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Abstract

We consider the well-known following shape optimization problem:

λ1(Ω∗) = min|Ω|=a
Ω⊂D

λ1(Ω),

where λ1 denotes the first eigenvalue of the Laplace operator with homogeneous Dirichlet boundary condition, and D is an open
bounded set (a box). It is well-known that the solution of this problem is the ball of volume a if such a ball exists in the box D

(Faber–Krahn’s theorem).
In this paper, we prove regularity properties of the boundary of the optimal shapes Ω∗ in any case and in any dimension. Full

regularity is obtained in dimension 2.
©
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1. Introduction and main results

Let D be a bounded open subset of R
d . For all open subset Ω of D, we denote by λ1(Ω) the first eigenvalue of the

Laplace operator in Ω , with homogeneous boundary conditions, and by uΩ a normalized eigenfunction, that is

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�uΩ = λ1(Ω)uΩ in Ω,

uΩ = 0 on ∂Ω,∫
Ω

u2
Ω = 1.
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We are interested here in the regularity of the optimal shapes of the following shape optimization problem, where
a ∈ (0, |D|) (|D| denotes the Lebesgue measure of D):{

Ω∗ open, Ω∗ ⊂ D, |Ω∗| = a,

λ1(Ω
∗) = min

{
λ1(Ω);Ω∗ open, Ω ⊂ D, |Ω| = a

}
.

(1)

By a well-known theorem of Faber and Krahn, if there is a ball B ⊂ D with |B| = a, then this ball is an optimal shape
and it is unique, up to translations (and up to sets of zero capacity).

Here we address the question of existence of a regular optimal set in all cases.
Existence of a quasi-open optimal set Ω∗ may be deduced from a general existence result by G. Buttazzo and

G. Dal Maso (see [5]) for an extended version of (1), where the variable sets Ω are not necessarily open. An optimal
shape Ω∗ may not be more than a quasi-open set if D is not connected (we reproduce in the appendix the example
mentioned in [4]). On the other hand, it is proved in [4] or [12] that such an open optimal set Ω∗ always exists for
(1) and, if moreover D is connected, then all optimal shapes Ω∗ are open. More precisely, it is proved in [4] that, for
any D, uΩ∗ is locally Lipschitz continuous in D. If moreover D is connected, then Ω∗ coincides with the support
of uΩ∗ (and is therefore open). Let us summarize this as follows (see also [13]):

Proposition 1.1. Assume D is open and bounded. The problem (1) has a solution Ω∗, and uΩ∗ is non-negative and
locally Lipschitz continuous in D. If D is connected, Ω∗ = {x ∈ D,uΩ∗ > 0}.

Moreover, we have

�uΩ∗ + λ1(Ω
∗)uΩ∗ � 0 in D, (2)

which means that �uΩ∗ + λ1(Ω
∗)uΩ∗ is a positive Radon measure.

Here, we are interested in the regularity of ∂Ω∗ itself, and we prove the following theorem:

Theorem 1.2. Assume D is open, bounded and connected. Then any solution of (1) satisfies:

1. Ω∗ has locally finite perimeter in D and

Hd−1((∂Ω∗ \ ∂∗Ω∗) ∩ D
) = 0, (3)

where Hd−1 is the Hausdorff measure of dimension d − 1, and ∂∗Ω∗ is the reduced boundary (in the sense of
sets with finite perimeter, see [9] or [10]).

2. There exists Λ > 0 such that

�uΩ∗ + λ1(Ω
∗)uΩ∗ = √

Λ Hd−1�∂Ω∗,
in the sense of distribution in D, where Hd−1�∂Ω∗ is the restriction of the (d − 1)-Hausdorff measure to ∂Ω∗.

3. ∂∗Ω∗ is an analytic hypersurface in D.
4. If d = 2, then the whole boundary ∂Ω∗ ∩ D is analytic.

We use the same strategy as in [3] (where the regularity is studied for another shape optimization problem). The-
orem 1.2 essentially relies on the proof of the equivalence of (1) with a penalized version for the constraint |Ω| = a,
as stated in Theorem 1.5 below. Once we have this penalized version, we can use techniques and results from [1] (see
also [11] and [3]).

Remark 1.3. According to the results in [1], the third point in Theorem 1.2 is a direct consequence of the second one
which says that uΩ∗ is a “weak solution” in the sense of [1]. To obtain the full regularity of the boundary for d = 2,
the fact that uΩ∗ is a weak solution is not sufficient, and more information has to be deduced from the variational
problem. The approach is essentially the same as in Theorem 6.6 and Corollary 6.7 in [1]. The necessary adjustments
are given at the end of this paper.

Remark 1.4. According to the result of [14,15,6,8], it is likely that full regularity of the boundary may be extended to
higher dimension (d � 6?), and therefore that the estimate (3) can be improved.

But this needs quite more work and is under study.
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By a classical variational principle, we know that, for all Ω ⊂ D open,

λ1(Ω) =
∫
Ω

|∇uΩ |2 = min

{∫
Ω

|∇u|2, u ∈ H 1
0 (Ω),

∫
Ω

u2 = 1

}
. (4)

Here, λ1(Ω
∗) � λ1(Ω) for all open set Ω ⊂ D with |Ω| = a. Since [Ω ⊂ Ω̃ ⇒ λ1(Ω) � λ1(Ω̃)], it follows that

λ1(Ω
∗) � λ1(Ω) for all open set Ω ⊂ D with |Ω| � a. Coupled with (4), this leads to the following variation property

of Ω∗ and uΩ∗ (see [4] for more details), where we denote u = uΩ∗ , λa = λ1(Ω
∗), and Ωv = {x ∈ D;v(x) 
= 0}:

λa =
∫
D

|∇u|2 = min

{∫
D

|∇v|2;v ∈ H 1
0 (D),

∫
D

v2 = 1, |Ωv| � a

}
. (5)

Let us rewrite this as follows. For w ∈ H 1
0 (D), we denote J (w) = ∫

D
|∇w|2 − λa

∫
D

w2. Then applying (5) with
v = w/(

∫
D

w2)1/2, we obtain that u is a solution of the following optimization problem:

J (u) � J (w), for all w ∈ H 1
0 (D), with |Ωw| � a. (6)

One of the main ingredient in the proof of Theorem 1.2 is to improve the variational property (6) in two directions, as
stated in Theorem 1.5 below. The approach is local.

