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Abstract

This paper investigates the reversal of magnetic nanowires via a perturbation argument from the static case. We consider the
gradient flow equation of the micromagnetic energy including the nonlocal stray field energy. For thin wires and weak external
magnetic fields we show the existence of travelling wave solutions. These travelling waves are almost constant on the cross section
and can thus be seen as moving domain walls of a type called transverse wall.
©

Résumé

Cet article présente une étude du renversement des nano-fils magnétiques par une méthode de perturbation du cas statique. On
considère l’équation du flot-gradient associé à l’énergie micromagnétique en incluant l’énergie de la perturbation non locale du
champ magnétique. Pour des fils fins et des champs magnétiques externes de faible amplitude, on montre que les solutions prennent
la forme d’ondes progressives. Ces ondes progressives ont une amplitude pratiquement homogène sur l’ensemble de la section, et
peuvent donc être assimilées à des parois de domaines transverses.
©
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1. Introduction

Because of possible technical applications [1,10] in the recent years there has been a growing interest in magnetic
nanowires and especially in their reversal modes. It is known that the reversal of the magnetisation starts at one end
of the wire and then a domain wall separating the already reversed part from the not yet reversed part is propagating
through the wire.

In the micromagnetic model, the evolution of the magnetisation is described by the Landau–Lifshitz–Gilbert (LLG)
equation. We simplify this equation taking the overdamped limit, that is, we consider the gradient flow equation of
the micromagnetic energy. Viewing static domain walls as travelling waves with speed 0, we show the existence of
travelling wave solutions for thin wires and weak external magnetic fields via a perturbation argument. This argument
relies crucially on the fact that the wires are thin, since we need strong regularity of the static domain wall. We have
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proved strong regularity in the case of thin wires [7], and we cannot expect it for thick wires where the examples of
low energy configurations are vortex walls which have a singularity and are not even continuous [6].

For thin wires, static domain walls are almost constant on the cross section [6]. Thus, after perturbing the equation
with a weak external field, the moving domain walls are still almost constant on the cross section. Such a reversal
mode has been observed in numerical simulations [4,5,11] and is called transverse mode.

Various models for the transverse mode have been analysed previously. Thiaville and Nakatani [10] study a one-
dimensional model for the transverse mode and compare it with numerical simulations. Carbou and Labbé [3] consider
a similar model. They prove that one-dimensional domain walls are asymptotically stable. Sanchez [9] considers the
limit of the Landau–Lifshitz equation when the diameter of the domain and the exchange coefficient in the equation
simultaneously tend to zero and performs an asymptotic expansion.

The final goal in understanding the transverse mode is to find solutions to the full Landau–Lifshitz–Gilbert equa-
tion, to describe their properties, and to rigorously derive a reduced theory. This paper is a step towards that goal
which, contrary to the other approaches, takes into account the full three-dimensional structure of the problem. We
expect that the methods developed in this paper can be applied to find solutions for the full Landau–Lifshitz–Gilbert
equation.

1.1. Static domain walls

We work in the framework of micromagnetism. This is a mesoscopic continuum theory that assigns a nonlocal
nonconvex energy to each magnetisation m from the domain Σ ⊂ R3 to the sphere S

2 ⊂ R
3. Experimentally observed

ground states correspond to minimisers of the micromagnetic energy functional. When appropriately rescaled, for a
soft magnetic material with an external field of strength h in direction of �ex this energy is

Eh(m) =
∫
Σ

(|∇m|2 + h�ex · m) +
∫
R3

∣∣H(m)
∣∣2

. (1)

Here H(m) : R3 → R
3 is the projection of m on gradient fields, i.e.,

H(m) = ∇u with �u = divm in R
3. (2)

We consider magnetisations where the domain ΣR = R × DR is an infinite cylinder with radius R and set

M(R) := {
m :ΣR → S

2
∣∣ E0(m) < ∞}

. (3)

To specify the conditions at ±∞ we need to define a smooth function χ : R → R
3 with limx→±∞ χ(x) = ±�ex . Our

choice is

χ : R → R
3, x �→ tanh(x)�ex. (4)

In [6] we have shown that for m :ΣR → S
2 the condition E0(m) < ∞ is equivalent to the statement that one of

the four maps m ± �ex , m ± χ is in H 1(ΣR). Thus, to single out the magnetisations that correspond to a 180 degree
domain wall we define

Ml(R) := {
m :ΣR → S

2
∣∣ m − χ �ex ∈ H 1(ΣR)

}
. (5)

For every R > 0 there exist energy minimising 180 degree domain walls, i.e., minimisers of E0 in Ml(R) [6]. For
R → 0 the energy minimisation problem Γ -converges to a reduced, one-dimensional problem whose minimiser can
be calculated explicitly to be

mred : R → S
2, x �→

(
tanh

(
x√
2

)
,

1

cosh(x/
√

2)
,0

)
. (6)

In [7] we have shown that the minimisers converge to mred not only in a topology implied by the energy estimates but
also in stronger norms.
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Theorem 1. Let mR be a minimiser of E0 in Ml(R).

(i) For R small enough, mR ∈ H 2(ΣR) + χ ∩ C1(ΣR).
(ii) We have

lim
R→0

1

R

∥∥mR − mred
∥∥

H 1(ΣR)
= 0,

lim
R→0

∥∥mR − mred
∥∥

C1(ΣR)
= 0.

1.2. The dynamic model

We assume that the evolution of the magnetisation can be described by gradient flow of the energy under the
condition |m| ≡ 1 with Neumann boundary conditions, that is,

∂tm = −δmEh(m) + (
δmEh(m) · m)

m in ΣR, ∂νm = 0 on ∂ΣR, (7)

where

δmEh(m) = −2�m + 2H(m) − h�ex. (8)

This equation is the overdamped limit of the Landau–Lifshitz–Gilbert equation. We are interested in travelling wave
solutions. Because of the rotational symmetry of the cylinder we have to take into account that the solutions may
rotate around the axis of the cylinder. We set

Qφ :=
(1 0 0

0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

)
, Q̃φ :=

(0 0 0
0 cos(φ) sin(φ)

0 − sin(φ) cos(φ)

)
, (9)

and note that ∂tQωt = ωQ̃ωt+ π
2

. Rotating travelling waves with speed c and angular velocity ω satisfy

m(t, x, y) = Qωtm
(
0,Q−ωt (x − ct, y)

)
.

