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Abstract

We consider the solutions of the equation −ε2�u+u−|u|p−1u = 0 in S1 ×R, where ε and p are positive real numbers, p > 1.
We prove that the set of the positive bounded solutions even in x1 and x2, decreasing for x1 ∈ ]−π,0[ and tending to 0 as x2 tends
to +∞ is the first branch of solutions constructed by bifurcation from the ground-state solution (ε,w0(

x2
ε )). We prove that there

exists a positive real number ε� such that for every ε ∈]0, ε�] there exists a finite number of solutions verifying the above properties
and none such solution for ε > ε�. The proves make use of compactness results and of the Leray–Schauder degree theory.
©

Résumé

Nous étudions l’équation −ε2�u + u − |u|p−1u = 0 dans S1 × R, où ε et p sont des nombres réels strictement positifs, p > 1.
Nous identifions l’ensemble des solutions (ε, u) où u est une fonction positive, paire en x1 et x2, décroissante en x1 dans [−π,0]
et tendant vers 0 quand x2 tend vers +∞, comme la première branche de solutions issue d’une bifurcation à partir de l’état
fondamental (ε,w0(

x2
ε )). Nous prouvons qu’il existe un réel ε� tel que pour tout ε ∈ ]0, ε�] il y a un nombre fini de solutions

vérifiant les propriétés énoncées ci-dessus, et aucune telle solution pour ε > ε�. Les preuves utilisent des résultats de compacité et
la théorie du degré de Leray–Schauder.
©
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1. Introduction

Let ε and p be positive real numbers, p > 1. We consider the positive bounded solutions of the equation

−ε2�u + u − |u|p−1u = 0 in S1 × R (E)

that are 2π periodic in the first variable x1 and that tend to 0, as |x2| tends to +∞, uniformly in x1 ∈ S1. We know
that these solutions are symmetric in x2, around a real number t0, and decreasing for x2 > t0. This can be proved
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by an application of the moving plane method [13,3,5]. Let us recall, for n = 1,2, the existence of positive bounded
solutions of the equation

−�u + u − up = 0 in R
n.

The existence and the uniqueness of such solutions that are radially symmetric with respect to 0 is proved in [15].
We will denote them by w0 for n = 1 and w1 for n = 2. So the function x2 → w0(x2/ε) is the unique positive
bounded solution of (E), up to translations, that depends only on the second variable x2. But there exist solutions
that depend on the variable x1. Such solutions are constructed by Dancer in [10], by bifurcation from the bounded
positive solution x2 → w0(x2/ε), by the use of a Crandall–Rabinowitz theorem in a convenient Banach space. More
precisely, there exists a value, that we denote by ε�, of the parameter ε for which for all k ∈ N

� curves of new
solutions bifurcate from the solutions (ε�/k,w0(kx2/ε�)), while the solutions (ε,w0(x2/ε)), for ε �= ε�/k are locally
unique. We refer to Malchiodi and Montenegro [16], for an analysis of the eigenvalues of the linearized operator
−ε2� + I − pw

p−1
0 (x2/ε)I . We may consider only the positive bounded solutions of (E) that are even in x2, the

other solutions being deduced by translations. For the bifurcation we will consider the bounded positive solutions of
Eq. (E) in the domain S1 × R

+ that verify the Neumann boundary condition ∂u
∂ν

= 0 on S1 × {0}, that are even in x1
and such that u tends to 0 as x2 tends to +∞, uniformly in x1. The other branches can be deduced by translations
of the variable x1. Let us call a trivial solution any solution of the form (ε,w0(x2/ε)). Let S be the closure of the
set of the non-trivial solutions in the convenient Banach space. For all k ∈ N

� we consider the component of S to
which (ε�/k,w0(kx2/ε�)) belongs, that is the maximal connected set containing this solution. We call it the kth
continuum of solutions and we denote it by Σk . It is proved in [10], by the maximum principle, that the solutions
in Σk are positive. Moreover, by a continuity argument that uses the fact that, by its definition, Σ1 is connected, it
is proved that for all (ε,u) ∈ Σ1 we have ∂u

∂x1
> 0 in ]−π,0[ × R

+ and ∂u
∂x1

< 0 in ]0,π[ × R
+. In particular, all

solution in Σ1 is of minimal period 2π . If (ε,u) ∈ Σ1, then we extend it to [−kπ, kπ] × R+ by 2π -periodicity and
we define v(x1, x2) = u(kx1, kx2). We can deduce from the construction of Σk that (ε/k, v) belongs to Σk and that
this rescaling gives every element of Σk . Consequently for all (ε,u) in Σk the minimal period of u is 2π/k and
this implies that Σ1 ∩ Σk = ∅ for all k �= 1. This is an important tool, following a global bifurcation theorem of
Rabinowitz [19] in the proof of the existence of solutions (ε,u) in Σ1 for all 0 < ε < ε�. So we will focus our interest
on the first continuum Σ1. The results in [10] are in fact more general that what we summarized here. They concern
bounded positive solutions of (E) in S1 × R

n−1, n � 2 and the variable x2 is replaced by the radius r of the polar
coordinates in R

n−1. But the case n = 2 is particular. In this case, for all p > 1, the solutions in Σ1 are bounded in

L∞(S1 × R). Consequently, for n = 2, we have that if (ε,u) ∈ Σ1, with ε → 0 and if ũε is defined in S1

ε
× R by

ũε(x1, x2) = uε(εx1, εx2), then ũε tends to w1, as ε tends to 0, i.e. the norm of ũε − w1 in L∞(S1/ε × R) tends to 0.
In [16] the function w0 and the linearized operator are used in view of the construction of positive solutions of

−ε2�u + u − up = 0 in a bounded domain with a Neumann condition at the boundary. Many other authors studied
the same equation in a bounded domain or in R

n [1,11,12, . . . ] or related equations [4].
In [2], we have proved the following theorem.

Theorem 1.1. There exists ε̄ > 0 such that for ε > ε̄ any positive solution of (E) that tends to 0 as x2 tends to infinity,
uniformly in x1 ∈ S1, can only be a function of the variable x2.

In this paper we will prove that the first continuum Σ1 is in fact the set of all the positive solutions of (E) even in
x1 and x2 that tend to 0 as x2 tends to +∞ and that verify ∂u

∂x1
> 0 in ]−π,0[ × R

+ and ∂u
∂x1

< 0 in ]0,π[ × R
+. We

will also prove that for each ε ∈ ]0, ε∗[ there exists a finite number of such solutions and that there exists ε0 > 0 for
which for ε < ε0 such a solution is unique. We do not know whether the ε̄ in Theorem 1.1 is equal to ε� or not, but we
will prove that the first continuum Σ1 is contained in {(ε, u), ε � ε�}. Thus so are the continua Σk for all k ∈ N

� and
all the sets of solutions that can be deduced from them by translations. For p ∈ N, p � 2, when the function u 	→ up

is analytic, we can describe more precisely the continuum Σ1 as a finite number of curves that admit local analytic
parameterizations.

First we will prove the following propositions

Proposition 1.1. If (ε,u) ∈ R × L∞(S1 × R) is a solution of (E), u > 0, u even in x2 and limx2→∞ u = 0 uniformly
in x1, then there exist positive real numbers C1 and C2, depending on u and on ε, such that for all (x1, x2) ∈ S1 ×R+,
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C1e
−x2/ε � u(x1, x2) � C2e

−x2/ε . More, given ε1 < ε2 in ]0,+∞[, for every set A of positive solutions of (E) as
above that is included in [ε1, ε2] × L∞(S1 × R), there exists C > 0 such that for all (ε,u) ∈ A and all (x1, x2) ∈
S1 × R+, u(x1, x2) � Ce−x2/ε. Moreover, the set A is relatively compact for the topology associated to the norm
defined as follows ‖u‖ = ‖u‖H 2(S1×R+) + ‖uex2/ε2‖L∞(S1×R+).

Proposition 1.2. Let (ε,u) ∈ R × L∞(S1 × R) be a solution of (E), u > 0, u even in x1 and x2, limx2→∞ u = 0 and
such that ∂u

∂x1
has a constant sign in ]0,π[ × R+. Then the kernel of the linearized operator −ε2� + I − pup−1I in

{φ ∈ H 1(S1 × R),φ even in x1 and x2} has the dimension 0 or 1.

Let us summarize the results of the present paper in the following theorem

Theorem 1.2.

(i) For p > 1, the first continuum Σ1 of positive bounded solutions even in x1 and x2 of −ε2�u + u − up = 0
bifurcating from (ε�,w0(x2/ε�)) is composed of (ε�,w0(x2/ε�)) and of all the solutions (ε,u) of (E) such that
u > 0, u even in x1 and x2, limx2→∞ u = 0 and ∂u

∂x1
> 0 in ]0,π[ × R+.

(ii) There exists a bounded subset A of L∞(S1 × R+) such that the set Σ1 is entirely contained in ]0, ε�] × A.
(iii) For each (ε,u) ∈ Σ1, u is an isolated point of {v ∈ L∞(S1 × R+); v even in x1 and x2; (ε, v) solution of (E)}.

For every ε > 0, ε < ε�, there exists a finite number of solutions (ε,u) in Σ1.
(iv) There exists ε0 such that for all 0 < ε < ε0 this continuum is a curve that has a one-to-one C 1 parameterization

ε → (ε,uε). Moreover, for each (ε1, u) ∈ Σ1 there exists a continuous map ε 	→ (ε,uε) from ]0, ε�] to Σ1 such
that uε1 = u. For p ∈ N, the continuum is constituted by a finite number of curves that admit local analytic
parameterizations.

