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Abstract

A smooth vector field X on a closed orientable d-manifold M is said to be cohomologically rigid when given any ξ ∈ C∞(M,R),
there exist u ∈ C∞(M,R) and c ∈ R satisfying

LXu = ξ − c,

where LX is the Lie derivative in the X direction. In 1984, Anatole Katok conjectured that every cohomologically rigid vector field
should be smoothly conjugated to a Diophantine vector field on the d-torus Td . In this work the validity of the Katok conjecture
for 3-manifolds is proved.
©

Résumé

Un champ de vecteurs X sur une variété M compacte orientable de dimension d est dit cohomologiquement rigide si pour toute
fonction ξ ∈ C∞(M,R) il existe u ∈ C∞(M,R) et c ∈ R tels que

LXu = ξ − c,

où LX désigne la dérivée de Lie dans la direction de X. En 1984, Anatole Katok a conjecturé que tout champ de vecteurs coho-
mologiquement rigide devrait être conjugué par un difféomorphisme lisse à un champ linéaire diophantien sur le tore Td . Dans ce
travail nous démontrons la conjecture de Katok pour les variétés de dimension trois.
©
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1. Introduction

When G is a Lie group acting on a manifold M by a smooth action Φ : G × M → M , many questions about the
dynamics of Φ can be answered studying the first cohomology group with real coefficients H 1(Φ), i.e. the quotient
linear space of real cocycles over Φ (from now on, cocycles for short) by the subspace of coboundaries (see Section 2
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for definitions). The problem of analyzing the structure of H 1(Φ) leads to study cohomological equations (see [10,11]
for a great panoramic view of the subject).

When G is equal to Zp or Rp , it is rather easy to verify that

dimH 1(Φ) � p,

and very commonly H 1(Φ) is infinite-dimensional, being its natural topology (induced by the Fréchet topology of
C∞(M,R)) typically non-Hausdorff. Therefore, the “smallness” of H 1(Φ) is usually associated with some kind of
“rigidity” of Φ , and so, it seems to be natural to say that a Zq or Rq -action Φ is cohomologically rigid when

dimH 1(Φ) = q. (1.1)

One of the simplest, although important, examples of Lie group actions is given by a flow (an R-action)
ΦX : R × M → M induced by a smooth vector field X ∈ X(M). In this case, the space of smooth cocycles over ΦX is
canonically identified with C∞(M,R), and ξ ∈ C∞(M,R) is a coboundary if and only if there exists u ∈ C∞(M,R),
named transfer function, satisfying

LXu = ξ,

where LX denotes the Lie derivative in the X direction.
Taking into account this identification, H 1(ΦX) is naturally isomorphic to C∞(M,R)/LX(C∞(M,R)).
The prototypical example of cohomologically rigid R-action is given by a linear flow on a torus generated by a

Diophantine vector field (see Definition 2.5). So far these are the only known examples, and Katok has conjectured
[9–11] that, modulo C∞-conjugation, these are the only ones. More precisely, we have

Katok Conjecture. If M is a closed orientable d-manifold and X is a cohomologically rigid smooth vector field
on M , then there exist a C∞ diffeomorphism H :M → Td and a Diophantine vector α ∈ Rd (see Definition 2.5)
verifying

DH(X) ≡ α.

It is interesting to remark that an analogous statement for higher-rank actions is far from being true. In fact, Katok
and Spatzier, in their seminal work [12], showed that all known Anosov Zk-actions, with k � 2, are cohomologically
rigid. A completely different kind of examples were constructed by Urzúa Luz in [28], who proved the existence of co-
homologically rigid affine minimal Zd -actions on tori, with some acting diffeomorphisms different from translations.
In all these cases the suspensions of these actions generate cohomologically rigid Rd -actions on manifolds which are
not tori.

The main result of this work is the following

Theorem A. The Katok conjecture is true for 3-manifolds.

We would like to remark that, while this work was in progress, Forni [5] and Matsumoto [15] independently proved
the same result.

2. Notations and preliminaries

For simplicity, in this article we will restrict ourselves to work on the C∞ category, and we shall use the word
smooth as a synonymous of C∞.

The d-dimensional torus will be denoted by Td and the quotient Lie group Rd/Zd will be our favorite model for
it. We will write prZd : Rd → Td for the quotient projection, and (θ1, θ2, . . . , θd) for the canonical coordinates in Td .
The Haar probability measure on Td , also called the Lebesgue measure, will be denoted by Lebd . As usual, making
some abuse of notation, we shall suppose that the elements of SL(d,Z) act on Td by Lie group automorphisms.

For us M will always denote a smooth closed (i.e. compact and without boundary) orientable d-dimensional man-
ifold. We will write βk(M) for the k-th Betti number of M , i.e. βk(M)

.= Hk(M,Q).
The group of smooth diffeomorphisms of M , endowed with the Whitney C∞ topology, will denoted by Diff(M).

The subgroup of orientation-preserving diffeomorphisms will be denoted by Diff+(M).
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Given a smooth fibration p :N → M , the p-fiber over any x ∈ M will be denoted by Nx , and we shall write Γ (N)

for the space of smooth sections of p. The only exception for this notational convention is the tangent bundle over M :
in this case π :T M → M denotes the canonical projection, and we write TxM for π−1(x), and X(M) for Γ (T M).

The expression Λk(M) will be used for the space of smooth k-forms on M .
Given any X ∈ X(M), we write {Φt

X} for its induced flow, iX :Λk(M) → Λk−1(M) for the usual contraction by X,
and LX for the Lie derivative acting on any smooth tensor field on M .

2.1. Measures and distributions

The set of all finite signed Borel measures on M shall be denoted by M(M), and we will write D′(M) for the
space of all real continuous linear functionals on C∞(M,R). Of course, we assume that C∞(M,R) is equipped with
its usual Fréchet topology.

In order to avoid confusions, we remark that along this work we use the term distribution in the “sense of Schwartz”,
i.e. for us a distribution is any element of D′(M), and we reserve the term plane field to mean a section of the
Grasmannian of TM.

Let G be an arbitrary Lie group and Φ : G × M → M be a smooth G-action. We define the space of Φ-invariant
distributions and measures by

D′(Φ)
.= {

T ∈ D′(M):
〈
T ,ψ

(
Φ(g, ·))〉 = 〈T ,ψ〉, ∀g ∈ G, ∀ψ ∈ C∞(M,R)

}
, (2.1)

M(Φ)
.= D′(Φ) ∩ M(M). (2.2)

When Φ is an R-action induced by X ∈ X(M), we shall use the notations D′(X) and M(X) to mean D′(Φ) and
M(Φ), respectively. As usual, given any T ∈ D′(M) we define LXT ∈ D′(M) by 〈LXT ,ψ〉 .= −〈T , LXψ〉, for all
ψ ∈ C∞(M,R).

