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Abstract

We study the vortices of energy minimizers in the London limit for the Ginzburg–Landau model with periodic boundary condi-
tions. For applied fields well below the second critical field we are able to describe the location and number of vortices. Many of
the results presented appeared in [H. Aydi, Doctoral Dissertation, Université Paris-XII, 2004], others are new.
©

Résumé

Nous étudions les tourbillons des minimiseurs de l’énergie de Ginzburg–Landau en supraconductivité dans la limite de London,
et pour des conditions aux limites périodiques. Lorsque le champ magnétique appliqué est petit devant le second champ critique,
nous décrivons le nombre et la localisation de ces tourbillons. Certains de ces résultats étaient présents dans [H. Aydi, Doctoral
Dissertation, Université Paris-XII, 2004], d’autres sont nouveaux.
©
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1. Introduction

Periodic solutions of the Ginzburg–Landau equations of superconductivity with vortices arranged in a lattice were
first introduced in the famous work of A. Abrikosov [1], based on an analysis of the linearized equations about the
normal solution, where the order parameter is 0. Since then many contributions to the study of this type of solutions
have appeared both from physicists and mathematicians, establishing rigorously the existence of Abrikosov type so-
lutions ([20], more recently [5] established the existence of many other families of periodic solutions) or investigating
the energy or the minimality of these solutions [18,17] or their numeric analysis [12]. We may refer to the review
paper [10] for a broad overview of the subject from a physicist’s point of view.
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There is a convenient variational setting for the periodic Ginzburg–Landau equations, we may refer to [20,13] for
a mathematically oriented presentation of this setting, the existence of minimizers is proved in [20], the regularity of
solutions is established [13] together with other properties of minimizers or critical points of the Ginzburg–Landau
functional. Let us also cite the recent works [6] and [14], without going into further detail.

Opposite to the case of solutions close to 0, the so-called London limit or London approximation deals with so-
lutions where the order parameter has modulus close to 1, except in small areas (the vortex cores). This limit was
investigated by A. Abrikosov from the beginning, see also [10] for the use of this approximation in numerous situa-
tions, or the classical textbook [25]. The mathematical justification of this approach following the methods introduced
in [8] may be found in [22], where it is in addition applied to describe the vortices of minimizers of the Ginzburg–
Landau energy in a fixed domain Ω (in units of the penetration depth), when the Ginzburg–Landau parameter κ is
large and the applied field is small compared to the R

2-upper critical field, i.e. in the parameter region where mini-
mizers may indeed be analyzed using the London approximation.

In [7], the first author carried out for the case of periodic boundary conditions the analysis carried out in [22] in the
case of natural boundary conditions in a bounded domain. It was established among other things that in the periodic
case, the regime of the lower critical field is Hc1(κ) = logκ/2 to leading order as κ → +∞, see below for a precise
statement. Note that in the units used in [7], and in most regimes where vortices are present, there is a divergent number
of vortices as κ → ∞ in each periodicity cell. The periodicity cell is large compared to the intervortex distance, and
thus the periodicity constraint is not a strong one.

The present paper contains both results present in [7] and new results which complete them, in order to give a fairly
unified description of the vortices of minimizers of the Ginzburg–Landau functional in the limit κ → ∞, for applied
fields well below the upper critical field.

2. Statement of the results

Notation. Throughout, K will denote a parallelogram with area 1 generated by two vectors (�u, �v). We will denote
by L the group of translations generated by (�u, �v).

The parameter of our asymptotic analysis will be the inverse of the Ginzburg–Landau parameter κ , denoted by ε.
The applied field hex is a positive function of ε ∈ R

∗+, and we define

Δex = hex − 1

2
| log ε|.

As noted in the introduction, 1
2 | log ε| is the regime of the so-called lower critical field Hc1(ε), to be defined below,

this motivates the notation Δex.

Definition 1. We define H 1
per to be the set of (u,A) in H 1

loc(R
2) such that for any integers k, � ∈ Z the configuration

(u(· + k�u + ��v),A(· + k�u + ��v)) is gauge-equivalent to (u,A).

In a more geometrical language, u is a section of a complex line bundle over the torus R
2/L, and A is a connection.

Then curlA is the curvature of the connection and

1

2π

∫
K

curlA

is an integer, the first chern class of the line bundle.
Given (u,A) in H 1

per, and an for each ε > 0 an applied magnetic field hex(ε), we define for any ε > 0

Gε(u,A) = 1

2

∫
K

(
|∇u − iAu|2 + 1

2
(curlA − hex)

2 + 1

2ε2

(
1 − |u|2)2

)
.

Then the problem of minimizing Gε(u,A) over H 1
per is well posed.