Let BR be a ball included in D and centered on ∂Ωu ∩ D. We define

F = {
v ∈ H 1

0 (D), u − v ∈ H 1
0 (BR)

}
.

For h > 0, we denote by μ−(h) the biggest μ− � 0 such that,

∀v ∈ F such that a − h � |Ωv| � a, J (u) + μ−|Ωu| � J (v) + μ−|Ωv|. (7)

We also define μ+(h) as the smallest μ+ � 0 such that,

∀v ∈ F such that a � |Ωv| � a + h, J (u) + μ+|Ωu| � J (v) + μ+|Ωv|. (8)

The following theorem is a main step in the proof of Theorem 1.2:

Theorem 1.5. Let u,BR and F as above. Then for R small enough (depending only on u,a and D), there exists Λ > 0
and h0 > 0 such that,

∀h ∈ (0, h0), 0 < μ−(h) � Λ � μ+(h) < +∞,

and, moreover,

lim
h→0

μ+(h) = lim
h→0

μ−(h) = Λ. (9)

Remark 1.6. We can compare the existence of μ+(h) with Theorem 2.9 in [4]. This theorem shows that there exists
μ+ such that∫

D

|∇u|2 �
∫
D

|∇v|2 + λa

[
1 −

∫
D

v2
]+

+ μ+
(|Ωv| − a

)
,

for v ∈ H 1
0 (D) and |Ωv| � a. The difference with [4] is that, in (8), we have the term λa[1 − ∫

D
v2] (not only the

positive part), but we allowed only perturbations in BR . We cannot expect to have something like (8) for perturbations
in all D (because we may find v with |Ωv| > a and J (v) < 0, so limt→+∞ J (tv) = −∞).

In the next section, we will prove Theorem 1.5. In the third section, we will prove Theorem 1.2. In Appendix A,
we discuss the case D non-connected.
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2. Proof of Theorem 1.5

In the next lemma, we give an Euler–Lagrange equation for our problem. The proof follows the steps of the Euler–
Lagrange equation in [7].

Lemma 2.1 (Euler–Lagrange equation). Let u be a solution of (6). Then there exists Λ � 0 such that, for all
Φ ∈ C∞

0 (D,R
d),∫

D

2(DΦ∇u,∇u) −
∫
D

|∇u|2∇ · Φ + λa

∫
D

u2∇ · Φ = Λ

∫
Ωu

∇ · Φ.

Proof. We start by a general remark that will be useful in the rest of the paper. If v ∈ H 1
0 (D) and if Φ ∈ C∞

0 (D,R
d),

we define vt (x) = v(x + tΦ(x)); therefore, for t small enough, vt ∈ H 1
0 (D). A simple calculus gives (when t goes

to 0),

|Ωvt | = |Ωv| − t

∫
Ωv

∇ · Φ + o(t),

J (vt ) = J (v) + t

(∫
D

2(DΦ∇v · ∇v) −
∫
D

|∇v|2∇ · Φ + λa

∫
D

v2∇ · Φ
)

+ o(t).

Now we apply this with v = u and Φ such that
∫
Ωu

∇ · Φ > 0. Such a Φ exists, otherwise we would get, using that D

is connected, Ωu = D or ∅ a.e. We have |Ωut | < |Ωu| for t > 0 small enough and, by minimality,

J (u) � J (ut )

= J (u) + t

(∫
D

2(DΦ∇u,∇u) −
∫
D

|∇u|2∇ · Φ + λa

∫
D

u2∇ · Φ
)

+ o(t),

and so,∫
D

2(DΦ∇u,∇u) −
∫
D

|∇u|2∇ · Φ + λa

∫
D

u2∇ · Φ � 0. (10)

Now, we take Φ with
∫
Ωu

∇ · Φ = 0. Let Φ1 be such that
∫
Ωu

∇ · Φ1 = 1. Writing (10) with Φ + ηΦ1 and letting
η goes to 0, we get (10) with this Φ and, using −Φ , we get (10) with an equality instead of the inequality. For a
general Φ , we use this equality with Φ − Φ1(

∫
Ωu

∇ · Φ) (we have
∫
Ωu

∇ · (Φ − Φ1(
∫
Ωu

∇ · Φ)) = 0), and we get the
result with

Λ =
∫
D

2(DΦ1∇u,∇u) −
∫
D

|∇u|2∇ · Φ1 + λa

∫
D

u2∇ · Φ1 � 0,

using (10). �
Remark 2.2. We will have to prove that, in fact, Λ > 0.

Let us remind our notations: let u be a solution of (6), and let BR be a ball included in D and centered on ∂Ωu ∩D.
We define

F = {
v ∈ H 1

0 (D), u − v ∈ H 1
0 (BR)

}
.