We will suppose Λd(M) canonically embedded in M(M), and M(M) in D′(M). On the other hand, since we are
assuming that M is orientable, any volume form induces an isomorphism between C∞(M,R) and Λd(M). However,
notice that this identification is not canonical at all.

2.2. Cocycles and coboundaries

As above, let G be an arbitrary Lie group and Φ : G × M → M be a smooth G-action.
For us, a cocycle over Φ is a smooth real function A : G × M → R satisfying

A(g1g2, x) = A
(
g1,Φ(g2, x)

) + A(g2, x), ∀x ∈ M, ∀g1, g2 ∈ G.

The vector space of all cocycles over Φ will be denoted by Z(Φ).
On the other hand, we say that a cocycle A is a coboundary if there exists a smooth map B :M → R, usually called

transfer map, such that

A(g,x) = B
(
Φ(g,x)

) − B(x), ∀x ∈ M, ∀g ∈ G. (2.3)

The set of coboundaries over Φ shall be denoted by B(Φ) and it is clearly a linear subspace of Z(Φ). The quotient
space Z(Φ)/B(Φ) is called the first cohomology group of Φ and it is denoted by H 1(Φ).

Very commonly, H 1(Φ) is infinite-dimensional and its natural topology (induced by the usual Fréchet topology of
Z(Φ)) is non-Hausdorff.

Notice that (2.3) implies that〈
T ,A(g, ·)〉 = 0, ∀A ∈ B(Φ), ∀g ∈ G, ∀T ∈ D′(Φ). (2.4)

On the other hand, as we have already mentioned in the introduction of this work, if K denotes either Z or R, and
Φ is a smooth Kq -action, we can easily verify that dimH 1(Φ) � q . In fact, the group of K-linear homomorphisms
HomK(Kq,R) naturally injects in Z(Φ) (i.e. each K-linear homomorphism can be considered as a cocycle which
does not depend on the M-coordinate), and taking into account (2.4), we easily show that the zero cocycle is the only
coboundary contained in the image of this injection. Therefore, H 1(Φ) contains a subspace algebraically isomorphic
to HomK(Kq,R).

Taking into account these remarks, we have the following
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Definition 2.1. Let G be equal to Zq or Rq , and Φ : G × M → M be a smooth G-action. We say that Φ is cohomo-
logically rigid iff

dimH 1(Φ) = q.

Remark 2.2. It is important to notice that some authors [21,29,15] use the term “cohomology-free” or “param-
eter rigid” instead of our terminology. The reader can find some examples of cohomologically rigid actions in
[12,16,28,24].

2.3. Cohomologically rigid vector fields

We say that a vector field is cohomologically rigid when its induced flow is. The following is a very simple result
that will be very useful in the future:

Proposition 2.3. A vector field X ∈ X(M) is cohomologically rigid if and only if given any ξ ∈ C∞(M,R), there
exists c = c(ξ) ∈ R and u ∈ C∞(M,R) satisfying

LXu = ξ − c. (2.5)

From this it easily follows

Proposition 2.4. If X ∈ X(M) is cohomologically rigid, then:

(1) dim D′(X) = 1. In particular, D′(X) = M(X) and {Φt
X} is uniquely ergodic;

(2) There exists a smooth X-invariant volume form Ω ∈ Λd(M);
(3) {Φt

X} is minimal, i.e. {Φt
X(x): t ∈ R} is dense in M , for every x ∈ M .

The reader can find a proof of this result in [13], which is a simple reformulation of the ideas presented in [11,10]
to prove the analogous statement for diffeomorphisms.

To introduce the first result of classification of cohomologically rigid vector fields, we need the following

Definition 2.5. We say that α = (α1, . . . , αd) ∈ Rd is a Diophantine vector if there exist real constants C,τ > 0
satisfying∣∣∣∣

d∑
i=1

αipi

∣∣∣∣ > C
(

max
1�i�d

|pi |
)−τ

, (2.6)

for every p = (p1, . . . , pd) ∈ Zd \ {0}.
A vector field Xα on the d-dimensional torus Td verifying Xα ≡ α will be called a Diophantine vector field.

Now we can easily characterize the cohomologically rigid vector fields on tori:

Proposition 2.6. A smooth vector field on Td is cohomologically rigid if and only if it is smoothly conjugated to a
Diophantine one.

Proof. The proof of Corollary 1.7 in [29] can easily be adapted to prove that every cohomologically rigid vector field
on Td must be smoothly conjugated to a constant one (see [13] for details).

Finally, using Fourier analysis it is not hard to verify that a constant vector field is cohomologically rigid if and
only if it is Diophantine (see for instance [11]). �
2.4. Topological obstructions

Taking into account Proposition 2.6, Katok conjecture essentially affirms that the only closed orientable manifolds
that support cohomologically rigid vector fields are tori.
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In Proposition 2.4 we saw that every cohomologically rigid vector field was minimal. In particular, it cannot exhibit
any singularity, and hence, the Euler characteristic of the supporting manifold must vanish.

For a very long time this was the only known obstruction for the existence of cohomologically rigid vector fields,
until F. and J. Rodríguez-Hertz produced a breakthrough in [21], finding additional restrictions for the topology of the
supporting manifold.

To recall the main result of [21], we first need to introduce the following

Definition 2.7. Given any X ∈ X(M), we say that q :M → Tn is a Diophantine projection for X when q is a smooth
fibration and

Dq(X) ≡ Xα ∈ X(Tn), (2.7)

being Xα a Diophantine vector field (Definition 2.5).

Now we can precisely state

Theorem 2.8. (F. and J. Rodríguez-Hertz [21].) If M is a closed d-manifold and X ∈ X(M) is cohomologically rigid,
then there exists a Diophantine projection p :M → Tβ1 for X, where β1 = β1(M) is the first Betti number of M .

This result is used as the fundamental tool in the proof of Theorem 3.1.

2.5. Tangent, normal and projective flows

In this short paragraph we introduce some terminology that we shall use in Section 4.
Let X ∈ Xr (M) (r � 2) be a singularity-free vector field in M and {Φt

X} be its induced flow. Then, the tangent flow
of X is nothing but the derivative of its induced flow and will be denoted by {DΦt

X}.
Since X is singularity-free, we can define the normal bundle associated to X as the quotient bundle NX

.=
T M/RX → M . Its natural bundle projection (induced by π :T M → M) will be denoted by πN :NX → M , and
we shall write prX :T M → NX for the canonical quotient projection.

Since the line bundle RX is invariant under the action of the tangent flow {DΦt
X}, it clearly induces a linear flow

on NX which will be called the normal flow and will be denoted by {NΦt
X}.

Finally, we can projectivize each fiber of πN :NX → M to get a new fiber bundle πP : P(NX) → M , called the
projective bundle. The normal flow will induce a bundle flow on P(NX) which will be denoted by {PΦt

X}. We will
write prP :NX \ {0} → P(NX) 2 for the canonical quotient projection given by prP : v̂ �→ (R \ {0})v̂.