We have to define Banach spaces of functions that are suitable for our purposes. We will use the following notations:

B =
{
u ∈ L∞(

S1 × R
); u even in x1 and x2; lim|x2|→∞u(x1, x2) = 0 uniformly in x1

}
,

X = H 1(S1 × R
) ∩ B

and

U =
{
u ∈ X; u > 0; ∂u

∂x1
> 0 in ]−π,0[ × R

+ and
∂u

∂x1
< 0 in ]0,π[ × R

+
}
.

The vector space X is a Banach space for the norm ‖u‖X = ‖u‖H 1(S1×R+) + ‖u‖L∞(S1×R+). We consider that the
first continuum Σ1 is obtained by bifurcation from the solution (ε�,w0(x2/ε�)) in the space X. We will recall the
beginning of the construction of Σ1 in Section 5. Let us define, for ε > 0

Yε = {
u ∈ X; uex2/ε ∈ L∞(

S1 × R
+); �u ∈ L2(S1 × R

+)}
.

The vector space Yε is a Banach space for the norm ‖u‖Yε = ‖u‖H 1(S1×R+) + ‖�u‖L2(S1×R+) + ‖uex2/ε‖L∞(S1×R+).

The paper is organized as follows. In Section 2 we prove or recall various preliminary lemmas and we establish
compactness results, especially Proposition 1.1. Section 3 is devoted to properties of the linearized operator and to
some uniqueness results for the solutions (ε,u), u ∈ U . It contains the proof of Proposition 1.2. We complete the
proof of Theorem 1.2 in Section 4. In Section 5 we present some calculation that proves directly that, for p � 2, the
bifurcation from the solution (ε�,w0(

x2
ε�

)) is not vertical and goes in the sense of the decreasing ε. We give the value
of ε� and of the first eigenfunction.

2. Preliminary lemmas and compactness results

We begin by the useful following two lemmas.
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Lemma 2.1. Let C� = (
p+1

2 )
1

p−1 . Let (ε,u) be a positive solution of (E). Then ‖u‖L∞(S1×R+) � C� , the equality
being true only for u(x1, x2) = w0(

x2
ε

).

Proof. Multiplying (E) by ∂u
∂x2

and integrating on S1 × R
+ we get the identity

ε2

2

2π∫
0

(
∂u

∂x1

)2

(x1,0) dx1 =
2π∫

0

(
−u2

2
+ up+1

p + 1

)
(x1,0) dx1.

Consequently if ‖u‖L∞(S1×R+) � C� we have that ∂u
∂x1

(x1,0) = 0 for all x1 ∈ S1. But as it is proved in [2] this implies

that ∂u
∂x1

(x1, x2) = 0 for all (x1, x2) ∈ S1 × R
+. Then u = w0(

x2
ε

) and we know that ‖w0‖L∞(R) = w0(0) = C�. �
Lemma 2.2. Let (ε1, u1) be a solution of (E). If u1 > 0 and if (ε,u) is any solution of (E) that is sufficiently closed
to (ε1, u1) for the norm of R × L∞(S1 × R+), then u > 0. If u1 ∈ U and if (ε,u) is any solution of (E) sufficiently
closed to (ε1, u1) for the norm of R × X, then u ∈ U .

Proof. First, we have that u > 0 for any solution (ε,u) of (E) closed to (ε1, u1) in R × L∞(S1 × R+). The proof
follows from the maximum principle and is given in [10], Section 1. Now, as in [10], Section 2, we have that ∂u

∂x1
has

a constant sign in ]0,π[ and in ]−π,0[, since, if it is closed to (ε1, u1), it is the first eigenfunction of the eigenvalue
problem −ε2�v + v −pup−1v = αv. But for (ε,u) sufficiently closed to (ε1, u1) in R×X, these constant signs have
to be those of (ε1, u1). Indeed, if the signs of ∂u

∂x1
and of ∂u1

∂x1
in ]0,π[ are not the same, we have

∫
[0,π]×R+( ∂u

∂x1
−

∂u1
∂x1

)2 �
∫
[0,π]×R+( ∂u1

∂x1
)2, that cannot be true if we suppose that ‖u − u1‖2

X <
∫
[0,π]×R+( ∂u1

∂x1
)2. �

Lemma 2.3.

(i) There exists M > 0 such that for every solution (ε,u) of (E), with u > 0, lim|x2|→∞ u(x1, x2) = 0 uniformly in x1
and u ∈ L∞(S1 × R), we have ‖u‖L∞(S1×R) � M .

(ii) Let (εk, uk) be a solution of (E), defined for εk → 0 such that uk ∈ U . Then ũk : x 	→ uk(εkx) tends to w1 as
εk → 0, i.e. ‖ũk − w1‖L∞(S1/εk×R+) → 0.

(iii) If (ε,u) and (ε, v) are solutions of (E), u and v in X, u �= v, then u − v has not a constant sign in S1 × R+.

Proof. (i) Let (ε,u) be solutions of (E). We may suppose that u is even in x2 and decreasing in x2. Up to a translation
in x1, we may suppose that the maximum of u is attained at (0,0). Let us recall why u is bounded in L∞(S1 × R

+)

(here ε tends to 0 or not). Let α be a positive real number to be chosen later. We set v(x) = u(αx)/‖u‖L∞(S1×R+). It
verifies in S1/α × R

+

−�v + (
α2/ε2)v − (

α2/ε2)‖uε‖p−1
L∞(S1×R+)

vp = 0.

If ‖u‖L∞(S1×R+) tends to +∞, we choose α/ε that tends to 0 such that (α2/ε2)‖u‖p−1
L∞(S1×R+)

tends to 1. We obtain

by standard estimates that v is bounded in H 1(K) for all compact subset K of R
2, and consequently a subsequence

of v tends to a limit v̄ that is a non-negative bounded solution in R
2 of

−�v − vp = 0.

But such a solution is identically null. (Let v0(r) = 1
2π

∫ 2π

0 v̄(r, θ) dθ then −v′′
0 − v′

0
r

� 0, v0 � 0, that gives rv′
0(r) � 0

for all r > 0. But if there exists r0 > 0 such that v′
0(r0) < 0, then v0 tends to −∞ as r tends to +∞. Thus v′

0 = 0.

Consequently
∫ 2π

0 v̄p = 0 and v̄ = 0.) On the other hand, v attains its maximum in x = 0, then v tends uniformly on
the compact sets of R

2 to a limit that is not identically null. This contradiction proves that ‖u‖L∞(S1×R+) is bounded.

(ii) If εk tends to 0, ũk is bounded in L∞( S1

εk
× R

+), attains its maximum at (0,0), ũk(0,0) � C� and verifies the
equation −�u+u−up = 0. Then, by standard elliptic arguments [14] ũk converges uniformly in the compact subsets
of R

2 to a limit w such that −�w + w − wp = 0,‖w‖∞ � C�,w is decreasing in x1 and x2 and w � 0. It is proved
in [10] that w = w1.
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Now let Ak = (ak, bk) ∈ S1/εk × R+ be such that ‖ũk − w1‖L∞(S1/εk×R+) = (ũk − w1)(Ak) and, say, ak → +∞
and bk bounded. For all x1 ∈ R+ there exists K such that for all k > K we have x1 ∈ S1/εk , x1 < ak . Then
ũk(ak, bk) � ũk(x1, bk). Up to a subsequence, we have that bk tends to a limit b, thus lim ũk(ak, bk) � lim ũk(x1, bk) =
w1(x1, b). But w1(x1, b) tends to 0 as x1 tends to +∞, thus ũk(ak, bk) tends to 0 as k tends to +∞, so
‖ũk − w1‖L∞(S1/εk×R+) tends to 0. The same proof works if ak and bk tend to +∞ or if ak is bounded while bk

tends to +∞.
(iii) Let (ε,u) and (ε, v) be two solutions, u and v in X, u > 0, v > 0. Let w = u − v. Then

−ε2�w + w − up − vp

u − v
w = 0.

Let us suppose that w < 0. A convexity inequality gives

up − vp

u − v
> pup−1.

Multiplying the equation above by u we get∫

S1×R+

ε2∇u · ∇w + uw < p

∫

S1×R+

upw.

Multiplying (E), that is verified by u, by w we obtain∫

S1×R+

ε2∇u · ∇w + uw =
∫

S1×R+

upw.

Consequently,∫

S1×R+

upw <

∫

S1×R+

pupw

that is impossible, since u > 0, w < 0 and p > 1. �
We have now the following propositions, that will permit to rely the topologies of X and Yε .

Lemma 2.4. Let ε1, ε2, 0 < ε1 < ε2, and A be a bounded set of L∞(S1 ×R). The sets of positive solutions of (E), such
that u is even in x2 and u(x1, x2) tends to 0 when |x2| tends to +∞ uniformly in x1, that are included in [ε1, ε2] × A
are relatively compact for the topology of R × L∞(S1 × R).