Before proving Theorem 1.5, we give the following useful lemma:

Lemma 2.3. Let u,BR and F as above. Then there exists a constant C such that, for R small enough,

∀v ∈ F , J (v) � 1

2

∫
BR

|∇v|2 − C.
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Proof. We know that λ1(BR) = λ1(B1)/(R
2) (we just use the change of variable x → x/R). If R is small enough we

have:

λ1(BR) � 1,
4λa

λ1(BR)
� 1/2. (11)

Let v ∈ F ; so u − v ∈ H 1
0 (BR), and using the variational formulation of λ1(BR), we get

‖u − v‖2
L2(BR)

�
‖∇(u − v)‖2

L2(BR)

λ1(BR)
.

We deduce that,

‖v‖2
L2(BR)

� 2
‖∇(u − v)‖2

L2(BR)

λ1(BR)
+ 2‖u‖2

L2(BR)

� 4
‖∇v‖2

L2(BR)

λ1(BR)
+ C

λa

,

(we use (11)) where C depends only on the L2 norms of u and his gradient. Now we have

J (v) �
∫
D

|∇v|2 − λa

(
4
‖∇v‖2

L2(BR)

λ1(BR)
+ C

λa

)
,

and we get the result using (11). �
Remark 2.4. This lemma is interesting for two reasons. The first one is that J is bounded from below on F . The
second one is that, if vn ∈ F is a sequence such that J (vn) is bounded, then ‖∇vn‖L2(BR) is also bounded. Since
vn = u outside BR we deduce that vn is bounded in H 1

0 (D) (and so weakly converges up to a sub-sequence. . . ).

Proof of Theorem 1.5. We divide our proof into four parts. Let Λ � 0 be as in Lemma 2.1.

First part: Λ � μ+(h) < +∞Λ � μ+(h) < +∞Λ � μ+(h) < +∞.
We start the proof by showing that μ+(h) is finite. Since BR is centered on the boundary on ∂Ωu, we first show:

0 < |Ωu ∩ BR| < |BR|.
The first inequality comes from the fact that Ωu is open. The second one comes from the following lemma:

Lemma 2.5. Let ω be an open subset of D, and let u be a solution of (6). If |Ωu ∩ ω| = |ω|, then

−�u = λau in ω,

and therefore ω ⊂ Ωu.

Proof of Lemma 2.5. Since u > 0 a.e. on ω, we define v ∈ H 1
0 (D) by v = u outside ω and −�v = λau in ω. From

the strict maximum principle, we get v > 0 on ω and |Ωv| = |Ωu|. By minimality (J (u) � J (v)) we have,∫
ω

(∇u − ∇v) · (∇u − ∇v + 2∇v) − λa

∫
ω

(u − v)(u + v) � 0,

∫
ω

|∇u − ∇v|2 + λa

∫
ω

(u − v)(2u − u − v) � 0,

(we use that u−v ∈ H 1
0 (ω) and −�v = λau in ω). We get that u = v a.e. in ω and by continuity u = v > 0 everywhere

in ω. �
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If |Ωu ∩ BR| = |BR|, applying this lemma to ω = BR , we would get Ωu ∩ BR = BR , which is impossible since BR

is centered on ∂Ωu. If R is small enough we can also suppose,

0 < |Ωu \ BR| < |D \ BR|.
For the first inequality, we need that |BR| < a, and for the second one we need a < |D| − |BR|.

Let h > 0 be such that h < |BR| − |Ωu ∩ BR| (and so, if v ∈ F with |Ωv| � a + h, then |Ωv ∩ BR| < |BR|). Let
(μn) an increasing sequence to +∞. There exists vn ∈ F such that |Ωvn | � a + h and,

J (vn) + μn

(|Ωvn | − a
)+ = min

v∈F , |Ωv |�a+h

{
J (v) + μn

(|Ωv| − a
)+}

. (12)

For this we use Remark 2.4, and so the functional J (v)+μn(|Ωv| − a)+ is bounded by below for v ∈ F . Moreover, a
minimizing sequence for this functional is bounded in H 1

0 (D) and so weakly converges in H 1
0 (D), strongly in L2(D)

and almost everywhere (up to a sub-sequence) to some vn. Using the lower semi-continuity of v → ∫
D

|∇v|2 for the
weak convergence, the strong convergence in L2(D) and the lower semi-continuity of v → |Ωv| for the convergence
almost everywhere we see that vn is such that (12) is true.

If |Ωvn | � a then (8) is true with μn, so we will suppose to the contrary that |Ωvn | > a for all n.

Step 1. Euler–Lagrange equation for vn. If we set bn = |Ωvn |, then vn is also solution of

J (vn) = min
v∈F , |Ωv |�bn

J (v).

With the same proof as in Lemma 2.1, we can write an Euler–Lagrange equation for vn in BR . That is, there exists
Λn � 0 such that, for Φ ∈ C∞

0 (BR,R
d),∫

D

2(DΦ∇vn · ∇vn) −
∫
D

|∇vn|2∇ · Φ + λa

∫
D

v2
n∇ · Φ = Λn

∫
Ωvn

∇ · Φ. (13)

Step 2. Λn � μnΛn � μnΛn � μn. There exists Φ ∈ C∞
0 (BR) such that

∫
Ωvn

∇ · Φ = 1. Let vt
n(x) = vn(x + tΦ(x)). We have vt

n ∈ F
for t � 0 small enough, and using derivation results recalled in the proof of Lemma 2.1 and |Ωvn | > a, we get

a < |Ωvt
n
| = |Ωvn | − t + o(t) � a + h,

J (vt
n) = J (vn) + tΛn + o(t).

Now we use (12) with v = vt
n in order to get,

J (vn) + μn

(|Ωvn | − a
)
� J (vn) + tΛn + o(t) + μn

(|Ωvn | − t − a
)
,

and dividing by t > 0 and letting t goes to 0, we finally get Λn � μn.