2.6. Hyperbolic dynamics

In this paragraph we introduce some notations and known results on hyperbolic dynamics that will be useful in
Section 4.

Given a vector bundle π :E → M and a singularity-free vector field Y ∈ Xr (M) (r � 2), we say that A : R×E → E

is a linear cocycle over {Φt
Y } if, for every t , Φt

X ◦ π = π ◦ A(t, ·), where the maps A(t, ·) :π−1(p) → π−1(Φt
X(p))

are linear isomorphisms verifying

A(t0 + t1,p) = A
(
t0,Φ

t1
X(p)

)
A(t1,p), ∀p ∈ M, ∀t0, t1 ∈ R.

The cocycle A is said to be Anosov if there exist two continuous sub-bundles Es,Eu ⊂ E, a C0 Finsler structure
‖ · ‖ in E, and real constants C > 0 and ρ ∈ (0,1) verifying

• Es ⊕ Eu = E,
• A(t,Eσ

p ) = Eσ
Φt

Y (p)
, for every p ∈ M , every t ∈ R and σ = s, u,

• ‖A(t, ·)|Es ‖ � Cρt , and ‖A(−t, ·)|Eu‖ � Cρt , for every t > 0.

2 In this context {0} means the zero section of NX.
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On the other hand, the cocycle A is said to be quasi Anosov if, given any v ∈ E, it holds

sup
t∈R

∥∥A(v, t)
∥∥ < ∞ ⇒ v = 0. (2.8)

The following result appears in different forms, and in fact with different hypothesis, in the works of Mañé [14],
Sacker and Sell [23], and Selgrade [25,26]:

Theorem 2.9. If the flow {Φt
Y } does not have any wandering point (i.e. every non-empty open set U ⊂ M satisfies

Φt
Y (U) ∩ U �= ∅, for some t > 1), then a cocycle A over {Φt

Y } is quasi Anosov if and only if it is Anosov.

On the other hand, we shall say that Y ∈ Xr (M) is Anosov if there exists a codimension-one DΦY -invariant sub-
bundle F ⊂ T M verifying F ⊕RX = T M and such that DΦY |F : R×F → F is an Anosov linear cocycle (over {Φt

Y }.
Then we have the following result due to Doering:

Theorem 2.10. (Doering [3].) Let suppose that {Φt
Y } does not have any wandering point. Then, Y is an Anosov vector

field if and only if its normal flow {NΦt
Y } (see Section 2.5) is an Anosov linear cocycle (over {Φt

Y }).

3. Non-vanishing first Betti number

In this section we begin the proof of Theorem A considering the case where the supporting manifold has non-trivial
real first homology group. In fact, the main purpose of this section consists in proving the following

Theorem 3.1. Let M be a closed, orientable 3-manifold such that β1(M) � 1, and let us suppose that X ∈ X(M)

is a cohomologically rigid vector field. Then, M is diffeomorphic to T3 and X is C∞-conjugated to a Diophantine
constant vector field on T3.

To simplify the exposition, we will subdivide the proof of Theorem 3.1 in the following partial results:

Lemma 3.2. Under the hypothesis of Theorem 3.1, there exists n0 ∈ Z such that M is diffeomorphic to the torus
bundle T3

A

.= T2 × R/(x, t) ∼ (Ax, t − 1), where

A
.=

(
1 0
n0 1

)
∈ SL(2,Z). (3.1)

In particular, it holds

β1(M) � 2. (3.2)

Lemma 3.3. The flow {Φt
X} is smoothly conjugated to the suspension of the affine 2-torus automorphism A + γ , for

some γ ∈ T2 and A given by (3.1).

Assuming Lemmas 3.2 and 3.3, now we can easily prove Theorem 3.1:

Proof of Theorem 3.1. Let us suppose that n0 �= 0 in (3.1). Then, applying a construction attributed to Katok [11],
for each m ∈ Z \ {0} we define Tm ∈ D′(T2) by

〈Tm,ψ〉 .=
∑
k∈Z

ψ̂(kn0m,m)e−2πikm(γ2+ k−1
2 n0γ1), ψ ∈ C∞(T2,R) (3.3)

where γi are the coordinates modulo Z of γ . Straight forward computations show that each Tm is (A + γ )-invariant
and {Tm: m ∈ Z \ {0}} is linearly independent.

By Lemma 3.3, there exists a C∞ diffeomorphism H :M → T3
A conjugating {Φt

X} and the suspension of A + γ ,
denoted by {[A + γ ]t }.
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Finally, for each m ∈ Z \ {0}, we define T̃m ∈ D′(M) by

〈T̃m,ψ〉 .=
1∫

0

〈
Tm,

(
ψ ◦ H−1 ◦ [A + γ ]−t

)∣∣
T2×{t}

〉
dt, ∀ψ ∈ C∞(M,R). (3.4)

Notice that, by a minor abuse of notation, we are supposing that each Tm is a distribution on T2 × {0} ⊂ T3
A.

Once again, simple computations let us show that the distributions T̃m are X-invariant and linearly independent,
which clearly contradicts Proposition 2.4.

Therefore, it must hold n0 = 0, and M is diffeomorphic to T3. By Proposition 2.6, X is smoothly conjugated to a
Diophantine vector field on T3. �

Lemmas 3.2 and 3.3 will be proved in the following two paragraphs.

3.1. Torus bundle structure

In this paragraph we shall prove Lemma 3.2, so we will continue working under the hypothesis of Theorem 3.1.
Since β1(M) � 1, we can apply Theorem 2.8 to affirm that there exists a Diophantine projection for X over T1,

i.e. a smooth fibration p :M → T1 such that Dp(X) ≡ α ∈ R \ {0}. This implies that, for all θ ∈ T1, Mθ
.= p−1(θ) is

a transverse section for X, and by the minimality of {Φt
X}, Mθ must be a global section. So, the Poincaré first return

map to Mθ is given by the diffeomorphism

Pθ
.= Φα−1

X

∣∣
Mθ

:Mθ → Mθ.

Clearly, Pθ cannot exhibit any periodic point. Then, the Euler characteristic of Mθ must vanish [6]. So we can
conclude that any fiber of p is diffeomorphic to a disjoint union of k copies of T2. Let us notice that we do not lose
any generality assuming that k = 1. In fact, if Ek : θ �→ kθ is the standard k-fold covering of T1, then it is easy to
verify that we can find another fibration p̃ :M → T1 satisfying

M
p̃ p

T1 Ek
T1

From this commutative diagram it follows that each p̃-fiber is a connected component of a p-fiber, and p̃ is clearly a
Diophantine projection for X too.