Proposition 2.1. The minimum of Gε(u,A) over H 1
per is achieved.
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We refer to [20] for the proof.
A useful fact is

Proposition 2.2. Given any (u,A) ∈ H 1
per, then

1

2π

∫
K

curlA

is an integer. Moreover, if (u1,A1) minimizes the Ginzburg–Landau energy with parameters ε > 0 and hex = h1, and
if (u2,A2) minimizes the Ginzburg–Landau energy with parameters ε > 0 and hex = h2 > h1, then n2 � n1, where
we have set for i = 1,2

ni = 1

2π

∫
K

curlAi.

Proof. The fact that
∫
K

curlA ∈ 2πZ was already mentioned.
For the second statement, denote G1 (resp. G2) the Ginzburg–Landau functional with parameters (ε,h1) (resp.

(ε,h2)), then G1(u1,A1) � G1(u2,A2) and G2(u1,A1) � G2(u2,A2), hence

(G1 − G2)(u1,A1) � (G1 − G2)(u2,A2),

which translates as

(h2 − h1)

∫
K

curlA1 + 1

2

∫
K

(
h2

2 − h2
1

)
� (h2 − h1)

∫
K

curlA2 + 1

2

∫
K

(
h2

2 − h2
1

)
,

hence the result. �
Remark 2.1. As a consequence of the above proposition, for each ε > 0 there is a well-defined value Hc1(ε) which we
call the first critical field, and such that the minimizers of the Ginzburg–Landau functional with parameters (ε,hex)

satisfy n = 0 if hex < Hc1 , and n �= 0 if hex > Hc1 . Note that in the former case, the minimizers are necessarily
gauge-equivalent to the constant superconducting solution u = 1, A = 0, see below.

Theorem 1. Denote by (uε,Aε) any minimizer of Gε and let hε = curlAε . We define the integer nε by

2πnε =
∫
K

hε.

Then the following behaviour of hε , nε holds, according to the regime considered for the applied field hex.

(1) If 1 	 Δex 	 1/ε2, then, as ε → 0,

hε

2πnε

→ 1 in W 1,p for any p < 2, and nε ≈ Δex

2π
. (2.1)

(2) If Δex is bounded independently of ε then so is ‖hε‖W 1,p , for any p < 2. In particular nε is bounded independently
of ε. If {ε} is a subsequence such that {hε}ε converges to h∗ and Δex converges to a value Δ∗

ex, then nε → n∗ ∈ N

along the same subsequence, thus in particular nε = n∗ for small enough ε, and there are n∗ distinct points {ai}i
in K such that

−Δh∗ + h∗ = 2π

n∗∑
i=1

δai
. (2.2)

Moreover, denote by P the finite families of points in K and for p = (p1, . . . , pk) ∈ P let

W(p) = lim
ρ→0

(
πn logρ + 1

2

∫
K\⋃ B(p ,ρ)

|∇hp|2 + h2
p

)
+ n

(
γ − 2πΔ∗

ex

)
, (2.3)
i i
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where hp is the unique K-periodic solution of −Δhp + hp = 2π
∑k

i=1 δpi
. Then (a1, . . . , an∗) minimizes W

over P .
The number γ in (2.3) was introduced in [8], we define it as in [22], Proposition 3.11, as

γ = lim
R→+∞−π logR + 1

2

∫
B(0,R)

|∇u0|2 + (1 − |u0|2)2

2
, (2.4)

where u0 is the unique solution of −Δu0 = u0(1−|u0|2) in R
2 of the form u0(r, θ) = f (r)eiθ , with f : R+ → R+.

(3) There exists a possibly negative Δ1 ∈ R such that if Δex < Δ1 and ε is small enough, then n∗ = 0. In this case
(uε,Aε) is gauge-equivalent to the Meissner solution (1,0).

Remark 2.2. The first item in the above theorem was proved initially in [7].
The main difference between the periodic case and the case of a bounded domain is that in the former the distribu-

tion of vortices is always uniform, and hence may be described by a unique number, namely the number of vortices,
at least if it tends to +∞ as ε → 0. This is a big simplification over the case of a bounded domain, together with the
fact that here the number of vortices is given by the integral of h.

Remark 2.3. The fact that the minimum of W on P is achieved is a consequence of the above theorem, it could also
be derived directly from (2.3). From Proposition 2.2, if Δ2 > Δ1 ∈ R and if p1 (resp. p2) minimizes W for Δex = Δ1
(resp. Δex = Δ2), then the number of points in p2 is larger than the number of points in p1. This shows that there are
critical values of Δex for which the number of points for a minimizer experiences a jump, and it would be interesting
to show that it jumps by one unit only. This would show the existence of an increasing sequence of critical values
(Δk)k∈N∗ for which the number of vortices jumps from k − 1 to k.

Note that at a jump there exists minimizers with different numbers of vortices, hence the minimizer of W need
not be unique. Even if Δex is not a critical value, i.e. if minimizers of W all have the same number of points, if this
number is 2 for instance then the symmetry of the periodicity is broken and there are several minimizers as well.