Step 3. vn strongly converges to some v. Using (12) with v = u, we get

J (vn) + μn

(|Ωvn | − a
)
� J (u) (14)

and so, using Remark 2.4, we can deduce that vn weakly converge in H 1
0 (up to a sub-sequence) to some v ∈ F with

|Ωv| � a + h. We also have the strong convergence in L2(D) and the convergence almost everywhere. Since J is
bounded from below on F , we see from (14) that μn(|Ωvn | − a) is bounded and we get limn→∞ |Ωvn | = a, and so
|Ωv| � a. From J (vn) � J (u), we get J (v) � lim infJ (vn) � J (u) and so v is a solution of (6). Finally we can write,
using (12), that J (vn) � J (v) and we get, using the strong convergence of vn in L2,

lim sup
n→∞

∫
D

|∇vn|2 �
∫
D

|∇v|2.

We also have, with weak convergence in H 1
0 (D) that∫

|∇v|2 � lim inf
n→∞

∫
|∇vn|2.
D D
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We deduce that limn→∞ ‖∇vn‖L2(D) = ‖∇v‖L2(D). With the weak-convergence, this gives the strong convergence of
vn to v in H 1

0 (D).

Step 4. limΛn = ΛlimΛn = ΛlimΛn = Λ. We see that v is a solution of (6), so we can apply Lemma 2.1 to get that there exists a Λv such
that

∀Φ ∈ C∞
0

(
D,R

d
)
,

∫
D

2(DΦ∇v · ∇v) −
∫
D

|∇v|2∇ · Φ + λa

∫
D

v2∇ · Φ = Λv

∫
Ωv

∇ · Φ.

We have u = v outside BR so, using this equation and the Euler–Lagrange equation for u we see that Λv = Λ. Now,
we write the Euler–Lagrange for vn and Φ ∈ C∞

0 (D,R
d) such that

∫
Ωv

∇ · Φ 
= 0,∫
D

2(DΦ∇vn · ∇vn) −
∫
D

|∇vn|2∇ · Φ + λa

∫
D

v2
n∇ · Φ = Λn

∫
Ωvn

∇ · Φ,

and, using the strong convergence of vn to v, we get that

lim
n→∞Λn = lim

n→∞

∫
D

2(DΦ∇vn · ∇vn) − ∫
D

|∇vn|2∇ · Φ + λa

∫
D

v2
n∇ · Φ∫

Ωvn
∇ · Φ

=
∫
D

2(DΦ∇v · ∇v) − ∫
D

|∇v|2∇ · Φ + λa

∫
D

v2∇ · Φ∫
Ωv

∇ · Φ
= Λ.

Since limμn = +∞ we get the contradiction from Steps 2 and 4, and so μ+(h) is finite.
To conclude this first part, we now have to see that Λ � μ+(h). Let Φ ∈ C∞

0 be such that
∫
Ωu

∇ · Φ = −1, and let
ut (x) = u(x + tΦ(x)). Using the calculus in the proof of Lemma 2.1 we have, for t � 0 small enough,

a � |Ωut | = a + t + o(t) � a + h,

J (ut ) = J (u) − tΛ + o(t).

Now, using (8), we have

J (u) + μ+(h)a � J (u) − tΛ + μ+(h)(a + t) + o(t),

and we get Λ � μ+(h).

Second part: limμ+(h) = Λlimμ+(h) = Λlimμ+(h) = Λ.
We first see that μ+(h) > 0 for h > 0. Indeed, if μ+(h) = 0 we write

for every ϕ ∈ C∞
0 (BR) with

∣∣{ϕ 
= 0}∣∣ < h, J (u) � J (u + tϕ),

so

−�u = λau in BR,

which contradicts 0 < |Ωu ∩ BR| < |BR|.
Let ε > 0 and hn > 0 a decreasing sequence tending to 0. Because h → μ+(h) is non-increasing, we just have to

see that limμ+(hn) � Λ + ε for a sub-sequence of hn. If Λ > 0, let ε ∈]0,Λ[ and 0 < αn := μ+(hn) − ε < μ+(hn);
if Λ = 0, let 0 < αn = μ+(hn)/2 < μ+(hn). There exists vn such that

J (vn) + αn

(|Ωvn | − a
)+ = min

v∈F , |Ωv |�a+hn

{
J (v) + αn

(|Ωv| − a
)+}

.

Since αn < μ+(hn) we see that |Ωvn | > a (otherwise we write J (u) � J (vn)+αn(|Ωvn |−a)+). We now have 4 steps
that are very similar to the 4 steps used in the previous part to show that μ+(hn) is finite.

Step 1. Euler–Lagrange equation for vn. If v ∈ F is such that |Ωv| � |Ωvn |, we have J (vn) � J (v). Then, as in
Lemma 2.1 we can write the Euler–Lagrange equation (13) for vn in BR for some Λn.
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Step 2. Λn � αnΛn � αnΛn � αn. Since |Ωvn | > a the proof is the same as Step 2 in the first part, with αn instead of μn.

Step 3. vn strongly converge to some v. As in Step 3 above, we just write,

J (vn) + αn

(|Ωvn | − a
)+ � J (u),

to get (up to a sub-sequence) that vn weakly converges in H 1
0 (D), strongly in L2(D) and almost-everywhere to v ∈ F .

We have a < |Ωvn | � a + hn and so limn→∞ |Ωvn | = a. As in Step 3 above, we deduce that v is a solution of (6), and
using

J (vn) + αn

(|Ωvn | − a
)
� J (v),

we get the strong convergence in H 1
0 (D).