To simplify our notation, we will suppose that our original fibration p has connected fibers. Therefore, p is a 2-torus
bundle over T1, and since M is orientable, there exist a matrix A ∈ SL(2,Z) and a diffeomorphism H :M → T3

A

verifying pr2 ◦ H = p, where T3
A

.= T2 × R/(x, t) ∼ (Ax, t − 1) and pr2 : T3
A → T1 is the projection on the second

factor.
From this observation it easily follows that L(Pθ ), the Lefschetz number of Pθ , equals to det(A− id). In particular,

by Lefschetz fixed point theorem, we conclude that the spectrum of A is equal to {1}. Then, we can suppose that A

coincides with its Jordan form, i.e.

A =
(

1 0
n0 1

)
.

Finally, let ΣA : T2 × R → T3
A be the quotient projection induced by the suspension of A ∈ SL(2,Z) ⊂ Diff(T2).

Then, ΣA is clearly a covering map and its deck group is generated by

T2 × R � (
(θ1, θ2), t

) �→ (
(θ1 − n0θ2, θ2), t + 1

)
.

This implies that the forms dθ2, dt ∈ Λ1(T2 × R) are invariant under the action of the deck group of ΣA. Therefore,
both forms can be pushed forward by ΣA getting two closed forms on T3

A which clearly induced linear independent
elements of H 1(T3 ). In particular, this implies β1(M) � 2, as desired.
A
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3.2. Smooth linearization

This paragraph is devoted to prove Lemma 3.3. The main ingredients of the proof are Theorem 2.8, Herman–Yoccoz
linearization theorem for smooth circle diffeomorphisms [8,31], and the following “foliated” version of Moser isotopy
theorem for volume forms [17], which is nothing but a two-dimensional reformulation of Theorem 6.1 in [29]:

Proposition 3.4. Let Ω1,Ω2 ∈ Λ2(T2) be two volume forms and suppose they satisfy:

Ω1
(
pr−1

1 (C)
) = Ω2

(
pr−1

1 (C)
)
,

for every Borel measurable set C ⊂ T1 and where we are considering Ω1 and Ω2 as elements of M(T2). Then there
exists H ∈ Diff(T2) isotopic to the identity verifying

H ∗Ω1 = Ω2, and H ∗ dθ1 = dθ1,

where (θ1, θ2) are the canonical coordinates of T2.

By Lemma 3.2, we know that β1(M) � 2, and hence, by Theorem 2.8, there exists a Diophantine projection
q :M → T2 for X. Let us write

α = (α1, α2)
.= Dq(X) ∈ R2. (3.5)

If pr1 : T2 � (θ1, θ2) �→ θ1 ∈ T1 denotes the projection on the first coordinate, we can define the map p
.= pr1 ◦

q :M → T1, which is a Diophantine projection for X, too.
Repeating an argument analogous to that used in Section 3.1 we can assume that the fibers of p and q are connected,

and therefore, p-fibers (q-fibers) are diffeomorphic to T2 (T1, respectively).
Let Ω ∈ Λ3(M) be the normalized (i.e.

∫
M

Ω = 1 when we have already fixed an orientation on M) X-invariant
smooth volume form (see Proposition 2.4).

If θ̄ is any point in T1, and P :p−1(θ̄) → p−1(θ̄) denotes the Poincaré first return map to p−1(θ̄), then

ω
.= iXΩ

∣∣
p−1(θ̄)

∈ Λ2(p−1(θ̄ )
)
,

is a smooth P -invariant area form on p−1(θ̄).
On the other hand, every q-fiber is contained in a p-fiber, and then, on each p-fiber we have a 1-dimensional

foliation, whose leaves are all diffeomorphic to T1, which is invariant under the action of P .
It is well-known that any two smooth codimension-one foliations in T2 with all their leaves compact are diffeo-

morphic. Hence, we can find a C∞ diffeomorphism H0 :p−1(θ0) → T2 verifying

DH0
(
T

(
q−1(θ̄ , θ)

)) = kerdθ1, ∀θ ∈ T1. (3.6)

where (θ1, θ2) are the canonical coordinates in T2.
Notice that Eq. (3.6) lets us affirm that H0 ◦ P ◦ H−1

0 is a skew-product over T1, i.e. there exists h0 ∈ Diff+(T1)

and η ∈ C∞(T2,R) such that

H0
(
P

(
H−1

0 (θ1, θ2)
)) = (

h0(θ1), θ2 + n0θ1 + (
η(θ1, θ2) + Z

))
. (3.7)

On the other hand, the rotation number of h0 is equal to α2α
−1
1 + Z, where α = (α1, α2) is given by (3.5). Taking into

account that α is Diophantine, it is easy to verify that there exist positive real constants C and τ satisfying∣∣∣∣m − n
α2

α1

∣∣∣∣ � C

nτ
, ∀m ∈ Z, ∀n ∈ N. (3.8)

Therefore, by Herman–Yoccoz linearization theorem [8,31] we know that h0 is smoothly conjugated to the rotation
θ �→ θ + (α2α

−1
1 +Z). So, we do not lose any generality supposing that in (3.7) h0 is indeed equal to the rotation, and

this is what we will do to simplify the notation.
In particular, this implies that Leb2 and H−1

0
∗
ω satisfy the hypothesis of Proposition 3.4, so there exists H1 ∈

Diff+(T2) preserving the vertical foliation {{θ1} × T1}θ1∈T1 of T2 and such that

H ∗
1 Leb2 = H−1∗

ω. (3.9)
0
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From (3.7) and (3.9) we can conclude that H1 ◦ H0 ◦ P ◦ H−1
0 ◦ H−1

1 is an area-preserving skew-product in T2,
and therefore,

H1
(
H0

(
P

(
H−1

0 (H−1
1 (θ1, θ2))

))) =
(

θ1 +
(

α2

α1
+ Z

)
, θ2 + n0θ1 + (

ζ(θ1) + Z
))

, (3.10)

for some ζ ∈ C∞(T1,R).
On the other hand, using Fourier series techniques analogous to those used to prove Proposition 2.6 we can easily

show that, since α2α
−1
1 satisfies estimate (3.8), the rotation θ �→ θ + (α2α

−1
1 +Z) is cohomologically rigid. Therefore,

we can find u ∈ C∞(T1,R) verifying

u
(
θ + (

α2α
−1
2 + Z

)) − u(θ) = −ζ(θ) +
∫
T1

ζ dLeb1, ∀θ ∈ T1. (3.11)

Finally, conjugating H1 ◦ H0 ◦ P ◦ H−1
0 ◦ H−1

1 with the diffeomorphism

(θ1, θ2) �→ (
θ1, θ2 + u(θ1)

)
,

we get an affine 2-torus automorphism whose linear part is equal to A, as desired.

4. Vanishing first Betti number

In this section we complete the proof of Theorem A, proving the following

Theorem 4.1. If M is a closed orientable 3-manifold so that H1(M,R) = 0, then M does not support any cohomo-
logically rigid smooth vector field.