Remark 2.4. Regarding the finer structure of vortices, they are expected in general to arrange themselves in periodic
lattices, and the hexagonal lattice is supposedly optimal. Several rigorous mathematical results in this direction have
been proved (see for instance [3,2,23]). In the periodic setting, the strongest version of this conjecture should be
true: If the lattice generated by (�u, �v) is the hexagonal lattice and if nε = k2 for some integer k, then the minimizing
configuration should be periodic w.r.t. the vectors (�u/k, �v/k). A limiting form of this conjecture would be that – still
in the case of a hexagonal lattice – in the case of a bounded number of vortices, and assuming n∗ = k2, then h∗ is
periodic w.r.t. the vectors (�u/k, �v/k).

Remark 2.5. Note that for a minimizer (uε,Aε) of Gε and arbitrary positive values of the parameters ε, hex, we have

1

2

∫
K

(hε − hex)
2 � Gε(uε,Aε) � Gε(1,0) = 1

2
h2

ex,

where hε = curlAε . Therefore the following holds

0 � nε, Gε(uε,Aε) � 1

2
h2

ex. (2.5)

Moreover, if nε = 0, then hε = 0 as well. Then (uε,Aε) is gauge equivalent to a configuration (u′
ε,0) and Gε(u

′
ε,0) �

Gε(1,0). But, since (1,0) is clearly the unique minimizer of Gε among configurations (u,A) such that A = 0, we
deduce that u′

ε = 1 and that (uε,Aε) is gauge-equivalent to the Meissner solution.

The paper is organized as follows: In Section 3 we construct a test configuration which will be useful in the proof
of case (1) of the theorem. In Section 4, matching the upper bound of the previous section with appropriate lower
bounds, we prove case (1) of the theorem, with an L2 instead of W 1,p convergence, we also prove an L2 bound for hε

in case (2), and we prove case (3) completely. In Section 5 we discuss the improvement from L2 to W 1,p convergence
without going into the details, since similar arguments appear in [22] in the context of natural, instead of periodic,
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boundary conditions. Finally in the last section we finish the proof of case (2), i.e. identify the limit h∗ as a minimizer
of W . This involves arguments from [8,9] adapted to the periodic setting, that are in part sketched.

3. Upper bound

The theorem is proved by energy comparison with an appropriate test configuration (vε,Bε), which will be peri-
odic. It is defined below, rather quickly since this construction appears elsewhere (see for instance [21,7] or [4]). In
the case where Δex � C, which corresponds to cases (2) and (3) of the theorem, the upper bound in (2.5) will suffice,
hence we assume from now on that

1 	 Δex 	 1/ε2.

Then, we define mε as the integer such that
√

mε is the integer part of√
Δex

2π
.

Since Δex tends to +∞ as ε → 0 we have

mε ≈ Δex

2π
.

We then divide K into mε identical parallelograms generated by the vectors �uε = �u/
√

mε and �vε = �v/
√

mε . Denote
by Kε one of these parallelograms, by aε its center, and by fε the solution in Kε , with periodic boundary conditions,
of the equation

−Δfε = 2πδaε − 2π

|Kε| .
Note that such a solution exists since the integral of the right-hand side over Kε is 0. It is then naturally extended by
periodicity to a function fε defined in all of R

2 and satisfying

−Δfε = 2π
∑

k,�∈Z

δaε+k�uε+��vε
− 2π

|Kε| .

Then, we let Bε : R
2 → R

2 be such that

curlBε = 2π

|Kε|
and write vε = ρεe

iϕε , where ρε is periodic with respect to the vectors (�uε, �vε) and is defined in Kε by ρε(x) =
min(|x − aε|/ε,1), and where ϕε is such that −∇⊥fε = ∇ϕε −Bε . This latter equation can be solved in the sense that
the curl of (Bε − ∇⊥fε) is

2π
∑

k,�∈Z

δaε+k�uε+��vε
,

hence there exists a function ϕε defined modulo 2π except at the points aε + k�uε + ��vε which satisfies the identity.
Then letting vε = ρεe

iϕε is legitimate, since precisely from the definition of ρε we have ρε(aε + k�uε + ��vε) = 0 for
any integers k, �.

To estimate the energy, note that the integrand of Gε(vε,Bε) is precisely

1

2

(
ρ2

ε |∇fε|2 + |∇ρε|2 + 1

2ε2

(
1 − ρ2

ε

)2 +
∣∣∣∣ 2π

|Kε| − hex

∣∣∣∣
2)

. (3.1)

Its integral over Kε is easily estimated (see [21,7] or [4]). Putting aside the last term, the contribution from the region
where ρε �= 1, which is B(aε, ε) is bounded by a constant independent of ε from scaling arguments. The integrand
outside B(aε, ε) reduces to 1

2 |∇fε|2 which, with the price of an error bounded independently of ε, may be replaced
by 1

2 |∇ log |x − aε||2, whose integral over Kε is π log 1√
mεε

+ O(1) as ε → 0. Then, integrating (3.1) over Kε yields

π log
1√
mεε

+ |Kε|
2

∣∣∣∣ 2π

|Kε| − hex

∣∣∣∣
2

+ O(1)

as ε → 0.
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Since there are mε = 1/|Kε| squares in K , we deduce

Gε(vε,Bε) = πmε log
1√
mεε

+ 1

2
|2πmε − hex|2 + O(mε).