Step 4. limΛn = ΛlimΛn = ΛlimΛn = Λ. The proof is the same as in Step 4 of the first part of the proof. We write the Euler–Lagrange
equation for v in D and use u = v outside BR . We get that limΛn = Λ by letting n go to +∞ in the Euler–Lagrange
equation for vn in BR (using the strong convergence of vn).

We can now conclude this second part: if Λ > 0, we have, for n large enough,

μ+(hn) − ε = αn � Λn � Λ + ε,

and so μ+(hn) � Λ + 2ε.
If Λ = 0 we have

μ+(hn)/2 = αn � Λn � ε,

and so 0 � μ+(hn) � 2ε.
In both cases, we have Λ � μ+(hn) � Λ + 2ε.

Third part: limμ−(h) = Λlimμ−(h) = Λlimμ−(h) = Λ.
Let hn be a sequence decreasing to 0, and let ε > 0. Because h → μ−(h) is increasing, we just have to show that

limn→∞ μ−(hn) � Λ − ε for a sub-sequence of hn.
We first see that μ−(h) � Λ. Let Φ ∈ C∞

0 (BR,R
d) be such that

∫
BR

∇ ·Φ = 1 and let ut = u(x + tΦ(x)) for t � 0.
We have (using the proof of Lemma 2.1),

a − h � |Ωut | = a − t + o(t) � a,

J (ut ) = J (u) + tΛ + o(t).

Now, using (7), we have

J (u) + μ−(h)a � J (u) + tΛ + μ−(h)(a − t) + o(t),

and we get μ−(h) � Λ.
Let vn be a solution of the following minimization problem,

J (vn) + (
μ−(hn) + ε

)(|Ωvn | − (a − hn)
)+ = min

w∈F , |Ωw |�a

{
J (w) + (

μ−(h) + ε
)(|Ωw| − (a − hn)

)+}
. (15)

We will first see that,

a − hn � |Ωvn | < a.

If |Ωvn | = a we have,

J (u) + (
μ−(hn) + ε

)|Ωu| � J (vn) + (
μ−(hn) + ε

)|Ωvn | � J (w) + (
μ−(hn) + ε

)|Ωw|,
for w ∈ F with a − hn � |Ωw| � a which contradicts the definition of μ−(hn).
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Now, if |Ωvn | < a − hn, we have J (vn) � J (vn + tϕ) for every ϕ ∈ C∞
0 (BR) with |{ϕ 
= 0}| < a − hn − |Ωvn |.

And we get that −�vn = λavn in BR and so, we have vn ≡ 0 on BR or vn > 0 on BR , but this last case contradicts
|Ωvn | < a. If vn ≡ 0 on BR , because vn = u outside BR , we get u ∈ H 1

0 (BR), and using J (u) � J (vn),∫
BR

|∇u|2 − λa

∫
BR

u2 � 0.

We now deduce (u 
≡ 0 on BR) that λa � λ1(BR), which is a contradiction, at least for R small enough.
We now study the sequence vn in a very similar way than above.

Step 1. Euler–Lagrange equation for vn. J (vn) � J (v) for v ∈ F with |Ωv| � |Ωvn |, so we have an Euler–Lagrange
equation (13) for vn in BR for some Λn.

Step 2. Λn � (μ−(hn) + ε)Λn � (μ−(hn) + ε)Λn � (μ−(hn) + ε). Since |Ωvn | < a, we take Φ ∈ C∞
0 (BR,R

d) with
∫
BR

∇ · Φ = −1 and vt
n(x) = vn(x +

tΦ(x)) for t � 0 small. We have |Ωvt
n
| = |Ωvn | + t + o(t) � a and J (vt

n) = J (vn) − Λnt + o(t) and writing (15) with
w = vt

n we get the result.

Step 3. vn strongly converge to some v. As in Step 3 above we just write that

J (vn) + (
μ−(hn) + ε

)(|Ωvn | − (a − hn)
)
� J (u) + (

μ−(hn) + ε
)
hn,

to get (up to a sub-sequence) that vn weakly converge in H 1
0 (D), strongly in L2(D) and almost-everywhere to v ∈ F .

We have a − hn < |Ωvn | � a and so limn→∞ |Ωvn | = a. As in Step 3 above, we deduce that v is a solution of (6), and
using

J (vn) + (
μ−(hn) + ε

)(|Ωvn | − (a − hn)
)
� J (v) + (

μ−(hn) + ε
)(|Ωv| − (a − hn)

)+
,

we get the strong convergence in H 1
0 (D).

Step 4. limΛn = ΛlimΛn = ΛlimΛn = Λ. The proof is exactly the same as in Step 4 above in the study of the limit of μ+(hn).
Now we have, using steps 2 and 4, for n large enough,

Λ − ε � Λn � μ−(hn) + ε � Λ + ε,

and so limn→∞ μ−(hn) = Λ.

