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Abstract

We transpose work by K. Yajima and by T. Mizumachi to prove dispersive and smoothing estimates for dispersive solutions of
the linearization at a ground state of a Nonlinear Schrodinger equation (NLS) in 2D. As an application we extend to dimension 2D
a result on asymptotic stability of ground states of NLS proved in the literature for all dimensions different from 2.
© 2008 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

On utilise les travaux de K. Yajima et T. Mizumachi pour prouver des estimations dispersives et régularisantes des solutions de
I’équation linéarisée aux états fondamentaux de NLS in 2D. On applique ces résultats pour obtenir des extensions en dimension
2D de la stabilité asymptotique prouvée en littérature pour toutes les dimensions différentes de 2.
© 2008 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We consider even solutions of a NLS
iug+ Au+ B(lu)u=0, (1,x)eRxR? u(0, x) = ug(x). (1.1)

We assume:

(H1) B(0) =0, g € C*([R,R);

(H2) there exists a pg € (1, oo) such that for every k =0, 1,
L) it it
dvk ~ -
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(H3) there exists an open interval O such that Au — wu + ,B(uz)u =0 admits a C! -family of ground states ¢, (x) for
weQO;

H4) {5 1$0ll}2 g > 0forw e O;

(HS5) Let Ly =—A+w— ﬂ((pf)) — 2/3’((])3))@% be the operator whose domain is Hr2ad (R?%). We assume that L has
exactly one negative eigenvalue and that it has no (radial) kernel.
By [27] the @ — ¢, € H'(R?) is C? and by [38,13,14] (H4)—(H5) yields orbital stability of the ground state
' ¢, (x). Here we investigate asymptotic stability. We need some additional hypotheses.

(H6) For any x € R, ug(x) = uo(—x). That is, the initial data ug of (1.1) are even.
Consider the Pauli matrices o; and the linearization H,, given by:

0 1 0 i 1 0
a=li o) =[S o) w0 4
Hy=03[-A+w—B(2) — B (62)05] +iB (¢2) 202 (1.2)

Then we assume:

(H7) Let H, be the linearized operator around e”‘"(l)w, see (1.2). H, has a positive simple eigenvalue A(w) for
w € O whose corresponding eigenfunctions are even functions. There exists an N € N such that NA(w) < w <
(N + DA(w).

(H8) The Fermi Golden Rule (FGR) holds (see Hypothesis 4.2 in Section 4).

(H9) The point spectrum of H,, consists of 0 and £A(w). The points £w are not resonances.

Then we prove:

Theorem 1.1. Let wy € O and ¢, (x) be a ground state in a family of ground states ¢,. Let u(t, x) be a solution
to (1.1). Assume (H1)-(H9). In particular assume the (FGR) in Hypothesis 4.2. Then, there exist an €y > 0 and a
C > 0 such that for any € € (0, €o) and for any ug with ||ug — eiV0¢w0||H1 < €, there exist wy € O, 0 € Cl(R; R),
hooll g1 < Ce and |wy — wo| < Ce? such that

[_l)i?oo H“(tv )= 3i0(t)¢w+ - e[tAhOO”Hl =0.

