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Abstract

We study relative periodic orbits (i.e. time-periodic orbits in a frame rotating at constant velocity) in a class of triatomic
Euclidean-invariant (planar) Hamiltonian systems. The system consists of two identical heavy atoms and a light one, and the
atomic mass ratio is treated as a continuation parameter. Under some nondegeneracy conditions, we show that a given family of
relative periodic orbits existing at infinite mass ratio (and parametrized by phase, rotational degree of freedom and period) persists
for sufficiently large mass ratio and for nearby angular velocities (this result is valid for small angular velocities). The proof is
based on a method initially introduced by Sepulchre and MacKay [J.-A. Sepulchre, R.S. MacKay, Localized oscillations in conser-
vative or dissipative networks of weakly coupled autonomous oscillators, Nonlinearity 10 (1997) 679–713] and further developed
by Muñoz-Almaraz et al. [F.J. Muñoz-Almaraz, et al., Continuation of periodic orbits in conservative and Hamiltonian systems,
Physica D 181 (2003) 1–38] for the continuation of normal periodic orbits in Hamiltonian systems. Our results provide several
types of relative periodic orbits, which extend from small amplitude relative normal modes [J.-P. Ortega, Relative normal modes
for nonlinear Hamiltonian systems, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003) 665–704] up to large amplitude solutions which
are not restrained to a small neighborhood of a stable relative equilibrium. In particular, we show the existence of large amplitude
motions of inversion, where the light atom periodically crosses the segment between heavy atoms. This analysis is completed by
numerical results on the stability and bifurcations of some inversion orbits as their angular velocity is varied.
©
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1. Introduction

Hamiltonian systems of classical interacting particles are extensively used to study the vibrational dynamics of
molecules or atomic clusters. In these models, nuclei interact via a strongly nonlinear potential that incorporates the
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effects of the electrons in the Born–Oppenheimer approximation. Despite this simplification, analyzing the dynamics
of the resulting models remains a challenging problem.

In this context, a vast literature is focused on the existence and bifurcations of periodic orbits and their correspon-
dence to the quantum mechanical eigenfunctions and quantum spectra (see e.g. [31,30,32] and their references). Such
considerations can be extended to relative periodic orbits and equilibria, which are periodic or stationary in a frame
rotating at constant velocity [33,14,13,25].

In this paper we consider a cluster B–A–B of three particles interacting in a plane, with two atoms B of identical
masses and one lighter atom A (without loss of generality we fix to unity the mass of light atom A and denote by γ

the mass of heavy atoms B). For simplicity we define the interaction energy via pair interaction potentials U,W (as
done for example in reference [32]), but our results could be extended to more general Euclidean-invariant potentials.
We focus on the existence of relative periodic orbits (this includes the particular case of periodic orbits) and restrict
ourselves to rotations whose axis is perpendicular to the cluster plane. Our model is described by the Hamiltonian

H̃ = 1

2γ

(
P̃ 2

1 + P̃ 2
2

) + 1

2
p̃2

1 + U
(‖Q̃1 − Q̃2‖

) + W
(‖Q̃1 − q̃1‖

) + W
(‖Q̃2 − q̃1‖

)
, (1)

where Q̃1, Q̃2 ∈ R
2 (resp. q̃1) are the positions of the heavy (resp. light) masses and P̃1, P̃2, p̃1 their momenta. We as-

sume that U,W are sufficiently smooth on (0,+∞) and the interaction forces U ′,W ′ vanish at some critical distances
D∗, d∗ > 0 with U ′′(D∗) > 0, W ′′(d∗) > 0 and d∗ > D∗/2 (in order to allow triangular equilibrium configurations).

Classical approaches for proving the existence of periodic orbits in Hamiltonian systems rely on critical point the-
ory [22] (see also [35,34] for applications to molecular potentials and more recent references), on the local Lyapunov
center theorem [12] and Weinstein–Moser theorem [38,26], on global continuation techniques for Lyapunov fami-
lies of periodic orbits (see [43] and its references) and degree theory for asymptotically linear Hamiltonian systems
(see [8] and references therein).

In Hamiltonian systems with a continuous symmetry, the existence of relative periodic orbits around stable relative
equilibria has been proved under general assumptions using extensions of the Weinstein–Moser theorem [15,28]. In
addition, local continuation theorems for relative periodic orbits under small variations of energy and momentum are
available [24,29,40] (see [25,39] and their references for the case of relative equilibria).

Here we examine relative periodic orbits using a continuation technique, which consists in varying the mass ratio
between heavy and light atoms, starting from the infinite mass ratio limit. When the two atoms B have infinite mass,
a class of solutions can be made by placing them in two static positions and letting the light atom A oscillate in
the resulting potential. The distance between the two atoms B is obtained in turn as a critical point of an effective
potential averaged over the orbit of mass A. We prove that relative periodic orbits of this system can be continued
to finite mass ratio under some nondegeneracy conditions which are generally satisfied. A procedure of the same
kind exists in the context of celestial mechanics as one passes from the restricted to the full three-body problem
[1,23], with several important differences (some of which are outlined below). Moreover, the same idea has been
used for studying time-periodic and spatially localized oscillations (discrete breathers) in one-dimensional diatomic
Hamiltonian lattices [17].

One difficulty in our approach is due to the Euclidean invariance of the Hamiltonian system, which precludes a
direct application of the implicit function theorem, replaced here by a technically involved Lyapunov–Schmidt reduc-
tion. As a benefit, the method provides large amplitude solutions which are not restrained to a small neighborhood of
a relative equilibrium. Firstly, we obtain a family of relative periodic orbits on which internal oscillations extend from
small amplitude normal modes up to large amplitude motions with arbitrarily large periods. Moreover, we show the
existence of inversions where the light atom A crosses the B–B segment periodically. As their period is varied, these
inversions form a one-parameter family of solutions which does not emerge from a relative equilibrium (they emerge
from a pair of symmetric homoclinic orbits in the limit of infinite mass ratio). From a mathematical point of view,
their existence in such systems was still an open problem up to our knowledge. Such solutions have been numerically
computed in different models (see e.g. [32] and its references), but in system (1) their numerical continuation in en-
ergy was delicate [32]. Our continuation method, which starts from the simplified problem with infinite mass ratio, is
numerically implemented in the present paper and provides an efficient way to compute these solutions.

It is interesting to compare our approach with related problems in celestial mechanics, which arise as one looks for
relative periodic orbits of the full three-body problem by continuation from the restricted problem with one infinites-
imal mass (see [1,23,7] and their references). Indeed, system (1) could be recast in a similar form (with a molecular
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interaction potential replacing the gravitational one) after an appropriate time rescaling, and for small angular veloc-
ities. With this rescaled form of (1), two masses would be equal to 1 and one mass to 1/γ . The static B–B stretch in
the limit γ → +∞ would correspond in the context of celestial mechanics to a circular orbit of the Kepler problem
viewed in a moving frame. However, a major simplification occurs in celestial mechanics since the interaction energy
of the infinitesimal mass with each finite mass is small (O(1/γ )). As a consequence, in the restricted gravitational
three-body problem the equations for the static B–B stretch and the light mass A are uncoupled, whereas they are
coupled in the asymptotic limit of the triatomic system (1) since the potential W does not depend on γ . This coupling
makes the analysis of periodic orbits more difficult.

As previously mentioned, the limit of infinite mass ratio was introduced by Livi, Spicci and MacKay [17] to prove
the existence of discrete breathers in a one-dimensional Hamiltonian lattice known as the (diatomic) Fermi–Pasta–
Ulam model. In this system, two types of atoms with different masses alternate on a one-dimensional lattice and
interact anharmonically with their nearest neighbors. An uncoupled limit is obtained when the mass ratio between
heavy and light atoms goes to infinity (light masses do not interact and oscillate in a local potential corresponding to
immobile heavy masses). In this limit, the simplest type of discrete breather consists of a single particle oscillating
while the others are at rest. As Livi et al. have shown, such localized solutions can be in general continued to large
and finite mass ratio (see also [5] for numerical continuation results up to mass ratio equal to unity). The continuation
procedure of reference [17] is simpler than the one in our triatomic system, because Euclidean invariance is trivially
eliminated in the lattice by working with displacements between neighbors, whereas relative periodic orbits (periodic
in a rotating frame) are analyzed in our case.

The approach of Livi et al. finds its roots in the former work of MacKay and Aubry [18] on the existence of
breathers in one-dimensional chains of weakly coupled anharmonic oscillators. In the latter case, the uncoupled
or “anti-continuum” limit is obtained by fixing the nearest-neighbors coupling constant to 0. The concept of anti-
continuum limit characterized by large mass ratio has been subsequently applied to prove the existence of breathers
in lattices of higher dimension invariant under translations [3]. In Ref. [19] a general strategy has been proposed for
extending this result to (relative) discrete breathers in more general Hamiltonian systems invariant under rotations.
A full existence proof was obtained by two of us in [10], but for reversible (even in time) and strictly time-periodic
oscillations only. The approach presented in the present paper would allow to suppress such restrictions, since we
obtain relative periodic orbits and nonreversible oscillations in triatomic systems using a method which would carry
over to an arbitrary number of particles.

Now let us describe our continuation method in more detail. In Section 2 we reformulate the triatomic system using
the classical Jacobi coordinates in order to eliminate the translational degeneracy. The equations are considered in a
frame rotating at constant velocity, and time-periodic solutions (corresponding to relative periodic orbits) are searched
in this rotating frame. We introduce a convenient scaling in order to analyze the resulting equations for large values
of γ . The problem of finding periodic orbits is reformulated as a suitable functional equation in a loop space.

Section 3 is devoted to the limit case γ = +∞. The limiting problem takes the form of a two degrees of freedom
Hamiltonian system for the oscillations of light mass A coupled to a nonlinear integral constraint, both involving an
unknown static B–B stretch. We restrict our attention to isosceles configurations, for which the Hamiltonian system
becomes integrable with one degree of freedom. This allows us to obtain a global branch of periodic solutions for the
system with nonlinear integral constraint (Theorem 1, p. 1251).

The continuation of relative periodic orbits to large and finite values of γ is performed in Section 4. Under some
nondegeneracy conditions, we show that a given family of relative periodic orbits existing for γ = +∞ (parametrized
by phase, rotational degree of freedom and period) persists for large values of γ and nearby angular velocities (Theo-
rem 2, p. 1255). Our analytical results are valid for small (O(γ −1/2)) angular velocities. In particular, Theorems 1 and
2 yield the existence of relative periodic orbits for the triatomic system with large mass ratio (Theorem 3, p. 1256). To
complete these analytical results, we perform in Section 5 the numerical continuation of such solutions with respect
to mass ratio and angular velocity, and study their stability properties.

The proof of Theorem 2 is based on the following method. To continue periodic solutions from γ = +∞ to large
values of γ we use a method introduced by Sepulchre and MacKay [37] for the continuation of normal periodic
orbits in Hamiltonian systems (classical continuation results valid in less general situations can be found elsewhere,
see e.g. [1], Chapter 8 or [23], Chapter 6 and their references). The theory developed by Sepulchre and MacKay
has been generalized by Muñoz-Almaraz et al. [27] to treat more degenerate situations corresponding to Euclidean
invariance. The first step is to introduce in the equations of motion artificial dissipative terms (with respect to energy,
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angular momentum) multiplied by some damping coefficients α,β (this idea goes back to a work of Schmidt [36],
who used this technique to derive the Lyapunov center theorem from Hopf’s bifurcation theorem). The problem of
finding periodic orbits is equivalent to searching for the zeros of a certain nonlinear operator, which is shown to be a
submersion at a particular solution, thanks to the additional undetermined coefficients α,β . By the Lyapunov–Schmidt
decomposition this yields a local family of periodic solutions (parametrized by their period, phase and rotational
degree of freedom), which can be continued under small parameter changes. For time-periodic solutions, dissipative
terms α,β are necessarily equal to 0, hence one recovers exact solutions of the original equations of motion. As
show in this paper, this approach can be adapted to the present setting where γ → +∞ and relative periodic orbits
are considered. This allows us to continue families of relative periodic orbits with respect to mass ratio and angular
velocity.