So, from now on we shall assume that M satisfies the hypothesis of Theorem 4.1, and by contradiction, we will
suppose that X ∈ X(M) is a cohomologically rigid vector field.

Our first step to prove Theorem 4.1 is the following

Proposition 4.2. There exists λ ∈ Λ1(M) such that λ(p) �= 0, for every p ∈ M , and

LXλ ≡ 0 and iX dλ ≡ 0.

Proof. By Proposition 2.3 we know that there exists an X-invariant volume form Ω ∈ Λ3(M). Hence, if we write
ω

.= iXΩ , Cartan’s formula lets us affirm

0 = LXΩ = d(iXΩ) + iX(dΩ) = dω.

Notice that, by Poincaré duality, H 2(M,R) = 0. Then, there exists a 1-form λ̃ such that ω = dλ̃. Applying Cartan’s
formula once again we obtain

LXλ̃ = d(iXλ̃) + iX(dλ̃) = d(iXλ̃) + iX(iXΩ) = d(iXλ̃),

where iXλ̃ is an element of C∞(M,R). So, there exists a smooth function u :M → R verifying

LXu = −iXλ̃ +
∫
M

(iXλ̃)Ω. (4.1)

Therefore, if we define λ
.= λ̃ + du, it still holds dλ = ω, and iXdλ = iX(iXΩ) ≡ 0. Moreover,

LXλ = LXλ̃ + LXdu = d(iXλ̃) + d(iXdu)

= d
(
iXλ̃ + LXu

) = d

(∫
M

(iXλ̃)Ω

)
= 0.

Then, taking into account the minimality of {Φt
X}, we easily see that λ exhibits a singularity if and only if λ ≡ 0.

On the other hand, since dλ = iXΩ �= 0, we know that λ �≡ 0, and so, λ does not have any singularity. �



1174 A. Kocsard / Ann. I. H. Poincaré – AN 26 (2009) 1165–1182
Notice that, since dimM = 3, it holds

0 = iX(λ ∧ Ω) = (iXλ)Ω − λ ∧ iXΩ

= (iXλ)Ω − λ ∧ ω = (iXλ)Ω − λ ∧ dλ.

That is

λ ∧ dλ = (iXλ)Ω, (4.2)

where iXλ is a real constant.
In the following paragraphs we will analyze separately the cases where iXλ �= 0 and iXλ = 0.

4.1. The contact case: iXλ �= 0

When iXλ �= 0, Eq. (4.2) implies that λ is a contact form. On the other hand, by Proposition 4.2 we know that
iXdλ ≡ 0, and therefore, (iXλ)−1X is the Reeb vector field induced by λ. And then we easily get to a contradiction
invoking the famous Weinstein conjecture [30], which was recently proven by Taubes:

Theorem 4.3. (Taubes [27].) Let N be a closed orientable 3-manifold, η ∈ Λ1(N) be a smooth contact form and
Y ∈ X(N) be its Reeb vector field (i.e. iY η ≡ 1 and iY dη ≡ 0). Then, the flow induced by Y exhibits a periodic orbit.

Clearly, the existence of a periodic orbit is not compatible with the minimality of {Φt
X}, and we get the desired

contradiction.
Nevertheless, at this point we must recognize that it would be very desirable to solve this case not invoking Taubes’

proof of Weinstein conjecture. In fact, in a certain way the Katok conjecture is just the first step toward the compre-
hension of how the topology of the manifold generates obstructions when we try to solve cohomological equations.
And from this point of view the sophistication of the techniques used by Taubes in [27] does not let us understand
what is really happening in this case.

4.2. The completely integrable case: iXλ = 0

When iXλ = 0, Eq. (4.2) implies that kerλ is a completely integrable plane field, i.e. there exists a smooth
codimension-one foliation in M tangent to kerλ.

While this work was in progress, Forni communicated to the author that he had been able to solve this case using
the foliation tangent to kerλ to prove that M should be diffeomorphic to a nilmanifold and {Φt

X} smoothly conjugated
to a homogeneous flow. On the other hand, Greenfield and Wallach had already proved in [7] that T3 was the only
3-dimensional nilmanifold that supported cohomologically rigid homogeneous vector fields (this result was extended
by Flaminio and Forni [4] to higher dimensional nilmanifolds).

Our techniques are completely different to those of Forni [5]. The main novelty of ours consists in using the
integrability condition in a very indirect way, and this lets us believe that most of our proof could be reusable to solve
the “contact case” independently of Taube’s proof of Weinstein conjecture [27].

Very roughly, our strategy consists in doing a very detailed analysis of the dynamics of the tangent flow {Φt
X},

proving that the normal flow as well as the tangent flow restricted to the kernel of λ exhibit a “parabolic behavior”.
Then, we shall see that this implies that our original flow {Φt

X} should be positively expansive (see Definition 4.12).
Finally, we show that there does not exist positively expansive flows on closed 3-manifolds.

4.2.1. Two simple properties of the normal flow
In this short paragraph we start the analysis of the dynamics of the normal flow {NΦt

X}, presenting two very simple
lemmas.

Let us start introducing any smooth Riemannian structure 〈·, ·〉 in T M . This naturally induces another Riemannian
structure 〈·, ·〉NX in NX defining, for each p ∈ M ,

〈v1, v2〉NX
.= 〈

v′
1, v

′
2

〉
, ∀v1, v2 ∈ NXp,
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where v′
i is the only element of TpM verifying simultaneously 〈X(p), v′

i (p)〉 = 0 and prX(v′
i ) = vi . The Finsler

structures induced by 〈·,·〉 and 〈·,·〉NX will be denoted by ‖ · ‖ and ‖ · ‖NX , respectively. As usual, we shall also use
the Riemannian structures 〈·,·〉 and 〈·,·〉NX to measure angles between non-null vectors of the same fiber. Making
some abuse of notation, we shall use the symbol �(·,·) for both.

Now, we can present our first result about the dynamics of our normal flow {NΦt
X}:

Lemma 4.4. There exists v̂0 ∈ NX such that v̂0 �= 0 and

sup
t∈R

∥∥NΦt
X(v̂0)

∥∥
NX

< ∞. (4.3)

Proof. Let us suppose estimate (4.3) is not satisfied by any non-vanishing vector in NX. In other words, let suppose
that NΦX : R × NX → NX is quasi-Anosov. By Theorem 2.9, {NΦt

X} is an Anosov cocycle. Then, Theorem 2.10
lets us affirm that X is indeed Anosov.

Finally, it is a very well-known fact that any Anosov flow exhibits (infinitely many) periodic orbits [1], which
clearly contradicts the minimality of {Φt

X}. �
Our second result about the dynamics of the normal flow is the following

Lemma 4.5. The normal flow {NΦt
X} is conservative. More precisely, there exists a symplectic form κ on the vector

bundle πN :NX → M which is invariant under the action of {NΦt
X}.