Defining

Φ(m) :=
( 0

−my2

my1

)
+

(0 0 0
0 ∂y1my1 ∂y2my1

0 ∂y1my2 ∂y2my2

)( 0
y2

−y1

)
, (10)

we have

∂tm(t, x, y) = ωQ̃ωt+ π
2
m

(
0,Q−ωt (x − ct, y)

) − cQωt∂xm
(
0,Q−ωt (x − ct, y)

)
− Qωt∇ym

(
0,Q−ωt (x − ct, y)

)
ωQ̃−ωt+ π

2
�y

= −c∂xm(t, x, y) + ωQ̃π
2
m(t, x, y) − ω∇ym(t, x, y)Q̃ π

2
�y

= −c∂xm(t, x, y) − ωΦ
(
m(t, x, y)

)
.

In particular, rotating travelling waves that are a solution of (7) satisfy the stationary equation

−δmEh(m) + (
δmEh(m) · m)

m + c∂xm + ωΦ(m) = 0 in ΣR,

∂νm = 0 on ∂ΣR. (11)

To find solutions of (11) we consider first the case h = 0 and then use a perturbation argument. For this we have to
work in a function space that is large enough to contain the solutions and small enough that the left-hand side of (11)
is differentiable in this function space. As we will see, H 2(ΣR,R

3) + χ is a good choice. In this space we have to
restrict the search to solutions with |m| ≡ 1. We have to include further conditions in the set of admissible solutions to
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break the translation invariance and the rotation invariance of the problem. For c = 0, ω = 0, h = 0, Eq. (11) simplifies
to

0 = −δmE0(m) + (
δmE0(m) · m)

m in ΣR, ∂νm = 0 on ∂ΣR. (12)

This is the Euler Lagrange equation for the energy E0 under the condition |m| = 1. Thus, Theorem 1 implies that, for
R > 0 small enough, minimisers mR of the energy E0 are solutions of (12) in H 2(ΣR,R

3) + χ .
We proceed a follows.

1. Depending on mR we define the set of admissible functions S and show that S is a Banach submanifold of
H 2(ΣR,R

3) + χ .
2. We find a continuously differentiable function

N : S × L2(ΣR,R) × R
3 → L2(ΣR,R

3) × R

such that (m, c,ω,h) is a solution of (11) if and only if there exists α ∈ L2(ΣR,R) that satisfies N(m,α, c,ω,h) =
(0, h).

3. We show that the derivative DN of N in (mR,0,0,0,0) is invertible.
4. Then, according to the inverse function theorem [12, Theorem 73.B, p. 552], there exists a neighbourhood U of

(mR,0,0,0,0) and a neighbourhood V of (0,0) such that N |U → V is bijective. In particular, there exists h0 > 0,
such that for all |h| < h0 there are mh,αh, ch,ωh with N(mh,αh, ch,ωh,h) = 0. In other words, for all |h| < h0

there exists a solution of (11).

In Section 2 we go through the steps 1–4 to show the existence of travelling wave solutions for small radii and small
external magnetic field. The arguments of Section 2 use the invertibility of an operator representing the “interesting”
part of DN(mR,0,0,0,0). This invertibility is shown in Section 3 and relies on the fact that mR is close to mred.

1.3. Definitions and notation

The letter p denotes a point in R
3 and has the components p = (x, y1, y2) = (x, y). A map f with values in R

3

has the components f = (fx, fy1, fy2). We write fy for (0, fy1 , fy2), i.e., we view fy as a map to {0} × R
2. For a

set A ⊂ L2(Rn), we denote the closure of A in L2(Rn) by AL2 and the characteristic function by 1A. For a, b ∈ R
n,

n ∈ N we denote the scalar product by a · b. For Ω ⊂ R
3 and f,g :Ω → R

n, n ∈ N, we set

〈f,g〉Ω :=
∫
Ω

f (p) · g(p)dp,

whenever the integral on the right-hand side is defined. Moreover we set

DR(p) := {
q ∈ R

2: |p − q| < R
}
, DR := DR(0), ΣR := R × DR.

The definitions of χ in (4), of Ml in (5), and of Φ in (10) remain valid. With mred as in (6) we define

mred
R :ΣR → S

2, (x, y) �→ mred(x). (13)

For m :Ω ⊂ R3 → R3 let H(m) : R3 → R3 be the projection of m on gradient fields as in (2). The micromagnetic
energy without external magnetic field is denoted by E(m) and the micromagnetic energy including the external
magnetic field is denoted by Eh(m).

Finally, let mR :ΣR → S
2 always be a minimiser of E in Ml(R). To break the translation and rotation invariance

we additionally require∥∥mR − mred
R

∥∥
L2(ΣR)

�
∥∥v − mred

R

∥∥
L2(ΣR)

for all other minimisers v ∈ Ml(R).



K. Kühn / Ann. I. H. Poincaré – AN 26 (2009) 1345–1360 1349
2. The perturbation argument

As described above, the first step in the perturbation argument is to show that we are working on a sufficiently
smooth manifold. Set

S R :=
{
f ∈ H 2(ΣR,R

3) + χ

∣∣∣∣ |f | ≡ 1, ∂νf = 0 on ∂ΣR,〈
∂xm

R,f
〉
ΣR

= 0,
〈
Φ

(
mR

)
, f

〉
ΣR

= 0,

}
,

T S R :=
{
f ∈ H 2(ΣR,R

3)∣∣∣∣ f · mR ≡ 0, ∂νf = 0 on ∂ΣR,〈
∂xm

R,f
〉
ΣR

= 0,
〈
Φ

(
mR

)
, f

〉
ΣR

= 0

}
.

Lemma 2. There exists R0 > 0 such that for all R � R0 the set S R is a submanifold of H 2(ΣR,R
3) + χ . The tangent

space of S R in mR is T S R .

Proof. We show the lemma in two steps. We define

W R := {
m ∈ H 2(ΣR,R

3) ∣∣ ∂νm|∂ΣR
= 0,

〈
m,∂xm

R
〉
ΣR

= 0,
〈
m,Φ

(
mR

)〉
ΣR

= 0
}
.

First, since ∂xm
R,Φ(mR) ∈ L2(ΣR) and since the trace of a function in H 2(ΣR) is in H 1(∂ΣR), the set W R + χ is

a closed affine subspace of H 2(ΣR,R
3) + χ .