2. Formulation of the problem

We consider the triatomic system previously introduced and described by the Hamiltonian (1). The linear momen-
tum P = P̃1 + P̃2 + p̃1 and the angular momentum J̃ = Q̃1 ∧ P̃1 + Q̃2 ∧ P̃2 + q̃1 ∧ p̃1 are conserved quantities. We
have introduced a tilde in the notations to indicate that we work in a fixed reference frame. The tilde will be suppressed
when working in a rotating reference frame.

2.1. Choice of coordinates and scaling

Without loss of generality, we assume the center of mass of the triatomic system to be fixed at 0, i.e.
M(Q̃1 + Q̃2) + q̃1 = 0 (this is equivalent to working in a reference frame moving at constant velocity). This reduces
the equations of motion (which correspond initially to a 12-dimensional differential equation) to a 8-dimensional
system.

We shall use the notation γ = ε−2, the limit γ 	 1 corresponding to ε 
 1. We search for oscillations which are
time-periodic in a rotating reference frame with constant angular velocity Ω = εω̄, ω̄ being fixed and ε ≈ 0. We shall
note Q1, Q2, q1 the atomic positions in this new reference frame. The equations of motion for atomic positions can
be rewritten as a Hamiltonian system in canonical form, with Hamiltonian

H = ε2

2

(
Y 2

1 + Y 2
2

) + 1

2
y2

1 − Ω
(
Qt

1KY1 + Qt
2KY2 + qt

1Ky1
)

+ U
(‖Q1 − Q2‖

) + W
(‖Q1 − q1‖

) + W
(‖Q2 − q1‖

)
,

where Y1, Y2, y1 are the variables conjugate to Q1, Q2, q1 and K = ( 0 1
−1 0

)
. Note that H = H̃ −ΩJ̃ . Now we describe

atomic positions using the Jacobi coordinates represented in Fig. 1 and defined by

u1 = Q2 − Q1, u2 = q1 − 1

2
(Q1 + Q2). (2)

Fig. 1. Triatomic system and Jacobi coordinates.
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The choice of Jacobi coordinates allows us to rewrite the triatomic system with fixed center of mass as a 8-dimen-
sional Hamiltonian system in canonical form. The Hamiltonian reads

H = ε2‖w1‖2 + U
(‖u1‖

) − εω̄ut
1Kw1

+ 1

2

(
1 + ε2

2

)
‖w2‖2 + W

(∥∥∥∥u2 + u1

2

∥∥∥∥
)

+ W

(∥∥∥∥u2 − u1

2

∥∥∥∥
)

− εω̄ut
2Kw2, (3)

where w1,w2 are conjugate variables to u1, u2 and w1 = 1
2ε2 (u̇1 − εω̄Ku1), w2 = (1 + ε2

2 )−1(u̇2 − εω̄Ku2). Note

that the degrees of freedom u1, u2 correspond to “reduced” masses ε−2/2 and (1 + ε2

2 )−1.
Now we look for time-periodic solutions (with fixed period T ) as ε → 0 using an appropriate scaling. We set

u1(t) = ū + εr1(t) with

T∫
0

r1(s) ds = 0, (4)

and w1 = ε−1v1. In the sequel we shall rewrite for convenience u2 = r2, w2 = v2 and note u⊥ = −Ku. The equations
of motion read

ṙ1 = 2v1 − ω̄(ū + εr1)
⊥, v̇1 = −ε

(
ω̄v⊥

1 + Fε,ū(r1, r2)
)
,

ṙ2 =
(

1 + ε2

2

)
v2 − εω̄r⊥

2 , v̇2 = −εω̄v⊥
2 − Gε,ū(r1, r2), (5)

where Fε,ū, Gε,ū : R2 × R
2 → R

2 are given by

Fε,ū(r1, r2) = U ′(‖ū + εr1‖
) ū + εr1

‖ū + εr1‖ + W ′
(∥∥∥∥r2 + ū + εr1

2

∥∥∥∥
)

r2 + ū+εr1
2

2‖r2 + ū+εr1
2 ‖

− W ′
(∥∥∥∥r2 − ū + εr1

2

∥∥∥∥
)

r2 − ū+εr1
2

2‖r2 − ū+εr1
2 ‖ ,

Gε,ū(r1, r2) = W ′
(∥∥∥∥r2 + ū + εr1

2

∥∥∥∥
)

r2 + ū+εr1
2

‖r2 + ū+εr1
2 ‖ + W ′

(∥∥∥∥r2 − ū + εr1

2

∥∥∥∥
)

r2 − ū+εr1
2

‖r2 − ū+εr1
2 ‖ . (6)

The system (5) has two conserved quantities, namely the Hamiltonian

H = ‖v1‖2 + U
(‖ū + εr1‖

) − ω̄(ū + εr1)
tKv1 + 1

2

(
1 + ε2

2

)
‖v2‖2 + W

(∥∥∥∥r2 + ū + εr1

2

∥∥∥∥
)

+ W

(∥∥∥∥r2 − ū + εr1

2

∥∥∥∥
)

− εω̄rt
2Kv2, (7)

and the rescaled angular momentum J = εJ̃ given by

J = ū ∧ v1 + ε(r1 ∧ v1 + r2 ∧ v2). (8)

Moreover system (5) is reversible. Indeed, if (ū, r1, r2) is a solution of the second-order system arising from (5) then
(−Sū,−Sr1(−t), Sr2(−t)) is also a solution, where we denote by S the symmetry S(a, b) = (−a, b).

The invariance of (5) under rotations will introduce technical difficulties for the continuation of periodic orbits
since it excludes a direct application of the implicit function theorem. This invariance could be suppressed by using
suitable internal coordinates (see e.g. [30,42,41,16] and their references). However these coordinates would introduce
artificial singularities in the planar case [16], which would preclude the continuation of any singular periodic orbit.
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2.2. Periodic orbits as zeros of a submersion

To analyze the limit ε → 0, we follow the approach initiated by MacKay and Sepulchre [37] for the continuation
of periodic orbits in systems having a first integral and generalized by Muñoz-Almaraz et al. [27] to systems having
several integrals. Let us sum up the strategy in a few lines. The starting point of the method is to introduce in the equa-
tions of motion artificial dissipative terms (with respect to energy, angular momentum) multiplied by some damping
coefficients α,β . The problem of finding periodic orbits is equivalent to searching for the zeros of a certain nonlinear
operator, which is shown to be a submersion at the points representing “normally degenerate” periodic solutions in
the case ε = 0, thanks to the additional undetermined coefficients α,β . We recall that a C1 map F : X → Y between
Banach spaces is a submersion at a point X0 ∈ X if DF(X0) is surjective and its kernel has a closed complement
in X. By a Lyapunov–Schmidt decomposition we then find a local family of periodic solutions (parametrized by their
period, phase and rotational degree of freedom), which can be continued to large values of γ and nearby angular
velocities. For time-periodic solutions, it is proved that dissipative terms α,β are necessarily equal to 0, hence one
recovers exact solutions of the original equations of motion.

To be more precise, we consider Eq. (5) with additional dissipative terms β∇J and α∇H . Rescaling time by
t → t/T , we work with 1-periodic functions of t and consider the period T as an unknown (for simplicity we shall
keep the same notation ri , vi for the rescaled functions). Condition (4) becomes

1∫
0

r1(s) ds = 0. (9)

One obtains the following differential system

ṙ1 = T
(
2v1 − ω̄(ū + εr1)

⊥ + αε
(

Fε,ū(r1, r2) + ω̄v⊥
1

) − βεv⊥
1

)
,

v̇1 = T
(−ε

(
ω̄v⊥

1 + Fε,ū(r1, r2)
) + α

(
2v1 − ω̄(ū + εr1)

⊥) + β(ū + εr1)
⊥)

,

ṙ2 = T

((
1 + ε2

2

)
v2 − εω̄r⊥

2 + α
(
εω̄v⊥

2 + Gε,ū(r1, r2)
) − βεv⊥

2

)
,

v̇2 = T

(
−εω̄v⊥

2 − Gε,ū(r1, r2) + α

((
1 + ε2

2

)
v2 − εω̄r⊥

2

)
+ βεr⊥

2

)
. (10)

In what follows we note u = (r1, r2, v1, v2)
t . The relation between the modified system (9), (10) and the original

one (4), (5) is given by the following proposition.

Proposition 1. Let u be a 1-periodic solution of (9), (10) and ũ(t) = u(t/T ). Assume there exists t0 ∈ R such that
∇J (ũ(t0)) and ∇H(ũ(t0)) do not vanish and are not colinear. Then α = β = 0 and ũ is a T -periodic solution
of (4), (5).

Proof. Eq. (10) yields ˙̃u = K∇H(ũ) + α∇H(ũ) + β∇J (ũ) with K = ( 0 I
−I 0

) ∈ M8(R). We define F(ũ) = αH(ũ) +
βJ (ũ). Then 0 = ∫ T

0
d
dt

F (ũ(t)) dt = ∫ T

0 ‖∇F(ũ(t))‖2 dt since H and J are first integrals of (5). Consequently
∇F(ũ(t)) = 0 for all t ∈ R, and α = β = 0 follows by fixing t = t0. �

Now we reformulate (10) as a suitable functional equation. As previously indicated, we shall derive a static equation
satisfied by the degree of freedom ū as ε = 0. Since this static problem will inherit an invariance under rotation, we
shall fix

ū = �̄(1,0)t (11)

to eliminate this degeneracy. As a consequence we only need to determine a scalar equation satisfied by the static
degree of freedom �̄. Multiplying by ū the first two equations of (10), one obtains 1

T

∫ 1
0 (v̇1, ū) dt = εI , where (·,·)

denotes the canonical scalar product on R
2 and

I = −(
1 + α2) 1∫ (

ω̄v⊥
1 + Fε,ū(r1, r2), ū

)
dt + β

1∫ (
r⊥

1 + αv⊥
1 , ū

)
dt. (12)
0 0
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In this computation we have used the fact that
∫ 1

0 (ṙ1, ū) dt = 0 due to time-periodicity. One has in the same way∫ 1
0 (v̇1, ū) dt = 0, hence I = 0 for ε �= 0. For ε = 0 we shall introduce the condition I = 0 to fix the degree of

freedom ū. The condition I = 0 reads
1∫

0

(
ω̄v⊥

1 + Fε,ū(r1, r2), ū
)
dt = β

1 + α2

1∫
0

(
r⊥

1 + αv⊥
1 , ū

)
dt. (13)

In the case α = β = 0 that we shall recover at the end of our analysis (see Proposition 1), this condition becomes

1∫
0

(
ω̄v⊥

1 + Fε,ū(r1, r2), ū
)
dt = 0. (14)

Eqs. (10)–(13) can be rewritten as a functional equation

Fε,ω̄(r1, v1, r2, v2, �̄, T ,α,β) = 0 (15)

with

Fε,ω̄ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ṙ1 − T (2v1 − ω̄(ū + εr1)
⊥ + αε(Fε,ū + ω̄v⊥