Theorem 1.1 is the two dimensional version of Theorem 1.1 [10]. The one dimensional version is in [7]. We recall
that results of the sort discussed here were pioneered by Soffer and Weinstein [29], see also [24], followed by Buslaev
and Perelman [3.,4], about 15 years ago. In this decade these early works were followed by a number of results [5,8,
9,15,21-23,25,29-31,33-36]. It was heuristically understood that the rate of the leaking of energy from the so called
“internal modes” into radiation, is small and decreasing when N increases, producing technical difficulties in the
closure of the nonlinear estimates. For this reason prior to Gang Zhou and Sigal [12], the literature treated only the
case when N =1 in (H6). [12] sheds light for N > 1. The results in [12] deal with all spatial dimensions different
from 2 under the so called Fermi Golden Rule (FGR) hypothesis. [10,7] strengthen [12] by considering initial data
in H!, by showing that the (FGR) hypothesis is a consequence of what looks generic condition, Hypothesis 4.2
below, if (H8) is assumed. [10] treats also the case when there are many eigenvalues and Hypothesis 4.2 is replaced
by a more stringent hypothesis which is a natural generalization of the (FGR) hypothesis in [12]. The same result
with many eigenvalues case can be proved also here and in [7], but we skip for simplicity the proof. We recall that
Mizumachi [21], resp. [22], extends to dimension 1, resp. 2, the results in [15] valid for small solitons obtained by
bifurcation from ground states of a linear equation, while [20] extends in 2D the result in [30]. [7] transposes [21]
to the case of large solitons, with the generalizations contained in [10]. Here we consider the case of dimension 2.
Thanks to the work by [22], it is quite clear how to transpose to dimension 2 the higher dimensional arguments in [10].
The nonlinear arguments in [10] are not sensitive to the dimension except for the lack in 2D of the endpoint Strichartz
estimate. Mizumachi [22] shows how to replace it with an appropriate smoothing estimate of Kato type. The estimate
and its proof are suggested by [22]. In order to complete the proof of Theorem 1.1 we need some dispersive estimates
on the linearization H,, which in spatial dimension 2 are not yet proved in the literature. The main technical task of
this paper is the transposition to H,, of the proof of L? boundedness of wave operators of Schrodinger operators in
dimension 2 due to Yajima [40]. We use the following notation. We set Hy(w) = 03(—A + w); given normed spaces
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X and Y we denote by B(X, Y) the space of operators from X to Y and given L € B(X,Y) we denote by ||L| x,y or
by || L[l p(x,y) its norm. We prove:

Proposition 1.2. Assume the hypotheses of Theorem 1.1. The following limits are well defined isomorphism, inverse
of each other:

itHwe—itHo(w)

Wu= lim e u foranyue L?,

t——+00

Zu =, ]i? e!tHo(@) g =it Ho foranyu e L%(Hw) (defined in Section 2).
— 400

Forany p € (1, 00) and any k the restrictions of W and Z to L*> N WXP extend into operators such that for C(w) < 0o
semicontinuous in

W < C(w)

whr @) wh i) T 120 wer ) whr @2)

with WY'P (H,) the closure in W*P(R2) of WE-P(R2) N L2(H,).

We will set L2 and H™*
il 2 = 1) ull 2z, and el gms = 106 ull g gy

where m € N, s € R and (x) = (1 + |x|*)!/2. For f(x) and g(x) column vectors, their inner product is (f, g) =
Jr2" f(x) - g(x)dx. The adjoint H* is defined by (Hf, g) = (f, H*g). Given an operator H, its resolvent is Ry (z) =
(H —2)~". We will write Ro(z) = (—A —2)~!. We write (¢, 1)l p 19 = lg(t. %)ll 4]l and lg(t. )| 2 =
Mg )l 25l pp-

2. Linearization, modulation and set up
We will use the following classical result, [38,13,14], see also [7]:

Theorem 2.1. Suppose that e“‘”(bw(x) satisfies (H4). Then 3¢ > 0 qnd a Ao(w) > 0 such that for any ||u(0, x) —
Gl g1 < € we have for the corresponding solution inf{[lu(t, x) — e'” o (x — x0) || g1 (xer2): ¥ € R and xo € R?} <
Ap(w)e.