Proof. Let (εm,um) be a sequence of solutions of (E), in [ε1,+∞[ × A, as above. It follows from standard elliptic
theory that we extract a subsequence, still denoted by (εm,um), such that εm tends to a limit ε > 0, um tends to a
limit u uniformly on the compact subsets of S1 × R

+ and ‖u‖∞ � C�. Let us explain why u tends to 0 as x2 tends
to +∞. If it is not true it is not difficult to see that for all ε1 small enough there exist two sequences x1,m ∈ S1 and
x2,m → +∞ such that um(x1,m, x2,m) = ε1. Now we apply the proof in [10]. Let us recall it for completeness. We set
vm(x1, s) = um(x1, x2,m + s) in S1 × ]−x2,m,+∞[. We have vm(x1,m,0) = ε1. There exists v solution of −ε2�v +
v − vp = 0 in S1 × R, v non-increasing in s, such that vm tends to v uniformly in all compact sets of S1 × R and if
limx1,m = α,v(α,0) = ε1. As in [10] (page 547), we see, by the maximum principle and the Harnack inequality, that if
ε1 is chosen small enough, then v cannot depend only on one variable. Let v−(x1) = lims→−∞ v(x1, s) and v+(x1) =
lims→+∞ v(x1, s). The functions v+ and v− are bounded in S1, verify the ordinary equation −ε2g′′ + g − gp = 0,
‖v+‖∞ � ε1 and ‖v−‖∞ � ε1. If ε1 is chosen small enough, then v+ = 0, by the above principle. If v− is not a constant

function, then − ε2

2 v′2− + 1
2v2− − 1

p+1v
p+1
− is a constant function. It follows that both the maximum value and the

minimum value of v− are less than C�. But the energy of v+ and v− is the same, that gives
∫
S1(

v′2−
2 + v2−

2 − v
p+1
−

p+1 ) = 0.

Thus v′− = 0,
v2−
2 − v

p+1
−

p+1 = 0 and v− = 0 or 1. That gives v− = 0, that is a contradiction with ‖v−‖∞ � ε1. This gives
a contradiction, so u tends to 0 as x2 tends to +∞.
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Let us prove that the convergence is uniform in S1 × R
+. Let us suppose that Am = (am, bm) ∈ S1 × R

+ is
such that ‖um − u‖L∞(S1×R+) = (um − u)(Am) and that bm tends to +∞. For all x2, we have, for m large enough,
um(am,x2) > um(am,bm). Let x2 > 0 be given, let m → +∞ and suppose (up to a subsequence) that am tends to a,
we obtain that, for all x2 > 0, u(a, x2) � ¯limm→+∞um(Am). But u tends to 0 as x2 tends to +∞. Consequently
um(Am) tends to 0, and then ‖um − u‖L∞(S1×R+) tends to 0. �
Proposition 2.3. Let ε > 0 be given and let u be a positive solution of (E), such that u is even in x2 and u(x1, x2)

tends to 0 when |x2| tends to +∞ uniformly in x1. Then there exist two positive real numbers C1 and C2, depending
on u and on ε, such that for all x2 > 0 and for all x1 ∈ S1,

C1e
−x2/ε � u(x1, x2) � C2e

−x2/ε.

Moreover, if (ε1, u1) ∈ R × L∞(S1 × R+) is a solution of (E), u1 > 0, there exists δ > 0 and C > 0 such that for all
solution (ε,u) of (E) in R×L∞(S1 ×R+) that verifies |ε−ε1|+‖u1 −u‖∞ < δ, we have for all (x1, x2) ∈ S1 ×R+,
u(x1, x2) � Ce−x2/ε .

Proof. Let us define Ψ (x2) = 1
2π

∫ 2π

0 u(x1, x2) dx1. We will prove first that

u � C2e
−x2/ε.

The first step will be to prove that for all 0 < β < 1/ε there exists a positive real number C0 such that for all x2 > 0

Ψ (x2) � C0e
−βx2 (2.1)

and then to deduce the same inequality for u, by use of the Harnack inequalities.
Integrating (E) on [0,2π ] we obtain

−ε2Ψ ′′(x2) + Ψ (x2) − 1

2π

2π∫
0

up dx1 = 0. (2.2)

Let us choose a real number α such that 1 − αp−1 > 0. There exists A > 0 such that for all x1 ∈ S1 and all x2 > A we
have u(x1, x2) � α. We remark that if u is sufficiently closed to u1 for the uniform norm, we may choose 0 < α < 1
and A independent of u. Let us define β by β2 = 1

ε2 (1 − αp−1). We have by (2.2)

−Ψ ′′(x2) + β2Ψ (x2) � 0 for all x2 > A

that gives, by the maximum principle, for all x2 > A,

Ψ (x2) � Ψ (A)e−β(x2−A).

Then w = eβx2Ψ (x2) is bounded for large x2 and we obtain (2.1). It is easy to verify that the constant C0 in (2.1) may
be chosen independently from (ε,u), for (ε,u) sufficiently closed to (ε1, u1) for the norm of R × L∞.

Now we will verify the following Harnack inequality. For all R > 0 there exists C such that, for all y ∈ R
2, we

have

sup
BR(y)

u � C
(

inf
BR(y)

u +
(

inf
BR(y)

u
)p)

(2.3)

where the constant C depends on R and ε, does not depend on y. Indeed, we use first Theorem 8.17 in [14] for L = �

and for the equation �u = 1
ε2 (u − up) and then we use Theorem 8.18 in [14] for the equation L = ε2�u − u and

for Lu � 0. The two inequalities that we obtain give (2.3). Moreover C decreases in ε ([2]). By (2.1) we have for all
x2 > 0

inf
x1∈S1

u(x1, x2) � C0e
−βx2 . (2.4)

Let x2 > 0 and y = (0, x2) and R = π . We have

inf
B (y)

u � inf
1
u(x1, x2) � C0e

−βx2 .

R x1∈S
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This inequality, together with (2.3) gives a constant C′
0 such that for all x2 > 0 and all x1 ∈ S1 we have

u(x1, x2) � C′
0e

−βx2 . (2.5)

Once more, the constant C′
0 does not depend on (ε,u), chosen in a neighborhood of (ε1, u1).

The second step will be to prove that there exists a constant C > 0 such that for all x2

Ψ (x2) � Ce−x2/ε (2.6)

and to deduce the same inequality for u.
From (2.2) we deduce that for x2 > 0 we have

−ε2Ψ ′′ + Ψ � Ce−pβx2

and Ψ ′(0) = 0. This implies that Ψ � φ, where φ is the bounded solution of

−ε2φ′′ + φ = Ce−pβx2 , φ′(0) = 0.

But we may suppose that p
√

1 − αp−1 > 1 and consequently we have

φ = Ae−pβx2 + Be−x2/ε,

with

A = C/
(
1 − (

p2β2ε2)) and B = −Apβε.

Thus we have proved (2.6). We can deduce by the same proof as above the existence of a constant C2 such that for
x2 > 0 and for all x1 ∈ S1

u(x1, x2) � C2e
−x2/ε.

Once more we may choose C2 independent from (ε,u) closed to (ε1, u1).
Let us prove now that

u � C1e
−x2/ε.

The first step will be to prove that this is true for Ψ . From (2.2) we have

−ε2Ψ ′′ + Ψ � 0 for x2 > 0

and then we have by the maximum principle

Ψ (x2) � Ψ (0)e−x2/ε for x2 > 0.

Now we can write:

u =
∑
j�0

aj (x2) cos(jx1) +
∑
j�1

bj (x2) sin(jx1)

with Ψ = a0. We have for j � 1,

−ε2a′′
j + (

1 + j2)aj = 1

π

2π∫
0

up cos(jx1) dx1

then ∣∣−ε2a′′
j + (

1 + j2)aj

∣∣ � Ce−px2/ε.

Let us choose 1 < p̃ < min{p,
√

2}. Therefore, |aj | � φj where φj is the solution of

−ε2φ′′
j + (

1 + j2)φj = Ce−p̃x2/ε, φ′
j (0) = 0, φj −→ 0 at infinity.

The function φj is a combination of e−p̃x2/ε and e−
√

1+j2x2/ε , then aj = o(e−x2/ε), for j � 1. We have a similar
result for bj , j � 1. We infer that u ∼ Ψ at infinity, in the sense that u/ψ tends to 1 as x2 tends to +∞, uniformly
in x1. �
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Corollary 2.1. Let ε1, ε2, 0 < ε1 < ε2, and A be a bounded set of L∞(S1 × R). The sets of positive solutions of (E),
such that u is even in x2 and u(x1, x2) tends to 0 when |x2| tends to +∞ uniformly in x1, that are included in
[ε1, ε2] × A are relatively compact for the topology of R × H 1(S1 × R).

Proof. Returning to the proof of Lemma 2.4, it remains to verify that um tends to u for the H 1(S1 × R+)-norm. We
know that the sequence (um) tends to u for the L∞(S1 × R

+) norm and that (εm,um) is a solution of (E) for all m,
um > 0. By Proposition 2.3 there exists a positive constant C such that for all x ∈ S1 × R

+ and for all m we have

um(x) � Ce
− x2

εm . This implies that um tends to u in H 1(S1 × R+), since we have

∫

S1×R+

ε2
m

∣∣∇(um − u)
∣∣2 +

∫

S1×R+

((
ε2 − ε2

m

)
�u(um − u) + (um − u)2) =

∫

S1×R+

u
p
m − up

um − u
(um − u)2,

and the right member is less than

pCp−1
∫

S1×R+

e(−p+1)x2/ε(um − u)2,

that tends to 0 by the Lebesgue theorem. Consequently um tends to u for the H 1(S1 × R
+)-norm. �

Remark 2.1. Let (εm,um) be a sequence of solutions of (E), such that um ∈ U for all m, that tends to a limit (ε,u) in
R × X. We have ‖um‖L∞(S1×R+) � C∗, thus the limit u is not 0. We deduce easily that either u ∈ U or u(x1, x2) =
w0(

x2
ε

).