1 ) − βεv⊥
1 )

v̇1 − T (−ε(ω̄v⊥
1 + Fε,ū) + α(2v1 − ω̄(ū + εr1)

⊥) + β(ū + εr1)
⊥ − εI ū

‖ū‖2 )

ṙ2 − T ((1 + ε2

2 )v2 − εω̄r⊥
2 + α(εω̄v⊥

2 + Gε,ū) − βεv⊥
2 )

v̇2 − T (−εω̄v⊥
2 − Gε,ū + α((1 + ε2

2 )v2 − εω̄r⊥
2 ) + βεr⊥

2 )

I

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(16)

and ū = �̄(1,0)t . Note that the second component of Fε,ω̄ multiplied by (1,0)t has 0 time-average (this is readily
checked by multiplying this component by ū). For interaction potentials U,W sufficiently smooth on (0,+∞), the
operator Fε,ω̄ is Ck from an open subset of the Hilbert space X into Y, where X = H

1
0 × (H1)3 × R

4, Y = L
2 × L

2
0 ×

(L2)2 × R and H
p , L

2 denote the classical Sobolev spaces (Hp(T))2, (L2(T))2 (T = R/Z). Moreover r ∈ H
1
0 means

r ∈ H
1 and

∫ 1
0 r(s) ds = 0, and one notes v ∈ L

2
0 if v ∈ L

2 and
∫ 1

0 (v(s), (1,0)t ) ds = 0.
Particular solutions of the infinite mass ratio problem with ε = 0 in (15) will be given in Section 3. More generally,

we shall prove in Section 4 that F0,ω̄0 is a submersion at a given periodic solution of the infinite mass ratio problem
with ε = 0 and ω̄ = ω̄0, provided this solution fulfills certain nondegeneracy conditions. Then using the persistence
of the zero set of a submersion under small perturbations, we shall obtain a family of periodic solutions of the full
problem (10)–(13) when ε is small enough and ω̄ ≈ ω̄0. By Proposition 1 this will yield a family of periodic solutions
of (5).

3. Limit case of infinite mass ratio γ (ε = 0)

3.1. Local families of periodic solutions

Let us consider the situation when ε = 0 in (15) and study the existence of simple classes of small amplitude
1-periodic solutions. The differential system (10) reads

ṙ1 = T
(
2v1 − ω̄ū⊥)

, v̇1 = T
(
α(2v1 − ω̄ū)⊥ + βū⊥)

,

ṙ2 = T
(
v2 + αG(ū, r2)

)
, v̇2 = T

(−G(ū, r2) + αv2
)
, (17)

and the condition (13) can be written

1∫
0

(
ω̄v⊥

1 + F (ū, r2), ū
)
dt = β

1 + α2

1∫
0

(
r⊥

1 + αv⊥
1 , ū

)
dt, (18)

with F (ū, r2) = F0,ū(0, r2) and G(ū, r2) = G0,ū(0, r2). We have G = ∇r2V and F = ∇ūV , the potential V being
defined by V (ū, r2) = U(‖ū‖) + W(‖r2 + ū‖) + W(‖r2 − ū‖).
2 2
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Fig. 2. Choice of coordinates for the triatomic system in an isosceles configuration.

Searching for 1-periodic solutions of (17), (18) satisfying the assumptions of Proposition 1, we obtain α = β = 0
and thus

ṙ1 = T (2v1 − ω̄ū⊥), v̇1 = 0,

ṙ2 = T v2, v̇2 = −T G(ū, r2),

1∫
0

(
ω̄v⊥

1 + F (ū, r2), ū
)
dt = 0. (19)

Then we have v1 = 1
2 ω̄ū⊥ (since v1 is constant and r1 is time-periodic) and r1 = 0 (since r1 has 0 time-average).

Recalling ū = �̄(1,0)t and after elimination of v2 from the equations, problem (19) reduces to

r̈2 + T 2∇r2V
(
�̄(1,0)t , r2

) = 0,

1∫
0

F 1
(
�̄(1,0)t , r2(s)

)
ds = ω̄2

2
�̄, (20)

where F 1 is the first component of F . In the sequel we consider the case ω̄ = 0 of (20) (the case ω̄ ≈ 0 will be later
treated perturbatively, see Theorem 3).

For ω̄ = 0, system (20) admits two symmetric triangular equilibrium solutions (ū, r2) = ((D∗,0)t , (0,±R∗)t ),
where we note R∗ = (d∗2 − ρ∗2)1/2 and ρ∗ = D∗/2. Other triangular equilibria are obtained by any rotation of these
two equilibria. In addition there exist other equilibrium configurations where all atoms are aligned, with r2 = 0 or
ū, r2 colinear.

Let us choose the triangular equilibrium (ū∗, r∗
2 ) = ((D∗,0)t , (0,R∗)t ) and study some families of periodic so-

lutions in its neighborhood. Since W ′′(d∗) > 0, the Hessian matrix D2
r2

V (ū∗, r∗
2 ) has two positive real eigenvalues

ω∗
1

2 = 2W ′′(d∗)R∗2/d∗2, ω∗
2

2 = W ′′(d∗)D∗2/(2d∗2). As in the classical theory of Hamiltonian systems (the only
difference here being the integral constraint of (20)) one can find a family of small amplitude nonlinear normal modes
associated with each eigenvalue. This aspect is treated in detail in reference [10] for n-particle systems. Here we shall
see how to obtain such solutions in a simple case.

In what follows we restrict our study to isosceles configurations with ‖Q1 − q1‖ = ‖Q2 − q1‖ (see Fig. 2). Bifur-
cating solutions will be computed using the variables r2 = (0,R2), ρ̄ = �̄/2 and we shall express the final results with
the unscaled variable R(t) = R2(t/T ). Problem (20) with ω̄ = 0 becomes

R′′ + ∂V0

∂R
(R, ρ̄) = 0, (21)

T∫
0

∂V0

∂ρ̄

(
R(t), ρ̄

)
dt = 0, (22)

where R is T −periodic, ρ̄ > 0 and V0(R, ρ̄) = 2W(
√

R2 + ρ̄2 ) + U(2ρ̄). System (21), (22) admits the equilibrium
solutions (R, ρ̄) = (±R∗, ρ∗), i.e. ∇V0(±R∗, ρ∗) = 0.

In the isosceles configuration, the infinite mass ratio limit is considerably simpler to analyze because the differ-
ential equation (21) is integrable. However its phase space qualitatively depends on the variable ρ̄ and Eq. (21) is
coupled with the integral constraint (22). This will introduce technical difficulties in the global analysis of (21), (22)
(Section 3.2). However, the local solution branch considered below can be easily computed using a classical treatment
of pitchfork bifurcations.
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In what follows we sketch the main arguments and refer to classical references [9,21,12] for more details on the
analysis of pitchfork bifurcations. Setting T = 2π/Ω , problem (21), (22) can be rewritten as a functional equation

G(R2, ρ̄,Ω) = 0, (23)

where (R2, ρ̄) ∈ H 2
ev(R/Z) × R (the subscript ev in the notation of the Sobolev space refers to even functions of t ),

G(R2, ρ̄,Ω) =
(

Ω2

4π2
R′′

2 + ∂V0

∂R
(R2, ρ̄),

1∫
0

∂V0

∂ρ̄

(
R2(t), ρ̄

)
dt

)

maps H 2
ev(R/Z) × (R+)2 into L2

ev(R/Z) × R and Ω plays the role of a bifurcation parameter. Now we examine the
solutions of (23) near the trivial solution (R∗, ρ∗). Let us note that

D2V0(R
∗, ρ∗) =

(
a b

b c

)

where a = ω∗
1

2, b = ω∗
1ω∗

2 and c = ω∗
2

2 + 4U ′′(D∗). After elementary computations, one shows that (R2, ρ̄) belongs
to the kernel of the operator AΩ = D(R2,ρ̄)G(R∗, ρ∗,Ω) if and only if

Ω2

4π2
R′′

2 + aR2 + bρ̄ = 0,
(
ac − b2)ρ̄ = 0.

Since D2V0(R
∗, ρ∗) is invertible (one has U ′′(D∗) > 0, W ′′(d∗) > 0) these conditions reduce to

R′′
2 + 4π2 ω∗

1
2

Ω2
R2 = 0, ρ̄ = 0.

This linear problem has nontrivial solutions in H 2
ev(R/Z) × R for kΩ = ω∗

1 (k ∈ N
∗), but it suffices to consider the

case k = 1 (the other critical values of Ω yield in fact the same bifurcating solutions when one comes back to the
unscaled problem (21)).

The kernel of Aω∗
1

is one-dimensional and spanned by (R2, ρ̄) = (cos 2πt,0). Moreover problem (23) is invari-
ant under the symmetry R2 → R2(t + 1/2), therefore a classical Lyapunov–Schmidt reduction [9,21,12] yields a
bifurcation equation of pitchfork type

α
(
Ω − ω∗

1

) − Ω2α
3 + o

(|α|∣∣Ω − ω∗
1

∣∣ + |α|3) = 0,

where α denotes the coordinate of bifurcating solutions along KerAω∗
1
. As a consequence, there exists a local branch

of periodic solutions of (21)–(22) close to (R∗, ρ∗), which can be parametrized (up to phase shift) by

R(t) = R∗ + α cosΩt + O
(
α2), (24)

Ω = ω∗
1 + O

(
α2), (25)

ρ̄ = ρ∗ + O
(
α2), (26)

where α ≈ 0 parametrizes the solution branch and Ω = 2π/T denotes the solution frequency. Note that ρ̄ and Ω are
even functions of α (changing α into −α is equivalent to shifting t by T/2), and we have fixed R even in t .

In addition there exists a second family of nonlinear normal modes, for which r2 is even in time, admits two
nontrivial components and the angle between ū and r2 oscillates around π/2. These modes correspond to the second
eigenvalue ω∗

2
2, and their existence can be proved by the same method as above, under the additional condition that

ω∗
1 is not a multiple of ω∗

2 (for a slightly different method of proof see also [10], Theorem 1).
More generally, one can expect the existence of an infinity of families of periodic orbits (not necessarily time-

reversible) arbitrarily close to the triangular equilibrium (ū∗, r∗
2 ) as it is the case classically in two degree of freedom

Hamiltonian systems, the only difference here being the integral constraint in (20). A way to obtain these solutions
would be to select a family of periodic solutions r2 (parametrized by ρ̄ and its energy E) and study the zeros of the
implicit function of (ρ̄,E) resulting from the integral constraint of (20) (see e.g. Fig. 6 in Section 3.2). This level set
approach will be used in Section 3.2 to obtain global existence results for isosceles configurations. However, it could
be used (at least locally) for more complex oscillations since F 1(�̄(1,0)t , r∗

2 ) changes its sign at �̄ = D∗ = 2ρ∗ (see

Lemma 1), hence
∫ 1

0 F 1(�̄(1,0)t , r2(s)) ds will vanish at some value of �̄ if a periodic orbit r2 is chosen sufficiently
close to r∗.
2
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3.2. Global solution branches

In this section we restrict ourselves to isosceles configurations where the atom A is equidistant from the two heavy
atoms B . As we have seen previously, the problem reduces to an integrable differential equation for the position of A

coupled with an integral constraint, both involving also the static B–B stretch. This simplified problem allows for a
more detailed mathematical analysis including a global existence result. We make the following assumptions on the
interaction potentials.

Hypothesis 1. The functions U,W are analytic over R
+. Moreover, U ′,W ′ only vanish at some critical distance

D∗, d∗ > 0 respectively, with U ′′(D∗) > 0, W ′′(d∗) > 0 and d∗ > ρ∗ = D∗/2. In addition, W is a convex function on
the interval (0, d∗].