After expanding and replacing hex = Δex + | log ε|/2 we find

Gε(vε,Bε) = 2π2m2
ε − 2πmεΔex + 1

2
h2

ex + o
(
m2

ε

)
.

Finally, using the fact that mε ≈ Δex/2π and tends to +∞ as ε → 0 we get

Gε(vε,Bε) = 1

2

(
h2

ex − Δ2
ex

) + o
(
Δ2

ex

)
. (3.2)

4. Lower bound, identification of the limits

High fields. The case where Δex ≈ hex, or equivalently | log ε| 	 hex 	 ε−2 is particularly simple. In fact in
this case one could even get more detailed information (see [21,22]). Indeed the existence of a test configuration
satisfying (3.2) implies that Gε(uε,Aε) is smaller than the right-hand side of (3.2), which is itself o(h2

ex). it follows
in particular that ‖hε − hex‖2

L2(K)
is o(h2

ex) and therefore, dividing by h2
ex, that hε/hex → 1 in L2(K), hence also

in L1(K). In particular

nε ≈ hex

2π
≈ Δex

2π
,

and of course hε/(2πnε) → 1 in L2(K). In fact in this case we even have strong convergence of hε/(2πnε) in H 1.
Indeed, any critical point of Gε satisfies the so-called second Ginzburg–Landau equation

−∇⊥hε = jε, where jε = (iuε,∇uε − iAεuε) = ρ2
ε (∇ϕε − Aε), (4.1)

where the last equality is an alternative expression for jε when uε = ρεe
iϕε is not zero. A consequence of (4.1) is that

pointwise |∇hε| � |∇uε − iAεuε|. Therefore

1

2

∫
K

(|∇hε|2 + |h − hex|2
)
� Gε(uε,Aε),

and we are able to deduce as above, since the right-hand side is o(h2
ex), that hε/hex → 1 in H 1.

Low fields. We now deal with the rest of the cases in the theorem, namely case (1) with hex = O(| log ε|) and
cases (2) and (3). We thus assume the estimate hex � C| log ε|.

First, we recall the following construction which can either be adapted from [15] or [22], Theorem 4.1 to this
periodic setting. We first define for any r ∈ (0,1) the free energy of (u,A) ∈ H 1

per as

Fr,ε(u,A) = 1

2

∫
K

(
|∇u − iAu|2 + r2h2 + 1

2ε2

(
1 − |u|2)2

)
, (4.2)

with the notation h = curlA. In particular we have the following relation between Fr,ε and Gε

Gε(u,A) = Fr,ε(u,A) + 1 − r2

2

∫
K

h2 − hex

∫
K

h + 1

2
h2

ex. (4.3)

Proposition 4.1. Assume Gε(uε,Aε) � C| log ε|2 for any ε > 0, where (uε,Aε) ∈ H 1
per. Then there exists ε0 > 0 and

r0 > 0 such that, for any ε < ε0 and any 1 > r � ε1/3, the following holds.
There exists a collection of disjoint closed balls B = {Bi}i∈I which is periodic with respect to K and finite in any

compact subset of R
2. Moreover, denoting by B0 a minimal subset of B such that B = ⋃

τ∈L τ B0,

(1) Denoting by r(B) the sum of the radii of balls belonging to a collection B, we have r(B0) = r .
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(2) Abusing notation, {||uε| − 1| � 1/2} ⊂ B.

(3) Writing dB = deg(u, ∂B),

Fr,ε(uε,Aε,K ∩ B) � πD

(
log

r

Dε
− C

)
, (4.4)

where D = ∑
B∈B0

|dB | is assumed to be nonzero and C is a universal constant.
(4) Finally,

D � C
Fε(uε,Aε,K)

| log ε| , (4.5)

where C is a universal constant.

Finally, if r1 > r2 and B1, B2 are the corresponding families of balls, then every ball in B2 is included in one of the
balls of B1.

The above result is adapted from [22], Theorem 4.1, applied with α = 2/3. The proof of the equivalent of Theo-
rem 4.1 in the periodic setting poses no difficulty, the way to do it is to consider uε as a section of a complex line
bundle over the torus T = R

2/L, where L is the group of translations generated by (�u, �v), and Aε as a connection
over this bundle. This is described somewhat in [4], Proposition 4.7. Note that we must impose a bound r < r0 which
is here to ensure that any ball of radius r < r0 on T is indeed a topological ball, it suffices to take r0 smaller than the
injectivity radius of T .