Proposition 2.4. Let ε > 0 be given and let u ∈ Yε , u > 0. Then the operator

L = −ε2� + I − pup−1I

is a Fredholm operator of index 0 from the Banach space Yε to its topological dual space Y ′
ε .

Proof. There exist results for the Fredholm property for general linear elliptic problems in unbounded domains [20].
Let us give the proof that we did for this particular problem. We will prove that v → (−ε2� + I )−1(pup−1v) is a
compact operator from Yε to Yε , where t = (−ε2� + I )−1(pup−1v) is defined as the solution in H 1(S1 × R

+) of the
equation

−ε2�t + t = pup−1v in S1 × R
+,

∂t

∂ν
= 0 in S1 × {0}.

We use the Fourier expansion

t =
+∞∑
j=0

tj (x2) cos(jx1).

We get for all j

−ε2t ′′j + (
1 + ε2j2)tj = 1

π

2π∫
0

pup−1v cos(jx1) dx1, t ′j (0) = 0.

Now we are going to prove that t ∈ Yε together with an estimate of ‖ex2/εt‖L∞(S1×R+). There exists a constant C > 0
such that

∣∣∣∣∣
2π∫

pup−1v cos(jx1) dx1

∣∣∣∣∣ � Ce(−p+1)x2/ε

2π∫
|v|dx1.
0 0
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For any positive real number m > 1 there exists another constant C such that

∣∣∣∣∣
2π∫

0

pup−1v cos(jx1) dx1

∣∣∣∣∣ � Ce(−p+1/m)x2/ε
∥∥ex2/εv

∥∥1−1/m

L∞(S1×R+)
‖v‖1/m

L∞(S1×R+)
.

Let p̃ = min{p,
√

1 + ε2}. Let us choose m > 1 such that 1 < p̃ − 1
m

<
√

1 + ε2. Thus we have p̃ − 1
m

�= √
1 + ε2j2

for all j ∈ N. We define

f (x2) = e(−p̃+1/m)x2/ε.

The bounded solution of the equation

−ε2φ′′ + (
1 + ε2j2)φ = f, φ′(0) = 0

is

φj (x2) = e(−p̃+1/m)x2/ε

1 + ε2j2 − (−p̃ + 1
m

)2
+ (−p̃ + 1

m
)e−

√
1+ε2j2x2/ε√

1 + ε2j2(1 + ε2j2 − (−p̃ + 1
m

)2)
.

We obtain |tj | � φj and then, for all x2 ∈ R,
∣∣ex2/εtj (x2)

∣∣ � C
∥∥ex2/εv

∥∥1−1/m

L∞(S1×R+)
‖v‖1/m

L∞(S1×R+)

(
ex2/εφj (x2)

)
.

The summation over j shows that for our choice of m > 1 such that −p̃ + 1 + 1
m

< 0, there exists a constant C such
that for all x2∣∣ex2/εt (x2)

∣∣ � C
∥∥ex2/εv

∥∥1−1/m

L∞(S1×R+)
‖v‖1/m

L∞(S1×R+)
. (2.7)

Thus it is clear that t ∈ Yε . More, if (vm) is a bounded sequence in Yε , then the corresponding sequence (tm) is
bounded in Yε . Let us prove that the operator v → t is compact from Yε to Yε . We remark first that the injection of Yε

into Lq(S1 × R+) is compact for all q � 1, including q = +∞. Indeed, any bounded set in Yε is compact in L2(K),
where K is any compact subset of S1 × R+. If vm is in a bounded subset of Yε , we construct a subsequence vm that
tends to a limit v in L2

loc(S
1 × R+), by a standard diagonal process. But there exists a constant C such that, for all m,

‖ex2/εvm‖L∞(S1×R+) � C. Consequently, vm tends to v in Lq(S1 × R+), q � 1, by the Lebesgue theorem. Moreover
(vm) is bounded in H 2(S1 ×R+), since it is bounded in H 1(S1 ×R+) while �vm is bounded in L2(S1 ×R+). (This
can be easily verified. For example we write v = ∑

vj cos(jx1) and −�v = ∑
wj cos(jx1) and we estimate the L2-

norms of v′′
j , v′

j and vj with respect to the L2-norm of wj ). We deduce that (vm) tends to its limit v uniformly in the

compact sets of S1 × R+. But there exists C such that for all m and all (x1, x2), vm(x1, x2) and v(x1, x2) � Ce−x2/ε .
Consequently (vm) tends to v uniformly in S1 × R+.

So, if vm is in a bounded subset of Yε , there exists a subsequence of tm, still denoted by tm that tends to a limit t

in L2(S1 × R
+) and it is not difficult to see that tm tends to t in H 1(S1 × R+). At the same time there exists a

subsequence of vm, still denoted by vm that tends to a limit v in L∞(S1 × R+) and we have

−�(tm − t) + tm − t = pup−1(vm − v).

By (2.7), in which we substitute tm − t to t and vm − v to v and using the fact that vm − v is bounded in Yε , we get
that lim‖tm − t‖Yε = 0. �
Proposition 2.5. Let 0 < ε1 < ε2 be given. If u ∈ Yε2 and ε1 � ε � ε2, then (−ε2� + I )−1(|u|p−1u) ∈ Yε2 and the
operator

[ε1, ε2] × Yε2 → Yε2 ,

(ε, u) → (−ε2� + I
)−1(|u|p−1u

)
is compact.
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Proof. The function t = (−ε2� + I )−1(|u|p−1u) is the solution in H 1(S1 × R
+) of

−ε2�t + t = |u|p−1u in S1 × R
+,

∂t

∂ν
= 0 in S1 × {0}.

Let us prove that t ∈ Yε2 . We write t = ∑+∞
j=0 tj (x2) cos(jx1) where tj is the bounded solution of

−ε2t ′′j + (
1 + ε2j2)tj = 1

π

2π∫
0

|u|p−1u cos(jx1) dx1, t ′j (0) = 0.

There exists C > 0 such that |u(x1, x2)| � Ce−x2/ε2 , so there exists another constant C such that∣∣−ε2t ′′j + (
1 + ε2j2)tj ∣∣ � Ce−px2/ε2 .

Now, if ε < ε2, we will replace p by p̃ = 1 and we have, for all j ∈ N,
√

1 + ε2j2 �= p̃ε
ε2

. If ε = ε2, the existence

of j0 ∈ N such that
√

1 + ε2j2
0 = p ε

ε2
is possible. In this case we take p̃ < p such that

√
1 + ε2(j0 − 1)2 < p̃ ε

ε2
<√

1 + ε2j2
0 , else, p̃ = p, in order to have

√
1 + ε2j2 �= p̃ ε

ε2
for all j ∈ N. By comparison with the bounded solution

of

−ε2φ′′ + (
1 + ε2j2)φ = Ce−x2p̃/ε2 φ′(0) = 0,

we deduce that

|tj | � −Cεε2p̃

(ε2
2(1 + j2ε2) − ε2p̃2)

√
1 + ε2j2

e−x2

√
1+ε2j2/ε + Cε2

2

ε2
2(1 + j2ε2) − ε2p̃2

e−x2p̃/ε2 .

We sum over j and we obtain that t ∈ Yε2 .
Now if (εm,um) is bounded in [ε1, ε2] × Yε2 , then up to a subsequence, we suppose that εm tends to a limit ε > 0.

We note first, that by the proof above, tmex2/ε2 is bounded in L∞(S1 × R
+). But um being bounded in Yε2 we have as

in the proof of Proposition 2.4 that a subsequence tends to a limit u in Lq(S1 × R+) for all 1 � q � +∞. Since tm is
defined by

−ε2
m�tm + tm = |um|p−1um

we deduce that tm is bounded in H 1(S1 × R
+) and consequently in Yε2 . Thus a subsequence of tm tends to a limit t in

Lq(S1 × R
+) for all 1 � q � ∞. By the Lebesgue theorem we have that tm − t tends to 0 in H 1(S1 × R

+) and �tm
tends to �t in L2(S1 × R+). To make the end of the proof easier we will prove only that for all 0 < ε � ε2 if (um)

tends to u in Yε2 and if tm = (−ε2� + I )−1(|um|p−1um) then (tm) tends to t in Yε2 . We have

−ε2�(tm − t) + (tm − t) = |um|p−1(um − u) + (|um|p−1 − |u|p−1)(u − um).

Let C > 0 be such that for all m |um| � Ce−x2/ε2 . Letting

tm − t =
+∞∑
j=0

vj (x2) cos(jx1)

we get an other constant C such that for all m and all j

∣∣−ε2v′′
j + (

1 + ε2j2)vj

∣∣ � Ce(−p+1)x2/ε2

2π∫
0

|um − u|.

