curlu−ω is concentrated on the curve Γ ,
and we find in the second step the expression of gω.

We begin with curlH . We remember that H = 1/2π∇⊥ log(T (x)). Let ϕ ∈ C∞(R2), we write:
0
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∫
Π

curl(H)ϕ = −
∫
Π

H · ∇⊥ϕ = − 1

2π

∫
Π

T (x)

|T (x)|2 DT (x)∇ϕ(x)dx

= − 1

2π

∫
Dc

z

|z|2 DT
(
T −1(z)

)∇ϕ
(
T −1(z)

)∣∣detT −1
∣∣(z) dz

where we changed variables z = T (x). Since T is holomorphic, we remark that

∇(
ϕ ◦ T −1)(z) = DT −1t

(z)∇ϕ
(
T −1(z)

) = ∣∣detT −1
∣∣(z)DT

(
T −1(z)

)∇ϕ
(
T −1(z)

)
.

We use the polar variables (z = reiθ ) to find

∫
Π

curl(H)ϕ = − 1

2π

2π∫
0

∞∫
1

∇(
ϕ ◦ T −1)(z) · z

r
dr dθ = − 1

2π

2π∫
0

∞∫
1

d

dr

(
ϕ ◦ T −1(reiθ

))
dr dθ

= 1

2π

2π∫
0

ϕ ◦ T −1(cos(θ), sin(θ)
)
dθ.

The last integral can be written as an integral of ϕ on the curve Γ with a certain weight.
We make the same calculation with the explicit formula of the velocity, and if we consider the translations

τ1 : z �→ z + T (y) and τ2 : z �→ z + T (y)∗, we obtain:∫
curl(u) · ϕ = − 1

2π

∫
R2

( ∫
Dc−T (y)

∇(
ϕ ◦ T −1 ◦ τ1

)
(z) · z

|z|2 dz

)
ω(y)dy

+ 1

2π

∫
R2

( ∫
Dc−T (y)∗

∇(
ϕ ◦ T −1 ◦ τ2

)
(z) · z

|z|2 dz

)
ω(y)dy + α

∫
curl(H) · ϕ

=
∫
R2

ϕ(y)ω(y)dy + 1

2π

∫
R2

θ1(y)∫
θ0(y)

[
ϕ ◦ T −1(A1,y(θ)

) − ϕ ◦ T −1(A2,y(θ)
)]

dθω(y)dy

− 1

2π

∫
R2

2π∫
0

ϕ ◦ T −1(A3,y(θ)
)
ω(y)dy + α

2π

2π∫
0

ϕ ◦ T −1(cos(θ), sin(θ)
)
dθ,

with A1, A2 and A3 constructed like this: we consider the half-line starting at T (y) having an angle θ with the abscissa
axis. There exist two angles θ0 < θ1 such that the half-line is tangent to the unit circle. If we choose θ ∈ (θ0, θ1), then
the half-line intersects the circle in two points A2 and further A1. For A3 we do the same thing with the half-line
starting at T (y)∗. In this case, we obtain each time an intersection with the unit circle.

Now, the difficulty is the change of variables. Indeed, as T −1(Ai,y(θ)) ∈ Γ , we should change the variable s =
T −1(Ai,y(θ)) and we would obtain

∫
R2

∫
Γ

ϕ(s)fi,y(s) ds, but this calculation is too complicated. In fact, we have just
proved that curlu = ω + gω(s)δΓ , and we will directly find the expression of gω. For that, we consider the solution v

of the Green problem without obstacle. That is,

divv = 0 and curlv = ω in R2.

The explicit formula is v(x) = ∫
R2

(x−y)⊥
|x−y|2 ω(y)dy. We denote by w = u − v. Then curlw = gωδΓ .