We also note the following

Lemma 4.1. For any(u,A) ∈ H 1
per, if {Bi}i∈I is a finite collection of disjoint closed balls in R

2 such that |u| > 0 in
K \ ⋃

i Bi and such that
⋃

i Bi does not intersect ∂K , then

∑
i

deg
(
u/|u|, ∂Bi

) =
∫
K

curlA.

Proof. This is standard. By periodicity, there exists two functions f,g : R
2 → R such that

u(x + �u) = u(x)eif (x), A(x + �u) = A(x) + ∇f (x),

and the same relations hold, replacing �u by �v and f by g.
The sum D of the degrees is the degree of u/|u| restricted to ∂K . Letting ϕ be the phase of u, we thus have,

denoting by τ the positively oriented unit vector tangent to ∂K ,

D =
∫

∂K

∂τϕ =
1∫

0

1

‖�u‖
d

ds

(
ϕ(s �u) − ϕ(s �u + �v)

) +
1∫

0

1

‖�v‖
d

ds

(
ϕ(�u + s�v) − ϕ(s�v)

)
ds.

Then since ϕ(x + �u) − ϕ(x) = f (x) and ϕ(x + �v) − ϕ(x) = g(x) it follows that

D =
1∫

0

1

‖�u‖
d

ds
g(s �u) + 1

‖�v‖
d

ds
f (s�v),

and then, since A(x + �u) − A(x) = ∇f (x) and A(x + �v) − A(x) = ∇g(x),

D =
∫

∂K

A · τ =
∫
K

curlA. �

Let us now consider for any ε > 0 the minimizer (uε,Aε) of Gε , and let hε = curlAε . For any r ∈ (0,1) we
may construct using Proposition 4.1 a collection of balls B of total radius r . Moreover if r is small enough, then
a translation τ can be chosen so that ∂(τK) does not intersect B. We may then choose as the minimal subset B0 of
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Proposition 4.1 the collection Br consisting of the balls in B which are included in τK . The previous lemma combined
with Proposition 4.1 then implies that

Fr,ε(uε,Aε, Br ) � πdε

(
log

r

dεε
− C

)
, 2πdε �

∫
τK

hε =
∫
K

hε = nε,

where dε = ∑
B∈Br

|dB |, and the equality between the integrals over τK and K follows from the periodicity of the
configurations. Note that since Fr,ε(uε,Aε) � Ch2

ex and hex � C| log ε|, the a priori bound (4.5) reads

dε � C| log ε|.
we deduce from the above a lower bound for Gε:

Gε(uε,Aε) � π | log ε|nε − 2πhexnε + 1

2
h2

ex + 1 − r2

2

∫
K

h2
ε + Rε, (4.6)

where

Rε = π | log ε|(dε − nε) + πdε

(
log

r

dε

− C

)
. (4.7)

We now choose a fixed radius r < 1/4. Since dε � C| log ε|, it is easy to check, that if dε > 2nε and ε is small enough,
then Rε � 0 while if nε � dε � 2nε , then clearly

Rε � −Cnε(lognε − Cr), (4.8)

where Cr depends on r . Returning to the lower bound for Gε , we write hex = Δex + | log ε|/2 and obtain

Gε(uε,Aε) � −2πΔexnε + 1

2
h2

ex + 1 − r2

2

∫
K

h2
ε + Rε. (4.9)

Now we distinguish two cases.

Δex � C. This corresponds to cases (2) and (3) of the theorem. Combining (4.9) with the upper bound (2.5) and
the estimate (4.8) gives

1 − r2

2

∫
K

h2
ε − Cnε(lognε − Cr) � 2πΔexnε � Cnε (4.10)

but the integral of h2
ε over K is bounded below by 4π2n2

ε using Cauchy–Schwarz, and thus the above inequality
implies that for some c,C > 0 independent of ε,

cn2
ε − Cnε(lognε + 1) � 2πΔexnε � Cnε.

Thus nε is bounded independently of ε, and going back to (4.10) hε is bounded in L2(K) independently of ε.
Moreover, since nε � 0, the above inequality implies that if Δex is smaller than a certain, possibly negative value

Δ1 ∈ R which could be expressed in terms of the constants c,C appearing in the inequality, then nε = 0 if ε is small
enough. Then the inequality

1

2

∫
K

(hε − hex)
2 � Gε(uε,Aε) � Gε(1,0) = 1

2
h2

ex

implies that hε = 0 and |uε| = 1, thus (uε,Aε) is the Meissner solution, proving case (3) of the theorem.
1 	 Δex � C| log ε|. In this case as in the previous one we first combine (4.9) with the upper bound (2.5) to obtain

1 − r2

2

∫
h2

ε − Cnε(lognε − Cr) � 2πΔexnε,
K
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which allows to conclude that nε/Δex remains bounded as ε → 0, and then that hε/Δex is bounded in L2(K) inde-
pendently of ε. It remains to identify the limit of both nε/Δex and hε/Δex. More precisely, from any sequence {εn}n
tending to zero we may extract a subsequence such that the limits exist, let us call them n∗ and h∗. If we compute
h∗ and n∗ independently of the particular subsequence, then we will have proved the convergence, and identified the
limits. Since we have the relation

2πn∗ =
∫
K

h∗, (4.11)

it suffices, to finish the proof of the theorem, to prove that h∗ = 1.
First we may combine the more precise upper bound (3.2) with (4.9) and (4.8) to obtain

1 − r2

2

∫
K

h2
ε − Δex

∫
K

hε − Cnε(lognε − Cr) � −1

2
Δ2

ex + o
(
Δ2

ex

)
.