We can write the ansatz u(t, x) = ei@(’)(qﬁw(t)(x) +r(t,x)),O@) = fot w(s)ds + y(t). Inserting the ansatz into
the equation we get
ir == Ar + 0 Or = B(@o0)r = B (Go0)Pu0r = B (00)9u0T +7 090
—i0(1)duPw) + 7 (Or +O(r?).
We set 'R = (r,7), '® = (¢», p) and we rewrite the above equation as
iR = HyR + 037 R + 037 ® — i0d,® + O(R?). 2.1)
Set Hy(w) = 03(—A + w) and V(w) = H,, — Hp(w). The essential spectrum is
0e = 0¢(Hy) = 0o (Ho(w)) = (—00, —0] U [0, +00),

0 is an isolated eigenvalue. Given an operator L we set N, (L) = > ker(L/). [37] implies that, if {-} means span,
No(H}) ={®,030,P}. L(w) has corresponding real eigenvector & (w), which can be normalized so that (£, 03£) = 1.
o1& (w) generates ker(H,, + A(w)). The function (w,x) € O xR — &(w, x) is CZ%; |E(w, x)| < ce~ ™! for fixed ¢ > 0
and a > 0if w e K C O, K compact. §(w, x) is even in x since by assumption we are restricting ourselves in the
category of such functions. We have the H,, invariant Jordan block decomposition

L* = Ny(H,) ® (@ ker(H, F A(w))) @ L(H,) = Ng(H,) ® N (H)
J,£
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where we set L%(Hw) ={N,(H}) ® P ker(H) ¥ )L(w))}L. We can impose
R(t) = (zE +7016) + f(t) € [Z ker(Ho() F )»(a)(t)))i| ® L2(Ho)- (2.2)
+
The following claim admits an elementary proof which we skip:

Lemma 2.2. There is a Taylor expansion at R = 0 of the nonlinearity O(Rz) in (2.1) with Ry, (@, x) and Ap, p(w, x)
real vectors and matrices rapidly decreasing in x:

OR)= 3, Run@3"T'+ 3 "TAnn@)f+O(f2+""2).
2<m+n<2N+1 1<mtn<N

In terms of the frame in (2.2) and the expansion in Lemma 2.2, (2.1) becomes

ifi = (Ho@) +039) [ + 037 P(0) — i0d, P (1) + (zh(w) — i2)E(®)
— (M) +i2)01E (@) + 037 (2 + 2018) — id(200E + 20190E)

+ > TRua@+ Y "7 Ana(@) f +O(£2) + One(|2V ) (2.3)
2<m+n<2N+1 I<m+n<N

where by Oj,c we mean that the there is a factor x (x) rapidly decaying to O as |x| — oo. By taking inner product of
the equation with generators of N, (H}) and ker(H,; — 1) we obtain modulation and discrete modes equations:

dllgo 13 gias

io——"2 = <03;>(zs +2018) — i0@0E +701008) + Y 2" Run(®)
dow
m+n=2
N
+ (03)} + id)awpc + Z ZmZnAm,n(w)) f + O(fz) + Oloc(|Z2N+2 ), ¢>’
m+n=1
)¢l
y ————= = (same as above , 039,P),
dw

iz — Mw)z = (same as above , 03&). 2.4)

3. Spacetime estimates for H,,

We need analogues of Lemmas 2.1-2.3 and Corollary 2.1 in [22]. We call admissible all pairs (p, g) with 1/p =
1/2—1/gand2 < g <oo. Weset (p’,q") =(p/(p—1),q/(g — 1)). In the lemmas below we assume that the H,, of
the form (1.2) for which hypotheses (H3)—(HS5), (H7) and (H9) hold.

Lemma 3.1 (Strichartz estimate). There exists a positive number C = C(w) upper semicontinuous in o such that for
any k € [0, 2]:

(a) forany f € L%(a)) and any admissible all pairs (p, q),
[e 5 £ Lpyra < ClLF Nl

(b) for any g(t, x) € S(R?) and any couple of admissible pairs (p1,q1) (p2, q2) we have

t

/ e =) Ho P.(w)g(s,)ds
0

) ta gcllglle/Zqué
Ly wy ! o

Lemma 3.1 follows immediately from Proposition 1.2 since W and Z intertwine e~ P.(H,,) and e~"H0.
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Lemma 3.2. Let s > 1. 3C = C(w) upper semicontinuous in w such that:
(a) forany f € S(R?),
[e= e Pe(@) £ 22 < CUFIl2

(b) forany g(t,x) € S(Rz)

H / "M Po(w)g(t, ) dt | SCliglz s
B ;
R X

Notice that (b) follows from (a) by duality.