Exactly as in the proof of Proposition 2.4 we deduce that there exists a constant C such that for all (x1, x2) ∈ S1 ×R+∣∣(tm − t)(x1, x2)
∣∣ex2/ε2 � C‖um − u‖L∞(S1×R+)

that tends to 0 as m tends to +∞. Thus tm tends to t in Yε2 . The proof of the proposition follows. �
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Proof of Proposition 1.1. Let A ⊂ [ε1, ε2] × L∞(S1 × R) be a set of positive solutions (ε,u) of (E), such that u

is even in x2 and u(x1, x2) tends to 0 when |x2| tends to +∞ uniformly in x1. By Lemma 2.3(i), A is bounded in
R × L∞(S1 × R+). By Lemma 2.4, its closure Ā is compact in R × L∞(S1 × R+). Thus it can be recovered by a
finite number of balls Bi = B((εi, ui), δi), the δi being chosen, thanks to Proposition 2.3, such that for all i there exists
Ci > 0 for which for all (ε,u) ∈ Bi , (ε,u) being a positive solution of (E), u � Cie

−x2/ε . Consequently, A is bounded
in [ε1, ε2] × Ỹε2 where Ỹε2 = {u ∈ H 1(S1 × R), u even in x2, lim|x2|→+∞ u = 0 uniformly in x1,�u ∈ L2(S1 × R)}
with the norm ‖u‖H 1(S1×R+) + ‖�u‖L2(S1×R+) + ‖uex2/ε‖L∞(S1×R+). We remark that Proposition 2.5 is still valid if

we replace Yε2 by Ỹε2 . It follows that Ā is compact in R × Ỹε2 . For the solutions of (E), the norm of Ỹε2 is equivalent
to ‖u‖H 2(S1×R+) + ‖uex2/ε‖L∞(S1×R+). �
3. The linearized operator and some uniqueness results

Proposition 3.6. There exists ε0 > 0 such that for all ε ∈ ]0, ε0[, there exists at most one solution (ε,u) of (E), with
u ∈ U . Moreover, for all 0 < ε < ε0 and all solution (ε,u), u ∈ U , the operator L = −ε2� + I − pup−1I is an
isomorphism from X to its topological dual space.

Proof. Let us suppose that there exists a sequence εk that tends to 0 and two sequences of solutions (εk, uk) and
(εk, vk), uk ∈ U and vk ∈ U , uk �≡ vk for all k. Let zk(x1, x2) = ũk(x1, x2) − ṽk(x1, x2) be defined in S1/εk × R+
with ũk(x) = uk(εkx) and the same for ṽk . We know that ũk and ṽk tend to w1 as k tends to +∞, uniformly in the
compact subsets of R

2. We have

�zk = (
1 − (

ũ
p
k − ṽ

p
k

)/(
ũk − ṽk

))
zk in S1/εk × R. (3.8)

As, for all k, zk �≡ 0, we know that zk takes some positive values and some negative values. Then zk attains its positive
maximum in S1/εk × R+ at a point denoted by Mk and its negative minimum at a point denoted by mk . There exists
A > 0 such that 1 − pw

p−1
1 (r) > 0 for r � A. Let us prove that ‖Mk‖R2 � A, for k large enough. As ũk tends to w1,

uniformly for r =
√

x2
1 + x2

2 = A, there exists K > 0 such that for k > K and for r = A, 1 − pũ
p−1
k (x1, x2) > 0. But,

for r � π
εk

, ũk decreases in the both variables |x1| and |x2|. Consequently, 1 − pũ
p−1
k (x1, x2) > 0 for all (x1, x2) ∈

S1/εk × R+ such that A � r � π
εk

. Now a convexity inequality gives

(
ũ

p
k − ṽ

p
k

)/(
ũk − ṽk

)
� pũ

p−1
k ,

when zk > 0. Thus, in the domains where zk > 0 we have

�zk � zk

(
1 − pũ

p−1
k

)
.

Consequently, for k > K , we have

�zk > 0,

in any domain contained in S1/εk × R+ where zk > 0 and r � A. But we have zk > 0 in a neighborhood of Mk , and
the maximum principle gives that for k > K , the norm of Mk is less than A. By a similar proof, there exists A > 0
such that for all k the norm of mk is less than A.

We normalize zk by

yk = zk/‖zk‖L∞(S1×R+).

Thus ‖yk‖L∞(R2) = 1. By a standard limit argument, we deduce from (3.8) that, up to a subsequence, yk tends to a
limit y, uniformly in the compact sets of R

2 and that ‖y‖L∞(S1×R+) = 1, thus y �= 0. Consequently, y is a non-trivial
bounded solution of the equation

−�u + u − pw
p−1
1 u = 0. (3.9)

But we claim that (3.9) has no bounded solution in R
2, except a vector space of solutions spanned by the two solutions

w′ (r) cos(θ) and w′ (r) sin(θ), where (r, θ) are the polar coordinates. That claim about Eq. (3.9) seems to be well
1 1
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known, but we have not found a direct reference for it. So let us now give a justification of this claim. We search
solutions of (3.9), u ∈ H 1(R2), in the form

u = u0(r) +
∑
i�1

(
ui(r) cos(iθ) + vi(r) sin(iθ)

)
(3.10)

where ui and vi satisfy the equation for the appropriate i

−φ′′ − φ′

r
+ i2 φ

r2
+ φ − pw

p−1
1 φ = 0 in ]0,+∞[ (3.11)

and
+∞∫
0

(
rφ2 + rφ′2 + φ2

r

)
< +∞. (3.12)

Let us remark that if φ is any bounded solution of (3.11) in R+, then, as w1 decreases exponentially at +∞, φ cos(iθ)

and φ sin(iθ) are solutions of (3.9) in H 1(R2) and consequently, φ verifies the condition (3.12). But w′
1 is a bounded

solution of (3.11) for i = 1 and has a constant sign. Thus 0 is the first eigenvalue for the problem

−φ′′ − φ′

r
+ φ

r2
+ φ − pw

p−1
1 φ = μφ (3.13)

with the condition
∫ +∞

0 (rφ2 + rφ′2 + φ2

r
) < +∞.

Consequently, for i = 1 the only bounded solution of (3.11) is w′
1 and for i > 1 Eq. (3.11) has no solutions that are

bounded both in 0 and +∞. Now the proof that (3.11) has no bounded solution for i = 0 appears in Kwong [15], in
the course of the proof of the uniqueness of the ground state w1. More precisely, it is proved there that

lim
r→+∞

∂φ

∂α
(α0, r) = −∞, (3.14)

where α0 is the unique α > 0 such that the solution of

−φ′′ − φ′

r
+ φ − φp = 0 in ]0,+∞[, φ(0) = α, φ′(0) = 0 (3.15)

is positive and has the limit 0 as r tends to +∞. (See (4.7) in [15] and the lemmas which follow.) Now, since ∂φ
∂α

|α0

is a solution of (3.11) with i = 0 and ∂φ
∂α

|α0(0) = 1, we conclude that (3.11) has no bounded solution for i = 0. The
above claim is proved. Now w′

1 cos θ and w′
1 sin θ are not available for being y, since y is even in x1 and in x2. The

first part of the proposition is proved.
The second part of the proposition can be proved by the same arguments than the first part. Let us suppose that for

some sequence εk tending to 0 there exist uk ∈ U and ξk �= 0 such that

ε2
k�ξk = ξk − pu

p−1
k ξk in S1 × R + . (3.16)

Let ξ̃k(x1, x2) = ξk(εkx1, εkx2). We have

�ξ̃k = ξ̃k − pũ
p−1
k ξ̃k in S1/εk × R + . (3.17)

But ξk has not a constant sign, since 0 is not the first eigenvalue. We proceed exactly as in the above proof to show
that we can extract a subsequence of ξk/‖ξk‖L∞ that tends uniformly in all compact set of R

2 to a non-trivial bounded
solution of (3.9), that gives a contradiction. �

Let us now turn to the kernel of the operator −ε2� + I − pup−1I , for u in U .

Lemma 3.5. Let (ε,u) be a solution of (E), u ∈ U . Let suppose that there exists a non-trivial solution ξ in X of

−ε2�ξ + ξ − pup−1ξ = 0. (3.18)

Then ξ(0,0) �= 0.
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Proof. Let f (u) = u − up . We have ε2�ξ = f ′(u)ξ . The maximum of u being attained at (0,0), we have
f (u(0,0)) � 0 and consequently we have f ′(u) < 0 near (0,0). Let us suppose by contradiction that ξ(0,0) = 0.
If ξ has a constant sign in a neighborhood of (0,0), then �ξ has the sign of −ξ . This is in contradiction with the
maximum principle, thus ξ has not a constant sign near (0,0). The function x → f ′(u(x)) being C∞, the structure
of the nodal lines and of the nodal domains is described in [7], Theorem 2.5 and [8]. There exists a finite number
of nodal lines through (0,0) and, as ∇ξ(0,0) = 0, there exists at least two nodal lines trough (0,0) and we know
that in this case they form an equiangular system at (0,0). More, let A be on the x2 axis and near 0. If [0,A] would
be contained in a nodal line, it would be a part of the boundary of a domain in which, say, ξ > 0 and �ξ < 0, thus
we would have ∂ξ

∂x1
�= 0 on [0,A], by the Hopf maximum theorem (see [17], Chapter 2), that is in contradiction with

ξ ∈ X. We deduce that there exists A with x1(A) = 0 and for instance x2(A) > 0, such that ξ has a constant sign in
[O,A].

We will use the fact that any nodal domain cannot be entirely contained in the half-planes x2 > 0, x2 < 0 or in the
domains 0 < x1 < π or −π < x1 < 0. This property can be proved by multiplying successively (3.18) by ∂u

∂x1
and ∂u

∂x2
and by use of the Green formula. Indeed, if D is a nodal domain for ξ we obtain

−ε2
∫

∂D

∂ξ

∂ν

∂u

∂xi

= 0, i = 1,2.