Fourth part: Λ > 0Λ > 0Λ > 0.
We would like to show that Λ > 0 (which implies μ−(h) > 0 for h small enough). We argue by contradiction and

we suppose that Λ = 0. The proof is very close to the proof of Proposition 6.1 in [3]. We start with the following
proposition:

Proposition 2.6. Assume Λ = 0. Then, there exists η a decreasing function with limr→0 η(r) = 0 such that, if
x0 ∈ BR/2 and B(x0, r) ⊂ BR/2 with |{u = 0} ∩ B(x0, r)| > 0, then

1

r
−
∫

∂B(x0,r)

u � η(r). (16)

Proof of Proposition 2.6. Let x0, r be as above, and we set Br = B(x0, r). Let v be defined by,{−�v = λau in Br,

v = u on ∂Br,

and v = u outside Br . We have v > 0 on Br . We get, using (8),∫ (|∇u|2 − |∇v|2) − λa

∫ (
u2 − v2) � μ+

(
ωdrd

)∣∣{u = 0} ∩ Br

∣∣, (17)
Br Br
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we also get (using −�v = λau in Br ),∫
Br

(|∇u|2 − |∇v|2) − λa

∫
Br

u2 − v2 =
∫
Br

∇(u − v) · ∇(u − v + 2v) − λa

∫
Br

u2 − v2

=
∫
Br

∣∣∇(u − v)
∣∣2 + λa

∫
Br

(u − v)2. (18)

Now, with the same computations as in [1,11] (with λau instead of f ) we get,

∣∣{u = 0} ∩ Br

∣∣(1

r
−
∫
∂Br

u

)2

� C

∫
Br

∣∣∇(u − v)
∣∣2

. (19)

Now, using (17), (18) and (19) we get the result. �
End of proof of Theorem 1.5. Now, the rest of the proof is the same as Proposition 6.2 in [3] with λau instead
of f χΩu . The idea is that, from the estimate (16) of Proposition 2.6, ∇u tends to 0 at the boundary, and consequently
the measure �u does not charge the boundary ∂Ωu. It follows that −�u = λau in BR , which, by strict maximum
principle, contradicts that u is zero on some part of BR . �
3. Proof of Theorem 1.2

Let Ω∗ be a solution of (1). Then u = uΩ∗ is a solution of (6), and thus satisfies Proposition 1.1 and Theorem 1.5;
moreover, Ω∗ = Ωu. Like in the previous section, we work in B , a small ball centered in ∂Ωu. Since the approach is
local, we will show regularity for the part of ∂Ωu included in B; but B can be centered on every point of ∂Ωu ∩ D,
so this is of course enough to lead to the announced results in Theorem 1.2.

Coupled with Remark 1.3, we conclude that it is sufficient to prove:

(a) Ω∗ has finite perimeter in B and Hd−1
(
(∂Ω∗ \ ∂∗Ω∗) ∩ B

) = 0,

(b) �uΩ∗ + λ1(Ω
∗)uΩ∗ = √

ΛHd−1�∂Ω∗ in B,

(c) if d = 2, ∂Ω∗ ∩ B = ∂∗Ω∗ ∩ B.

⎫⎪⎬
⎪⎭ (20)

We use the same arguments as in [1] and [11], but we have to deal with the term in
∫

u2 instead of
∫

f u (in [11]). So
we first start with the following technical lemma.

Lemma 3.1. There exist C1,C2, r0 > 0 such that, for B(x0, r) ⊂ B with r � r0,

if
1

r
−
∫

∂B(x0,r)

u � C1 then u > 0 on B(x0, r),

if
1

r
−
∫

∂B(x0,r)

u � C2 then u ≡ 0 on B(x0, r/2). (21)

Proof. The first point comes directly from the proof of Proposition 2.6. We take the same v and, using equation (19),
we see that there exists C1 such that if 1

r
−
∫

∂B(x0,r)u � C1, then |{u = 0} ∩ B(x0, r)| = 0.
For the second part we argue as in Theorem 3.1 in [2]. We will denote Br for B(x0, r). In this proof, C denotes

(different) constants which depend only on a, d,D,u and B , but not on x0 or r .
Let ε > 0 small and such that {u = ε} is smooth (true for almost every ε), let Dε = (Br \ Br/2) ∩ {u > ε} and vε be

defined by⎧⎪⎨
⎪⎩

−�vε = λau in Dε,

vε = u in D \ Br,

vε = u in Br ∩ {u � ε},
v = ε in B ∩ {u > ε}.
ε r/2
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We see that u − vε is harmonic in Dε .
We now show that (vε − u)ε is bounded in H 1(D), for small ε > 0. Let ϕ be in C∞

0 (Br) with 0 � ϕ � 1 and ϕ ≡ 1
on Br/2. Let Ψ = (1 − ϕ)u + εϕ = u + ϕ(ε − u). We have:

Ψ − u = 0 = vε − u on ∂Br ∪ (
∂Dε ∩ (Br \ Br/2)

)
,

and

Ψ − u = ε − u = vε − u � −‖u‖∞ on ∂Dε ∩ ∂Br/2,

so using that vε − u is harmonic, we get −‖u‖∞ � vε − u � 0 on Dε and,∫
Dε

∣∣∇(vε − u)
∣∣2 �

∫
Dε

∣∣∇(Ψ − u)
∣∣2

.

Now, using that ∇Ψ = ∇u(1 − ϕ) − (∇ϕ)u + ε∇ϕ and the L∞ bounds for u and ∇u, we see that vε − u is bounded
in H 1(D).

Now, up to a subsequence, vε weakly converges in H 1
0 (D) to v such that:⎧⎨

⎩
−�v = λau in (Br \ Br/2) ∩ Ωu,

v = u in D \ Br,

v = 0 in Br/2 ∪ (
Br ∩ {u = 0}).