Lemma 3.3. Let s > 1. 3C = C(w) as above such that Vg(t, x) € S(R?) and t € R:

t

/ eI b (@) g(s, ) ds
0

L2

As a corollary from Christ and Kiselev [6], Lemmas 3.2 and 3.3 imply:

Lemma 3.4. Let (p, q) be an admissible pair and let s > 1. 3C = C(w) as above such that Vg(t,x) € S(R?) and
teR:

t

/ e HmIHe P(w)g (s, ) ds
0

LrLy

Lemma 3.5. Consider the diagonal matrices E = diag(1l,0), E_ = diag(0, 1). Set P+ (w) = Z(w)EL W (w) with
Z(w) and W (w) the wave operators associated to H,. Then we have for u € Lg(Hw)

M

1
P = lim — 1 Ry (A+ie)— Rg (A —i dx,
(@ = tim o lim | [Ry, (ot i€) = Ry, (.~ i)]u
w

—w
. 1 . . .
P_(w)u= 613& o Mlinloo [Ru, (A +i€) — Ry, (, —i€)]udr (1)
-M

and for any s1 and sy and for C = C(s1, s2, w) upper semicontinuous in w, we have

| (P1(@) = P(@) = Pe(@)03) f | ;21 <CIIFll 2 2)

Proof. Formulas (1) hold with P (w) replaced by E+ and H,, replaced by Hy and for any u € L?(R?). Applying
W (w) we get (1) for H,. Estimate (2) follows by the proof of inequality (3) in Lemma 5.12 [7] which is valid for all
dimensions. O

4. Proof of Theorem 1.1

We restate Theorem 1.1 in a more precise form:

Theorem 4.1. Under the assumptions of Theorem 1.1 we can express

2N
u(t,x) =" <¢w<,)(x) + ij(z, DA;(x, (1)) +ht, x))

j=1
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with pj(z,z) = O(z) near 0, with lim,_, o w(t) convergent, with |A(x, w(t))| < Ce_“mforﬁxed C>0anda >0,
lim;— 400 2(¢) =0, and for fixed C > 0

”Z(t)”LZ"’+2 +[ha, x)”LwHIrNL’WI 6 < Ce. (1)
Furthermore, there exists hoo € H' (R, C) such that

lim ||el fO w(S)dS-H]/(l)h(t) ”AhOO”Hl =0. (2)

—>0o0

The proof of Theorem 4.1 consists in a normal forms expansion and in the closure of some nonlinear estimates.
The normal forms expansion is exactly the same of [10,7], in turn adaptations of [12].

4.1. Normal form expansion

We repeat [10]. We pick k =1,2,..., N and set f = f; for k = 1. The other fj are defined below. In the ODE’s
there will be error terms of the form

Eope(k) = O(1z1*V %) + 02N fi) + O(£2) + O(B(1 fil?) fx).-

In the PDE’s there will be error terms of the form
Epps (k) = Oroc (121¥*%) + Otoe (2i0) + Ouoc (£2) + O(B(1fel?) ).