Then dividing the above by Δ2
ex and letting ε → 0 we find

1 − r2

2

∫
K

h2∗ −
∫
K

h∗ � −1

2
.

The left-hand side is bounded below by the minimum of the function −x + x2/2, i.e. by −1/2. It follows that h∗ = 1.

5. Improved convergence

To improve the convergence of hε/Δex (resp. hε) in case (1) (resp. case (2)) of the theorem, we invoke the classical
Jacobian estimate of [16], together with a small-large ball type argument. Note that in the case hex � | log ε|, we have
already proved the H 1 convergence, hence we assume below that hex < C| log ε|.

We recall the London equation satisfied by critical points of the functional Gε:

−Δhε + hε = με, where με = curl jε + hε, (5.1)

where the superconducting current jε is defined in (4.1).
The proof for the improved convergence is then the following. We construct for any ε > 0 using Proposition 4.1 a

collection of vortex balls with total radius rε = ε
1
3 , which we denote B′, and we let

νε = 2π
∑
B∈B′

dBδaB
, (5.2)

where aB denotes the center of B .
It then follows from the Jacobian estimate (see for instance [22], Theorem 6.2) that for any β ∈ (0,1), we have

lim
ε→0

(με − νε) = 0, in the dual of C0,β .

Now we let d ′
ε = ∑

B∈B′ |dB |, and we claim that

d ′
ε = O(nε), as ε tends to 0. (5.3)

Assume a moment that this is true (since nε = ∑
B∈B′ dB , it amounts to proving that the balls have mostly positive

degrees), then writing

με = νε + (με − νε),

we find that in the case 1 	 Δex � C| log ε| and since nε = O(Δex), the sequence {με/Δex}ε is bounded in the dual
of C0,β for any β ∈ (0,1). By compact embedding of W 1,q into C0,β for any q > 2 and well chosen β , we deduce
that for any p < 2 we may extract a convergent subsequence in W−1,p . Using (5.1), this gives the convergence of
{hε/Δex}ε in W 1,p . The same argument holds, without normalizing by Δex in case Δex is bounded independently
of ε.
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It remains to prove (5.3). This is done by inspecting carefully (4.6) and (4.7), letting r = ε
1
3 there, and comparing

with the upper bound (2.5). These yield after some simplifications

−2πnεΔex + π

[(
d ′
ε − nε

)| log ε| − d ′
ε

3
| log ε| − d ′

ε logd ′
ε − Cd ′

ε

]
� 0.

Since we have assumed Δex � C| log ε|, the above may be written

π
2

3
d ′
ε| log ε| − Cnε| log ε| + o

(
d ′
ε| log ε|) � 0,

which implies that dε = O(nε) as ε → 0, and concludes the proof of the W 1,p convergence.

6. The case of a finite number of vortices

We now finish the proof of case (2) of the theorem, i.e. identify h∗ as a minimizer of some renormalized energy, in
the terminology of [8].

The proof of this fact relies first on the construction of test configurations with prescribed vortices, a rather straight-
forward task. The second part is to compute a precise expansion of the energy of a minimizer (uε,Aε) in terms of
the vortex locations. This expansion can be found in [8] for the model without magnetic field and Dirichlet bound-
ary condition, or in the case with magnetic field in [9], the definition of γ there is different from (2.4), but a result
of Mironescu [19] shows the two are equivalent. The vortex locations in these references is to be understood as the
limiting locations as ε → 0. A similar expansion may be found in [24] for configurations which are not necessarily
minimizers of the energy. Another option is to give an expansion of the energy in terms of the actual vortex locations
for fixed ε. This is the approach used in [11] in the case without magnetic field or in [22] for the case with magnetic
field. The latter approach gives information for each ε > 0, but is less elementary than the former, that we adopt.