But ∂ξ
∂ν

and ∂u
∂x1

have constant signs on ∂D and the conclusion follows. �
Let D be a nodal domain which contains a segment [O,A] where A belongs to the x2-axis. For example, x2(A) > 0

and ξ > 0 in D. As D is not contained in x2 > 0, there exists B in D ∩ {x2 = 0} ∩ {0 < |x1| � π}. Let Γ : t 	→
(x1(t), x2(t)) a path in D from A to B . Due to the x1 and x2-symmetries of ξ , Γ̃ : t 	→ (|x1(t)|, |x2(t)|) is a path in
D ∩ {x1 � 0} ∩ {x2 � 0} and we can build a closed path C in D ∩ {x1 � 0} with Γ̃ ∪ [O,A] and its symmetric set with
respect to the axis x2 = 0. Now, due to the existence of at least two nodal lines through (0,0), we know that there
exists a nodal domain D′ such that O ∈ ∂D′ and ξ < 0 in D′. So D′ is surrounded by C or its symmetric curve with
respect to the axis x1 = 0. Therefore D′ is in the domain 0 < x1 < π or in the domain −π < x1 < 0, which is not
possible.

The proof of Proposition 1.2. follows from Lemma 3.5.

Lemma 3.6. Let ε > 0 be given and let u and v in U be such that (ε,u) and (ε, v) are solutions of (E). If
‖u‖L∞(S1×R+) = ‖v‖L∞(S1×R+), then u=v.

Proof. Let w = u − v. The maximum of u and the maximum of v are both attained at the point (0,0). Thus we
have w(0,0) = 0. Let us prove that w ≡ 0. As p > 1 the function defined by x → up−vp

u−v
(x) for u(x) �= v(x) and

x → pup−1(x) for u(x) = v(x) is C∞. The function w verifies the equation

ε2�w =
(

1 − up − vp

u − v

)
w. (3.19)

If w �≡ 0, the considerations over the nodal lines and the nodal domains of w are the same as for those of ξ in
Lemma 3.5. The only point that we have to verify is that any nodal domain of w cannot lay entirely in a half-plane
xi > 0 or xi < 0, i = 1,2. For i = 1,2, we multiply Eq. (3.19) by ∂u

∂xi
and we use the Green formula to get

ε2
∫

∂D

∂w

∂ν

∂u

∂xi

=
∫

D

∂u

∂xi

w

(
pup−1 − up − vp

u − v

)
.

In any nodal domain D where w > 0, a convexity inequality gives(
up − vp

)
/(u − v) � pup−1.

So if w > 0 and ∂u
∂xi

< 0 we get

ε2
∫

∂w

∂ν

∂u

∂xi

< 0,
∂D
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that is false if ∂D is a nodal line for w, since ∂w
∂ν

has a constant sign. The other cases follow by the same proof. �
4. The proof of the main theorem

Let us define

M(ε,u) = −ε2�u + u − |u|p−1u.

Proposition 4.7. For a given ε > 0, the solutions (ε,u) of (E) such that u ∈ U are isolated for the norm of Yε . More
precisely, (ε,u) being a solution of (E) such that u ∈ U , there exists η > 0 such that if (ε, v) is any solution of (E),
v ∈ Yε , v �= u, then ‖u − v‖Yε � η.

Proof. If −ε2� + I − pup−1I is an isomorphism from Yε to Y ′
ε then u is the only v such that (ε, v) is a solution

of (E), v in a Yε-neighborhood of u.
Let us suppose that −ε2� + I − pup−1I is not an isomorphism from Yε to Y ′

ε . Then the dimension of its kernel is
one. Let ξ be a basis of the kernel. The operator −ε2� + I − pup−1I is a Fredholm operator of index 0 from Yε to
Y ′

ε so there exist two Banach spaces Z and K such that

Yε = 〈ξ 〉 ⊕ Z and Y ′
ε = R

(
Mu(ε,u)

) ⊕ K.

Let us search solutions near (ε,u) of the form

(ε,u + αξ + z),

where α is a real number and z ∈ Z. There exists C0 > 0 and C1 > 0 such that for all (x1, x2) ∈ S1 × R+,

u(x1, x2) � C0e
−x2/ε

and ∣∣ξ(x1, x2)
∣∣ � C1e

−x2/ε.

Let z be such that ‖z‖Yε < η. For |α| and η sufficiently small, we have for all (x1, x2) ∈ S1 × R+∣∣(αξ + z)(x1, x2)
∣∣ < u(x1, x2).

But for all (x1, x2) ∈ S1 × R+ the function h → (u(x1, x2) + h)p is analytic for any complex number such that
|h| < u(x1, x2). Consequently the function

V → (u + V )p

of the complex valued function V = V1 + iV2, V1, V2 ∈ Yε , is analytic in a neighborhood of V = 0. Let

F(α, z) = M(ε,u + αξ + z).

By the above considerations the function F is analytic for |α| and ‖z‖Yε sufficiently small. Let E be the projection
onto R(Mu(ε,u)). Let us solve first

EF(α, z) = 0.

The partial derivative with respect to z at the point (0,0) is EMu(ε,u) that is an isomorphism from Z to R(Mu(ε,u)).
The implicit function theorem gives a function α 	→ z(α), that is analytic from a neighborhood of 0 to a neighborhood
of z = 0 in Z. We may suppose that u + αξ + z(α) > 0, so the function h defined by

h(α) = 〈
M

(
ε,u + αξ + z(α)

)
, ξ

〉
is analytic. We set

v(α) = u + αξ + z(α).

In an R × Yε-neighborhood of the solution (ε,u) all the solutions of (E) of the form (ε, v) are the v(α) where α are
the zeroes of the analytic function h, so either they are isolated or h is identically null. Let us prove that this last
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possibility cannot occur. Suppose that h is identically null, then there exists a C 1 curve of solutions (ε, v(α)). Thanks
to the maximum principle and to a continuity argument [10] we have that v(α) ∈ U . Let us denote by Sε the set of the
solutions (ε, v) of (E), v ∈ U or v = w0(

x2
ε

). Let us define

A = {‖v‖∞, (ε, v) ∈ Sε

}
and let C be the component in R of A to which ‖u‖∞ belongs. The function α 	→ ‖v(α)‖L∞(S1×R+) is continuous
and injective, by Lemma 3.6. Consequently C is an interval of R that contains ‖u‖∞ and that is not equal to {‖u‖∞}.
By Lemma 2.3 we know that C is bounded, thus it is compact. Let u0 be such that (ε,u0) ∈ Sε and

‖u0‖∞ = sup C.

The operator −ε2� + I − pu
p−1
0 I is not an isomorphism, since we can deduce from C �= {‖u‖∞} and from Lem-

mas 2.1 and 3.6 that there exists a sequence of distinct um ∈ U that tends to u0 in X and such that (ε,um) ∈ Sε . Let ξ0
be a basis of its kernel in Yε . Let us use the proof above to define an analytic function h̃ and a function z0 such that all
the solutions (ε, v), v in a Yε-neighborhood of u0, are the v(α) = u0 + αξ0 + z0(α), where α are the zeroes, near 0,
of the analytic function h̃. We may suppose as above that α 	→ ‖v(α)‖∞ increases and, as h̃ is null for α < 0, α near
0 and h̃ is analytic, then h̃ is identically null. Thus there exists α > 0 such that (ε, v(α)) ∈ C and ‖v(α)‖∞ > ‖u0‖∞,
that is in contradiction with the definition of u0. We conclude that the analytic function h above has isolated zeroes
and the conclusion of the proposition follows since, using the projection on 〈ξ〉 we obtain a constant C > 0 such that
‖v(α) − u‖Yε � C|α|. �
Remark 4.2. The above proof is still valid if we replace ε by ε� and u by w0(

x2
ε�

).

Corollary 4.2. Let ε > 0 be given. Let (ε,u) be a solution of (E), u ∈ U . There exists η > 0 such that for all solution
(ε, v), v ∈ B , v �= u, we have ‖u − v‖L∞(S1×R+) > η. This is still true if we replace (ε,u) by (ε�,w0(

x2
ε�

)). Moreover
there exists at most a finite number of solutions (ε,u) of (E), u ∈ U .

Proof. Let us suppose that a sequence (um) of distinct functions in B tends to u for the L∞(S1 × R
+) norm and that

(ε,um) is a solution of (E) for all m. For m large enough we have that um > 0 and we deduce from Proposition 1.1 that
{um; m ∈ N} is relatively compact in Yε . Thus (um) tends to u for the Yε-norm, that is not possible, by Proposition 4.7.

Now, if there exists a sequence of distinct solutions (ε,um), um ∈ U , then um is bounded in L∞(S1 × R
+) and

consequently there exists a subsequence that tends uniformly to a limit v, (ε, v) is a solution of (E), and v ∈ U or
v(x1, x2) = w0(

x2
ε

) (Remark 2.1). But this is not possible, by the proof above. �
Proposition 4.8. For every ε < ε� there exists at least a function u ∈ U such that (ε,u) ∈ Σ1.