We now prove that gω = (wdown − wup) · �τ , with wup and wdown defined in the same manner as uup and udown.
So, for x ∈ Γ \ {−1;1}, there exists a small neighborhood O of x, such O \ Γ is the union of two connected

domains: Oup and Odown. On the one side,∫
curlwϕ =

∫
ϕ(s)gω(s) ds.
O Γ



1144 C. Lacave / Ann. I. H. Poincaré – AN 26 (2009) 1121–1148
On the other side,∫
O

curlw ϕ = −
∫
O

w · ∇⊥ϕ = −
∫

Oup

w · ∇⊥ϕ −
∫

Odown

w · ∇⊥ϕ

=
∫

Oup

curlw ϕ −
∫

∂Oup

ϕw · �τ +
∫

Odown

curlw ϕ −
∫

∂Odown

ϕw · �τ

= −
∫
Γ

ϕwup · �τ +
∫
Γ

ϕwdown · �τ

because w = u − v is continuous on R2 \ Γ .
As we want, we have gω = (wdown − wup) · �τ . Moreover, adding the regular part v, we have

gω = curlw = (udown − uup) · �τ . (5.3)

Therefore, we obtain:∫
ϕ curl(u) =

∫
R2

ϕ(y)ω(y)dy +
∫
Γ

ϕ(s)gω(s) · ds,

with gω, bounded outside the endpoints, and equivalent at the endpoints to

1

π

A(±1)√|s − 1||s + 1|
with

A(±1) = C±1

∣∣∣∣
∫
R2

(
(T (±1) − T (y))⊥

|T (±1) − T (y)|2 − (T (±1) − T (y)∗)⊥

|T (±1) − T (y)∗|2
)

ω(y, t) dy + αT (±1)⊥
∣∣∣∣

which is bounded. Indeed, we can prove that gω is continuous as we prove that u is continuous in Proposition 5.7. �
Getting a simplification is really hard, and we remark that we cannot obtain a result like curlu = ω +g(s)δΓ . Even

in the simpler case of the segment, the calculation of gω does not give a good result. However, we can explicit the
calculation of curl(H) in the case where the curve Γ is the segment [−1,1]: T −1(cos(θ), sin(θ)) = (cos(θ),0) and
we change the variable η = cos θ to have

∫
curl(H)ϕ = 2 · 1

2π

π∫
0

ϕ
(
cos(θ),0

)
dθ = 1

π

1∫
−1

ϕ(η,0)√
1 − η2

dη.

Moreover, we remark that gω, like the velocity, blows up at the endpoints of the curve Γ as the inverse of the square
root of the distance.

5.3. The asymptotic vorticity equation in R2

We begin by observing that the sequence {Φεωε} is bounded in L∞([0,T],L4), then, passing to a subsequence if
necessary, we have

Φεωε ⇀ ω, weak-∗ in L∞([0,T],L4).
We already have a limit velocity.

The purpose of this section is to prove that u and ω verify, in an appropriate sense, the system:⎧⎪⎨
⎪⎩

ωt + u · ∇ω = 0, in R2 × (0,∞),

divu = 0 and curlu = ω + gω(s)δΓ , in R2 × [0,∞),

|u| → 0, as |x| → ∞,

ω(x,0) = ω0(x), in R2,

(5.4)

where δΓ is the Dirac function along the curve and gω is given in (5.3).
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Definition 5.9. The pair (u,ω) is a weak solution of the previous system if

(a) for any test function ϕ ∈ C∞
c ([0,∞) × R2) we have

∞∫
0

∫
R2

ϕtω dx dt +
∞∫

0

∫
R2

∇ϕ · uωdx dt +
∫
R2

ϕ(x,0)ω0(x) dx = 0,

(b) we have divu = 0 and curlu = ω + gωδΓ in the sense of distributions of R2, with |u| → 0 at infinity.

Theorem 5.10. The pair (u,ω) obtained at the beginning of this subsection is a weak solution of the previous system.

Proof. The second point of the definition is directly verified by the previous section and by the estimate of Section 2.2
about the far-field behavior. Indeed, the velocity u verifies |u| → 0 at infinity, thanks to the explicit expressions for
K[ω] and H , using the uniform compact support of ω.

Next, we introduce an operator Iε , which for a function ϕ ∈ C∞
0 ([0,∞) × R2) gives:

Iε[ϕ] ≡
∞∫

0

∫
R2

ϕt

(
Φε

)2
ωε dx dt +

∞∫
0

∫
R2

∇ϕ · (Φεuε
)(

Φεωε
)
dx dt.

To prove that (u,ω) is a weak solution, we will show that

(i) Iε[ϕ] + ∫
R2 ϕ(x,0)ω0(x) dx → 0 as ε → 0,

(ii) Iε[ϕ] → ∫ ∞
0

∫
R2 ϕtω dx dt + ∫ ∞

0

∫
R2 ∇ϕ · uωdx dt as ε → 0.