The proof we sketch for the convenience of the reader is borrowed from [22,9] and [8].
Upper bound. Given p = (a1, . . . , an) ∈ P , the test configuration is constructed as follows. First we let h be the

solution of −Δh + h = 2π
∑

i δai
in K with periodic boundary conditions. We still denote by h the extension of h to

R
2 by periodicity (note that h does not depend on ε). Letting

A = {ai + k�u + ��v | k, � ∈ Z, 1 � i � n},
we have −Δh + h = 2π

∑
a∈A δa in R

2.
Then A is chosen such that curlA = h and ϕ is defined modulo 2π in R

2 \ A and such that ∇ϕ − A = ∇⊥h.
Such a ϕ exists precisely because curl(A + ∇⊥h) = −Δh + h is equal to 2π

∑
a∈A δa. Finally we define, for a fixed,

arbitrarily chosen R > 0,

ρε(x) =
{

1 if x /∈ ⋃
a∈A B(a,Rε),

f (|x−a|/ε)
f (R)

if x ∈ B(a,Rε),

where f (r) = |u0|(r), and u0 is the radial vortex which appears in (2.4), the definition of γ .
Then we let vε = ρεe

iϕ. It is clear that (vε,A) is K-periodic since the gauge-invariant quantities h = curlA,
ρε = |vε| are and since ∇ϕ − A = ∇⊥h. It remains to evaluate the energy of (vε,A) over K . First we note that, since
the integral of h over K is 2πn,

Gε(vε,A) = h2
ex

2
− 2πnεhex + G′

ε(vε,A), (6.1)

where

G′
ε(vε,A) = 1

2

∫
K

(
|∇vε − iAvε|2 + h2 + 1

2ε2

(
1 − |vε|2

)2
)

. (6.2)

We evaluate G′
ε(vε,A). Let Bi = B(ai,Rε) and KR = K \⋃

i Bi . On KR we have |vε| = 1 and ∇ϕ −A = ∇⊥h from
which it follows that the energy density there reduces to (|∇h|2 + |h|2)/2. Therefore, from the definition (2.3), we
may write

lim
(
G′

ε(vε,A,KR) + πn log(Rε)
) = W(p) − n

(
γ − 2πΔ∗

ex

)
.

ε→0
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On the other hand, from [22], Chapter 10, we have

lim
R→+∞ lim

ε→0

(
G′

ε

(
vε,A,

⋃
i

Bi

)
− πn logR − nγ

)
= 0.

It follows that

lim
ε→0

(
G′

ε(vε,A) + πn log ε
) = W(p) + 2πnΔ∗

ex

and therefore

lim
ε→0

(
Gε(vε,A) − h2

ex

2

)
= W(p, n). (6.3)

Lower bound. Now we assume that (uε,Aε) is a minimizer of Gε and we try to compute a matching lower bound
for (6.3).

First, from (5.1), we know that hε converges in W 1,p for any p < 2 to the solution of

−Δh∗ + h∗ = μ∗,
where μ∗ is the common limit of {με}ε and {νε}ε as ε → 0. Then (5.2), (5.3) and the fact that nε → n∗ imply that μ∗
is of the form 2π

∑k
i=1 diδai

, where di ∈ Z and
∑

i di = n∗. Note that the points ai need not (yet) be distinct.
From the lower and upper bounds (4.6) and (2.5), we draw some further consequences, in view of (4.7). Indeed, in

the lower bound (4.6), we have not used all the terms in the integrand of Gε . More precisely, we have only taken into
account outside the balls Br the term (hε − hex)

2/2. It follows that a by-product of the upper bound (2.5) is that, as
ε → 0,

1

2

∫
K\Br

|∇uε − iAεuε|2 + 1

2ε2

(
1 − |uε|2

)2 � C.

Since this is true for any r (the constant C then depending on r), we obtain in particular, letting ρε = |uε| and since
|∇uε − iAεuε| � |∇ρε|, that

|∇ρε|2 + 1

2ε2

(
1 − ρ2

ε

)2

is bounded in L1
loc(K \ {a1, . . . , an}).

Let r0 be half the minimal distance between two points ai , aj , and fix r ∈ (0, r0). It follows from the above and from
the strong convergence of hε to h∗ in W 1,p , using a mean-value argument that for any ε > 0, there exists r/2 < rε < r

such that for every 1 � i � n and letting γi,ε = ∂B(ai, ε),∫
γi,ε

|∇ρε|2 + 1

2ε2

(
1 − ρ2

ε

)2 = O(1), ‖hε − h∗‖W 1,p(γi,ε)
= o(1), (6.4)

as ε → 0.
We bound from below G′

ε(uε,Aε,Bi,ε), where Bi,ε = B(ai, rε). To this aim we assume that we are in the Coulomb
gauge. Then (see [9]), {Aε}ε is bounded in W 2,p(K) for any p < 2, hence in L∞. Moreover, since

|∇uε − iAεuε|2 � |∇uε|2 − 2
(
Aε · jε + |Aε|2|uε|2

)
,

we deduce that G′
ε(uε,Aε,Bi,ε) is bounded below by

1

2

∫
Bi,ε

(
|∇uε|2 + (1 − |uε|2)2

2ε2

)
− C

(‖Aε‖2
L2(Bi,ε)

+ ‖Aε‖L4(Bi,ε)
‖jε‖L4′

(Bi,ε)

)
,

where jε = (iuε,∇uε − iAεuε). But from (4.1) we have jε → −∇⊥h∗ in Lp for any p < 2. It follows easily (using
also the W 2,p bound for Aε), that

G′
ε(uε,Aε,Bi,ε) � 1

2

∫
B

(
|∇uε|2 + 1

2ε2

(
1 − |uε|2

)2
)

− δr,ε,
i,ε
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where here and below δr,ε will denote a quantity such that

lim
r→0

(
lim sup

ε→0
|δr,ε|

)
= 0.