Second, we show that S R is a submanifold of W R + χ . Set

φ : W R + χ → {
f ∈ H 2(ΣR,R): ∂νf |∂ΣR

= 0
}
, m �→ |m| − 1,

then S R = φ−1(0). On {m ∈ W R: |φ(m)| < 1} the function φ is continuously differentiable and the derivative in m is

Dφ(m) : W R → {
f ∈ H 2(ΣR,R): ∂νf |∂ΣR

= 0
}
, g �→ g · m

|m| . (14)

If R is small enough, for every m ∈ S R the differential Dφ(m) is surjective: Indeed the equality ∂xm
red
R ·Φ(mred

R ) =
0 implies

det

( 〈∂xm
red
R , ∂xm

red
R 〉ΣR

〈∂xm
R,Φ(mred

R )〉ΣR

〈∂xm
red
R ,Φ(mred

R )〉ΣR
〈Φ(mred

R ),Φ(mred
R )〉ΣR

)
= πR2(∥∥∂xm

red
R

∥∥2
L2(R)

+ ∥∥Φ
(
mred

R

)∥∥
L2(R)

)
,

so with Theorem 1(ii) there exists R0 such that for all R � R0 we have

det

( 〈∂xm
R, ∂xm

R〉ΣR
〈∂xm

R,Φ(mR)〉ΣR〈∂xm
R,Φ(mR)〉ΣR

〈Φ(mR),Φ(mR)〉ΣR

)
> 0.

Therefore, for every f ∈ H 2(ΣR,R) with ∂νf |∂ΣR
= 0 we can find unique numbers b1, b2 such that〈

f m + b1∂xm
R + b2Φ

(
mR

)
, ∂xm

R
〉
ΣR

= 0,〈
f m + b1∂xm

R + b2Φ
(
mR

)
,Φ

(
mR

)〉
ΣR

= 0,

and f m + b1∂xm
R + b2Φ(mR) is a pre-image of f in W R . Moreover, since in a Hilbert space every subspace splits,

in particular Dφ−1(0) splits. Thus 0 is a regular value of φ and we can apply [12, Thm. 73C, p. 556] to conclude that
S R is a submanifold of W R + χ . Because of (14) the space T S R is the tangent space of S R in mR . �

We consider the map

s : S R → L2(ΣR,R
3), m �→ −δmEh(m) + (

δmEh(m) · m)
m,

that is, with (8),

s(m) = 2
(
�m − (�m · m)m − H(m) + (

H(m) · m)
m

)︸ ︷︷ ︸
s1

+h�ex − (h�ex · m)m︸ ︷︷ ︸
s2

.

The space H 2(ΣR,R) + χ embeds into C0(ΣR,R), and functions m �→ �m, and m �→ H(m) are continuous linear
maps from S R to L2(ΣR,R

3). For the last statement see [8, Lemma 2.6]. Thus s1 : S R → L2(ΣR,R
3) is well defined

and continuously differentiable.



1350 K. Kühn / Ann. I. H. Poincaré – AN 26 (2009) 1345–1360
Moreover, we have∣∣h�ex − (h�ex · m)m
∣∣ = h

∣∣(1 − m2
x

)�ex + mxmy

∣∣ � 2h|my |,
so s2 : S R → L2(ΣR,R

3) is well defined and continuously differentiable, too.
Thus we can define the continuously differentiable map

NR : S R × L2(ΣR,R) × R
3 → L2(ΣR,R

3) × R,

(m,α, c,ω,h) �→ (−δmEh(m) + (
δmEh(m) · m)

m + c∂xm + ωΦ(m) + αm,h
)
.

Since (−δmEh(m) + (δmEh(m) · m)m + c∂xm + ωΦ(m)) ⊥ m for all m ∈ S R we have NR(m,α, c,ω,h) = (0, h) if
and only if m is a solution of (11) and α = 0.
The differential of NR in (mR,0L2(ΣR,R),0R3) is

DNR
(
mR,0,0

)
:T S R × L2(ΣR,R3) × R

3 → L2(ΣR,R
3) × R,

(g,α, c,ω,h) �→ (−LR(g) + c∂xm
R + ωΦ(m0) + αmR,h

)
,

where

LR :H 2(ΣR,R
3) → L2(ΣR,R

3),
g �→ δmE(g) − (

δmE(g) · mR
)
mR − (

δmE
(
mR

) · g)
mR − (

δmE
(
mR

) · mR
)
g. (15)

With (8) we have the following explicit formula for LR(g):

LR(g) = −2�g + 2H(g) + 2
(
�g · mR

)
mR − 2

(
H(g) · mR

)
mR + 2

(
�mR · g)

mR

− 2
(
H

(
mR

) · g)
mR + 2

(
�mR · mR

)
g − 2

(
H

(
mR

) · mR
)
g. (16)

We will consider the restrictions of LR to different subspaces of H 2(ΣR,R
3). We will call these restrictions LR

as well, but name always the domain and the range.

Lemma 3. For all R > 0 and all g,f ∈ T S R we have

LR(g) = δmE(g) − (
δmE(g) · mR

)
mR − (

δmE
(
mR

) · mR
)
g, (17)

LR(g) · f = δmE(g) · f − (
δmE

(
mR

) · mR
)
g · f . (18)

Moreover LR(T S R) ⊆ (T S R)L2 and the operator LR :T S R → (T S R)L2 is symmetric.

Proof. Since mR is a solution of (12), δmE(mR) is pointwise parallel to mR . The elements of T S R are pointwise or-
thogonal to mR . This implies (17) and (18). By definition the elements of T S R satisfy Neumann boundary conditions,
so for all g,f ∈ T S R we have 〈LRf,g〉ΣR

= 〈f,LRg〉ΣR
.

It remains to show that LR(T S R) ⊆ (T S R)L2 . We have

(
T S R

)
L2 :=

{
f ∈ L2(ΣR,R

3)∣∣∣∣ f · mR ≡ 0,〈
∂xm

R,f
〉
ΣR

= 0,
〈
Φ

(
mR

)
, f

〉
ΣR

= 0

}
.

Looking at (17), we see that LR(g) ⊥ mR . Set v(t, x, y) := mR(x + t, y). Then v(t, ·) satisfies for all t ∈ R the
equation

0 = δmE
(
v(t, ·)) − (

δmE
(
v(t, ·)) · v(t, ·))v(t, ·),

therefore we have for all g ∈ T S R

0 = ∂t

〈
δmE

(
v(t, ·)) − (

δmE
(
v(t, ·)) · v(t, ·))v(t, ·), g〉

ΣR

∣∣
t=0

= 〈
L

(
∂xm

R
)
, g

〉
ΣR

= 〈
L(g), ∂xm

R
〉
ΣR

.

Analogously, with Qφ as in (9) we have for w(φ,x, y) := Qφ(mR(Q−φ(x, y))) the equation

0 = δmE
(
w(φ, ·)) − (

δmE
(
w(φ, ·)) · v(φ, ·))w(φ, ·)
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and thus for all g ∈ T S R

0 = ∂φ

〈
δmE

(
w(φ, ·)) − (

δmE
(
w(φ, ·)) · v(φ, ·))w(φ, ·), g〉

ΣR

∣∣
φ=0

= 〈
L

(
Φ

(
mR

))
, g

〉
ΣR

= 〈
L(g),Φ

(
mR

)〉
ΣR

. �
Note that DNR(mR,0,0) is bijective if and only if

(a) ∂xm
R and Φ(mR) are linearly independent,

(b) LR :T S R → (T S R)L2 bijective.