In the right-hand sides of Egs. (2.3)—(2.4) we substitute y and @ using the modulation equations. We repeat the
procedure a sufficient number of times until we can write for k =1 and f1 = f

dligol? [ 2! al
io——2=( Y "Z"AR @+ Y "Z"AP (o) fi + Eopek), P () ),

de m+n=2 m+n=1
iz — Az = (same as above , 03£(®)),

i0 fu = (Hy +039) fi + Eppe()) + > "Z"RY), (o),
k+1<m+n<N+1

with Aﬁ,]f ?n, R(k) and Aﬁ,’f )n (w, x) real exponentially decreasing to O for [x| — oo and continuous in (w, x). Exploiting
|[m —n)A(w)| <wform+n < N,m>0,n >0, we define inductively f; with k < N by

fior==)_ "Ry, (m — @) RS, (@) + fi.

m-+n=k

Notice that if R,(,fﬁl)(w,x) is real exponentially decreasing to O for |x| — oo, the same is true for Ry, ((m —

n)k(w))R(k l)(a)) by |(m — n)A(w)| < w. By induction f; solves the above equation with the above notifications.
Now we manipulate the equation for f. We fix w; = @ (0). We write

i8; Pe(@1) [ — {Ho, + (7 + @ — 01) (P (@1) — P_(01)) } Pe(@1) fn
=+P(w)EppE(N) + Y "7 Pe(@) R (@1) (4.1)
m+n=N+1

where we split P.(w1) = P+(w1) + P_(w;) with P1(w;), see Lemma 3.5, where P, (w;) are the projections in
0c(Hyp,) N{A: £X > w1} and with

Eppe(N) = Eppe(N) + Z " (RN (@) — RN (01)) + o(t, ) fi.
m+n=N+1

P(t,x) =y + 0 — w)(Pe(w1)o3 — (Pr(w1) — P—(1))) fv + (V(w) = V(o)) f§
+ (7 + o — w1)(Pe(w) — Pe(w1))o3 fx. 4.2)
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By Lemma 3.5 for Cy (w;) upper semicontinuous in wg, VN we have

| )Y (Pe(@1) = P-(@1) = Pe(w)az) £ | 2 < Cn @) [ ()7 £ 2. (4.3)
The term ¢(t, x) in (4.2) can be treated as a small cutoff function. We write
fn==2_ Z"Z"Ru, ((m—mh(@)+i0) Pe(@) R\ (@1) + fy+1. (4.4)
m+n=N+1

Then

i0; Pe(@1) fn+1 = (Hoy, + (7 + © — 01) (Pr(w1) — P—(01))) Pe(@1) fr+1
+ Zo(e|z|N+1)Rle (£(N + DA(@1) +i0) Re(w1) + Pe(w1) Eppe(N) 4.5)

with Ry = R(N)1 pand R_ = R(N)Jrl and EPDE(N) = EPDE(N) + Ojoc (ezV11), where we have used that (v — w1) =
O(e) by Theorem 2.1. Notice that RHw (£(N + DA(wg) + i0) Ri(wg) € L™ do not decay spatially. In the ODE’s

with k = N, by the standard theory of normal forms and following the idea in Proposition 4.1 [5], see [10] for details,
it is possible to introduce new unknowns

d=0+q.2.0+ . "T(fy. @),

1<m+n<N

I=z+p®,2,2) + Z "2 [y B (@), (4.6)

1<m+nN

with p(0,2,2) =Y. Pmn(@)Z"7" and ¢(z,2) = Y gm.n(@)Z"7" polynomials in (z,Z) with real coefficients and
O(|z|?) near 0, such that we get

= (Eppe(N), @),

E-m@i= Y an(@)F"E +(Eope(N), 038) + 1 (AN (@) fv. 038) 4.7)
1<m<N

with a,, (w) real. Next step is to substitute fy using (4.4). After eliminating by a new change of variables 7 = 7 +
plw,Z, %) the resonant terms, with P(@®,2,2) = pmn(@)z™Z" a polynomial in (z, Z) with real coefficients o(lz»)
near 0, we get

=<EpDE(N),(D>,
iZ — AMw): = Z &m(w)|2m|22+<EODE(N)»U3$>

1<m<N
_ 3N (N) : (N)
N P2(AG N (@) Ry, (N + DA(@1) +i0) Pe(w0) R o(@1), 03€)
N A
+2 APV (©) v 1. 03E) (4.8)
with a,,, A(N) and R;ijl,O real. By x—li() = PV% + imdp(x) and by an elementary use of the wave operators, we can

denote by F (a) 1) the quantity
I'w,w) = ;s((A(N) ()R, ((N + DA(wr) + lO)P (w1)R +1 O(a)l)03$(a))))
= 1AM @)8(Hoy — (N + D)) Pl RY, (@103 (@),
Now we assume the followmg.

