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Abstract

Let AH be the Aronsson operator associated with a Hamiltonian H(x, z,p). Aronsson operators arise from L∞ variational
problems, two person game theory, control problems, etc. In this paper, we prove, under suitable conditions, that if u ∈ W

1,∞
loc (Ω)

is simultaneously a viscosity solution of both of the equations

AH (u) = f (x) and AH (u) = g(x) in Ω, (0.1)

where f,g ∈ C(Ω), then f = g. The assumption u ∈ W
1,∞
loc (Ω) can be relaxed to u ∈ C(Ω) in many interesting situations. Also,

we prove that if f,g,u ∈ C(Ω) and u is simultaneously a viscosity solution of the equations

�∞u

|Du|2 = −f (x) and
�∞u

|Du|2 = −g(x) in Ω, (0.2)

then f = g. This answers a question posed in Peres, Schramm, Scheffield and Wilson [Y. Peres, O. Schramm, S. Sheffield, D.B. Wil-
son, Tug-of-war and the infinity Laplacian, J. Amer. Math. Soc. Math. 22 (2009) 167–210] concerning whether or not the value
function uniquely determines the running cost in the “tug-of-war” game.
©
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1. Introduction

Let Ω be an open set in R
n and H(x, z,p) ∈ C1(Ω × R × R

n). The Aronsson operator associated with H has the
form

AH (u) = Hp(x,u,Du) · Dx

(
H(x,u,Du)

)
,

where Dx represents the partial derivative with respect to x if we consider H(x,u(x),Du(x)) as a function of x.
This type of operator was first introduced by G. Aronsson in 60’s when he studied the L∞ variational problems
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[1–4]. We say that u ∈ W
1,∞
loc (Ω) is an absolute minimizer for H in Ω if for any bounded open set V ⊂ V̄ ⊂ Ω and

v ∈ W 1,∞(V ),

u|∂V = v|∂V

implies that

esssupV H(x,u,Du) � esssupV H(x, v,Dv).

Under suitable assumptions on H , it was proved that if u is an absolute minimizer for H in Ω , then it is a viscosity
solution of the Aronsson equation

AH (u) = 0 in Ω.

See for instance Barron, Jensen and Wang [6], Crandall [7] and Crandall, Wang and Yu [10]. When H = 1
2 |p|2,

the Aronsson operator is the famous infinity Laplacian operator �∞u = uxi
uxj

uxixj
. We refer to the User’s Guide,

Crandall, Ishii and Lions [9], for definitions of viscosity solutions.
In a recent interesting paper, Peres, Schramm, Sheffield and Wilson [16], the authors derived the infinity Laplacian

operator from a two-player zero-sum game, called “tug-of-war”. Roughly speaking, for fixed ε > 0, starting from
x0 ∈ Ω , at the kth turn, the players toss a coin and the winner chooses an xk ∈ Ω with |xk −xk−1| � ε. The game ends

when xk ∈ ∂Ω . Player I tries to maximize its payoff F(xk) + ε2

2

∑k−1
i=0 f (xi) and player II tries to minimize it. Here

F ∈ C(∂Ω) is the terminal payoff function and f ∈ C(Ω) is the running payoff function. The setting of [16] is in a
length space. In this paper, we only consider R

n. Let uε be the value of the above game. Under proper assumptions
on Ω , f and F , for example if Ω is bounded and f is positive, it was proved in [16] that

lim
ε→0

uε = u,

where u is the unique viscosity solution of the following equation

�∞u

|Du|2 = −f in Ω (1.1)

and

u|∂Ω = F.

Since |Du| might be zero in Eq. (1.1), the definition of a viscosity solution of Eq. (1.1) is little bit subtle. At
the touching point where the gradient of a test function φ vanishes, we need to consider maxv∈Sn−1 v · D2φ · v or
minv∈Sn−1 v · D2φ · v depending on whether φ touches from above or from below. See Definition 2.1 in next section.
It is natural to multiply both sides of Eq. (1.1) by |Du|2 to get another equation which looks nicer

�∞u + f (x)|Du|2 = 0 in Ω. (1.2)

Here we want to remark that these two equations are not equivalent. It is easy to show that any viscosity solution of
(1.1) is also a viscosity solution of Eq. (1.2). However, except when f (x) ≡ 0, a viscosity solution of Eq. (1.2) might
not be a viscosity solution of Eq. (1.1). For example, u ≡ 0 is a smooth solution of (u′)2u′′ = (u′)2, but not a solution
of (u′)2u′′/(u′)2 = 1.