Since limR→0 ‖mR − mred
R ‖C1(ΣR) = 0 and since ∂xm

red
R and Φ(mred

R ) are linearly independent, (a) is satisfied if R

is small enough. In Section 3 we will show that (b) is satisfied for small R, too. Altogether, we have the following
theorem.

Theorem 4. (m, c,ω) is a solution of (11) if and only if there exists α ∈ L2(ΣR,R) such that NR(m,α, c,ω,h) =
(0, h).
The function NR is continuously differentiable and, if R is small enough, DNR(mR,0,0) is bijective.

If NR is continuously differentiable and DNR(mR) is invertible, according to the inverse function theorem
[12, Theorem 73.B, p. 552] there exists a neighbourhood U of (mR,0L2(ΣR,R),0R3) and a neighbourhood V of
(0L2(ΣR,R3),0R) such that NR|U → V is bijective. So for every h small enough, we can find mh,αh, ch,ωh such that
NR(mh,αh, ch,ωh,h) = 0. That is, we have proved our main theorem.

Theorem 5. For all R > 0 small enough there exists hR > 0 such that for all h with h < hR there is exists a solution
(mh, ch,ωh) of (11).

3. Invertibility of LR

The goal of this section is to prove the following theorem.

Theorem 6. For R small enough, the operator LR :T S R → (T S R)L2 , as defined in (15), is invertible, and its inverse
is continuous.

We proceed in two steps. First, we define a map LR∗ and show that for functions m in a certain space T S R
0 we have

〈LR∗ (m),m〉ΣR
� 1

4‖m‖2
L2(ΣR)

. Then we prove that, for small R, the operator LR on the space T S R is in a certain

sense similar to LR∗ on T S R
0 .

In analogy to (1) and (15) we set

ER∗ : M(R) → R, m �→
∫

ΣR

|∂xm|2 + 1

2
|my |2 + 20R2|∇ym|2, (19)

LR∗ :H 2(ΣR,R
3) → L2(ΣR,R

3),
g �→ δmER∗ (g) − (

δmER∗ (g) · mred
R

)
mred

R − (
δmER∗

(
mred

R

) · g)
mred

R − (
δmER∗

(
mred

R

) · mred
R

)
g, (20)

where

δmER∗ (m) = −2∂xxm + (0,my1 ,my2) − 40R2�ym.

Moreover we define

T S R
0 :=

{
f ∈ H 2(ΣR,R

3) ∣∣∣∣ f · mred
R ≡ 0, ∂νf = 0 on ∂ΣR,〈

∂xm
red
R ,f

〉 = 0,
〈
Φ

(
mred

R

)
, f

〉 = 0

}
.
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Lemma 7. The minimiser of ER∗ in Ml (R) is unique up to translation and rotation. It is given by

mred
R :ΣR → S

2, (x, y) �→
(

tanh

(
x√
2

)
,

1

cosh(x/
√

2)
,0

)
,

and we have∣∣∂xm
red
R (x, y)

∣∣ = 1√
2

∣∣(mred
R

)
y
(x, y)

∣∣
∂xm

red
R (x, y)

|∂xm
red
R (x, y)| =

(
1

cosh(x/
√

2)
,− tanh

(
x√
2

)
,0

)
,

Φ
(
mred

R (x, y)
) =

(
0,0,

1

cosh(x/
√

2)

)
.

Proof. The function

mred : R → S
2, x �→

(
tanh

(
x√
2

)
,

1

cosh(x/
√

2)
,0

)

is the only minimiser of
∫

R
|∂xm|2 + 1

2 |my |2, up to translation and rotation [8, Lemma 2.26]. Thus the function mred
R

is the only minimiser of ER∗ in Ml (R), up to translation and rotation.
A direct calculation yields the results for ∂xm

red
R and Φ(mred

R ). �
Lemma 8. For all R > 0 and all g,f ∈ T S R

0 we have

LR∗ (g) = δmER∗ (g) − (
δmER∗ (g) · mred

R

)
mred

R − (
δmER∗

(
mred

R

) · mred
R

)
g, (21)

LR∗ (g) · f = δmER∗ (g) · f − (
δmER∗

(
mred

R

) · mred
R

)
g · f . (22)

Moreover, LR∗ (T S R
0 ) ⊆ (T S R

0 )L2 , and the operator LR∗ :T S R
0 → (T S R

0 )L2 is symmetric.

Proof. We can argue exactly as in Lemma 3. �
Theorem 9. For all R > 0 and all m ∈ T S R

0 we have〈
LR∗ (m),m

〉
ΣR

� 1

4
‖m‖2

L2(ΣR)
.

Proof. The relations |∂xm
red
R | = 1√

2
|(mred

R )y | and

∂xxm
red
R · mred

R + ∣∣∂xm
red
R

∣∣2 = ∂x

(
∂xm

red
R · mred

R

) = 0

imply

δmER∗
(
mred

R

) · mred
R = −2∂xxm

red
R · mred

R + ∣∣(mred
R

)
y

∣∣2 = 2
∣∣(mred

R

)
y

∣∣2
.

Thus, with Lemma 8, for all g,h ∈ T S R
0 we have

LR∗ (g) · h = δmER∗ (g) · h − (
δmER∗

(
mred

R

) · mred
R

)
g · h

= (
δmE0(g) − 2

∣∣(mred
R

)
y

∣∣2
g
) · h.

We define the vector �es to be the unit vector in direction of ∂xm
red
R , i.e.,

�es(x) := ∂xm
red
R (x)

|∂xm
red
R (x)| = ((

mred
R

)
y1

(x),−(
mred

R

)
x
(x),0

)
,

and introduce the sets
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W1 :=
{
m ∈ T S R

0 :
∫

DR

m(x, y) dy ≡ 0

}
,

W2 := {
m ∈ T S R

0 : m(x,y) = α(x)�ey2 for some α ∈ H 2(R,R)
}
,

W3 := {
m ∈ T S R

0 : m(x,y) = α(x)�es(x) for some α ∈ H 2(R,R)
}
.

Then T S R
0 is the direct sum of W1, W2 and W3, and we have LR∗ (Wi ) ⊂ (Wi )L2 for i ∈ {1,2,3}.