We recall that the assumption d∗ > ρ∗ allows for triangular equilibrium configurations with ‖Qi − q1‖ = d∗,
‖Q1 − Q2‖ = D∗. The property of analyticity will be used to obtain global bifurcation results. The last convexity
assumption could be relaxed but we prefer using it to simplify the analysis. This is not a severe restriction because the
repulsive part of the potential turns out to be convex in many physical models.

Our analysis will provide two families of periodic solutions. The first one corresponds to the nonlinear normal
modes (24)–(26) analytically continued in the large amplitude regime. The second solution family will be found
to exist under appropriate conditions on W and U . It consists in inversions where the light atom A crosses the B–B

segment. The two solution families are separated by an homoclinic orbit (corresponding to the limit of infinite period),
where the atom A asymptotically approaches the B–B line center.

Note that the first solution branch could be obtained using general results from the analytic theory of global bi-
furcations [4], but we prefer to present a self-contained proof of global continuation which is based on elementary
notions and yields more precise results. As previously mentioned, we shall reduce the analysis of (21), (22) to the
study of a level line of an (implicitly defined) analytic function of two real variables.

3.2.1. A level set approach
It is first necessary to obtain suitable bounds for the solutions ρ̄ of (21), (22), since the phase portrait of (21)

qualitatively depends on ρ̄.
Let us note that

1

T

T∫
0

∂V0

∂ρ̄

(
R(t), ρ̄

)
dt = 2U ′(2ρ̄) + 2ρ̄

1

T

T∫
0

W ′[(R(t)2 + ρ̄2)
1/2]

(R(t)2 + ρ̄2)
1/2

dt,

which implies 1
T

∫ T

0
∂V0
∂ρ̄

(R(t), ρ̄) dt > 0 when ρ̄ � d∗ > ρ∗. As a consequence the solutions of (21), (22) necessarily
satisfy ρ̄ < d∗.

With our assumptions on W , if ρ̄ is fixed in the interval (0, d∗) the potential V0(·, ρ̄) has a double well structure,
with three critical points R = 0 and R = ±R0(ρ̄), with R0(ρ̄) = (d∗2 − ρ̄2)1/2 (see Fig. 3). The equilibria R = ±R0(ρ̄)

of (21) are elliptic and R = 0 is a saddle point. The hardness coefficient

h(ρ̄) =
[
∂2V0

∂R2

∂4V0

∂R4
− 5

3

(
∂3V0

∂R3

)2]
R=R0(ρ̄)

(27)

Fig. 3. Local shape of the potential V0(·, ρ̄) having a double well structure for ρ̄ ∈ (0, d∗). In the case represented here, V0(·, ρ̄) has a local
maximum at R = 0 and a global one at infinity. This case occurs for ρ̄ sufficiently close to d∗ .
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Fig. 4. Phase space of Eq. (21) for ρ̄ ∈ (dmin, d∗), in the vicinity of the two symmetric homoclinic orbits.

determines (depending on whether h > 0 or h < 0) if the frequency of oscillations around R0(ρ̄) locally increases or
decreases with amplitude (we shall use this property in Appendix A).

Since W is strictly increasing (respectively decreasing) on the interval (d∗,+∞) (respectively on (0, d∗)) we define

dmin = Inf
{
d ∈ (0, d∗),W(d) < W∞

}
,

where we note W∞ = limx→+∞ W(x) (W∞ is either finite or equal to +∞). If ρ̄ lies within the interval (dmin, d
∗),

one has W(ρ̄) < W∞ and thus V0(0, ρ̄) < limR→+∞ V0(R, ρ̄). This means V0(·, ρ̄) has a local maximum at R = 0
and a global one at infinity. In that case, the trajectories of (21) have the structure shown in Fig. 4 at least locally, with a
pair of symmetric homoclinic orbits to R = 0. The periodic orbits inside the homoclinic loops correspond to nonlinear
normal modes, and the periodic orbits lying outside correspond to inversions of the atom A. The set of periodic orbits
outside the homoclinic loops qualitatively depends on the behavior of W at infinity. If W∞ = +∞, the surrounding
periodic orbits represented in Fig. 4 fill the entire phase space around the homoclinic loops. If W∞ < +∞, they are
confined in a region bounded by a pair of symmetric heteroclinic orbits (joining (R,R′) = (±∞,0)), and no periodic
orbits exists outside.

In the sequel we assume ρ∗ > dmin. Consequently, one has ρ̄ ∈ (dmin, d
∗) when α ≈ 0 is slightly increased along

the local solution branch (24)–(26) (in fact we shall see later that ρ∗ � ρ̄ on this solution branch). Therefore, (R,R′)
corresponds in Fig. 4 to the trajectory of period T close to the elliptic equilibrium (R0(ρ̄),0).

Remark 1. The case ρ∗ < dmin will not be considered here but could be treated with similar methods. In that case
the solution branch would have different properties, because homoclinic bifurcations occur in Eq. (21) as ρ̄ exits the
interval (dmin, d

∗) due to qualitative changes in the potential V0. If dmin > 0 (which implies W and V0 have a finite
limit at +∞) and ρ̄ = dmin, then V0 admits three global maxima at R = −∞,0,+∞. For ρ̄ ∈ (0, dmin), there is one
global maximum at R = 0 and two “local” maxima at R = ±∞.

Now we develop a simple level set approach to obtain global branches of periodic solutions. For this purpose, we
parametrize the periodic orbits by their energy difference E with respect to the ground state energy. More precisely
we have

E = 2
[
W

(√
R(0)2 + ρ̄2

) − W(d∗)
]

(we have fixed R even in t ). The value E = 0 corresponds to the equilibrium solution R = R0(ρ̄), and R approaches
an homoclinic orbit to 0 as E → Emax(ρ̄) defined by Emax(ρ̄) = 2(W(ρ̄)−W(d∗)) (Emax(ρ̄) is the energy difference
between the unstable equilibrium R = 0 and the ground state R0(ρ̄)). As we move along the family of periodic
orbits outside the homoclinic orbit, E increases from Emax(ρ̄) to the maximal value E∗ = 2(W∞ − W(d∗)). One
has E∗ = +∞ (and dmin = 0) when W is unbounded at +∞. If W is bounded at +∞, the limiting value E∗ < ∞
corresponds to a pair of symmetric heteroclinic orbits joining (R,R′) = (±∞,0).

To each value E ∈ [0,Emax(ρ̄)) ∪ (Emax(ρ̄),E∗) corresponds a unique solution RE,ρ̄ of (21) with R′(0) = 0 and
R(0) � R0(ρ̄). We shall note TE,ρ̄ its period. Due to the analyticity of W (which implies in particular the analyticity
of R(t) with respect to initial conditions), and since W ′(d) vanishes only at d = d∗ (yielding ∂E

∂R(0)
> 0 for R(0) >

R0(ρ̄)), the solution RE,ρ̄ depends analytically on (t,E, ρ̄) for t ∈ R and (E, ρ̄) in the open domain Λ = Λi ∪ Λo

with

Λi = {
(E, ρ̄) ∈ R

+ × (dmin, d
∗),0 < E < Emax(ρ̄)

}
, (28)

Λo = {
(E, ρ̄) ∈ R

+ × (dmin, d
∗),Emax(ρ̄) < E < E∗}. (29)
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Fig. 5. Open domain Λ = Λi ∪ Λo defined by (28), (29) and parts Γ1, Γ2 of its boundary defined by (30), (31).

The domain Λ is depicted in Fig. 5. In the sequel we note Γ1,Γ2 the parts of ∂Λ defined by

Γ1 = {
(E, ρ̄),E = Emax(ρ̄), ρ̄ ∈ (dmin, d

∗)
}
, (30)

Γ2 = {
(E, ρ̄),E = 0, ρ̄ ∈ (dmin, d

∗)
}
. (31)

To solve Eq. (22) we now introduce

f (E, ρ̄) = 1

TE,ρ̄

TE,ρ̄∫
0

∂V0

∂ρ̄

(
RE,ρ̄(t), ρ̄

)
dt. (32)

Solving system (21), (22) is equivalent to computing the level set f = 0, and each point (E, ρ̄) on this level set
corresponds to a unique solution (R, ρ̄) = (RE,ρ̄ , ρ̄). The function f is analytic on Λ (due to the analyticity of RE,ρ̄

and TE,ρ̄ ), and can be extended to a continuous function on the domain

Λ̄ = Λ ∪ Γ1 ∪ Γ2 (33)

(note that Λ̄ is different here from the closure of Λ). Clearly f (0, ρ̄) = ∂V0
∂ρ̄

(R0(ρ̄), ρ̄) and consequently

f (0, ρ̄) = 2U ′(2ρ̄). (34)

Moreover, since RE,ρ̄ approaches an homoclinic orbit to 0 as E → Emax(ρ̄)− (and a pair of symmetric homoclinics
as E → Emax(ρ̄)+) one has consequently limE→Emax(ρ̄) TE,ρ̄ = +∞ and

lim
E→Emax(ρ̄)

1

TE,ρ̄

TE,ρ̄∫
0

∂V0

∂ρ̄

(
RE,ρ̄(t), ρ̄

)
dt = ∂V0

∂ρ̄
(0, ρ̄).

It follows

f
(
Emax(ρ̄), ρ̄

) = 2
(
W ′(ρ̄) + U ′(2ρ̄)

)
. (35)

Similarly to (33) we shall note in the sequel Λ̄i = Λi ∪ Γ1 ∪ Γ2, Λ̄o = Λo ∪ Γ1 ∪ Γ2. The following technical lemma
will be useful to analyze the level set f = 0.

Lemma 1. Assume Hypothesis 1 is satisfied and dmin < ρ∗. Then the function f defined on Λ̄ possesses the following
properties for (E, ρ̄) ∈ Λ̄i :

(i) f (0, ρ̄) < 0 if ρ̄ < ρ∗ and f (0, ρ̄) > 0 if ρ̄ > ρ∗.
(ii) f (E, ρ̄) < f (0, ρ̄) if E > 0.

(iii) f (E, ρ̄) < 0 if 0 < E � Emax(ρ̄) and ρ̄ � ρ∗.
(iv) There exists an interval [ρ̄1, d

∗] (with ρ̄1 > ρ∗) on which f (Emax(ρ̄), ρ̄) is strictly positive.
(v) f (E, ρ̄) > f (Emax(ρ̄), ρ̄) if 0 � E < Emax(ρ̄).

(vi) There exists m > 0 such that f (E, ρ̄) � m for ρ̄1 � ρ̄ < d∗ and 0 � E � Emax(ρ̄).
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Proof. Property (i) simply follows from equality (34).
Let us prove properties (ii) and (iii). We have by definition

f (E, ρ̄) = 2

(
U ′(2ρ̄) + ρ̄

TE,ρ̄

TE,ρ̄∫
0

W ′[(RE,ρ̄(t)2 + ρ̄2)
1/2]

(RE,ρ̄(t)2 + ρ̄2)
1/2

dt

)
. (36)

Since RE,ρ̄ satisfies

R′′
E,ρ̄ + 2RE,ρ̄

W ′[(RE,ρ̄
2 + ρ̄2)

1/2]
(RE,ρ̄

2 + ρ̄2)
1/2

= 0, (37)

and RE,ρ̄(t) does not vanish, one obtains by substituting (37) into (36) and integrating by parts

f (E, ρ̄) = 2U ′(2ρ̄) − ρ̄

TE,ρ̄

TE,ρ̄∫
0

(
R′

E,ρ̄

RE,ρ̄

)2

dt. (38)

Using (34) it follows f (E, ρ̄) < f (0, ρ̄), since the last term in the sum is strictly negative for E > 0. This proves (ii),
and property (iii) follows by combining properties (ii) and (i).