Using (7) with h = |Br/2|, and u = v in D \ Br , we have:∫
Br

|∇u|2 − λa

∫
Br

u2 + μ−(h)|Ωu ∩ Br | �
∫
Br

|∇v|2 − λa

∫
Br

v2 + μ−(h)|Ωv ∩ Br |,

and so,∫
Br/2

|∇u|2μ−(h)|Ωu ∩ Br/2| �
∫

Br\Br/2

∇(v − u) · ∇(u − v + 2v) − λa

∫
Br\Br/2

(
v2 − u2) + λa

∫
Br/2

u2

� lim inf
ε→0

2
∫
Dε

∇(vε − u) · ∇vε − λa

∫
Dε

(
v2
ε − u2) + λa

∫
Br/2

u2

= lim inf
ε→0

2
∫

∂Br/2∩{u>ε}
(ε − u)

∂vε

∂n
+ 2λa

∫
Dε

(vε − u)u − λa

∫
Dε

(
v2
ε − u2) + λa

∫
Br/2

u2

= lim inf
ε→0

2
∫

∂Br/2∩{u>ε}
(ε − u)

∂vε

∂n
+ λa

∫
Dε

(
2uvε − u2 − v2

ε

) + λa

∫
Br/2

u2

� lim inf
ε→0

2
∫

∂Br/2∩{u>ε}
(ε − u)∇vε · −→n + λa

∫
Br/2

u2, (22)

where −→n is the outward normal of Dε and so the inward normal of Br/2. Let wε be such that,⎧⎨
⎩

−�wε = λau on Br \ Br/2,

wε = u on ∂Br ∩ {u > ε},
wε = ε on

(
∂Br ∩ {u � ε}) ∪ ∂Br/2.

Because wε � ε on ∂(Br \ Br/2) and super-harmonic in Br \ Br/2, we get that wε � ε in Br \ Br/2. In particular
wε � vε = ε in ∂Dε ∩ (Br \ Br/2). Moreover, we also have wε � vε on ∂Dε ∩ (∂Br ∪ ∂Br/2), and since wε − vε is
harmonic in Dε , we get wε � vε in Dε . Using wε = vε = ε on ∂Br/2 ∩ {u > ε}, we can now compare the gradients of
wε and vε on this set,

0 � −∇vε · −→n � −∇wε · −→n on ∂Br/2 ∩ {u > ε}. (23)
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Let now w0
ε be defined by w0

ε = wε on ∂(Br \Br/2) and harmonic in Br \Br/2. We use now the following estimate:

0 � −∇w0
ε · −→n � C

r
−
∫
∂Br

(u − ε)+ � Cγ on ∂Br/2, (24)

where γ = 1
r

−
∫

∂Br u (to get this estimate, we can first prove, using a comparison argument, that |∇w0
ε | � C

r
‖w0

ε −
ε‖∞,B3r/4\Br/2 , and then conclude using again maximum principle and Poisson formula for functions that are harmonic

in a ball). Let w1
ε = wε − w0

ε , we have w1
ε = 0 on ∂(Br \ Br/2) and −�w1

ε = λau in Br \ Br/2 and so,∥∥∇w1
ε

∥∥∞,Br\Br/2
� Cr‖u‖∞ � Cr. (25)

Now using (22), (23), (24) and (25) we get,

L :=
∫

Br/2

|∇u|2 + μ−(h)|Ωu ∩ Br/2| � C(γ + r)

∫
∂Br/2

u + λa

∫
Br/2

u2. (26)

Our goal is now to bound from above the right-hand of this inequality with CL(γ + r): and so if γ and r are small
enough we will get L = 0 and so u ≡ 0 in Br/2.

We now give an estimate of ‖u‖∞,Br/2 in term of γ . Let w = 0 on ∂Br and −�w = λau in Br . We have (using (2))
�(u − w) = �u + λau � 0 in Br and u − w = u on ∂Br so,

‖u − w‖∞,Br/2 � C −
∫
∂Br

u � Cγ r.

We also have that

‖w‖∞,Br � Cr2‖u‖∞,Br � Cr2,

and finally,

‖u‖∞,Br/2 � C
(
γ r + r2). (27)

We now write (using (27)),∫
∂Br/2

u � C

( ∫
Br/2

|∇u| + 1

r

∫
Br/2

u

)

� C

(
1

2

∫
Br/2

|∇u|2 + 1

2
|Ωu ∩ Br/2| + 1

r
|Ωu ∩ Br/2|‖u‖∞,Br/2

)
.

Here we use Theorem 1.5 to see that there exists h0 such that

Λ

2
� μ−(h) � Λ, 0 < h � h0.

And so, we have∫
∂Br/2

u � C

( ∫
Br/2

|∇u|2 + μ−(h)|Ωu ∩ Br/2| + C|Ωu ∩ Br/2|(γ + r)

)

� CL(1 + γ + r), (28)

with C independent of r for every r small enough such that h = |Br/2| � h0. We also have (using (27))∫
Br/2

u2 � C|Ωu ∩ Br/2|
(
γ r + r2) � CL

(
γ r + r2). (29)

We now get, from (26), (28) and (29), if γ � 1 and r � 1,

L � C(γ + r)L(1 + γ + r) + CL
(
γ r + r2) � CL(γ + r),
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and, if we suppose r � 1
2C

we get,

L � CLγ + L

2
,

and so, if γ < 1
2C

we get L = 0 and u ≡ 0 on Br/2. �
With the help of this lemma, we are now able to successively prove the three properties (a), (b) and (c) of (20).

Proof of (a). The proof is now, using (21) in Lemma 3.1, the same as in [11] or in [1]. Here are the main steps: we
first show that there exists C1,C2 and r0 such that, for every B(x0, r) ⊂ B with r � r0,

0 < C1 � |B(x0, r) ∩ Ωu|
|B(x0, r)| � C2 < 1,

and

C1r
d−1 � (�u + λau)

(
B(x0, r)

)
� C2r

d−1.