Assume m ∈ W1. Using the Poincaré inequality, we have〈
LR∗ m,m

〉
ΣR

= 40R2‖∇ym‖2
L2(ΣR)

+ 2‖∂xm‖2
L2(ΣR)

+ ‖my‖2
L2(ΣR)

− 2
∥∥∣∣(mred

R

)
y

∣∣m∥∥2
L2(ΣR)

� 40

16
‖m‖2

L2(ΣR)
− 2‖m‖2

L2(ΣR)
= 1

2
‖m‖2

L2(ΣR)
.

Assume m ∈ W2. Then m(x,y) = α(x)1DR
(y)�ey2 for some α ∈ H 2(R,R), we have

LR∗ (m)
∣∣
(x,y)

= (−2∂xxα(x) + α(x) − 2
(∣∣mred

R

)
y
(x)

∣∣2
α(x)

)
1DR

(y)�ey2 , (23)〈
LR∗ (m),m

〉
ΣR

= πR2
(

2‖∂xα‖2
L2(R)

+
∫
R

(
1 − 2

∣∣(mred
R

)
y

∣∣2)
α2

)
(24)

and

1 − 2
∣∣(mred

R

)
y
(x)

∣∣2 � 1

4
for |x| � 1.6. (25)

Since Φ(mred
R ) · �ey2 is positive (Lemma 7), and since 〈Φ(mred

R ),m〉 = 0, the function α has to change sign.
First, assume that α changes sign in [−1.6,1.6]. We have

inf{f :[−1.6,1.6]→R,f changes sign}

(2‖∂xf ‖2
L2([−1.6,1.6])

‖f ‖2
L2([−1.6,1.6])

)
= 2π2

3.22
,

the infimum is attained and the minimisers are multiples of x �→ sin( π
3.2x). Thus we have

2‖∂xα‖2
L2([−1.6,1.6]) +

1.6∫
−1.6

(
1 − 2

∣∣(mred
R

)
y

∣∣2)
α2 � 2‖∂xα‖2

L2([−1.6,1.6]) − ‖α‖2
L2([−1.6,1.6])

�
(

2π2

3.22
− 1

)
‖α‖2

L2([−1.6,1.6]),

and therefore, with (25) and (24),

〈
LR∗ (m),m

〉
ΣR

� πR2
((

2π2

3.22
− 1

)
‖α‖2

L2([−1.6,1.6]) + 1

4
‖α‖2

L2(R\[−1.6,1.6])

)

� 1

4
‖m‖2

L2(ΣR)
.

Now assume that α does not change sign in [−1.6,1.6] and let S− ⊂ R be the set where α has the opposite sign
as in [−1.6,1.6]. With Lemma 7 we see that Φ(mred

R (x, y)) · �ey2 � 0.5 for |x| < 1.6, y ∈ DR , and since 〈Φ(mred
R ) ·

�ey2,m〉ΣR
= 0 we have

√
1.6‖α‖L2([−1.6,1.6]) � 1

πR2

∣∣〈Φ(
mred

R

) · �ey2 , |m|〉[−1.6,1.6]×DR

∣∣
� 1

πR2

∣∣〈Φ(
mred

R

) · �ey2 , |m|〉
S−×DR

∣∣
�

∫
2e

− |x|√
2 |α| �

∫ √
8e

− |x|√
2 |∂xα|
S− S−
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�
∥∥√

8e
− |x|√

2
∥∥

L2(R\[−1.6,1.6])‖∂xα‖L2(R\[−1.6,1.6])
� 1.1‖∂xα‖L2(R\[−1.6,1.6]).

Thus (25) implies

〈
LR∗ (m),m

〉
ΣR

� πR2
(

1

4
‖α‖2

L2(R\[−1.6,1.6]) + 2‖∂xα‖2
L2(R\[−1.6,1.6]) − ‖α‖2

L2([−1.6,1.6])

)

� πR2
(

1

4
‖α‖2

L2(R\[−1.6,1.6]) +
(

2
√

1.6

1.1
− 1

)
‖α‖2

L2([−1.6,1.6])

)

� 1

4
‖m‖2

L2(ΣR)
.

Assume m ∈ W3. Then m(x,y) = α(x)1DR
(y)�es(x) for some α ∈ H 2(R,R). The function LR∗ (m) is pointwise

parallel to �es , we have ∂x �es · �es = 0 and

0 = ∂x(∂x �es · �es) = |∂x �es |2 + ∂xx �es · �es = ∣∣∂xm
red
R

∣∣2 + ∂xx �es · �es = 1

2

∣∣(mred
R

)
y

∣∣2 + ∂xx �es · �es.

So ∂xx(α�es) · �es = ∂xxα − 1
2 |(mred

R )y |2α. Moreover, we have �es · �ey = (mred
R )x and therefore

LR∗ (m) · �es = −2∂xxα + ∣∣(mred
R

)
y

∣∣2
α + ∣∣(mred

R

)
x

∣∣2
α − 2

∣∣(mred
R

)
y

∣∣2
α

= −2∂xxα + (
1 − 2

∣∣(mred
R

)
y

∣∣2)
α. (26)

Comparing (26) and (23), we can conclude like in the case m ∈ W2 that 〈LR(m),m〉 � 1
4‖m‖2

L2(ΣR)
. �

The next lemma compares the operators LR∗ and LR on the space H 2(ΣR). It relies on two lemmas of [8] regarding
the stray field. Define

A(R) := {
f ∈ H 1

loc

(
ΣR,R

3): f is constant on each cross section
}
. (27)

Lemma 2.10 of [8] states that for all R > 0, g ∈ A(R),∥∥H(g)
∥∥2

L2(R3)
= ∥∥H(gx �ex)

∥∥2
L2(R3)

+ ∥∥H(gy)
∥∥2

L2(R3)
. (28)

Lemma 2.24 of [8] states that for all 0 < R < 1
3 , g ∈ A(R) we have∥∥H(gx �ex)

∥∥2
L2(R3)

� 5πR4 ln(R)E(gx �ex,1), (29)

1

2
‖gy‖2

L2(ΣR)
− ∥∥H(gy)

∥∥2
L2(R3)

� 3R2 ln(R)‖gy‖2
H 1(ΣR)

. (30)

Lemma 10. For each ε > 0 there exists a radius Rε > 0 such that〈
LR∗ (m),m

〉
ΣR

− 〈
LR(m),m

〉
ΣR

� ε‖m‖2
H 1(ΣR)

for all R < Rε and all m ∈ T S R .

Proof. For ε ∈ ]0,1] we can find R̃ε � min( 1√
20

, ε) such that for all R < R̃ε the following inequalities hold (Theo-
rem 1):∥∥mred

R − mR
∥∥

C1(ΣR)
� ε,

∥∥mred
R − mR

∥∥
L2(ΣR)

� εR,
∥∥∇ym

R
∥∥

L∞(ΣR)
� ε.