In Barron, Evans and Jensen [5], the authors considered generalized “tug-of-war” games where the movement
of two players satisfies other dynamics. They derived that the resulting value functions satisfy PDEs which involve
Aronsson-type operators. They also provided several other interesting contexts where Aronsson operators arise. A ba-
sic question about the Aronsson operator is whether it is single valued. Precisely speaking, assume that u ∈ C(Ω) is
a viscosity solution of two equations

AH (u) = f (x), AH (u) = g(x) in Ω.

Do we have that f = g? In this paper, we show that the answer is “Yes” if H ∈ C2(Ω × R × R
n) and u ∈ W

1,∞
loc (Ω).

The assumption that |Du| is locally bounded is not necessary for a large class of H . This conclusion that Aronsson

operator has unique value is not obvious at all since u lacks sufficient regularity. For example, u = x
4
3 − y

4
3 is a

viscosity solution of the infinity Laplacian equation, but it is only C1, 1
3 . We will in fact prove a more general result.
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Theorem 1.1. Assume that B ∈ C1(Ω × R × R
n,R

n), c ∈ C(Ω × R × R
n) and f,g ∈ C(Ω). Suppose that u ∈

W
1,∞
loc (Ω) is a viscosity subsolution of the following equation

B(x,u,Du) · D2u · B(x,u,Du) + c(x,u,Du) = f (x), (1.3)

and is a viscosity supersolution of the following equation

B(x,u,Du) · D2u · B(x,u,Du) + c(x,u,Du) = g(x). (1.4)

Then

f � g in Ω.

It is clear that if H ∈ C2, the Aronsson operator AH satisfies structure assumptions in Theorem 1.1. Hence the
Aronsson operator is single valued for locally Lipschitz continuous viscosity solutions. For suitable H , including the
most interesting case H = 1

2 |p|2, the assumption u ∈ W
1,∞
loc (Ω) can be relaxed to u ∈ C(Ω). See Corollary 3.2 and

Remark 3.3.
In [16], the authors proposed an open problem which asks whether two different running payoff functions will lead

to the same value function. See Problem 4 at the end of [16]. We will show that the answer is No. The following is the
precise statement.

Theorem 1.2. Assume that f,g ∈ C(Ω). Suppose that u ∈ C(Ω) is simultaneously a viscosity solution of two equa-
tions

�∞u

|Du|2 = −g(x),
�∞u

|Du|2 = −f (x) in Ω. (1.5)

Then

f = g.

We want to stress that the above theorem cannot be deduced directly from Theorem 1.1. In fact, its proof is much
more tricky. We need to employ the endpoint estimate (2.2) developed in [8] to avoid the situation where |Du| is close
to zero. If we want to apply Theorem 1.1 to prove Theorem 1.2, we need an open subset of Ω where |Du| is bounded
away from 0. The existence of such an open subset requires the continuity of |Du|, which can be given a meaning
independent of the existence of Du itself. The author has proved this continuity if n = 2, but has no clue how to prove
in higher dimensions.

We note that the question of whether or not a function u can simultaneously solve two distinct Hamilton–Jacobi
equations H(Du) = f and H(Du) = g in the viscosity sense is mentioned in [9]. If n = 1 or H is uniformly contin-
uous, it was proved in Evans [11] that the answer is No. Frankowska [13] also provided some sufficient conditions on
H which lead to f = g. However for general situations, this question remains open.

Our paper is organized as follows. In Section 2, we will review some known results in [8]. In Section 3, we will
prove Theorems 1.1 and 1.2.

2. Preliminaries

Viscosity solutions of Eq. (1.1) are defined as follows.