Property (iv) follows directly from equality (35). Let us now prove property (v). The case E = 0 is straightforward
and there remains to examine the case 0 < E < Emax(ρ̄). Using (38) we find

f (E, ρ̄) > 2U ′(2ρ̄) − ρ̄

∥∥∥∥R′
E,ρ̄

RE,ρ̄

∥∥∥∥
2

L∞(0,TE,ρ̄ )

. (39)

Now we use the fact that Eq. (21) is integrable, with trajectories given by R′2 = gE((R2 + ρ̄2)
1/2

) and gE(d) = 2[E +
2W(d∗) − 2W(d)]. On each periodic orbit, d = (R2 + ρ̄2)

1/2
belongs to some interval [d−(E), d+(E)] increasing

with E, with d−(E) → ρ̄+ as E → Emax(ρ̄)−. In addition, the maximal value of gE/R2 is necessarily attained on the
interval [d−(E), d∗] where gE is increasing. Consequently we have the estimate

f (E, ρ̄) > 2U ′(2ρ̄) − ρ̄

∥∥∥∥ gE

d2 − ρ̄2

∥∥∥∥
L∞(d−(E),d∗)

. (40)

Since gE increases with E, one obtains the estimate

f (E, ρ̄) > 2U ′(2ρ̄) − ρ̄

∥∥∥∥ g

d2 − ρ̄2

∥∥∥∥
L∞(ρ̄,d∗)

, (41)

where g = gEmax(ρ̄) is given by g(d) = 4[W(ρ̄) − W(d)]. More intuitively, this estimate comes from the fact that the
slope at the origin (R′/R) is maximal on the surrounding homoclinic orbit (see Fig. 4). Now the concavity of g on the
interval (0, d∗] yields∥∥∥∥g − g(ρ̄)

d2 − ρ̄2

∥∥∥∥
L∞(ρ̄,d∗)

= g′(ρ̄)

2ρ̄

hence f (E, ρ̄) > 2
(
U ′(2ρ̄) + W ′(ρ̄)

)
, which proves (v). Property (vi) follows directly from (iv) and (v). �

3.2.2. Global solution branches
We are now ready to study the level line

Δ0 = {
(E, ρ̄) ∈ Λ̄, f (E, ρ̄) = 0

}
.

For this purpose we consider the local solution branch defined by (24)–(26). In a neighborhood of (E, ρ̄) = (0, ρ∗),
it provides a (locally unique) smooth curve on which f vanishes. This curve can be parametrized by E ≈ 0 and we
have ρ̄ = ρ∗ + O(E).

Due to the analyticity of f in Λi , the curve cannot end at one point in Λi . Moreover, using Lemma 1, Δ0 ∩ Λ̄i

lies necessarily in the strip ρ∗ � ρ̄ < ρ̄1 (see properties (i), (iii) and (vi)) and intersects the boundary Γ2 only at
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Fig. 6. Level line Δ0 (thick line) computed numerically for the Morse potentials U(x) = W(x) = 1
2 (e−(x−1) − 1)2. The thin line represents Γ1.

The thick line extends in fact up to (E0, ρ0) ≈ (0.04,0.81) ∈ Γ1, but the two lines become indistinguishable closer to this point at the figure
resolution. This computation suggests that Δ0 and Γ1 are tangent at (E0, ρ0) where Δ0 forms a cusp.

(E, ρ̄) = (0, ρ∗) (see property (i)). Consequently, there exists a connected subset of Δ0 joining (E, ρ̄) = (0, ρ∗) to a
point (E0, ρ0) ∈ Γ1 (which might not be unique) with ρ∗ < ρ0 < ρ̄1. In the sequel we note Δ̃0 the maximal connected
component of Δ0 containing (E, ρ̄) = (0, ρ∗) and (E0, ρ0).

The zeros of f (Emax(ρ̄), ρ̄) (defined by Eq. (35)) determine the intersection points between Δ0 and Γ1 (there is
at least one intersection point and only a finite number). It is worthwhile to note that these intersection points have
a simple interpretation with respect to the Hamiltonian (1). If f (Emax(ρ̄), ρ̄) = 0, there exists an equilibrium of (1)
where the light atom A lies in the middle of the B–B bond (i.e. R = 0) at a distance ρ̄ from the two heavy atoms B

(expression (35) gives the force exerted on one atom B by the two remaining atoms A,B in this configuration).
Without loss of generality, we now assume the existence of a path in Δ̃0 which connects (0, ρ∗) to (E0, ρ0) without

intersecting Γ1 at an other point. To simplify the discussion we assume that ρ̄ = ρ0 is a simple zero of f (Emax(ρ̄), ρ̄).
Consequently f (Emax(ρ̄), ρ̄) changes its sign at ρ̄ = ρ0, and the curve Δ̃0 can be continued across Γ1 inside the
domain Λo.

As one approaches the point (E0, ρ0) on Δ̃0, or any other point in Δ0 ∩ Γ1, the period TE,ρ̄ of the corresponding
solution of (21) tends to infinity. For (E, ρ̄) ∈ Λi the corresponding solutions of (21) consist in periodic orbits inside
an homoclinic orbit to 0 (see Fig. 4). For (E, ρ̄) ∈ Λo they consist in periodic orbits lying outside.

Since a curve of solutions of f = 0 emanating from (E0, ρ0) cannot end at one point in Λo, this curve is either
unbounded (this is possible only if E∗ = +∞, i.e. for W unbounded at infinity) or reaches again the boundary of Λo.
It cannot reach the line d = d∗ as we noted previously.

To illustrate these results, let us consider the case when U and W are equal and defined as a Morse potential

U(x) = W(x) = 1

2

(
e−(x−1) − 1

)2
.

One has d∗ = D∗ = 1 (hence ρ∗ = 1/2) and one finds dmin = 1 − ln 2 < ρ∗. Moreover the function f vanishes on Γ1
at a unique point (E0, ρ0) ≈ (0.04,0.81). The level line Δ0 can be numerically computed and is shown in Fig. 6.

It is also worthful to note that solutions of (21), (22) satisfy ρ̄ > dmin if ρ∗ > dmin. Indeed, for ρ̄ � dmin, R(t)

does not vanish on any periodic orbit (this is in connection with Remark 1) and we find
∫ T

0
∂V0
∂ρ̄

(R(t), ρ̄) dt < 0 using
formula (38). Consequently we have necessarily dmin < ρ̄ < d∗, i.e. all solutions ρ̄ lie in our domain of study.

Our analysis of the level set f (E, ρ̄) = 0 provides global branches of solutions of system (21), (22). These solutions
are (R, ρ̄) = (RE,ρ̄ , ρ̄) where (E, ρ̄) is any point on the level line, except the points on Γ1 (which would correspond
to an infinite period). These results are summarized in Theorem 1, which provides a global branch of nonlinear normal
modes (see property (i) below) and a family of solutions with arbitrarily large periods corresponding to inversions of
the light atom A (property (ii)).
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Fig. 7. Period of the orbit of (21) with energy difference E as (E, ρ̄) are varied along the level line f (E, ρ̄) = 0, for U(x) = W(x) =
1
2 (e−(x−1) − 1)2.

We note C2
b(R) the space of C2 bounded functions over R with bounded derivatives, and Rh

ρ̄ the positive solution of
(21) homoclinic to 0 (fixed even it t ) which exists for ρ̄ ∈ (dmin, d

∗). The zero ρ̄ = ρ0 of the function f (Emax(ρ̄), ρ̄)

referred to in Theorem 1 has been defined at the beginning of Section 3.2.2.

Theorem 1. Assume Hypothesis 1 is satisfied, dmin < ρ∗ and the zero ρ̄ = ρ0 of f (Emax(ρ̄), ρ̄) is simple. Then the
following properties hold.

(i) For all ρ̄ ∈ (ρ∗, ρ0), there exists T > 0 and a T -periodic function R satisfying (21), (22), 0 < E < Emax(ρ̄) and
the following properties:
(a) R is even in t , R(t) > 0 for all t ∈ R,
(b) T → 2π/ω∗

1 , E → 0 and R → R∗ in C2
b(R) as ρ̄ → ρ∗. In this limit the solutions can be parametrized by

(24)–(26).
(c) T → +∞, E → Emax(ρ0) and R → Rh

ρ0
(uniformly in t on each fixed compact interval) as ρ̄ → ρ0.

(ii) For all T large enough, there exists ρ̄ ∈ (dmin, d
∗) and a T -periodic function R satisfying (21), (22), E > Emax(ρ̄)

and the following properties:
(a) R is even in t , R(t) > 0 for all t ∈ [0, T /4), R(t + T/2) = −R(t) for all t ∈ R,
(b) ρ̄ → ρ0, E → Emax(ρ0) and R → Rh

ρ0
(uniformly in t on each fixed compact interval) as T → +∞.

For a numerical illustration we consider the case of Morse interaction potentials illustrated by Fig. 6. Fig. 7 shows
the solutions period as the energy difference E is varied along the level line Δ0. The first solution family provided
by Theorem 1 (property (i)) corresponds to the left part of the curve. The second solution family (property (ii))
corresponds to a part of the curve at the right of the asymptote where the period T decreases with increasing E. One
can notice that T does not vary monotonically as E is further increased along Δ0 ∩Λo. For large enough values of T ,
we find two solutions of (21), (22) having different energies E > Emax(ρ̄).

4. Persistence of relative periodic orbits at finite mass ratio

In Section 4.1 we derive a set of nondegeneracy conditions under which F0,ω̄0 is a submersion at a given periodic
solution of the infinite mass ratio problem. Such a solution will be called normal, following the terminology introduced
in references [37,27] (note that the definition of normal periodic orbits given in these references is more general). This



1252 G. James et al. / Ann. I. H. Poincaré – AN 26 (2009) 1237–1264
result will be used in Section 4.2, where we obtain for ε ≈ 0, ω̄ ≈ ω̄0 a family of periodic solutions of (5) close to
the normal periodic solution (this follows from a Lyapunov–Schmidt reduction). This procedure will be applied to the
particular solutions of the infinite mass ratio problem obtained in Section 3.

4.1. Conditions for normal degeneracy when ε = 0

Let us suppose that (20) has a 1-periodic solution ū0 = (�̄0,0)t , r0
2 for T = T0 with an angular velocity ω̄0. We shall

give general conditions under which F0,ω̄0 is a submersion at the point (r1, v1, r2, v2, �̄, T ,α,β) = X0 where X0 =
(0, 1

2 ω̄0ū
⊥
0 , r0

2 , v0
2, �̄0, T0,0,0) and T −1

0 ṙ0
2 = v0

2 . We recall that F0,ω̄0 : X → Y is a submersion at X0 if DF0,ω̄0(X0)

is surjective and its kernel has a closed complement in X. In what follows we prove (under some nondegeneracy
conditions) that DF0,ω̄0(X0) is surjective with a finite-dimensional kernel.