Let A(R) as in (27). Because of (29) and (30), after reducing R̃ε we can assume that∥∥H
((

mred
R

)
x
�ex

)∥∥2
L2(R3)

< ε2R2 for all R � R̃ε, (31)

1‖gy‖2
L2(Σ )

− ∥∥H(gy)
∥∥2

L2(R3)
< ε2‖gy‖2

H 1(Σ )
for all R � R̃ε, g ∈ A(R). (32)
2 R R



K. Kühn / Ann. I. H. Poincaré – AN 26 (2009) 1345–1360 1355
For R < R̃ε and m ∈ T S R we have〈
LR∗ m,m

〉
ΣR

− 〈
LRm,m

〉
ΣR

= 〈
δmER∗ (m),m

〉
ΣR

− 〈
δmE(m),m

〉
ΣR︸ ︷︷ ︸

A

−〈∣∣(mred
R

)
y

∣∣2
, |m|2〉

ΣR
+ 2

〈
H

(
mR

) · mR, |m|2〉
ΣR︸ ︷︷ ︸

B

+
∫

ΣR

(−2
∣∣∂xm

red
R

∣∣2 + 2
∣∣∂xm

R
∣∣2 + 2

∣∣∇ym
R
∣∣2)

m2

︸ ︷︷ ︸
C

−2
〈(
mred

R

)
y

· my,m
red
R · m〉

ΣR
− 4

〈
∂xm

red
R · ∂xm,mred

R · m〉
ΣR︸ ︷︷ ︸

D

.

We decompose m in m and m̃

m(x, y) :=
∫

DR

m(x, ỹ) dỹ 1DR
(y), m̃(x, y) := m(x,y) − m(x,y).

Since 40R2 � 2 and since ‖f ‖L2(ΣR) � ‖H(f )‖L2(R3) for every f ∈ L2(ΣR,R
3), we get for the first summand

A = ‖my‖2
L2(ΣR)

+ (
40R2 − 2

)‖∇ym‖2
L2(ΣR)

− 2
∥∥H(m)

∥∥2
L2(R3)

� ‖my‖2
L2(ΣR)

− 2
∥∥H(m)

∥∥2
L2(R3)

= ‖my‖2
L2(ΣR)

− 2
∥∥H(m)

∥∥2
L2(R3)

+ ‖m̃y‖2
L2(ΣR)

− 2
∥∥H(m̃)

∥∥2
L2(R3)

− 4
∫

ΣR

H(m)m̃

� ‖my‖2
L2(ΣR)

− 2
∥∥H(my)

∥∥2
L2(R3)

+ ‖m̃y‖2
L2(ΣR)

+ 4‖m‖L2(ΣR)‖m̃‖L2(ΣR).

We recall (32) and use the Poincaré inequality,

A � 2ε‖my‖2
H 1(ΣR)

+ ‖m̃y‖2
L2(ΣR)

+ 4‖m‖L2(ΣR)‖m̃‖L2(ΣR)

� 2ε‖my‖2
H 1(ΣR)

+ 16R2‖∇m̃‖2
L2(ΣR)

+ 16R‖∇m̃‖L2(ΣR)‖m‖L2(ΣR)

� 34ε‖m‖2
H 1(ΣR)

.

For the second summand we calculate

B =
∫

ΣR

((
mred

R

)
y

− 2H
(
mred

R

)) · mred
R |m|2

︸ ︷︷ ︸
B1

+2
∫

ΣR

H
(
mred

R

) · (mred
R − mR

)|m|2

︸ ︷︷ ︸
B2

+ 2
∫

ΣR

H
(
mred

R − mR
) · mR|m|2

︸ ︷︷ ︸
B3

,

|B1| �
∥∥(

mred
R

)
y

− 2H
(
mred

R

)∥∥
L2(ΣR)

∥∥mred
R

∥∥
L∞(ΣR)

‖m‖2
L4(ΣR)

(28)

�
(∥∥2H

((
mred

R

)
x
�ex

)∥∥
L2(ΣR)

+ ∥∥(
mred

R

)
y

− 2H
((

mred
R

)
y

)∥∥
L2(ΣR)

)‖m‖2
L4(ΣR)

(31)(32)

�
(
2εR + 2ε

∥∥(
mred

R

) ∥∥
1

)‖m‖2
4 � 6εR‖m‖2

4 ,

y H (ΣR) L (ΣR) L (ΣR)
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|B2| � 2
∥∥H

(
mred

R

)∥∥
L2(ΣR)

∥∥mred
R − mR

∥∥
L∞(ΣR)

‖m‖2
L4(ΣR)

(28)

� 2
(∥∥H

((
mred

R

)
y

)∥∥
L2(R3)

+ ∥∥H
((

mred
R

)
x
�ex

)∥∥
L2(R3)

)∥∥mred
R − mR

∥∥
L∞(ΣR)

‖m‖2
L4(ΣR)

� 2
(∥∥(

mred
R

)
y

∥∥
L2(ΣR)

+ ∥∥H
((

mred
R

)
x
�ex

)∥∥
L2(R3)

)
ε‖m‖2

L4(ΣR)

� 2(2.2R + εR)ε‖m‖2
L4(ΣR)

� 6εR‖m‖2
L4(ΣR)

,

|B3| � 2
∥∥mred

R − mR
∥∥

L2(ΣR)

∥∥mR
∥∥

L∞(ΣR)
‖m‖2

L4(ΣR)
� 2Rε‖m‖2

L4(ΣR)
.

Because of the Sobolev embedding H 1(Σ1) ↪→ L4(Σ1) there exists a constant CSobolev such that

‖u‖L4(Σ1)
� CSobolev‖u‖H 1(Σ1)

for all u :Σ1 → R
n.

Rescaling implies for all R � 1

‖u‖L4(ΣR) � 1√
R

CSobolev‖u‖H 1(ΣR) for all u :ΣR → R
n.

Thus,

|B| � 14C2
Sobolevε‖m‖2

H 1(ΣR)
.

Since ∂xm
red
R = 1√

2
|(mred

R )y | � 1√
2

(Lemma 7) the third summand C can be estimated by

C � 2
∥∥∂xm

red
R − ∂xm

R
∥∥

L∞(ΣR)

∥∥∂xm
red
R + ∂xm

R
∥∥

L∞(ΣR)
‖m‖2

L2(ΣR)
+ 2ε‖m‖2

L2(ΣR)

� 2ε

(
2√
2

+ ε

)
‖m‖2

L2(ΣR)
+ 2ε‖m‖2

L2(ΣR)
� 7ε‖m‖L2(ΣR),

and D can be estimated by

D = −2
〈(
mred

R

)
y

· my,
(
mred

R − mR
) · m〉

ΣR
− 4

〈
∂xm

red
R · ∂xm,

(
mred

R − mR
) · m〉

ΣR

� 2ε‖m‖2
L2(ΣR)

+ 4√
2
‖∂xm‖L2(ΣR)ε‖m‖L2(ΣR) � 5ε‖m‖2

H 1(ΣR)
.