The proof is the same as in [11] with λau instead of f . It gives directly (using the Geometrical measure theory, see
Section 5.8 in [9]) the first point of Theorem 1.2. �
Proof of (b). For the second point, we see that �u + λau is absolutely continuous with respect to Hd−1�∂Ωu which
is a Radon–Measure (using the first point), so we can use Radon’s Theorem. To compute the Radon’s derivative, we
argue as in Theorem 2.13 in [11] or (4.7, 5.5) in [1]. The main difference is that here, we have to use (9) in Theorem 1.5
to show that, if u0 denotes a blow-up limit of u(x0 + rx)/r (when r goes to 0), then u0 is such that,∫

B(0,1)

|∇u0|2 + Λ
∣∣{u0 
= 0} ∩ B(0,1)

∣∣ �
∫

B(0,1)

|∇v|2 + Λ
∣∣{v 
= 0} ∩ B(0,1)

∣∣,
for every v such that v = u0 outside B(0,1). To show this, in [1] or in [11] the authors use only perturbations in
B(x0, r) with r goes to 0, so using (9), we get the same result. We can compute the Radon’s derivative and get (in B)

�u + λau = √
Λ Hd−1�∂Ωu.

Now, u is a weak-solution in the sense of [11] and [1] and we directly get the analytic regularity of ∂∗Ωu (this
regularity is shown for weak-solutions). �
Proof of (c). If d = 2, in order to have the regularity of the whole boundary, we have to show that Theorem 6.6 and
Corollary 6.7 in [1] (which are for solutions and not weak-solutions) are still true for our problem. The corollary
directly comes from the theorem. So we need to show that, if d = 2 and x0 ∈ ∂Ωu, then

lim
r→0

−
∫

B(x0,r)

max
{
Λ − |∇u|2,0

} = 0. (30)

We argue as in Theorem 6.6 in [1]. Let ζ ∈ C∞
0 (B) be non-negative and let v = max{u − εζ,0}. Using (7) with this v

and h = |0 < u � εζ | � |{ζ 
= 0}| we get,

μ−(h)|0 < u � εζ | �
∫

|∇v|2 −
∫

|∇u|2 + λa

∫ (
u2 − v2)

=
∫ ∣∣∇ min{εζ,u}∣∣2 − 2

∫
∇u · ∇ min{εζ,u}

+ λa

∫
{u<εζ }

u2 − λa

∫
{u�εζ }

(εζ )2 + 2λa

∫
{u�εζ }

uεζ.

Using −�u = λau in Ωu we get:∫
∇u · ∇ min{εζ,u} = λa

∫
umin{εζ,u} = λa

∫
u2 + λa

∫
uεζ,
{u<εζ } {u�εζ }
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and so,

μ−(h)|0 < u � εζ | �
∫

{u<εζ }
|∇u|2 +

∫
{u�εζ }

ε2|∇ζ |2 − λa

∫
{u<εζ }

u2 − λa

∫
{u�εζ }

(εζ )2,

and so, we can deduce that,∫
{0<u<εζ }

(
Λ − |∇u|2) �

∫
{u�εζ }

ε2|∇ζ |2 + (
Λ − μ−(h)

)
h.

The only difference now with [1] is the last term. Using Theorem 1.5, we see that (Λ − μ−(h))h = o(h), so we can
choose the same kind of ζ and ε as in [1] to get (30) (see Theorem 5.7 in [3] for more details). �
Appendix A

In this appendix, we discuss the hypothesis “D is connected”. We begin with the following example, taken from [4].

Example A.1. (From [4].) We take D = D1 ∪ D2, where D1,D2 are disjoint disks in R
2 of radius R1,R2 with

R1 > R2. If a = πR2
1 + ε, then the solution u of (5) coincides with the first eigenfunction of D1 and is identically 0

on D2, and thus Ωu = D1 and |Ωu| < a.
In this case, we can choose an open subset ω of D2 with |ω| = ε. Then Ω∗ := D1 ∪ ω is a solution of (1). Since ω

may be chosen as irregular as one wants, this proves that optimal domains are not regular in general.

However, we are able to prove the following proposition.

Proposition A.2 (The non-connected case). If we suppose that D is not connected, the problem (5) still has a solution
u which is locally Lipschitz continuous in D. If ω is any open connected component of D, we have three cases:

1. either u > 0 on ω,
2. or u = 0 on ω,
3. or 0 < |Ωu ∩ ω| < |ω|, and ∂Ωu has the same regularity as stated in Theorem 1.2.

If |Ωu| < a, then only the first two cases can appear.

Remark A.3. It follows from Proposition A.2 that we obtain the same regularity as in the connected case. Indeed, in
the first two cases, ∂Ω∗ ∩ ω = ∂Ωu ∩ ω = ∅.

Remark A.4. To summarize, in all cases, there exists a solution Ω∗ to (1) which is regular in the sense of Theorem 1.2,
but there may be some other non-regular optimal shape. And if D is connected, any optimal shape is regular.

Proof. The existence and the Lipschitz regularity are stated in Proposition 1.1.
If u = 0 a.e. on ω, then we get u = 0 on ω by continuity.
If u > 0 a.e. on ω, by Lemma 2.5, u > 0 everywhere in ω.
If 0 < |Ωu ∩ω| < |ω|, the restriction of u to ω is of course solution of (6) with ω instead of D and |ω ∩Ωu| instead

of a. We then may apply Theorem 1.2.
Finally, if |Ωu| < a, we may write J (u) � J (u + tϕ) for all t ∈ (−ε, ε) and for all ϕ ∈ C∞

0 (D) such that |Ωϕ | <

a − |Ωu| and so:

0 = dJ (u + tϕ)

dt

∣∣∣∣
t=0

= 2
∫
D

(∇u · ∇ϕ) − 2λa

∫
D

uϕ.

That is −�u = λau in D and the third case is not possible since by maximum principle u > 0 or u = 0 on each
connected component of D. �
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