Clearly these two steps complete the proof.
We begin by showing (i). As uε and ωε verify (3.2), it can be easily seen that

∞∫
0

∫
R2

ϕt (Φ
ε)2ωε dx dt = −

∞∫
0

∫
R2

∇(
ϕ
(
Φε

)2) · uεωε dx dt −
∫
R2

ϕ(x,0)
(
Φε

)2
(x)ω0(x) dx.

Thus we compute

Iε[ϕ] = −2

∞∫
0

∫
R2

ϕ∇Φε · uε
(
Φεωε

)
dx dt −

∫
R2

ϕ(x,0)
(
Φε

)2
(x)ω0(x) dx.

We have:∣∣∣∣Iε[ϕ] +
∫
R2

ϕ(x,0)
(
Φε

)2
(x)ω0(x) dx

∣∣∣∣ � 2
∥∥Φεωε

∥∥
L∞(L∞)

‖ϕ‖L1(L∞)

∥∥uε · ∇Φε
∥∥

L∞(L1)
→ 0,

as ε → 0 by Lemma 4.6. This shows (i) for all ε sufficiently small such that (Φε)2(x)ω0 = ω0 since the support of ω0
does not intersect the curve.

For (ii), the linear term presents no difficulty. The second term consists of the weak-strong pair vorticity-velocity:∣∣∣∣
∫∫

∇ϕ · (Φεuε
)(

Φεωε
) −

∫∫
∇ϕ · uω

∣∣∣∣ �
∣∣∣∣
∫∫

∇ϕ · (Φεuε − u
)(

Φεωε
)∣∣∣∣ +

∣∣∣∣
∫∫

∇ϕ · u(
Φεωε − ω

)∣∣∣∣.
Φεuε → u strongly in L2([0,T],L2

loc(R
2)) thanks to Theorem 5.6. So the first term tends to zero because

Φεωε is bounded in L∞([0,∞),L2(R2)). In the same way, the second term tends to zero because Φεωε ⇀

ω weak-∗ in L∞([0,T],L4(R2)) and u ∈ L∞([0,T],L2
loc(R

2)). �
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5.4. The asymptotic velocity equation in R2

As the function u is bounded in L2, we can write the vorticity equation more simply than in [2]. The main calcu-
lation of this subsection can be found in [2].

We begin by introducing v(x) = ∫
K(x − y)ω(y)dy with K(x) = 1

2π
x⊥
|x|2 , the solution without obstacle of⎧⎨

⎩
divv = 0 on R2,

curlv = ω on R2,

lim|x|→∞ |v| = 0.

This velocity is bounded, and we denote the perturbation by w = u − v, which is bounded in L
p

loc for p < 4, and it
verifies⎧⎨

⎩
divw = 0 on R2,

curlw = gω(s)δΓ on R2,

lim|x|→∞ |w| = 0.

We now prove that v verifies the following equation:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vt + v · ∇v + v · ∇w + w · ∇v − v(s)⊥g̃v(s)δΓ = −∇p, in R2 × (0,∞),

divv = 0, in R2 × (0,∞),

w(x) = 1
2π

∫
Γ

(x−s)⊥
|x−s|2 g̃v(s) · ds, in R2 × (0,∞),

v(x,0) = K[ω0], in R2

(5.5)

with g̃v = gcurlv .
In order to prove the equivalence of (5.4) and (5.5) it is sufficient to show that

curl
[
v · ∇w + w · ∇v − v(s)⊥g̃v(s)δΓ

] = div(ωw) (5.6)

for all divergence free fields v ∈ W
1,p

loc , with some p > 2. Indeed, if (5.6) holds, then we get for ω = curlv

0 = − curl∇p = curl
[
vt + v · ∇v + v · ∇w + w · ∇v − v(s)⊥g̃v(s)δΓ

]
= ωt + v · ∇ω + w · ∇ω = ωt + u · ∇ω = 0

so relation (5.4) holds true. And vice versa, if (5.4) holds then we deduce that the left hand side of (5.5) has zero curl
so it must be a gradient.