Now let us consider Y = (a, b, c, d, e) ∈ Y and look for a solution X = (δr1, δv1, δr2, δv2, δ�̄, δT ,α,β) of the
equation

DF0,ω̄0(X0)X = Y. (42)

Eq. (42) reads

δṙ1 − T0
(
2δv1 − ω̄0δū

⊥) = a,

δv̇1 = βT0u
⊥
0 + b,

δṙ2 − T0δv2 = T0αG
(
ū0, r

0
2

) + δT v0
2 + c,

δv̇2 + T0Dr2 G
(
ū0, r

0
2

)
δr2 + T0DūG

(
ū0, r

0
2

)
δū = αT0v

0
2 − δT G

(
ū0, r

0
2

) + d, (43)

with the integral equation

1∫
0

(
−1

2
ω̄2

0ū0 + F (ū0, r
0
2 ), δū

)
dt +

1∫
0

(
ω̄0δv

⊥
1 , ū0

)
dt

+
1∫

0

(
DūF

(
ū0, r

0
2

)
δū + Dr2 F

(
ū0, r

0
2

)
δr2, ū0

)
dt = −e, (44)

where we have noted δū = (δ�̄,0)t . We first consider the resolvent equations for the heavy masses motion:

δṙ1 = T0
(
2δv1 − ω̄0δū

⊥) + a, (45)

δv̇1 = βT0ū
⊥
0 + b. (46)

Eq. (46) has a 1-periodic solution if
∫ 1

0 (βT0ū
⊥
0 + b )dt = 0, which can be splitted into

1∫
0

(
b + βT0ū

⊥
0 , ū0

)
dt = 0,

1∫
0

(
b + βT0ū

⊥
0 , ū⊥

0

)
dt = 0.

The first equation is automatically satisfied since b ∈ L
2
0 (this implies

∫ 1
0 (b(s), ū0) ds = 0). In order to satisfy the

second equation, we find

β = − 1

T0‖ū0‖2

1∫
0

(
b, ū⊥

0

)
. (47)

This compatibility condition has a simple interpretation. Indeed, for ε = 0 and ū = ū0, we have ∇J = (0, ū⊥
0 ,0,0)t at

(r1, v1, r2, v2) = (0, 1
2 ω̄0ū

⊥
0 , r0

2 , v0
2) (the rescaled angular momentum J is defined by Eq. (8)). Since J is a conserved

quantity of (5), the range of the left side of (43) is L2-orthogonal to ∇J taken at the basic state (see [37]). This yields
precisely the compatibility condition (47).
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Integrating (46), we find

δv1(t) = δv + Ib(t) (48)

where Ib is the unique primitive of b − u0
⊥

‖ū0‖2

∫ 1
0 (b, ū⊥

0 ) dt such that
∫ 1

0 Ib(s) ds = 0 and δv denotes an arbitrary

constant vector that remains to be determined. Inserting (48) into (45) yields

δṙ1 = T0
(
2δv − ω̄0δū

⊥ + 2Ib

) + a. (49)

Eq. (49) has a 1-periodic solution r1 if its left side has 0 time-average, i.e.

δv = 1

2
ω̄0δū

⊥ −
1∫

0

(
Ib(s) + a(s)

2T0

)
ds. (50)

Then δr1 is uniquely determined by the equations

δṙ1 = 2T0Ib + a −
1∫

0

(
2T0Ib(s) + a(s)

)
ds,

1∫
0

δr1(s) ds = 0. (51)

Moreover, we have obtained

δv1 = 1

2
ω̄0δū

⊥ + I1(a, b) (52)

where I1(a, b) = − ∫ 1
0 (Ib(s) + a(s)

2T0
) ds + Ib .

Now we consider the linearized equation for light mass motion coupled with the condition (44). Eliminating δv2
from the equations and using (20) yields

δr̈2 + T 2
0 Dr2 G

(
ū0, r

0
2

)
δr2 = −T 2

0 DūG
(
ū0, r

0
2

)
δū + α

(
T 2

0 v0
2 + T0

d

dt
G(ū0, r

0
2 )

)
+ δT 2v̇0

2 + ċ + T0d, (53)

and we have Dr2 G(ū0, r
0
2 ) = D2

r2
V (ū0, r

0
2 ). We have in addition

T0δv2 = δṙ2 − T0αG
(
ū0, r

0
2

) − δT v0
2 − c. (54)

Due to the time translation invariance, we know that ṙ0
2 lies in the kernel of the operator L : H2 → L

2, v �→ v̈ +
T 2

0 D2
r2

V (ū0, r
0
2 )v. We make the following assumption:

Hypothesis 2.

Ker L = 〈
ṙ0

2

〉
.

This condition will be generically satisfied, because V (ū0, .) is not invariant under rotations of r2 once ū0 has been
fixed. Since L is a Fredholm operator with index 0 and is self-adjoint, Eq. (53) has a 1-periodic solution if and only if

−T 2
0

1∫
0

(
DūG

(
ū0, r

0
2

)
δū, ṙ0

2

)
dt + α

1∫
0

(
T 2

0 v0
2 + T0

d

dt
G
(
ū0, r

0
2

)
, ṙ0

2

)
dt

+ 2δT

1∫
0

(
v̇0

2, ṙ0
2

)
dt +

1∫
0

(
ċ + T0d, ṙ0

2

)
dt = 0. (55)

Since G = ∇r2V we have automatically

1∫ (
DūG

(
ū0, r

0
2 (s)

)
δū, ṙ0

2 (s)
)
ds = 0.
0



1254 G. James et al. / Ann. I. H. Poincaré – AN 26 (2009) 1237–1264
Moreover, we have also
∫ 1

0 (v̇0
2, ṙ0

2 ) dt = T0
∫ 1

0 (v̇0
2, v0

2) = 0. Consequently, the compatibility condition (55) yields
(integrate by parts)

α = −
∫ 1

0 [(d, v0
2) + (c, G(ū0, r

0
2 ))]ds

T0
∫ 1

0 [‖v0
2(s)‖2 + ‖G(ū0, r

0
2 )(s)‖2]ds

, (56)

or equivalently (use (20))

α =
∫ 1

0 [(c, v̇0
2) − T0(d, v0

2)]ds∫ 1
0 [T 2

0 ‖v0
2(s)‖2 + ‖v̇0

2‖2]ds
.

As previously this compatibility condition has a simple interpretation. For ε = 0 and ū = ū0, we have at
(r1, v1, r2, v2) = (0, 1

2 ω̄0ū
⊥
0 , r0

2 , v0
2) the equality ∇H = (0,0, G(ū0, r

0
2 ), v0

2)t . Since H is a conserved quantity of (5),
the range of the left side of (43) is L2-orthogonal to ∇H taken at the basic state, which yields the compatibility
condition (56).

Now let us solve Eq. (53). For this purpose we split the right side into three parts. We consider a 1-periodic solution
k0

2 of

k̈0
2 + T 2

0 Dr2 G
(
ū0, r

0
2

)
k0

2 = 2v̇0
2 . (57)

We also consider a 1-periodic solution h0
2 of

ḧ0
2 + T 2

0 Dr2 G
(
ū0, r

0
2

)
h0

2 = −T 2
0 DūG(ū0, r

0
2 )ū0. (58)

Moreover, with α given by (56), we note I2(c, d) the 1-periodic solution of

δr̈2 + T 2
0 Dr2 G

(
ū0, r

0
2

)
δr2 = α

(
T 2

0 v0
2 + T0

d

dt
G
(
ū0, r

0
2

)) + ċ + T0d (59)

fixed by the condition
∫ 1

0 (I2(c, d), ṙ0
2 ) dt = 0.

Setting δū = μ1ū0, the solutions of (53) take the form

δr2 = λṙ0
2 + μ1h

0
2 + δT k0

2 + I2(c, d), (60)

where λ is an arbitrary constant.
Now there remains to solve the integral equation (44). Inserting the solutions (52), (60) into (44) and using (20),

one obtains

δT

1∫
0

(
Dr2 F

(
ū0, r

0
2

)
k0

2, ū0
)
dt + μ1Δ1 = −e −

1∫
0

(
Dr2 F

(
ū0, r

0
2

)
I2(c, d) dt + ω̄0 I ⊥

1 (a, b), ū0
)
dt, (61)

with

Δ1 =
1∫

0

(
DūF

(
ū0, r

0
2

)
ū0 + Dr2 F

(
ū0, r

0
2

)
h0

2, ū0
)
dt − ω̄2

0

2
�̄2

0. (62)

Note that the value of Δ1 is independent of the choice of h0
2 (defined up to an element of Ker L). We make the

following assumption.

Hypothesis 3. The coefficient Δ1 defined by (62) does not vanish.

Since Δ1 �= 0, Eq. (61) can be solved with respect to μ1, which determines δū = μ1ū0 and δ�̄ = μ1�̄0. As a
conclusion, we have proved that (42) admits solutions X for all Y ∈ Y, i.e. DF0,ω̄0(X0) is surjective. Putting together
equations (47), (56), (51), (61), (52), (60) and (54), a unique solution X = (δr1, δv1, δr2, δv2, δ�̄, δT ,α,β) is fixed by
the choice of Y and the two arbitrary parameters λ, δT . The kernel of DF0,ω̄0(X0) is therefore two-dimensional and
spanned by the vectors (δr1, δv1, δr2, δv2, δ�̄, δT ,α,β) = V1,V2 (corresponding respectively to λ = 1, δT = 0 and
λ = 0, δT = 1) given by
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V1 = (
0,0, ṙ0

2 , T −1
0 r̈0

2 ,0,0,0,0
)
, (63)

V2 =
(

0,
1

2
ω̄0μ

∗
1ū

⊥
0 ,μ∗

1h
0
2 + k0

2, T −1
0

[
μ∗

1ḣ
0
2 + k̇0

2 − v0
2

]
,μ∗

1�̄0,1,0,0

)
, (64)

where μ∗
1 = −Δ−1

1

∫ 1
0 (Dr2 F (ū0, r

0
2 )k0

2, ū0) dt .
As a conclusion, we have shown that F0,ω̄0 is a submersion at X = X0. We sum up our result in the following

lemma.

Lemma 2. Assume problem (20) has a 1-periodic solution ū0 = (�̄0,0)t , r0
2 (different from an equilibrium) for

T = T0 and ω̄ = ω̄0. If the nondegeneracy Hypotheses 2, 3 are satisfied, then F0,ω̄0 is a submersion at the point
(r1, v1, r2, v2, �̄, T ,α,β) = X0 where X0 = (0, 1

2 ω̄0ū
⊥
0 , r0

2 , v0
2, �̄0, T0,0,0) and T −1

0 ṙ0
2 = v0

2 . Moreover, the kernel of
DF0,ω̄0(X0) is two-dimensional.

4.2. Zero set of Fε,ω̄: local structure and associated time-periodic solutions

Given a solution X0 = (0, 1
2 ω̄0ū

⊥
0 , r0

2 , v0
2, �̄0, T0,0,0) of F0,ω̄0(X0) = 0 satisfying the nondegeneracy Hypotheses 2

and 3, we have shown that DF0,ω̄0(X0) is surjective with a two-dimensional kernel. Consequently, by the implicit
function theorem (just using the classical Lyapunov–Schmidt decomposition) the zero set F−1

0,ω̄0
(0) is locally a two-

dimensional submanifold of X. Moreover, the zero set F−1
ε,ω̄(0) is locally a two-dimensional submanifold for ε ≈ 0

and ω̄ ≈ ω̄0, since Fε,ω̄ is a small C1 perturbation of F0,ω̄0 .
These properties can be reformulated as follows. There exist neighborhoods Ω of X0 in X, Λ of (0, ω̄0) in R

2 and
V of (0,0) in R

2, and a Ck map Φ : V × Λ → X, such that for all (ε, ω̄) ∈ Λ, the solutions X ∈ Ω of Fε,ω̄(X) = 0
take the form

X = X0 + λV1 + δT V2 + Φ(λ, δT , ε, ω̄), (λ, δT ) ∈ V , (65)

where V1,V2 are the eigenvectors of DF0,ω̄0(X0) given by (63), (64). We have in addition Φ(0,0,0, ω̄0) = 0 and
D(λ,δT )Φ(0,0,0, ω̄0) = 0. Note that the first component of X is O(|ε|) (system (19) implies r1 = 0). Moreover,
varying the parameter λ simply corresponds to a phase shift.