Definition 2.1. u ∈ C(Ω) is a viscosity supersolution of Eq. (1.1) in Ω if for any x0 ∈ Ω and φ ∈ C2(Ω) satisfying

0 = φ(x0) − u(x0) � φ(x) − u(x) for all x ∈ Ω,

one of the following holds:

(1) Dφ(x0) �= 0 and

�∞φ(x0) � −f (x0)
∣∣Dφ(x0)

∣∣2;
or,
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(2) Dφ(x0) = 0 and

min{p∈Rn | |p|=1}p · D2φ(x0) · p � −f (x0).

u ∈ C(Ω) is a viscosity subsolution of Eq. (1.1) in Ω if for any x0 ∈ Ω and φ ∈ C2(Ω) satisfying

0 = φ(x0) − u(x0) � φ(x) − u(x) for all x ∈ Ω,

one of the following holds:

(1) Dφ(x0) �= 0 and

�∞φ(x0) � −f (x0)
∣∣Dφ(x0)

∣∣2;
or,

(2) Dφ(x0) = 0 and

max
{p∈Rn | |p|=1}

p · D2φ(x0) · p � −f (x0).

u is a viscosity solution of Eq. (1.1) in Ω if it is both a viscosity supersolution and subsolution.

A very useful tool to study the infinity Laplacian operator is “comparison with cones" which was introduced in [8]
(see Definition 2.3). In this terminology, it had been proved in Jensen [12] that viscosity supersolutions (subsolutions)
of the infinity Laplacian equation enjoy comparison with cones from blow (respectively, above), and that if u ∈ C(Ω)

enjoys comparison with cones from above or from blow, then u ∈ W
1,∞
loc (Ω). Crandall, Evans and Gariepy went on

to observe that if u is upper semicontinuous and enjoys comparison with cones from above, then it is a subsolution of
the infinity Laplacian equation and the quantity

max∂Br (x) u − u(x)

r

is nondecreasing with respect to r . Hence one can define

Su,+(x) = lim
r→0+

max∂Br (x) u − u(x)

r
.

It turns out the function Su,+(x) has the following properties:

(1) Su,+(x) is upper-semicontinuous and

Su,+(x) = lim
r→0

esssupBr (x) |Du|. (2.1)

(2) If u is differentiable at x, then Su,+(x) = |Du(x)|.
(3) (Endpoint estimate.) Assume that xr ∈ ∂Br(x) and u(xr) = max∂Br (x) u, then

Su,+(xr ) � max∂Br (x) u − u(x)

r
� Su,+(x). (2.2)

Other notations we have used or will use includes:

• Ω is a bounded open subset of R
n.

• For any set V ∈ R
n, ∂V is its boundary and V̄ is its closure.

• Br(x) is the open ball {y ∈ R
n | |y − x| < r}, where | · | is the Euclidean norm.

• Sn−1 denotes the unit sphere in R
n.

• For p, q ∈ R
n, p · q is the usual inner product of p and q . If A is an n × n matrix, the p · A · q means p · (Aq).

• For p ∈ R
n, p ⊗ p is the n × n matrix whose (i, j) entry is pipj .

• If f : Ω → R, then Df is its gradient and D2f is its Hessian matrix.
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3. Proofs

To prove Theorem 1.1, we first prove the following lemma. Our proof heavily depends on the highly degenerate
structure of Eqs. (1.3) and (1.4) and an elegant inequality in [9].

Lemma 3.1. Let τ1, τ2 ∈ R, τ2 < τ1, and the assumptions on B,c of Theorem 1.1 be satisfied. Then there does not
exist a Lipschitz continuous function u in Ω̄ such that the following three conditions hold:

(i) u is a viscosity subsolution of

B(x,u,Du) · D2u · B(x,u,Du) + c(x,u,Du) = τ1 in Ω,

(ii) u is a viscosity supersolution of

B(x,u,Du) · D2u · B(x,u,Du) + c(x,u,Du) = τ2 in Ω,

(iii) u = 0 on ∂Ω .

Proof. We argue by contradiction. Suppose that there exists a Lipschitz continuous function u in Ω̄ which satisfies
(i)–(iii). Let us denote

sup
x �=y∈Ω̄

|u(x) − u(y)|
|x − y| = C < +∞; (3.1)

Without loss of generality, we assume that there exists some x0 ∈ Ω such that u(x0) = 1. For ε > 0, let

uε = (
1 + ε

3
4
)
u

and

wε(x, y) = uε(x) − u(y) − 1

2ε
|x − y|2.

Let (x̄, ȳ) ∈ Ω̄ × Ω̄ such that

wε(x̄, ȳ) = max
Ω̄×Ω̄

wε.