Proof. Notice that ω = iXΩ = dλ is a 2-form on T M verifying iXω ≡ 0. This implies that we may push-forward this
form by prX on NX, i.e. we can find a smooth 2-form κ on NX such that

κ
(
prX(v),prX(w)

) = ω(v,w), ∀v,w ∈ TpM, ∀p ∈ M.

Now, it is very easy to verify that κ is symplectic on NX and NΦX-invariant. �
4.2.2. Dynamics of the projective flow

This paragraph is devoted to prove that the dynamics of the projective flow is very simple. In fact, we shall get that
the limit set of {PΦt

X} is a smooth submanifold of P(NX) which happens to be a graph over M , being the dynamics
on this set smoothly conjugated to {Φt

X}.
For this, first we need the following result due to Nakayama and Noda about the geometry and amount of minimal

sets of the projective flow:

Theorem 4.6. (Nakayama and Noda [18].) Let V be a closed 3-manifold and let Y ∈ X(V ) be such that its induced
flow ΦY : R × V → V is minimal.

Let PΦY : R × P(NY) → P(NY) be the projective flow of Y . Hence, we have:

(1) If {PΦt
Y } exhibits more than two minimal sets, then V is diffeomorphic to T3 and {Φt

X} is continuously conjugate
to an irrational translation.

(2) If {PΦt
Y } exhibits exactly two minimal sets M1,M2 ⊂ P(NY) and {Φt

X} is not C0-conjugate to an irrational
translation on T3, then for any z ∈ V it holds: M1 ∩ π−1

P
(z) or M2 ∩ π−1

P
(z) consists of a single point. Moreover,

there exists a residual subset B ⊂ V such that both sets M1 ∩ π−1
P

(z) and M2 ∩ π−1
P

(z) contain just a point, for
every z ∈ B .

Since we are assuming that H1(M,R) = 0, Theorem 4.6 lets us affirm that the flow {PΦt
X} exhibits at most two

minimal sets. Then, observe that one of the minimal sets (in fact, we will prove this is the only one) is given by the
prP-projection of the plane field

Σ
.= kerλ ⊂ T M.

Indeed, for any p ∈ M we have X(p) ∈ Σp , and hence,

EΣ
.= prX

(
Σ \ {0}) ⊂ NX, (4.4)
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is a smooth one-dimensional linear sub-bundle of NX. In this way, EΣ determines exactly one point on each fiber of
πP : P(NX) → M . More precisely, we may define θp

.= prP(EΣp \ {0}) ∈ π−1
P

(p).
Notice that since the plane field Σ is invariant under the action of {DΦt

X}, we have the flow {NΦt
X} leaves invariant

the line field EΣ , and therefore, it holds PΦt
X(θp) = θΦt

X(p), for every p ∈ M and every t ∈ R. So, summarizing we
have

KΣ
.= {θp: p ∈ M} ⊂ P(NX) (4.5)

is a minimal set for {PΦt
X}.

As it was already mentioned above, we aim to prove the following

Theorem 4.7. The only minimal set for the flow {PΦt
X} is KΣ ⊂ P(NX), defined in (4.5).

To prove Theorem 4.7 we shall suppose that there exists another minimal set K0 ⊂ P(NX) (of course, different
from KΣ ), and for the sake of clarity of the exposition we will divide the proof in several lemmas:

Lemma 4.8. The sub-bundle EΣ ⊂ NX defined in (4.4) is orientable, and therefore, it admits a non-vanishing section
Ŷ0 ∈ Γ (EΣ).

Proof. Since M is orientable and Σ was defined as the kernel of a non-singular 1-form, the vector bundle π |Σ :Σ →
M is orientable. On the other hand, our vector field X can be considered as a non-singular element of X ∈ Γ (Σ). This
lets us affirm that Σ → M is a globally trivial vector bundle. Therefore, we can find a smooth section Y0 ∈ Γ (Σ)

verifying Σp = span{X(p),Y0(p)}, for every p ∈ M .
Finally, defining Ŷ0

.= prX(Y0) we get our desired section of EΣ → M . �
Lemma 4.9. Assuming that there exists another minimal set K0 ⊂ P(NX) (different from KΣ ), we can find a non-
vanishing Ŷ ∈ Γ (EΣ) verifying

NΦt
X

(
Ŷ (p)

) = Ŷ
(
Φt

X(p)
)
, ∀p ∈ M, ∀t ∈ R. (4.6)

Proof. Let LΣ ∈ C∞(M,R) be defined by

LΣ(p)Ŷ0(p) = lim
t→0

NΦ−t
X (Ŷ0(Φ

t
X(p))) − Ŷ0(p)

t
, ∀p ∈ M, (4.7)

where Ŷ0 is the smooth section of EΣ given by Lemma 4.8.
Using the fact that X is cohomologically rigid, we can find a function u ∈ C∞(M,R) verifying

LXu = −LΣ +
∫
M

LΣΩ. (4.8)

Then, if we define Ŷ
.= euŶ0, we clearly get

lim
t→0

NΦ−t
X (Ŷ (Φt

X(p))) − Ŷ (p)

t
=

(∫
M

LΣΩ

)
Ŷ (p), ∀p ∈ M,

and therefore, it holds

NΦt
X

(
Ŷ (p)

) = exp

(
t

∫
M

LΣΩ

)
Ŷ

(
Φt

X(p)
)
, (4.9)

for every p ∈ M and every t ∈ R.
Notice that by Eq. (4.9),

∫
M

LΣΩ is a Lyapunov exponent of the linear cocycle {NΦt
X}. So, let us suppose that∫

M
LΣΩ �= 0. In this case, the one-dimensional sub-bundle EΣ ⊂ NX is uniformly hyperbolic.
On the other hand, by Theorem 4.6 we know that K0 and KΣ are the only two minimal sets in P(NX), and

moreover, we can find a point p0 ∈ M such that θ ′ ∈ P(NX) is the only point in K0 ∩ π−1(p0).
P
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Observe that since K0 and KΣ are disjoint and closed, there exists a real constant C > 0 such that

distP
(
PΦt

X(θp0),PΦt
X(θ ′)

)
> C, ∀t ∈ R, (4.10)

where distP denotes the distance function on P(NX) induced by the Riemannian structure 〈·, ·〉NX .
Then, by conservativeness proved in Lemma 4.5, estimate (4.10) and Eq. (4.9) we have that any vector v̂ ∈ NXp0

whose prX-projection is equal to θ ′ ∈ K0 ∩ π−1
P

(p0) will satisfy the following estimate:

∥∥NΦt
x(v̂)

∥∥
NX

� C′ exp

(
−t

∫
M

LΣΩ

)
‖v̂‖NX, ∀t ∈ R, (4.11)

for some real constant C′ > 0, which just depends on constant C in (4.10).
From Eq. (4.9) and estimate (4.11) (and supposing that

∫
M

LΣΩ �= 0), we clearly conclude that Oseledets splitting
(see [19]) of {NΦt

X} ({NΦt
X} can be thought as a linear cocycle over {Φt

X}) is not just measurable, but continuous and
uniformly hyperbolic. This implies that {NΦt

X} is an Anosov cocycle, and by Theorem 2.10 we know that X must be

Anosov, which is clearly impossible since {Φt
X} does not have any periodic orbit.