Next we blow-up Bi,ε into the unit ball B1, uε becomes vε and

1

2

∫
Bi,ε

(
|∇uε|2 + 1

2ε2

(
1 − |uε|2

)2
)

= 1

2

∫
B1

(
|∇vε|2 + 1

2ε′2
(
1 − |vε|2

)2
)

,

where ε′ = ε/rε . From (6.4) we deduce easily that |vε| → 1 uniformly on ∂B1. Moreover, as we have already noted,
(iuε,∇uε) = jε +|uε|2Aε . Using (6.4) and (4.1), it follows that |(iuε,∇uε)−∇⊥h∗| → 0 in Lp(γi,ε) as ε → 0. After
blow-up, and using the fact that near ai , ∇h∗ behaves like the gradient of −di log |x −ai |, we deduce, letting τ denote
the unit tangent vector to ∂B1, that∫

∂B1

∣∣(ivε, τ · ∇vε) − di

∣∣ = δr,ε.

But, letting vε = ρεe
iϕε , we have (ivε, τ · ∇vε) = ρε

2τ · ∇ϕε and we already noted that ρε → 1 uniformly on ∂B1. It
is then straightforward to deduce that, extracting a subsequence if necessary, there exists θ0 ∈ R such that∥∥vε − ei(θ0+diθ)

∥∥
L∞(∂Bi)

= δr,ε.

Extracting again, we may assume that rε → r∗ ∈ [r/2, r] and we deduce from the above that

G′
ε(uε,Aε,Bi,ε) � I (ε/r∗, di) + δr,ε, (6.5)

where we have set

I (ε, di) = min

{
1

2

∫
B1

(
|∇u|2 + 1

2ε2

(
1 − |u|2)2

) ∣∣∣ u = eidiθ on ∂B1

}
.

Note that from the analysis of [8] we have

I (ε, d) = π |d|| log ε| + Cd + o(1) (6.6)

as ε → 0, and in the case d = ±1 we have from [19]

I (ε,±1) = π | log ε| + γ + o(1).

We now compute a lower bound for G′
ε(uε,Aε,Kr,ε), where we have set Kr,ε = K \ ⋃

i Bi,ε. There, we use the
fact that |∇uε − iAεuε| � |jε| = |∇hε| (see for instance [22], Lemma 3.3), and the fact that rε → r∗ to deduce

G′
ε(uε,Aε,Kr,ε) � 1

2

∫
Kr,ε

|∇hε|2 + |hε|2,

and thus

lim inf
ε→0

G′
ε(uε,Aε,Kr,ε) � 1

2

∫
K\⋃i B(ai ,r∗)

|∇h∗|2 + h2∗.

Adding the above to (6.5), for 1 � i � n, we find in view of (6.6) that

G′
ε(uε,Aε) � 1

2

∫
K\⋃i B(ai ,r∗)

(|∇h∗|2 + h2∗
) +

n∑
i=1

(
π |di | log

r∗
ε

+ Cdi

)
+ δr,ε.

Then, in view of (6.1) we find for ε small enough and letting D = ∑
i |di |,
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Gε(uε,Aε) − 1

2
h2

ex � 1

2

∫
K\⋃i B(ai ,r∗)

(|∇h∗|2 + h2∗
) +

n∑
i=1

(
π |di | log r∗

+ Cdi

) + π(D − n∗)| log ε| − 2πn∗Δex + δr,ε. (6.7)

And from the upper bound given by (6.3) the left-hand side is bounded independently of ε. A first consequence,
obtained by taking the limit ε → 0 is that D = n∗ hence every di is positive. A second consequence is that

1

2

∫
K\⋃i B(ai ,r∗)

(|∇h∗|2 + h2∗
) + πn∗ log r∗

remains bounded as r∗ → 0, which implies (see [8] or [9]) that di = +1 for every i. Then we obtain (2.2) and since
Cdi

= γ when di = ±1, taking successively the limits ε → 0 and then r → 0 in (6.7) we find, letting p = (a1, . . . , an),

lim inf
ε→0

(
Gε(uε,Aε) − 1

2
h2

ex

)
� W(p).

Comparing with (6.3) we conclude that p minimizes W .

Note added in proof

Recently, M. Kurzke and D. Spirn have studied the minimization of the Ginzburg–Landau functional in the high-kappa limit in
a domain of size tending either to 0 or infinity as kappa tends to infinity (paper to appear in SIAM J. Math. Anal.). In the case of
large domains, they obtain in particular estimates for the first critical field consistent with ours.
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