Proof. Let us use a theorem of Rabinowitz [19, Theorem 1.10]. Let γ > ε̄ (where ε̄ is defined in Theorem 1.1, ε̄ � ε�).
We have that Σ1 ⊂ ]0, γ ] × Yγ . Let Φ be defined by

Φ(ε,u) = (−ε2� + I
)−1(|u|p−1u

)
. (4.1)

The operator (ε,u) → u − Φ(ε,u) defined on ]0, γ ] × Yγ verifies the hypothesis of Lemma 1.8 in [19], by Proposi-
tion 2.5, the parameter λ being 1

ε
. We deduce that either Σ1 is “unbounded” or it contains an other trivial solution than

the solution (ε�,w0(
x2
ε�

)). But Σ1 ∩Σk = ∅ for all k �= 1, so this last possibility is excluded. Thus Σ1 is “unbounded”.
This means that either the set of all u ∈ Yγ , such that there exists ε with (ε,u) ∈ Σ1, is unbounded in Yγ , or there
exists a sequence (εm,um) in Σ1 with εm tending to 0. Let us suppose that there exists ε1 such that for all (ε,u) ∈ Σ1,
ε � ε1. In this case, as Σ1 is bounded in [ε1, γ ]×L∞(S1 × R+), we deduce from Proposition 1.1 that Σ1 is compact
in R × Yγ . Thus we have that ε � ε1 together with the existence of M such that for all (ε,u) ∈ Σ1, ‖u‖Yγ � M . This
cannot be true. Consequently there exists a sequence (εm,um) ∈ Σ1, with εm → 0. Now the proof of the proposition
follows from the fact that Σ1 is connected. �
Proposition 4.9. Every solution (ε,u) of (E) such that u ∈ U belongs to the first bifurcation continuum Σ1. Moreover
there does not exist solutions (ε,u), u ∈ U for ε � ε�. In particular the bifurcation from the solution (ε�,w0(

x2
ε�

)) is
not vertical.
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Proof. First let us prove that for all solution (α, v) of (E) such that v ∈ U there exists a sequence (εm,um) of solutions
of (E) in R × X such that εm → α, εm < α and um → v in R × X and another sequence of solutions still denoted by
(εm,um), with εm > α, εm → α and um → v in R × X. Let us use the Leray–Schauder degree theory as in [19,18].
Let Φ be defined by (4.1). Let us choose γ > α and let us define for any ρ > 0

Bρ = {
u ∈ Yγ ; ‖v − u‖Yγ < ρ

}
.

We choose β ∈ ]0, α[. By Proposition 2.5 the map Φ : [β,α] × B̄ρ → Yγ is compact. By Corollary 4.2, there exists
ρ > 0 such that for all u ∈ X, if (α,u) is a solution of (E), u �≡ v, then

‖u − v‖Yγ > ρ.

We fix now such a positive real number ρ. We have that

deg
(
I − Φ(α, ·),Bρ

) = ±1.

Let us prove that there exists a sequence of solutions (εm,um) in [β,α] × Yγ that tends to (α, v). If not there would
exist ρ̃ ∈ ]0, ρ[ and δ ∈ ]β,α[ such that for all ε ∈ [δ,α[, S ∩ B̄ρ̃ = ∅. So we would have

deg
(
I − Φ(δ, ·),Bρ̃

) = 0

and by the invariance property of the degree we would have

deg
(
I − Φ(α, ·),Bρ̃

) = deg
(
I − Φ(δ, ·),Bρ̃

) = 0.

But

deg
(
I − Φ(α, ·),Bρ̃

) = deg
(
I − Φ(α, ·),Bρ

) = ±1,

that is a contradiction. We deduce the existence of a sequence (εm,um) that tends to (α, v) in R×Yγ , and consequently
in S ∩ [β,α] × X. If we consider a real number β ′ ∈ ]α,γ [, we prove by a similar proof that there exists a sequence
of solutions (εm,um) in [α,β ′] × Yγ that tends to (α, v) in R × Yγ , thus in S ∩ [α,β ′] × X. �

Now let (ε1, u1) be a solution of (E), u1 ∈ U . We suppose that (ε1, u1) /∈ Σ1. Let us denote by S the closure
of the non-trivial solutions of (E) in R × X. Let C be the component of S ∩ {(ε,u) ∈ R × X,0 < ε � ε1} to which
(ε1, u1) belongs. We have C ∩ Σ1 = ∅, otherwise, (ε1, u1) ∈ Σ1. By Proposition 3.6, we deduce that there exists
β > 0 such that C ⊂ S ∩ ([β, ε1] × X). The component C being compact in R × X, let us choose (α, v) ∈ C such
that α = inf{ε > 0,∃u ∈ U, (ε,u) ∈ C}. Let us choose γ > ε1. Let us define Φ(ε,u) and ρ > 0 as before. Let V

be a δ-neighborhood of C in R × Yγ , with 0 < δ < ρ. As ∂V ∩ C = ∅, there exist disjoint compact sets M and
N such that V̄ ∩ S = M ∪ N , C ⊂ M and ∂V ∩ S ⊂ N . Consequently there exists an open neighborhood O of C
such that S ∩ ∂O = ∅ and such that the only (α,u) ∈ S ∩ O is (α, v). In view of Lemma 2.2, we may also suppose
that for all (ε,u) ∈ O ∩ S we have u ∈ U . For all ε closed to α let us define Oε = {u ∈ Yγ , (ε,u) ∈ O}. Then we
have deg(I − Φ(α, ·), Oα) = ±1. By the invariance property of the degree we have deg(I − Φ(ε, ·), Oε) = ±1 for ε

closed to α, ε < α. Thus solutions (ε,u) exist in O, ε < α and u ∈ U . Let us prove that for such parameters ε there
exists a continuous curve ε 	→ (ε,uε) containing (α, v). We define uε to be the function among those that realize
min{|‖u‖∞ − ‖v‖∞|, (ε, u) ∈ S ∩ O} that has the least L∞-norm. Clearly the map ε 	→ (ε,uε) is continuous from R

to R × X. Thus there exists ε < α and u such that (ε,u) ∈ C and this is in contradiction with the definition of α. We
have proved that (ε1, u1) ∈ Σ1.

Let now (ε1, u1) ∈ S , u1 ∈ U and let us prove that ε1 � ε�. We know the existence of ε̄ > 0 such that for ε > ε̄ the
only solution (ε,u) of (E), u > 0 is (ε,w0(

x2
ε

)) (Theorem 1.1). Let ε̄U be the greater ε > 0 for which there exists a
positive function u in U such that (ε,u) is a solution of (E). We have that ε̄U � ε� and that either there exists u ∈ U

such that (ε̄U ,u) ∈ S or u(x1, x2) = w0(
x2
ε̄U

). If u ∈ U , the proof above gives a sequence (εm,um) of solutions such
that εm > ε̄U and by Lemma 2.2 we have that um ∈ U for m large enough. That is in contradiction with the definition
of ε̄U . Hence ε̄U = ε� and u(x1, x2) = w0(

x2
ε�

).

Proposition 4.10. For p ∈ N, p � 2, the continuum Σ1 is constituted of at most a finite number of curves that admit
local analytic parameterizations.
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Proof. In this case, the function u 	→ up is analytic in R. The function w0 being analytic, the continuum Σ1 begins
by an analytic curve (see Section 5 for the construction of the beginning of Σ1). We may have secondary bifurcations,
at points (ε1, u1) for which the operator Mu(ε1, u1) = −ε2

1� + I − pu
p−1
1 I is singular, that we call singular points.

For these points the kernel of Mu(ε1, u1) is one dimensional. By use of a Lyapunov–Schmidt reduction in the analytic
case (see Buffoni and Toland [6], Chapter 9), we get analytic functions (ε,α) 	→ z(ε,α) and (ε,α) 	→ h(ε,α) defined
near (ε1,0) such that the solutions of (E) in a R × (H 1 ∩ L∞)(S1 × R

+) neighborhood of (ε1, u1) are the (ε,uε,α),
uε,α = u1 + αξ + z(ε,α), where (ε,α) are the solutions of the equation h(ε,α) = 0. This gives a finite number of
curves, intersecting locally only at (ε1, u1). Each curve admits a local analytic parameterizations and the critical points
on these curves are isolated. Let us prove that the critical points are in finite number. If not, we may define a sequence
(εm,um) of distinct solutions, um ∈ U and ε1 < εm < ε�. Let us suppose that εm tends to a limit ε. By Lemma 2.4
a subsequence of um tends to a limit u, uniformly in S1 × R

+, u ∈ U or u(x1, x2) = w0(
x2
ε

) and (ε,u) is a solution
of (E). Thus (ε,u) is on the continuum (Σ1), by Proposition 4.9 and in each (H 1 ∩ L∞)(S1 × R

+)-neighborhood
of u there exists critical points in Σ1, that is false, since the critical points are isolated on each curve. �
Remark 4.3. In the analytic case (p ∈ N, p � 2), for degree reasons, as in the proof of Proposition 4.9, we cannot
have as a part of Σ1 a curve with a local continuous parameterization ε 	→ (ε,uε) that would be defined in an interval
[α,β], but that would not have a local continuous prolongation for ε < α or for ε > β . So in this case we can represent
Σ1 as a principal analytic curve defined up to ε → 0 together with a finite number of closed loops bifurcating from it
and returning to it or the same thing from another loop.

5. A local analysis

In this part we recall the local construction of the bifurcation branch Σ1 from the solution (ε�,w0(
x2
ε�

)) and we
prove directly, for p � 2, that it is defined near ε� in the sense of the decreasing ε. Let

M(ε,u) = −ε2�u + u − |u|p−1u ∈ H−1(S1 × R+)
.