Owing to (3.1), we have that |x̄ − ȳ| = O(ε). By (iii) and (3.1), if (x̄, ȳ) ∈ ∂(Ω ×Ω), then wε(x̄, ȳ) = O(ε). Note that

wε(x0, x0) = ε
3
4 . Hence when ε is small enough, (x̄, ȳ) ∈ Ω × Ω . According to Crandall, Ishii and Lions [9], there

exist two n × n symmetric matrices X and Y such that(
1

ε
(x̂ − ŷ),X

)
∈ J̄

2,+
V uε(x̂),

(
1

ε
(x̂ − ŷ), Y

)
∈ J̄

2,−
V u(ŷ)

and

−3

ε

(
In 0
0 In

)
�

(
X 0
0 −Y

)
� 3

ε

(
In −In

−In In

)
. (3.2)

See [9] for definitions of J̄
2,+
V and J̄

2,−
V . It is easy to see that uε is a viscosity subsolution of

B

(
x,

uε

1 + ε
3
4

,
Duε

1 + ε
3
4

)
· D2uε · B

(
x,

uε

1 + ε
3
4

,
Duε

1 + ε
3
4

)
+ (

1 + ε
3
4
)
c

(
x,

uε

1 + ε
3
4

,
Duε

1 + ε
3
4

)
= τ1

(
1 + ε

3
4
)
.

Hence

B

(
x̄, u(x̄),

x̄ − ȳ

ε(1 + ε
3
4 )

)
· X · B

(
x̄, u(x̄),

x̄ − ȳ

ε(1 + ε
3
4 )

)(
1 + ε

3
4
)
c

(
x̄, u(x̄),

x̄ − ȳ

ε(1 + ε
3
4 )

)
� τ1

(
1 + ε

3
4
)
. (3.3)

By (ii),

B

(
ȳ, u(ȳ),

x̄ − ȳ
)

· Y · B
(

ȳ, u(ȳ),
x̄ − ȳ

)
+ c

(
ȳ, u(ȳ),

x̄ − ȳ
)

� τ2. (3.4)

ε ε ε
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Owing to the right-hand side inequality in (3.2), we have that for v1, v2 ∈ R
n,

v1 · X · v1 − v2 · Y · v2 � 3

ε
|v1 − v2|2.

Choosing

v1 = B

(
x̄, u(x̄),

x̄ − ȳ

ε(1 + ε3/4)

)
, v2 = B

(
ȳ, u(ȳ),

x̄ − ȳ

ε

)

and using |x̄ − ȳ| = O(ε), (3.3), (3.4), we discover that

o(1) � τ1
(
1 + ε

3
4
) − τ2,

where limε→0 o(1) = 0. This is impossible when ε is small enough. So Lemma 3.1 holds. �
Proof of Theorem 1.1. For any x0 ∈ Ω , if g(x0) < f (x0), then there exists r > 0 and τ1 > τ2 such that B̄r (x0) ⊂ Ω

and

g(x) < τ2 < τ1 < f (x) in Br(x0).

Choose K large enough such that

u(x) < u(x0) + Kr2 on ∂Br(x0).

Denote δ = 1
2 min∂Br (x0)(u(x0) + Kr2 − u(x)) and v(x) = u(x) − u(x0) − K|x − x0|2 + δ. Let

V = {
x ∈ Br(x0)

∣∣ v(x) > 0
}
.

Obviously, V̄ ⊂ Br(x0). If we define

B̃(x, z,p) = B
(
x, z + u(x0) + K|x − x0|2 − δ,p + 2K(x − x0)

)
and

c̃(x, z,p) = c
(
x, z + u(x0) + K|x − x0|2 − δ,p + 2K(x − x0)

) + 2K
∣∣B̃(x, z,p)

∣∣2
,

v is a viscosity subsolution of

B̃(x, v,Dv) · D2v · B̃(x, v,Dv) + c̃(x, v,Dv) = τ1 in V

and a viscosity supersolution of

B̃(x, v,Dv) · D2v · B̃(x, v,Dv) + c̃(x, v,Dv) = τ2 in V .

Note that in the open set V , v satisfies (i)–(iii) in Lemma 3.1. Since V̄ ⊂ Ω , u is Lipschitz continuous in V̄ . Hence v

is also Lipschitz continuous in V̄ . This is a contradiction. Hence g(x0) � f (x0). So f � g. �
Corollary 3.2. Suppose that u,f,g ∈ C(Ω) and u is simultaneously a viscosity solution of two equations

�∞u = f (x), �∞u = g(x) in Ω. (3.5)

Then

f = g.