Therefore, the contradiction arises from our assumption that
∫
M

LΣΩ �= 0. Finally, Eq. (4.9) lets us assure that Ŷ

is a NΦX-invariant section, as desired. �
Now, we are ready to complete the

Proof of Theorem 4.7. Let K0 ⊂ P(NX), p0 ∈ M , Ŷ ∈ Γ (EΣ) and θ ′ ∈ K0 ∩ π−1
P

(p0) ⊂ P(NX) as above. Let
v̂ ∈ NXp0 such that prP(v̂) = θ ′.

We can rewrite estimate (4.10) as

inf
t∈R

�
(
Ŷ

(
Φt

X(p)
)
,NΦt

X(v̂)
)
> 0. (4.12)

Putting together Eq. (4.6), estimate (4.12) and Lemma 4.5 we see that there exists a real constant C′′ > 1 so that

1

C′′ <
∥∥NΦt

X(v̂)
∥∥

NX
< C′′, ∀t ∈ R. (4.13)

Now, consider another vector ŵ ∈ NXp0 \{0} such that prP(ŵ) �∈ KΣ ∪K0. Since KΣ and K0 are the only minimal
sets for {PΦt

X}, we know that the ω-limit of prP(ŵ) must intersects either K0 or KΣ . Let us suppose that the positive
semi-orbit of prP(ŵ) accumulates on KΣ . This implies that

lim inf
t→+∞ �

(
Ŷ

(
Φt

X(p0)
)
,NΦt

X(ŵ)
) = 0. (4.14)

Once again, taking into account that {NΦt
X} preserves the symplectic form κ and the section Ŷ ∈ Γ (NX), we see

that Eq. (4.14) implies that

lim sup
t→+∞

∥∥NΦt
x(ŵ)

∥∥
NX

= ∞. (4.15)

Finally, we clearly see that estimates (4.12), (4.13) and (4.15) violate conservativeness.
Analogously we can get a contradiction supposing that the ω-limit of prP(ŵ) intersects K0. In this way we conclude

that KΣ is the only minimal set for {PΦt
X}. �

4.2.3. Dynamics of the normal flow
In Section 4.2.1 we begun the analysis of the dynamics of the normal flow {NΦt

x}. After what we have just done in
Section 4.2.2, here we shall see that some of those results can be considerably improved. In fact, we will completely
characterize the dynamics of {NΦt

X}, showing that it exhibits a parabolic behavior.
In Lemma 4.4 we showed that there was some non-null vector in NX such that its whole NΦX-orbit was bounded.

On the other hand, in Lemma 4.9, under the assumption that there were two different minimal sets for {PΦt
X}, we

proved there existed Ŷ ∈ Γ (EΣ) which was invariant under the action of {NΦt
X}. Our first result of this paragraph

consists in proving that we can get the same invariant section assuming, in this case, that KΣ is the only minimal set:
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Lemma 4.10. There exists a non-vanishing section Ŷ ∈ Γ (EΣ) verifying

NΦt
X

(
Ŷ (p)

) = Ŷ
(
Φt

X(p)
)
, ∀p ∈ M, ∀t ∈ R. (4.16)

Proof. Continuing with the notation of Lemma 4.9, let Ŷ0 ∈ Γ (EΣ) be a section given by Lemma 4.8, LΣ ∈
C∞(M,R) defined by Eq. (4.7), u :M → R given by Eq. (4.8), and Ŷ

.= euŶ0.
Recalling equation (4.9), we have

NΦt
X

(
Ŷ (p)

) = exp

(
t

∫
M

LΣΩ

)
Ŷ

(
Φt

X(p)
)
, ∀t ∈ R.

On the other hand, by Lemma 4.4, there exists v̂0 ∈ NX \ {0} such that its NΦX-orbit is bounded, and by the
arguments used in the proof of Theorem 4.7, we know

lim inf
t→±∞ distP

(
prP

(
Ŷ

(
Φt

X

(
πN(v̂0)

)))
,prP

(
NΦt

x(v̂0)
)) = 0. (4.17)

This clearly implies that ‖NΦt
X(Ŷ )‖NX cannot exhibit exponential growth, and therefore

∫
M

LΣΩ = 0, getting

the desired invariance of Ŷ . �
Next, notice that πN :NX → M is an orientable vector bundle with 2-dimensional fibers and Ŷ is a non-singular

section of this bundle. This clearly implies that πN :NX → M is globally trivial, so we can find a smooth section
Ẑ0 ∈ Γ (NX) verifying

κ
(
Ŷ (p), Ẑ0(p)

) = 1, ∀p ∈ M, (4.18)

and in particular, it holds span{Ŷ , Ẑ0} = NX.
The arguments used in the proof of Theorem 4.7 let us affirm that there exists σ ∈ {−1,1} satisfying

lim inf
t→+∞ �

(
NΦt

X

(
Ẑ0(p)

)
, σ Ŷ

(
Φt

X(p)
)) = 0,

lim inf
t→−∞ �

(
NΦt

X

(
Ẑ0(p)

)
,−σ Ŷ

(
Φt

X(p)
)) = 0. (4.19)

There is no lost of generality if we suppose that σ = 1 in (4.19).
Using {Ŷ , Ẑ0} as an ordered basis for NX, NΦt

X :NXp → NXΦt
X(p) can be represented by an element of SL(2,R),

and indeed, it will have the following form:

NΦt
X(p) =

(
1 â(p, t)

0 1

)
, (4.20)

where â :M × R → R is a smooth function satisfying â(·,0) = 0.
Then, if we define Â ∈ C∞(M,R) by Â(p)

.= ∂t â(p, t)|t=0, we can find a smooth real function B̂ such that

LXB̂ = −Â +
∫
M

ÂΩ. (4.21)

Function B̂ can be used to define a new section

Ẑ
.= Ẑ0 − B̂Ŷ ∈ Γ (NX),

and in this way we clearly have

NΦt
X

(
Ẑ(p)

) = Ẑ
(
Φt

X(p)
) + t

(∫
M

ÂΩ

)
Ŷ

(
Φt

X(p)
)

(4.22)

for any t ∈ R and p ∈ M .
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From (4.19) and (4.22) we easily see that
∫
M

ÂΩ > 0, proving that, in fact, {NΦt
X} exhibits a parabolic behavior

as desired.