We now prove (5.6). As W
1,p

loc ⊂ C 0, v(s) is well defined. Next, it suffices to prove the equality for smooth v, since

we can pass to the limit on a subsequence of smooth approximations of v which converges strongly in W
1,p

loc and C 0.
Now, it is trivial to check that, for a 2 × 2 matrix A with distribution coefficients, we have

curl divA = div

(
curlC1
curlC2

)
where Ci denotes the ith column of A. For smooth v, we deduce

curl[v · ∇w + w · ∇v] = curl div(v ⊗ w + w ⊗ v)

= div

(
curl(vw1) + curl(wv1)

curl(vw2) + curl(wv2)

)

= div
(
w curlv + v · ∇⊥w + v curlw + w · ∇⊥v

)
.

It is a simple computation to check that

div
(
v · ∇⊥w + w · ∇⊥v

) = v · ∇⊥ divw + w · ∇⊥ divv + curlv divw + curlw divv.

Taking into account that we have free divergence fields, we can finish by writing

curl[v · ∇w + w · ∇v] = div
(
w curlv + vg̃v(s)δΓ

)
= div(w curlv) + curl

[
v(s)⊥g̃v(s)δΓ

]
which proves (5.6).
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Now, we write a formulation for the velocity u, by replacing v by u − w to obtain in R2

ut + u · ∇u = −∇p + wt + w · ∇w + v(s)⊥g̃v(s)δΓ .

However, since curlw = 0, we can remark that curl[wt + w · ∇w + v(s)⊥g̃v(s)δΓ ] = 0 in R2 \ Γ .

5.5. Formulation on R2 \ Γ

We can obtain directly an equation for u on R2 \Γ by passing to the limit ε → 0. We multiply the velocity equation
(3.2) by some divergence-free test vector field ϕ ∈ C∞

c (R+ × (R2 \ Γ )) and assume that ε is small enough such that
the support of ϕ is contained in Πε and do not intersected the support of ∇Φε . After integration,

∞∫
0

∫
uε · ∂tϕ +

∫
R2\Γ

uε(0,·) · ϕ(0,·) +
∞∫

0

∫ (
uε ⊗ uε

) · ∇ϕ = 0,

which easily pass to the limit since uε → u strongly in L2
loc by Theorem 5.6. Indeed, we can prove easily that uε

0 → u0

in L2
loc(R

2) thanks to the proof of Theorem 5.6. Therefore, the above relation holds true with u instead of uε and this
is the formulation in the sense of distributions of the Euler equation in R2 \ Γ :⎧⎪⎪⎪⎨

⎪⎪⎪⎩

ut + u · ∇u = −∇p in R2 \ Γ × (0,∞),

divu = 0 in R2 \ Γ × [0,∞),

u · n̂ = 0 on Γ × [0,∞),

|u| → 0, as |x| → ∞,

u(x,0) = F(ω0) in R2 \ Γ,

(5.7)

where F is the formula from Theorem 5.6 expressing explicitly the velocity in terms of vorticity and circulation.
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Appendix A. List of notations

Domains

D ≡ B(0,1) the unit disk,
S ≡ ∂D,
Γ is a Jordan arc (see Proposition 2.2),
Π ≡ R2 \ Γ ,
Ω0 is a bounded, open, connected, simply connected subset of the plane,
Γ0 ≡ ∂Ω0 is a C∞ Jordan curve,

Π0 ≡ R2 \ Ω0,
Ωε is a family of a domain, verifying the same properties of Ω0, such as Ωε → Γ as ε → 0,
Γε ≡ ∂Ωε and Πε ≡ R2 \ Ωε .

Functions

ω0 is the initial vorticity (C∞
c (Π)),

γ is the circulation of uε on Γε (see introduction),
0
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(uε,ωε) is the solution of the Euler equations on Πε ,
T is a biholomorphism between Π and intDc (see Proposition 2.2),
T0 is a biholomorphism between Π0 and intDc,
Tε is a biholomorphism between Πε and intDc (see Assumption 3.1),
Kε and Hε are given in (3.3) and (3.4),
Kε[ωε](x) ≡ ∫

Πε
Kε(x, y)ωε(y) dy,

Φε is a cutoff function in a small ε-neighborhood of Ωε (see Subsection 4.2).
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