Therefore we have for all R � R̃ε〈
LR∗ m,m

〉
ΣR

− 〈
LRm,m

〉
ΣR

�
(
46 + 14C2

Sobolev

)
ε‖m‖2

H 1(ΣR)
. �

Lemma 11. There exists a constant C such that ‖H(m)‖L∞(ΣR) � C‖m‖C1(ΣR) for all R � 1, m ∈ C1(ΣR).

Proof. For bounded domains Ω and p ∈ ]1,∞[, Carbou and Fabrie [2, Lemma 2.3] have shown that there exists a
constant C1 such that for all m ∈ W 1,p(Ω)∥∥H(m)

∥∥
W 1,p(Ω)

� C1‖m‖W 1,p(Ω). (33)

Let η :Σ1 → [0,1] be a smooth function with

η(p) = 1 for p ∈ [−1,1] × D1, η(p) = 0 for p ∈ Σ1 \ ([−2,2] × D1
)
,

set ηx : (x′, y′) �→ η(x′ − x, y) and let m ∈ C1(Σ1). Then (33) and the Sobolev embedding W 1,4(Σ1) ↪→ L∞(Σ1)

imply that there exist constants C2, C3 independent of x such that∥∥H(m · ηx)
∥∥

L∞(Σ1)
� C2

∥∥H(m · ηx)
∥∥

W 1,4(Σ1)

� C3‖m · ηx‖W 1,4(Σ1)
� (2π)

1
4 C3‖m‖C1(Σ1)

. (34)

For f := m · (1 − ηx) we use the representation

H(f )(p) =
∫

∇G(p − p′)divf (p′) dp′ +
∫

∇G(p − p′)f · ν dp′. (35)
Σ1 ∂Σ1



K. Kühn / Ann. I. H. Poincaré – AN 26 (2009) 1345–1360 1357
Here ν is the outer normal and G is the map p �→ 1
4π |p| . Eq. (35) is well known for bounded domains, and also holds

for infinite wires [8, Lemma 2.6]. For all p = (x, y) ∈ Σ1 we obtain∣∣H (
m · (1 − ηx)

)
(p)

∣∣ �
(‖∇G‖L1(Σ1\([−1,1]×D1))

+ ‖∇G‖L1(∂Σ1\([−1,1]×∂D1))

)‖m‖C1(Σ1)
. (36)

Combining (34) and (36) we find a constant C such that ‖H(m)‖L∞(Σ1) � C‖m‖C1(Σ1)
for all m ∈ C1(Σ1). For R < 1

set g(x, y) = m( x
R

,
y
R

). Then H(g)(x, y) = H(m)( x
R

,
y
R

), so rescaling implies the statement of the lemma. �
Using Lemmas 10 and 11, we transfer the result of Lemma 8 to the operator LR .

Lemma 12. For each 0 < ε < 1
4 there exists Rε such that

〈
LR(m),m

〉
ΣR

�
(

1

4
− ε

)
‖m‖2

L2(ΣR)

for all R < Rε and all m ∈ T S R .

Proof. Let P0 :H 2(ΣR) → T S R
0 be the L2-orthogonal projection. Since

mred
R ⊥ ∂xm

red
R , mred

R ⊥ Φ
(
mred

R

)
,

〈
∂xm

red
R ,Φ

(
mred

R

)〉
ΣR

= 0,

we have for all m ∈ T S R

P0(m) = m − (
m · (mred

R − mR
))

mred
R + 〈

m,∂xm
R − ∂xm

red
R

〉
ΣR

∂xm
red
R

‖∂xm
red
R ‖2

L2(ΣR)

+ 〈
m,Φ

(
mR

) − Φ
(
mred

R

)〉
ΣR

Φ(mred
R )

‖Φ(mred
R )‖2

L2(ΣR)

,

that is,

‖m‖L2(ΣR) − ∥∥P0(m)
∥∥

L2(ΣR)
� ‖m‖L2(ΣR)

∥∥mR − mred
R

∥∥
L∞(ΣR)

+ ‖m‖L2(ΣR)

‖∂xm
R − ∂xm

red
R ‖L2(ΣR)

‖∂xm
red
R ‖L2(ΣR)

+ ‖m‖L2(ΣR)

‖Φ(mR) − Φ(mred
R )‖L2(ΣR)

‖Φ(mred
R )‖L2(ΣR)

.

Thus, with Theorem 1, we can find Rε such that

‖m‖L2(ΣR) − ∥∥P0(m)
∥∥

L2(ΣR)
� ε‖m‖L2(ΣR) for all R � Rε, m ∈ T S R.

Since the operator LR∗ is the second variation of the energy ER∗ and since mred
R is a minimiser of the energy, the

operator LR∗ is positive semidefinite. Moreover, it is symmetric on the set {m ∈ H 2(ΣR,R
3): ∂νm|∂ΣR

= 0}, so the
relation LR∗ (T S R

0 ) ⊂ (T S R
0 )L2 (Lemma 8) implies〈

LR∗ m,m
〉
ΣR

= 〈
LR∗

(
P0(m)

)
,P0(m)

〉
ΣR

+ 〈
LR∗

(
m − P0(m)

)
,m − P0(m)

〉
ΣR

�
〈
LR∗

(
P0(m)

)
,P0(m)

〉
ΣR

� 1

4

∥∥P0(m)
∥∥2

L2(ΣR)
� 1 − ε

4
‖m‖2

L2(ΣR)
.

We now consider LR . By Lemma 11 there exists a constant C1 such that ‖H(mR)‖L∞ � C1‖mR‖C1(ΣR). Thus we
have 〈

LRm,m
〉
ΣR

= (1 − ε)
〈
LRm,m

〉
ΣR

+ ε
(‖∇m‖2

L2(ΣR)
+ ∥∥H(m)

∥∥2
L2(R3)

) − ε

∫
ΣR

(
2
∣∣∇mR

∣∣2 + H
(
mR

)2)
m2

� (1 − ε)
〈
LRm,m

〉
ΣR

+ ε‖∇m‖2
L2(ΣR)

− ε
(
2 + C2

1

)∥∥mR
∥∥2

C1(ΣR)
‖m‖L2(ΣR)
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After reducing Rε we can assume by Lemma 10〈
LRm,m

〉
ΣR

�
〈
LR∗ m,m

〉
ΣR

− ε‖m‖2
H 1(ΣR)

for all R � Rε, m ∈ T S R.