Proof. We argue by contradiction. If not, then there exists x0 ∈ Ω such that f (x0) �= g(x0). Without loss of generality,
we may assume that f (x0) > g(x0). Then one of the following must occur: (i) f (x0) > 0, (ii) g(x0) < 0. Let us first
look at case (i). Since Corollary 3.2 is a local problem, we may assume that

f (x) > max
{
0, g(x)

}
for x ∈ Ω.

Hence u is a viscosity subsolution of the infinity Laplacian equation

�∞u = 0 in Ω.

According to [8], u ∈ W
1,∞
loc (Ω). Hence by Theorem 1.1, f = g in Ω . This is a contradiction. Hence case (i) will not

occur. Similarly, we can show that case (ii) will not occur either. This is a contradiction. Hence the above corollary
holds. �
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Remark 3.3. Gariepy, Wang and Yu [14], Yu [17] and Juutinen [15] provided a class of Hamiltonians H such that if
u ∈ C(Ω) is a viscosity subsolution or a viscosity supersolution of the Aronsson equation

AH (u) = 0 in Ω,

then u ∈ W
1,∞
loc (Ω). Hence by the proof of Corollary 3.2, for those H , the Aronsson operator AH is also single valued

under the weaker assumption u ∈ C(Ω).

To prove Theorem 1.2, we first prove the following lemma.

Lemma 3.4. Suppose that τ1 �= τ2. Then u ∈ W 1,∞(B1(0)) cannot be simultaneously a viscosity solution of two
equations

�∞u

|Du|2 = τ1,
�∞u

|Du|2 = τ2. (3.6)

Proof. We argue by contradiction. Without loss of generality, let us assume that τ1 > max{0, τ2}. According to the
definition of solutions of

�∞u

|Du|2 = τ1 > 0,

u cannot be constant in any open subset of B1(0). So we may assume that |Du|(0) = δ > 0, where |Du|(x) = Su,+(x).
Let us denote

esssupB1(0) |Du| = C. (3.7)

Consider

wε(h) = max
x,y∈B̄ 1

2
(0)

(
u(x + h) − u(y) − |y|4 − 1

2ε
|x − y|2

)
.

Choose hε ∈ ∂Bε3/4(0) such that

wε(hε) = max
h∈∂B

ε3/4 (0)
wε.

Suppose that

wε(hε) = u(xε + hε) − u(yε) − |yε |4 − 1

2ε
|xε − yε |2

for xε , yε ∈ B̄ 1
2
. Owing to (3.7), it is not hard to show that when ε is small

1

ε
|xε − yε | � C, |yε |4 � Kε

3
4 , (3.8)

where K is a constant independent of ε. Moreover, it is clear that

u(xε + hε) = max
h∈∂B

ε3/4 (0)
u(xε + h) = max

y∈∂B
ε3/4 (xε)

u(y). (3.9)

Owing to the definition of wε(h),

u(xε + hε) − u(yε) − |yε |4 − 1

2ε
|xε − yε |2 � max

h∈B
ε3/4 (0)

(
u(h) − u(0)

)
. (3.10)

Also,

u(xε + hε) − u(xε)

ε
3
4

= u(xε + hε) − u(yε)

ε
3
4

+ u(yε) − u(xε)

ε
3
4

� u(xε + hε) − u(yε)

ε
3
4

− C|xε − yε |
ε

3
4

� u(xε + hε) − u(yε)
3 − C2ε

1
4 .
ε 4
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According to (3.10),

u(xε + hε) − u(yε)

ε
3
4

� max
h∈∂B

ε3/4 (0)

u(h) − u(0)

ε
3
4

� |Du|(0) = δ.