4.2.4. Dynamics on Σ

In this short paragraph we shall analyze the dynamics of the tangent flow DΦX : R × T M → T M restricted to the
invariant sub-bundle Σ ⊂ T M .

Our main result here aims to prove that {DΦt
X} on Σ , as {NΦt

X} on NX, has a parabolic behavior. In fact, the
techniques used here are very similar to those used in Section 4.2.1. The only novelty is that a priori we do not have
any information about the projective flow induced by DΦX : R × Σ → Σ .

In this case we know that, for each p and t , DΦt
X(X(p)) = X(Φt

X(p)) and therefore, we should prove that all the
vectors non-collinear with X have polynomial growth and their directions converge to the direction of X.

Let us start considering any smooth vector field Y0 ∈ Γ (Σ) ⊂ X(M) verifying

prX
(
Y0(p)

) = Ŷ (p), ∀p ∈ M. (4.23)

Then, notice that putting together Eqs. (4.16) and (4.23) we can affirm that

LXY0 = AX, (4.24)

for some A ∈ C∞(M,R).
Once again, since X is cohomologically rigid, there exists B ∈ C∞(M,R) satisfying

LXB = −A +
∫
M

AΩ. (4.25)

We use this function B to define a new vector field

Y
.= Y0 + BX ∈ Γ (Σ) ⊂ X(M). (4.26)

Notice that it continues to hold span{X,Y } = Σ ⊂ T M and, additionally, we get

LXY ≡
(∫

M

AΩ

)
X. (4.27)

Thus, we have the following

Lemma 4.11. Function A ∈ C∞(M,R) given by Eq. (4.24) satisfies∫
M

AΩ �= 0.

Proof. Contrarily, let us suppose that
∫
M

AΩ = 0.
Then, Eq. (4.27) is equivalent to say that [X,Y ] ≡ 0, i.e. X and Y commute. Since X and Y generate Σ , in

particular they are everywhere linearly independent, and so, these vector fields induce a locally free R2-action on M .
Finally, by a result due to Rosenberg, Roussarie and Weil [22] we know that the only orientable closed 3-manifolds

admitting locally free R2-actions are 2-torus bundles over a circle, and our manifold M clearly does not satisfy this
property since we are assuming that H1(M,R) = 0. �

As a corollary of this lemma we easily see that, given any p ∈ M , it holds ‖DΦt
X(Y (p))‖ → ∞, uniformly as

t → ±∞, and

lim
t→+∞�

(
DΦt

X

(
Y(p)

)
, σ0X

(
Φt

X(p)
)) = 0,

lim
t→−∞�

(
DΦt

X

(
Y(p)

)
,−σ0X

(
Φt

X(p)
)) = 0, (4.28)

where σ0
.= sign(

∫
AΩ) ∈ {1,−1}.
M
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For the sake of simplicity, and since we do not lose any generality, we shall assume that
∫

AΩ > 0, and thus,
σ0 = 1.

Summarizing what we have just proved, DΦt
X :Σp → ΣΦt

X(p) is a parabolic linear map, and taking the ordered set
{X,Y } as basis of Σ ⊂ T M , we can represent it by

DΦt
X

∣∣
Σ

=
(

1 t (
∫
M

AΩ)

0 1

)
. (4.29)

4.2.5. Expansiveness
In this paragraph we finish the proof of Theorem 4.1. For this, let us start recalling the definition of expansive flow

due to Bowen and Walters [2]:

Definition 4.12. Given a compact metric space (K,d), a continuous flow Ψ : R × K → K is called expansive if it
satisfies the following property:

For every ε > 0, there is a δ > 0 such that if there exists a pair of points x, y ∈ K and an orientation preserving
homeomorphism h : R → R with h(0) = 0 verifying

d
(
Ψ t(x),Ψ h(t)(y)

)
< δ, ∀t ∈ R, (4.30)

then y = Ψ τ (x), for some τ ∈ (−ε, ε).
Moreover, we shall say that Ψ is positively expansive (respectively negatively expansive) if the above esti-

mate (4.30) is satisfied replacing R by (0,+∞) (respec. (−∞,0)) in Eq. (4.30). More precisely, if it holds y = Ψ τ (x),
for some τ ∈ (−ε, ε), whenever

d
(
Ψ t(x),Ψ h(t)(y)

)
< δ, ∀t ∈ (0,+∞) (∀t ∈ (−∞,0)).

Then we get

Proposition 4.13. The flow {Φt
X} is positively expansive.

Proof. First notice that in Section 4.2.3 we have constructed a smooth section Ẑ ∈ Γ (NX) that verifies Eq. (4.22),
where

∫
M

ÂΩ �= 0 (in fact, we have supposed that this constant is positive). Then, if Z ∈ X(M) is any smooth vector

field verifying prX(Z) = Ẑ, we will clearly have that for every p ∈ M ,∥∥DΦt
X

(
Z(p)

)∥∥ → ∞, when t → ±∞, (4.31)

being the convergence uniform.
On the other hand, Eqs. (4.19) and (4.28) let us affirm that (modulo our sign assumptions made there), for every p,

it holds

�
(
DΦt

X

(
Z(p)

)
,X

(
Φt

X(p)
)) → 0, when t → +∞, (4.32)

being this convergence uniform, too.
Then, taking into account that {X,Y,Z} is a global basis for T M , jointly with Eqs. (4.11), (4.28), (4.31) and (4.32)

we can easily conclude that {Φt
X} is positively expansive, as desired.

And then we are very close to the end of our proof. In fact, as we will shortly see, there is no closed 3-manifold
supporting positively expansive flows. To get this, we will invoke the work of M. Paternain [20] about the existence
of stable and unstable foliations for expansive flows on 3-manifolds.

To recall Paternain’s result, first we need to introduce some additional notation. Let K be any closed manifold,
dist :K × K → R be any distance compatible with the topology of K and Ψ : R × K → K be a continuous expansive
flow.

As usual, given any x ∈ K , we can define its stable and unstable sets writing

Ws(x,Ψ )
.= {

y ∈ K: dist
(
Ψ t(x),Ψ t (y)

) → 0, as t → +∞}
,

Wu(x,Ψ )
.= {

y ∈ K: dist
(
Ψ −t (x),Ψ −t (y)

) → 0, as t → +∞}
,

respectively.
Then, we can precisely state
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Theorem 4.14. (Paternain [20].) If K is a closed 3-manifold and Ψ is an expansive flow on K , then there exists a
finite set (maybe empty) of periodic orbits γ1, γ2, . . . , γn of Ψ such that the partitions

F σ =
{

Wσ (x,Ψ ): x ∈ M
∖ n⋃

i=1

γi

}
, for σ = s, u,

are C0 codimension-two foliations on M \ ⋃
γi .

In our case we have prove that {Φt
X} is positively expansive, so Wu(p,Φ) = {p}, for every p ∈ M , contradicting

Theorem 4.14. �
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