Combining the above inequalities and noting that for R small enough (2 + C2
1)‖mR‖2

C1(ΣR)
is bounded by some

constant C2 (Theorem 1), we have〈
LRm,m

〉
ΣR

� (1 − ε)
〈
LR∗ m,m

〉
ΣR

− εC2‖m‖L2(ΣR)

�
(

1

4
− (C2 + 1)ε

)
‖m‖2

L2(ΣR)
.

Now another reduction of Rε yields the lemma. �
For g ∈ H 2(ΣR) we define

LR
H (g) := 2

(
H(g) − (

H(g) · mR
)
mR − (

H
(
mR

) · g)
mR − (

H
(
mR

) · mR
)
g
)
,

LR∇(g) := −4
(∇mR · ∇g

)
mR − 2

∣∣∇mR
∣∣2

g,

and show that on

H 2
N(ΣR) := {

g ∈ H 2(ΣR): ∂νg = 0
}

the operators LR
H and LR∇ are lower order with respect to the Laplace operator.

Lemma 13.

(i) There exist C, R̃ > 0 such that for all R � R̃, g ∈ H 2
N(ΣR) we have∥∥LR

H (g)
∥∥

L2(ΣR)
� C‖g‖L2(ΣR),

∥∥LR∇(g)
∥∥

L2(ΣR)
� C‖g‖H 1(ΣR).

(ii) On {g ∈ H 2
N(ΣR): g ⊥ mR} we have −2� + LR

H + LR∇ = LR .

Proof. (i) Let g ∈ (T S R)L2 . By Lemma 11 and Theorem 1 there exists C1 such that for R small enough
‖H(mR)‖L∞(ΣR) � C1. Moreover we have ‖H(g)‖L2(ΣR) � ‖g‖L2(ΣR) and ‖mR‖L∞(ΣR) = 1. Thus∥∥LR

H (g)
∥∥

L2(ΣR)
�

(
4 + 4C1

)‖g‖L2(ΣR).

The estimate for LR∇ follows directly from Theorem 1.
(ii) Since ∂im

R ⊥ mR (i ∈ {x, y1, y2}) and since g ⊥ mR for all g ∈ T S R , we have

0 = �
(
mR · g) = �mR · g + 2∇mR · ∇g + mR · �g,

0 =
∑

i∈{x,y1,y2}
∂i

(
∂im

R · mR
) = �mR · mR + ∣∣∇mR

∣∣2
,

and therefore

LR∇(g) = 2
(
�g · mR

)
mR + 2

(
�mR · g)

mR + 2
(
�mR · mR

)
g = LR(g) − LR

H (g) + 2�g. �
Lemma 14. Let R̃ as in Lemma 13. Then for all R < R̃ there exists λ > 0 such that λ + LR :T SR → (T SR)L2 is
bijective.

Proof. For R < R̃ the operators LR
H and LR∇ are lower order perturbations to the Laplace operator � :H 2

N(ΣR) →
L2(ΣR) (Lemma 13). Thus for all λ large enough the operator λ − 2� + LR

H + LR∇ :H 2
N(ΣR) → L2(ΣR) is bijective.

Since by Lemma 13, LR = −2� + LR∇ + LR
H on T SR , it remains to show that (λ + LR)(T SR) = (T SR)L2 .

By Lemma 3 we already have(
λ + LR

)(
T SR

) ⊆ (
T SR

)
2 . (37)
L
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To show the other inclusion we first prove that, after possibly increasing λ,(
λ − 2� + LR∇ + LR

H

)({
g ∈ H 2

N(ΣR), g ⊥ mR
}) ⊇ {

g ∈ L2, g ⊥ mR
}
. (38)

For this we take g ∈ H 2
N and show that g �⊥ mR implies (λ−2�+LR∇ +LR

H )(g) �⊥ mR . As in the proof of Lemma 3, we
see that LR maps {f ∈ H 2

N(ΣR): f ⊥ mR} to {f ∈ L2(ΣR): f ⊥ mR} so we can assume that g = αmR , α :ΣR → R.
Since |mR| = 1 we have for all partial derivatives (∂α)mR ⊥ (∂mR)α and in particular

〈
LR∇

(
αmR

)
, αmR

〉 = ∫
ΣR

−4α
(∇mR · ∇(

αmR
)) − 2α2

∣∣∇mR
∣∣2 =

∫
ΣR

−6α2
∣∣∇mR

∣∣2
.

Now by Lemma 13 ‖LR
H (αmR)‖L2(ΣR) � C, so we have〈(

λ + � + LR∇ + LR
H

)
αmR,αmR

〉
� λ‖α‖2

L2(ΣR)
− 6‖mR‖2

C1(ΣR)
‖α‖2

L2(ΣR)
− ∥∥LR

H

(
αmR

)∥∥
L2(ΣR)

�
(
λ − 6

∥∥mR
∥∥2

C1(ΣR)
− C

)‖α‖|2
L2(ΣR)

,

and for λ large enough LR(g) �⊥ mR as claimed.
Eqs. (37) and (38) imply

2 = codim
(
T SR,

{
g ∈ H 2

N(ΣR): g ⊥ mR
})

= codim
((

λ + LR
)(

T SR
)
,
(
λ + LR

)({
g ∈ H 2

N(ΣR): g ⊥ mR
}))

� codim
((

T SR
)
L2 ,

{
g ∈ L2(ΣR) : g ⊥ mR

})
= 2.

Thus we can conclude(
λ + LR

)({
g ∈ H 2

N(ΣR): g ⊥ mR
}) = {

g ∈ L2(ΣR): g ⊥ mR
}
,(

λ + LR
)(

T SR
) = (

T SR
)
L2 . �

Using the above estimates, we prove Theorem 6, that is, we show that the operator LR is bijective and has a
continuous inverse.

Proof of Theorem 6. Let R̃, λ as in Lemma 14 and R � R̃. After possibly reducing R, we can assume by Lemma 12
that 〈

LR(g), g
〉
ΣR

� 1

8
‖g‖2

L2(ΣR)
. (39)

Since λ + LR :T SR → T SR
L2 is bijective, its Fredholm index

Ind
(
λ + LR

) := dim
(
Ker

(
λ + LR

)) − codim
(
Ran

(
λ + LR

)
, T SR

L2

)
is zero. The Fredholm index is continuous with respect to the operator norm so we have Ind(LR) = Ind(λ + LR) = 0.
Eq. (39) implies that LR :T SR → T SR

L2 is injective, thus LR :T SR → T SR
L2 surjective.

For every bijective continuous operator between Banach spaces, the inverse is continuous. �
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