Let

ξ(x1, x2) = v

(
x2

ε�

)
cosx1

be a basis of the kernel of Mu(ε�,w0(
x2
ε�

)), where v is a positive function that verifies v′(0) = 0 and

−v′′ + (
1 + ε2

�

)
v − pw

p−1
0 v = 0.

(See [16].) The operator −ε2
��+I −pw

p−1
0 ( x2

ε�
))I is a Fredholm operator of index 0 from the Banach space H 1(S1 ×

R+) ∩ L∞(S1 × R+) to its dual (H 1(S1 × R+) ∩ L∞(S1 × R+))′, so there exist two Banach spaces Z0 and Y0 such
that

H 1(S1 × R+) ∩ L∞(
S1 × R+) = 〈ξ 〉 ⊕ Z0

and
(
H 1(S1 × R+) ∩ L∞(

S1 × R+))′ = R
(

Mu

(
ε�,w0

(
x2

ε�

)))
⊕ Y0.

As in the proof of the Crandall–Rabinowitz bifurcation theorem [9], we search for solutions in a neighborhood of
(ε�,w0(

x2
ε�

)) of the form

w0

(
x2

ε

)
+ αξ + αz,

where z ∈ Z0. Let us define⎧⎪⎪⎪⎨
⎪⎪⎪⎩

f (ε,α, z) = α−1M

(
ε,w0

(
x2

ε

)
+ αξ + αz

)
, α �= 0,

f (ε,α, z) = Mu

(
ε,w0

(
x2

))
(ξ + z), α = 0.
ε
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We obtain that the solutions near (ε�,w0(
x2
ε�

)) are (ε,w0(
x2
ε

)) and a bifurcation branch (ε(α),uα), where uα =
w0(

x2
ε(α)

) + αξ + αz(α). The function α 	→ (ε(α),uα), defined in a neighborhood of 0 is C 1. Moreover, we can
prove by the maximum principle that u > 0, when u is a solution of (E) that is near a positive solution.

Let us prove that, locally, we have ε < ε� for the solutions on the bifurcation branch. Let us first verify that we can
choose

v = w
p+1

2
0

and that

1 + ε2∗ =
(

p + 1

2

)2

.

Let k ∈ R+∗, we set ṽ = wk
0. We use the identity

1

2
w′2

0 + 1

2
w2

0 − 1

p + 1
w

p+1
0 = 0

to prove that the function ṽ verifies the identity

−ṽ′′ + k2ṽ − k

(
1 + 2k − 2

p + 1

)
ṽw

p−1
0 = 0.

Let us choose k = p+1
2 , in order to have k(1 + 2k−2

p+1 ) = p. We have ṽ′(0) = 0 and ṽ tends to 0 as x tends to +∞. But
there is a unique λ ∈ R+ such that the positive solutions of the equation

−u′′ + (
λ − pw

p−1
0

)
u = 0, u′(0) = 0

tend to 0 as x tends to +∞. Consequently we have 1 + ε2∗ = (
p+1

2 )2 and v = w
p+1

2
0 , up to a positive multiplicative

constant. For p � 2 the function α → (ε(α),uα) is C 2. We develop z(α) near α = 0 to get z(α) = αz0 + O(α2) and
this gives the following expansion of uα

uα = w0

(
x2

ε�

)
+ αξ + α2

(
z0 − x2

2ε2
�

ε′′(0)w′
0

(
x2

ε�

))
+ O

(
α3)

and z = z0 − x2
2ε2

�
ε′′(0)w′

0(
x2
ε�

) verifies

−ε2
��z + z − pw

p−1
0

(
x2

ε�

)
z = p(p − 1)

2
w

p−2
0

(
x2

ε�

)
ξ2 − ε′′(0)

ε�

w′′
0

(
x2

ε�

)
,

that gives

−ε2
��z0 + z0 − pw

p−1
0

(
x2

ε�

)
z0 = p(p − 1)

2
w

p−2
0

(
x2

ε�

)
ξ2.

We define the functions η1 and η2 by

z0(x1, x2) = η1

(
x2

ε�

)
+ η2

(
x2

ε�

)
cos(2x1).

The functions η1 and η2 verify, for x2 ∈ [0,+∞[,
−η′′

1 + η1 − pw
p−1
0 η1 = p(p − 1)

4
w

p−2
0 v2, η′

1(0) = 0, (5.21)

−η′′
2 + (

1 + 4ε2
�

)
η2 − pw

p−1
0 η2 = p(p − 1)

4
w

p−2
0 v2, η′

2(0) = 0. (5.22)

Let us prove that ε′′(0) < 0. An expansion of M(ε(α),w0(
x2

ε(α)
) + αξ + αz(α)) near α = 0 at the order three, and an

integral over S1 × R+ give

ε′′(0)

∫
1

ε�|∇ξ |2 = p(p − 1)

∫
1

(
w

p−2
0

(
x2

ε�

)
ξ2z + p − 2

3! w
p−3
0

(
x2

ε�

)
ξ4

)
.

S ×R+ S ×R+
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We deduce that

ε′′(0)

p(p − 1)

∫

S1×R+

(
ε�|∇ξ |2 + p(p − 1)

2ε2
�

x2w
p−2
0

(
x2

ε�

)
w′

0

(
x2

ε�

)
ξ2

)

=
∫

S1×R+

(
w

p−2
0

(
x2

ε�

)
ξ2z0 + p − 2

3! w
p−3
0

(
x2

ε�

)
ξ4

)
. (5.23)

We have to find the signs of the both integrals in this identity. Let us remark that the integral in the left member is〈
Mu,ε

(
ε�,w0

(
x2

ε�

))
ξ, ξ

〉

and the fact that it is not null is exactly the Crandall–Rabinowitz transversality condition Mu,ε(ε�,w0(
x2
ε�

))ξ /∈
R(Mu(ε�,w0(

x2
ε�

)) [9]. The integral in the left member has the sign of

+∞∫
0

(
v′2 + ε2∗v2 + p(p − 1)

2
w

p−2
0 w′

0x2v
2
)

.

Multiplying (5.21) by x2w
′
0 and integrating by parts we obtain that

p(p − 1)

2

+∞∫
0

w
p−2
0 w′

0x2v
2 = 4

+∞∫
0

η′
1w

′
0. (5.24)

Multiplying the equation of v by v′ we obtain

−1

2

(
v′2)′ + 1

2

(
1 + ε2

�

)(
v2)′ − p

2

(
w

p−1
0 v2)′ + p(p − 1)

2
w

p−2
0 v2w′

0 = 0.

We deduce that

v′2 − (
1 + ε2

�

)
v2 + pw

p−1
0 v2 = 4

+∞∫
x

(
η′′

1 − η1 + pw
p−1
0 η1

)
w′

0,

and consequently

v′2 − (
1 + ε2

�

)
v2 + pw

p−1
0 v2 = 4

(−η′
1w

′
0 + η1w

′′
0

)
.

Finally we get

+∞∫
0

v′2 + 4

+∞∫
0

w′
0η

′
1 = 0. (5.25)

We infer from (5.24) and (5.25) that

+∞∫
0

(
v′2 + ε2∗v2 + p(p − 1)

2
w

p−2
0 w′

0x2v
2
)

= ε2
�

+∞∫
0

v2,

that is positive.
Let us prove now that the integral in the right member is positive too. We have that

∫
1

(
w

p−2
0 φ2z0 + p − 2

3! w
p−3
0 φ4

)
=

+∞∫
0

(
w

p−2
0 v2

(
η1 + 1

2
η2

)
+ p − 2

8
w

p−3
0 v4

)
.

S ×R+
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We verify that

η1 = − (p + 1)2

8
w0 + p + 1

8
w

p

0 .

Now we define

η̃ = p + 1

4
w0 + p + 1

8
w

p

0 .

We have

−η̃′′ + (
1 + 4ε2

�

)
η̃ − pη

p−1
0 η̃ = p(p − 1)

4
w

p−2
0 v2 + p2(p + 1)

8
w0

(
p2 + 2p − 3

)
and η̃′(0) = 0 and this gives, by the maximum principle

η̃ > η2.

We recall that v = w
p+1

2
0 , consequently we have

+∞∫
0

(
w

p−2
0 v2

(
η1 + 1

2
η2

)
+ p − 2

8
w

p−3
0 v4

)
<

+∞∫
0

(
w

2p−1
0

(
η1 + 1

2
η̃

)
+ p − 2

8
w

3p−1
0

)
.

We are led to search the sign of

+∞∫
0

(
−p(p + 1)w

2p

0 + 5p − 1

2
w

3p−1
0

)
.

We have
+∞∫
0

w
3p−1
0 =

+∞∫
0

w2p−1(−w′′
0 + w0

) =
+∞∫
0

w
2p

0 +
+∞∫
0

w′2
0 (2p − 1)w

2p−2
0

=
+∞∫
0

w
2p

0 +
+∞∫
0

(
w2

0 − 2

p + 1
w

p+1
0

)
(2p − 1)w

2p−2
0 .

Consequently we get

5p − 1

2

+∞∫
0

w3p−1 = p(p + 1)

+∞∫
0

w2p.

We have proved that the right member of (5.23) is negative. We have ε′′(0) < 0, and then ε(α) < ε�, for α near 0.
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