By construction, zeros X = (r1, v1, r2, v2, �̄, T ,α,β) of Fε,ω̄ provide 1-periodic solutions u = (r1, v1, r2, v2)
t of

(9), (10). Considering the basic state X0, if �̄0 �= 0 and r0
2 is not an equilibrium solution of (20) then ∇J (u), ∇H(u) do

not vanish and are not colinear. Consequently, the assumptions of Proposition 1 are satisfied when u = (r1, v1, r2, v2)
t

is derived from a perturbed solution X with δT , ε sufficiently small in (65). It follows that α = β = 0 and ũ(t) =
u(t/T ) is a T -periodic solution of the conservative system (4), (5).

Consequently, we have obtained (for ε ≈ 0 and ω̄ ≈ ω̄0) a two-parameter family of time-periodic solutions of (4),
(5) with ū = (�̄,0)t , close to a given solution (r1, v1, r2, v2, ū) = (0, 1

2 ω̄0ū
⊥
0 , r0

2 (t/T0), v
0
2(t/T0), (�̄0,0)t ) with period

T = T0, assumed to exist for ε = 0, ω̄ = ω̄0 and satisfying some nondegeneracy assumptions. The family of solutions
is parametrized by phase (corresponding to parameter λ) and period T ≈ T0 (corresponding to parameter δT ). Re-
laxing the restriction on ū (i.e. allowing nonvanishing second components) one obtains a three-parameter family of
solutions of (4), (5), thanks to the invariance of the system under rotations. This in turn provides a three-parameter
family of time-periodic solutions for the Hamiltonian system (3) for ε ≈ 0 (ε �= 0) and ω̄ ≈ ω̄0.

We sum up this result in the following theorem (we denote by 〈u1〉 the time-average of u1).

Theorem 2. Fix ε = 0, ω̄ = ω̄0 in (4)–(5)–(14) and consider a T0-periodic solution (r1, v1, r2, v2, ū) = U0 different
from an equilibrium. If the nondegeneracy Hypotheses 2, 3 are satisfied, then U0 belongs to a local three-parameter
family of solutions of (4)–(5)–(14) (for ε = 0, ω̄ = ω̄0), parametrized by phase, rotational degree of freedom, and
period T ≈ T0. This family of solutions persists for ε ≈ 0 (large mass ratio limit) and ω̄ ≈ ω̄0 (nearby angular
velocities). For ε �= 0, the corresponding solutions of the Hamiltonian system (3) satisfy u1 − 〈u1〉 = O(ε2), with
oscillations principally localized on the u2-component as ε ≈ 0. They correspond to relative periodic orbits of system
(1) with γ = ε−2, time-periodic in a frame rotating at velocity εω̄.

Moreover, using Theorems 1 and 2 in conjunction provides a global branch of periodic solutions of (4)–(5)–(14)
(we state this result below in Theorem 3). This family of solutions is parametrized by period T , mass ratio ε and
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angular velocity ω̄ (in addition to phase shift, rotational degree of freedom). The solution branch is global in the sense
that period T is unbounded along it, but it remains only local in transverse directions since we are restricted to small
values of ε and ω̄.

Theorem 3. Assume the hypothesis of Theorem 1 are satisfied, and consider a T0-periodic (nonconstant) solution
(R, ρ̄) of (21), (22) in the global branch of solutions provided by Theorem 1. Consider the T0-periodic solution U0 of
(4)–(5)–(14) with ε = 0, ω̄ = 0, defined by (r1, v1, r2, v2, ū) = U0 and ū = (2ρ̄,0)t , r1 = v1 = 0, r2(t) = (0,R(t))t ,
T −1

0 ṙ2 = v2. Consider a (generic) choice of solution (R, ρ̄) such that Hypotheses 2, 3 are satisfied (this is the case
in particular if one considers in Theorem 1(i) a solution sufficiently close to the triangular equilibrium, ρ∗ is not
a multiple of R∗ and the coefficient h(ρ∗) defined by (27) does not vanish). Then U0 belongs to a local family of
solutions of (4)–(5)–(14), parametrized by phase, rotational degree of freedom, period T ≈ T0, ε ≈ 0 and ω̄ ≈ 0.
For ε �= 0, the corresponding solutions of the Hamiltonian system (3) satisfy u1 − 〈u1〉 = O(ε2), with oscillations
principally localized on the u2-component as ε ≈ 0. They correspond to relative periodic orbits of system (1) with
γ = ε−2, time-periodic in a frame rotating at velocity εω̄.

As indicated in Theorem 3, the (generically satisfied) conditions described in Hypotheses 2, 3 are satisfied if one
considers in Theorem 1 (property (i)) a solution sufficiently close to the triangular equilibrium, ρ∗/R∗ /∈ N and the
coefficient h(ρ∗) defined by (27) does not vanish. This property is checked in Appendix A using classical arguments
of perturbation theory.

5. Numerical continuation of relative periodic orbits

In this section we numerically illustrate Theorems 2 and 3, which ensure that (generic) relative periodic orbits
existing in our triatomic system for ε = 0 and a given rescaled angular velocity ω̄ = ω̄0 can be smoothly continued
to ε ≈ 0 and ω̄ ≈ ω̄0. Moreover we shall qualitatively describe (for some solutions provided by Theorem 3) how the
oscillations evolve with increasing ω̄, and we shall study their stability properties.

We choose to fix the period T of solutions and perform the continuation in two steps. Firstly we set ω̄ = 0 and
obtain a family of solutions by varying ε. Secondly, for different fixed values of ε we continue the periodic solutions
with respect to ω̄.

In what follows we briefly describe our numerical method (more details and references on the numerical continu-
ation of periodic solutions in conservative systems can be found in [7,20]). As a starting point in the case ε = 0 and
ω̄ = 0 we choose one of the solutions found in Section 3.2.2, where the system has an isosceles configuration. Then
the computation of other periodic solutions for different values of (ε, ω̄) is based on path-following and the Newton
method to find fixed points of the time-T map ϕT of the flow (the dynamical equations are integrated with a standard
Runge Kutta method). The Newton method is carried out in different ways when ω̄ = 0 and w̄ �= 0.

During the continuation with respect to ε (ω̄ = 0 being fixed), the system keeps an isosceles configuration. Con-
sequently one has to continue a (reversible) periodic solution (R,R′, ρ,ρ′) of a 4-dimensional reversible differential
equation, where ρ is the half distance between the two heavy atoms B and R is the coordinate of the light atom A on
the perpendicular axis to the B–B line (see Fig. 2). Setting ū + εr1(t) = (2ρ(t),0)t (ρ > 0) and r2(t) = (0,R(t))t in
Eq. (5), one obtains the differential system

ρ′′ = −ε2
(

U ′(2ρ) + W ′(√R2 + ρ2
) ρ√

R2 + ρ2

)
,

R′′ = −(
2 + ε2)W ′(√R2 + ρ2

) R√
R2 + ρ2

. (66)

Time-periodic and reversible solutions are deduced from the fixed points of the map(
R(0), ρ(0)

) �→ (
R(T ),ρ(T )

)
,(

R(T ),R′(T ), ρ(T ), ρ′(T )
) = ϕT

(
R(0),0, ρ(0),0

)
(see [20], Appendix A.1 for more details).
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The continuation with respect to w̄ for a fixed ε is more involved because the isosceles configuration is lost when
w̄ �= 0 and we have to deal with the full 8-dimensional differential system (5). In that case, the Newton method has
to be adapted because the linearized map I − DϕT is not invertible at any fixed point of ϕT (this originates from
the invariance of (5) under rotations and time-shift). At each step of the numerical continuation, we partially invert
I −DϕT with a Singular Value Decomposition (which is equivalent to fixing some phase conditions). The same partial
inverse is used for all the iterations of the Newton method to accelerate the numerical computations. Moreover, we
use a numerical derivative to compute DϕT instead of integrating the linearized dynamical equations (this yields more
accurate results).

Now let us start with a continuation with respect to ε, keeping ω̄ = 0. As a starting point in the case ε = 0 we choose
an oscillatory motion of the light atom corresponding to an “inversion” (see Theorem 1, property (ii)). During one
oscillation period, this atom crosses twice the segment formed by the two heavy atoms. Most of our numerical results
will concern the continuation of this solution with respect to ε and ω̄. The present numerical study is not exhaustive,
and one could obviously consider the other family of periodic solutions corresponding to nonlinear normal modes of
the triangular equilibria (Theorem 1, property (i)), as well as more general periodic solutions existing for ε = 0.

As in Section 3.2.2 (Figs. 6 and 7) we consider the interaction potentials U(x) = W(x) = 1
2 (e−(x−1) − 1)2. Our

starting point is the solution with period T = 15 and the higher energy difference E with respect to the ground state
(see Fig. 7). We shall denote this solution by (R,ρ) = (R0(t), ρ̄0), R0 being T -periodic and ρ̄0 constant. For ε = 0,
(R0, ρ̄0) defines a solution of (66) which can be continued at least to small values of ε according to Theorem 3.

Numerically we manage to make the continuation up to ε = 0.4, and after this point the periodic solution is too
unstable to be computed with a good accuracy. We have computed the Floquet spectrum of the periodic solutions as
ε is varied along the solution branch. In addition to a double non-semi-simple eigenvalue at +1 there is a symmetric
pair of eigenvalues depending on ε. This pair lies on the unit circle for small enough ε and collides at +1 for ε ≈ 0.23.
Then it becomes real positive as ε is further increased, and moves away from the unit circle at least up to ε = 0.4, the
end of the numerical continuation.

In the sequel we note H̃ε the Hamiltonian (1) in order to stress its dependency in ε. Similarly we shall note
Hε the reduced Hamiltonian (3) and we recall Hε = H̃ε − ΩJ̃ . The above solutions satisfy J̃ = 0 and H̃ε = Hε =
ε−2ρ′2 + (2 + ε2)−1R′2 + U(2ρ) + 2W(

√
R2 + ρ2 ). In Fig. 8 (left) we plot the Hamiltonian H̃ε as ε is varied along

the solution branch.
It is worthwhile stressing that the continuation with respect to ε can be performed far from the regime ε ≈ 0 for

certain solutions. For example, Fig. 8 (bottom) shows the continuation of a nonlinear normal mode of a triangular
equilibrium, from ε = 0 (Theorem 1, property (i)) up to ε = 1 (in that case all atoms become identical).

Now we continue with respect to ω̄ some of the solutions found previously. This leads us to consider the full
8-dimensional differential system with Hamiltonian Hε defined by (3). Therefore the equations of motion are consid-
ered in a frame rotating at angular velocity εω̄, and we describe mass positions using the Jacobi coordinates u1, u2

described in Fig. 1. We choose to continue two stable solutions for ω̄ = 0, corresponding to ε = 0.1 and ε = 0.2.
In Fig. 9 we plot the Hamiltonian H̃ε as ε is kept fixed and ω̄ is varied along each solution branch. The turning

points (at critical values of ω̄ close to 0.6) correspond to a saddle-center bifurcation of T -periodic solutions. Moreover
the endpoints of our numerical continuation correspond to parameter values at which our Newton method does not
converge (this occurs when periodic orbits become highly unstable). We detect a second turning point for ε = 0.2
but we manage to follow the solution branch only for very small parameter changes after this point. For ε = 0.2,
periodic orbits near the end of the continuation are similar (up to a change of scale) to the orbit depicted in Fig. 15 for
ω̄ = 0.487.