Since u is a viscosity subsolution of the infinity Laplacian equation, due to the endpoint estimate (2.2),

|Du|(xε + hε) � u(xε + hε) − u(xε)

ε
3
4

� δ − C2ε
1
4 . (3.11)

Therefore, when ε is small,

|Du|(xε + hε) � 1

2
δ. (3.12)

Obviously, when ε is small, both xε and yε are in the interior of B 1
2
(0). According to the User’s Guide Crandall, Ishii

and Lions [9], there exist two n × n symmetric matrices X and Y such that(
1

ε
(xε − yε),X

)
∈ J̄

2,+
V u(xε + hε),

(
1

ε
(xε − yε), Y

)
∈ J̄

2,−
V

(
u(yε) + |yε |4

)

and

−3

ε

(
In 0

0 In

)
�

(
X 0

0 −Y

)
� 3

ε

(
In −In

−In In

)
. (3.13)

See [9] for definitions of J̄
2,+
V and J̄

2,−
V . Owing to the definition of |Du|(x) = Su,+(x), it is clear that

1

ε
|xε − yε | � |Du|(xε + hε) � δ

2
. (3.14)

Since u(· + hε) is a viscosity solution of Eq. (3.6), we have that

1

ε
(xε − yε) · X · 1

ε
(xε − yε) � τ1

1

ε2
|xε − yε |2. (3.15)

Also, (
1

ε
(xε − yε) − 4|yε |2yε,Y − 4|yε |2In − 8yε ⊗ yε

)
∈ J̄

2,−
V u(yε).

Due to Eq. (3.6),(
1

ε
(xε − yε) − 4|yε |2yε

)
· (Y − 4|yε |2In − 8yε ⊗ yε

) ·
(

1

ε
(xε − yε) − 4|yε |2yε

)

� τ2

∣∣∣∣1

ε
(xε − yε) − 4|yε |2yε

∣∣∣∣
2

.

Hence owing to (3.8),(
1

ε
(xε − yε) − 4|yε |2yε

)
· Y ·

(
1

ε
(xε − yε) − 4|yε |2yε

)
� τ2

1

ε2
|xε − yε |2 + o(1), (3.16)

where limε→0 o(1) = 0. Owing to the right-hand side inequality in (8), we have that for v1, v2 ∈ R
n,

v1 · X · v1 − v2 · Y · v2 � 3

ε
|v1 − v2|2.

Choosing

v1 = 1

ε
(xε − yε), v2 = 1

ε
(xε − yε) − 4|yε |2yε

and using (3.14)–(3.16), one finds that

48|yε |6 � (τ1 − τ2)
1
2
|xε − yε |2 − o(1) � (τ1 − τ2)

(
δ
)2

− o(1). (3.17)

ε ε 2
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Owing to (3.8),

4|yε |6
ε

� ε
1
8 .

This contradicts to (3.17) when ε is small. �
Proof of Theorem 1.2. We argue by contradiction. If not, then there exists x0 ∈ Ω such that f (x0) �= g(x0). With-
out loss of generality, we may assume that f (x0) > g(x0). Then one of the following must occur: (i) f (x0) > 0,
(ii) g(x0) < 0. Let us first look at case (i). Since Theorem 1.2 is a local result, we may assume that

f (x) > τ1 > τ2 > max
{
0, g(x)

}
for x ∈ Ω,

where τ1 and τ2 are two positive constants. Hence u is also a viscosity supersolution of the infinity Laplacian equation

�∞u = 0 in Ω.

According to [8], u ∈ W
1,∞
loc (Ω). Choose r > 0 such that Br(x0) ⊂ Ω . Then u ∈ W 1,∞(Br(x0)). Consider

ur(x) = u(rx + x0).

Then ur ∈ W 1,∞(B1(0)) and it is simultaneously a viscosity solution of two equations

�∞ur

|Dur |2 = −r2τ1,
�∞ur

|Dur |2 = −r2τ2 in B1(0). (3.18)

This contradicts to Lemma 3.4. Similarly, we can show that case (ii) will not happen either. Hence Theorem 1.2
holds. �
Remark 3.5. By obvious modifications, our method can be used to prove that any operator like �∞u/f (x,u,Du) is
single valued if f ∈ C(Ω × R × R

n) is nonnegative or nonpositive. Here is a potential application. A very interesting
problem about the infinity Laplacian operator is to find its geometric interpretation. More specifically, does there exist
a function f such that �∞u/f (x,u,Du) represents some kind of curvature of the graph of u (might be in viscosity
sense)? The answer of this question will justify the study of the parabolic infinity Laplacian equation. Our results
implies that if there is indeed such a curvature, then it is well defined, i.e., a surface has at most one curvature.
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