By computing the Floquet spectrum of periodic solutions (both for ε = 0.1 and ε = 0.2) we find the higher energy
branch (see Fig. 9) to be unstable at least close to the first turning point, and the lower branch is linearly stable. A pair
of Floquet multipliers collides at +1 at the turning point.

The saddle-center bifurcations of periodic solutions at ω̄ ≈ 0.6 can be related to a bifurcation of the same type
for relative equilibria. As Fig. 10 shows (for ε = 0.1), at ω̄ = ω̄c ≈ 0.49 a symmetric pair of isosceles triangular
relative equilibria bifurcates from a linear configuration with R = 0 (the family of linear relative equilibria is shown in
Fig. 11). We recall the notations u1 = (2ρ,0)t and u2 = (0,R)t . In parallel, following the initial isosceles triangular
configurations (with R = ±√

3/2 if ω̄ = 0), one can see that |R| decreases as ω̄ is increased. The two families of
triangular configurations merge and disappear in a saddle-center bifurcation as ω̄ reaches a critical value close to 0.6
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Fig. 8. Top figure: Hamiltonian H̃ε versus mass ratio ε as the solution (R0, ρ̄0) of (66) defined in the text for ε = 0 is continued with respect to ε.
We manage to make the continuation up to ε = 0.4. Bottom figure: continuation of the nonlinear normal mode with T = 6 provided by Theorem 1,
property (i) (see Fig. 7). In the figure the continuation stops at ε = 1, but a continuation beyond this value is possible.

Fig. 9. Hamiltonian H̃ε for ε = 0.1 (dashed line) and ε = 0.2 (continuous line), as ω̄ is varied along each solution branch.
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Fig. 10. Family of relative equilibria with u1 = (2ρ,0)t and u2 = (0,R)t emanating from an isosceles equilibrium (R = ±√
3/2, ρ = 1/2) as ω̄ is

increased, for ε = 0.1. The computations have been performed using the continuation software CL_MATCONT [6].

(see Fig. 10, top). This critical value is very close to a value of ω̄ corresponding to turning points in Fig. 9. This is not
surprising, because the bifurcation of relative equilibria are expected to influence the surrounding periodic orbits.

In the same way, the pitchfork bifurcation of relative equilibria at ω̄ = ω̄c has also a qualitative effect on the
branches of T -periodic solutions. This can be visualized by considering the reduced Hamiltonian Hε as ω̄ is varied
along the two branches of T -periodic solutions (Fig. 12). One can see that solution branches are folded, their two parts
being very close at a value of ω̄ close to ω̄c when ε is small.

Now let us describe the influence of the angular velocity on the geometry of periodic solutions. We represent
the trajectories in the rotating coordinate system with Jacobi coordinates (Fig. 1) and note u1 = ū + (rx, ry), u2 =
(Rx,Ry). For ε = 0.2, trajectories of T -periodic solutions are represented in Figs. 13–15 for different values of ω̄.

In Fig. 13 one can observe that the isosceles configuration existing for ω̄ = 0 (Rx = 0) is lost for ω̄ �= 0. The
evenness of solutions in t is lost at the same time. For stable solutions, the angular oscillations of the light atom
A increase in amplitude as ω̄ increases (see Figs. 13 and 14, right). Despite the loss of evenness in t , trajectories
remain invariant under the reflexion Rx → −Rx and ry → −ry , which corresponds to a reversibility symmetry for
system (5). More precisely (if a small rotation is applied to make ū horizontal) the trajectories satisfy (u1(t), u2(t)) =
(−Su1(−t), Su2(−t)), where S(a, b) = (−a, b). The solutions obtained by continuation with respect to ω̄ possess this
additional symmetry because system (5) is reversible and the solutions used to start the continuation are themselves
symmetric. Note that for different parameter values one can observe a pitchfork bifurcation breaking this symmetry
during the continuation.
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Fig. 11. Family of linear relative equilibria with u1 = (2ρ,0)t and u2 = 0 as ω̄ is varied, for ε = 0.1.

Fig. 12. Reduced Hamiltonian Hε = H̃ε − ΩJ̃ for ε = 0.1 (dashed line) and ε = 0.2 (continuous line), as ω̄ is varied along the two branches of
T -periodic solutions.

On the contrary, on the unstable solution branch the angular oscillations of the light atom A decrease in amplitude
as ω̄ increases (see Fig. 15, right). One can observe that the mean B–B stretch ‖ū‖ is larger on the unstable solution
branch than on the stable one, each of them having a bond length comparable to linear and triangular relative equilibria
respectively (compare ‖ū‖ in Figs. 14 and 15 with 2ρ in Figs. 10 and 11). At sufficiently small angular velocity, there
is also a topological change of the unstable trajectories. In Fig. 15, for ω̄ = 0.487, the upper and lower loops of the
trajectories are absent in the right plot and new loops appear in the left plot. This phenomenon might be linked with
the previously mentioned pitchfork bifurcation of relative equilibria at ω̄ ≈ 0.49.

We end up our numerical study with some dynamical considerations. For ε = 0.2 and ω̄ = 0.4869 we perturb the
unstable T -periodic solution (choosing a small perturbation close to its unstable manifold) and see how the system
evolves with time. In Fig. 16 (left) one can see that this perturbation leads to a partial dissociation of the triatomic
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Fig. 13. Time-periodic trajectories corresponding to solutions of Fig. 9, for ε = 0.2 and angular velocities ω̄ = 0 (full line), ω̄ = 0.1 (dashed line),
ω̄ = 0.3 (dotted line). Right figure: trajectory of the light atom A described by the Jacobi coordinate u2 = (Rx,Ry). Left figure: variations of the
segment between heavy atoms B (Jacobi coordinate u1). One represents the deviation (rx , ry) of the B–B segment with respect to its mean value ū.
The mean value for each angular velocity is respectively ū = (1.097,0), ū = (1.103,−4.2e − 6), ū = (1.154,−4.5e − 5). Note the small length
scale on the ry axis.

Fig. 14. Time-periodic trajectories corresponding to solutions of Fig. 9, for ε = 0.2 and angular velocities ω̄ = 0.584 (dotted line), ω̄ = 0.551
(dashed line), ω̄ = 0.487 (full line). Solutions correspond to the lower-energy (stable) solution branch. The choice of coordinates is the same
as in Fig. 13. The mean value of the B–B vector for each angular velocity is respectively ū = (1.66,−3.95e − 4), ū = (1.42,−2.47e − 4),
ū = (1.29,−1.56e − 4). Note the small length scale on the ry axis.

system, where the light atom A remains attached to an heavy atom B and the remaining atom B is ejected. Note that
all atomic bonds have the same dissociation energy with our choice of potential V .

Fig. 16 (right) also shows the vertical component of u2 for a perturbation of the linearly stable solution (applied
in the same direction as previously), for an initial perturbation of H̃ε lower that 5 percent. The time of integration
extends over 40 periods of the unperturbed periodic solution (with period T = 15). One can see that the motion of
inversion persists, although time-periodic oscillations are replaced by a chaotic regime. This illustrates that these
periodic inversions are not stable at the nonlinear level, but nevertheless contribute to organize the dynamics.
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Fig. 15. Time-periodic trajectories corresponding to solutions of Fig. 9, for ε = 0.2 and angular velocities ω̄ = 0.584 (dotted line), ω̄ = 0.551
(dashed line), ω̄ = 0.487 (full line). Solutions correspond to the higher-energy (unstable) solution branch. The choice of coordinates is the same
as in Fig. 13. The mean value of the B–B vector for each angular velocity is respectively ū = (1.66,−3.95e − 4), ū = (2.02,−4.49e − 4),
ū = (2.42,−5.01e − 4). Note the small length scale used on the rx and ry axes.

Fig. 16. Left figure: perturbation of the higher-energy (unstable) T -periodic solution of Fig. 9, with ε = 0.2 and ω̄ = 0.4869. We plot the B–B

distance (continuous line), and the two distances A–B (dashed and dotted lines) as a function of time. The bounded component (dotted line)
corresponds to ‖u2 + u1/2‖ in this numerical run. Right figure: perturbation of the lower-energy (linearly stable) T -periodic solution of Fig. 9,
with ε = 0.2 and ω̄ = 0.4869. We plot the vertical component of u2 as a function of time. In both cases the initial perturbation of H̃ε is lower that
5 percent.
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Appendix A. Normal periodic solutions near a triangular equilibrium

In this appendix we consider a T0-periodic (nonconstant) solution (R, ρ̄) of (21), (22) given by (24)–(26). We shall
prove that Hypotheses 2, 3 are satisfied (for r0

2 (t) = (0,R(T0t))
t and ū0 = (2ρ̄,0)t ) when ρ∗ is not a multiple of R∗,

the hardness coefficient h(ρ∗) defined by (27) does not vanish and α ≈ 0 (i.e. for a solution sufficiently close to the
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triangular equilibrium (R∗, ρ∗)). For this purpose we study the explicit case α = 0 and then treat the case α ≈ 0 by
perturbation.

Firstly we check Hypothesis 2. Consider the fundamental solution matrix M(t) ∈ R
4 (M(0) = I ) of the linearized

equation

δr̈2 + T 2
0 D2

r2
V

(
ū0, r

0
2

)
δr2 = 0, (67)

or equivalently dδx
dt

= δy,
dδy
dt

= −T 2
0 D2

r2
V (ū0, r

0
2 )δx (we have set δx = δr2 for notational simplicity). The matrix

M(1) is called the monodromy matrix of (67). Then δx ∈ Ker L if and only if δx is solution of (67) and (δx, δy)(1) =
(δx, δy)(0), or equivalently (δx, δy)t (0) ∈ Ker(M(1) − I ). Now let us determine the kernel of M(1) − I .

Firstly we examine the case α = 0 of (24)–(26), where ū0 = (2ρ∗,0)t , r0
2 = (0,R∗)t and T0 = 2π/ω∗

1 . The mon-
odromy matrix has a double semi-simple eigenvalue +1 and a pair of complex conjugate eigenvalues e±i2πω∗

2/ω∗
1

(see Section 3.1 for the expressions of ω∗
1,ω∗

2). If ω∗
2/ω∗

1 /∈ N (which is equivalent to assuming ρ∗/R∗ /∈ N) then the
eigenvalue +1 is exactly double.

Secondly, for α �= 0 small enough, M(1) possesses an eigenvalue +1 which is at least double and nonsemi-simple
because h(ρ∗) does not vanish. Indeed this condition implies, for small amplitude periodic solutions of (21) oscil-
lating around R0(ρ̄) and ρ̄ ≈ ρ∗, that the derivative of frequency with respect to amplitude does not vanish (see [2],
Section 26.7, p. 241). This property implies that the eigenvalue +1 of the associated monodromy matrix is nonsemi-
simple (see [37] p. 693).

Using the above result for α = 0 in conjunction with classical perturbation theory [11], we deduce that the
eigenvalue +1 is exactly double for α ≈ 0. Since the eigenvalue +1 is nonsemi-simple for α �= 0, we thus have
Ker(M(1) − I ) = 〈(ṙ0

2 , r̈0
2 )t (0)〉 and Ker L = 〈ṙ0

2 〉. As a consequence Hypothesis 2 is satisfied for α ≈ 0 and α �= 0.
Lastly, in the case when α → 0 in (24)–(26) one obtains after lengthy but straightforward computations h0

2 →
− ρ∗2

R∗2 (0,R∗)t (we asymptotically solve Eq. (58)) and Δ1 → D∗2U ′′(D∗) > 0 (this coefficient is defined by (62)).
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