Hypothesis 4.2. There is a fixed constant I" > 0 such that | (v, w)| > I.

By continuity and by Hypothesis 4.2 we can assume |I"(w, w1)| > I"/2. Then we write

d 212 _
E%=—1’(w,w1)lzlm+2+ (AN (@) 1, 036 @)E" ) + 3((Eope(N), 035 @)F). 4.9)
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4.2. Nonlinear estimates

By an elementary continuation argument, the following a priori estimates imply inequality (1) in Theorem 4.1, so
to prove (1) we focus on:

Lemma 4.3. There are fixed constants Co and Cy and €y > 0 such that for any 0 < € < €q if we have

121755 2N+2 <2Coe and | fnll 2pg <2Ce (4.10)
LR HINLI WAL 0~ w2 s

then we obtain the improved inequalities

(Wil EITE < Cie, 4.11)
LOCHXIQL3W 6L w2 -

12175 LZM < Coe. (4.12)

Proof. Set ¢(t) :=y 4+ w — w;. First of all, we have:

Lemmad4.4. Let g(0,x) € HX1 N Lg(a)l) and let w(t) be a continuous function. Consider ig; = {Hy,, +£€(t)(Py(wo) —
P_(wo))}g + P.(w1) F. Then for a fixed C = C (w1, s) upper semicontinuous in w1 and s > 1 we have

lgll o <C([8O. ) gu +1FU 1 g1y g2 5505)-
L@ HINL3W Lo~ w 2P0

Lemma 4.4 follows easily from Lemmas 3.1-3.4 and

t
Pi(w1)g(t) = e Hor =1 0 {07 p, (4)(0) — i / i oy oF1 [[LOdT P (1) ) F(s) dis.
0

Lemma 4.5. Consider Eq. (4.1) for fn and assume (4.10). Then we can split EPDE(N) =X+ O(fﬁ,) + O(fﬁo) such
that | X || 2 1m0 S €2 for any fixed M and |O(f5) + Ot S 3.
t X X

Proof of Lemma 4.5. In the error terms for k = N at the beginning of Section 4.1 we can write
Eppe(N) = 0(€) ¥ (x) fi + Otoc (121" 2) + Otoc(2fn) + Otoc (£3) + O(f3) + O(£4°)

with v (x) arapidly decreasing function, pg the exponent in (H2) and with O( f’ 1{,70) relevant only for pg > 3. Denoting
X the sum of all terms except the last one, setting f = fu, by (4.10) we have:

M 10OV @) fll 21 S €lfll 211 S €%
@) 100e @ 21 S lzllooll 1l 204 S €%
3) ||oloc(f2>||Lz L S0 wSe

This yields || (x)MX||H1Lt2 < €2. To bound the remaining term observe:

@ NPz SISyl S gl S U300 S €%

Po— Po— 1
(5) 1O P) 11 S A wharo £ 270 IIL} < ||f|| 2p IAI < €70, where in the last step we
L[po—l WXLZPO L 2po PotT W1,2p0
e 1t S 2 £l for some 0 <@ < 1'by po > 3, interpolation and Sobolev em-
PO po+T W;ﬂpo L P01 LZ
t

beddlng. O
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Proof of (4.11). Recall that fy satisfies Eq. (4.1) whose right-hand side is P.(w1) Eppg(N) + Ojoc (zV+1). In addition

to Lemma 4.5 we have the estimate ||Ojoc (zV 1! )IILz v S IIZIIN;X,L < 2Cpe. So by Lemmas 3.1-3.4, for some fixed

¢y we get schematically

2
Il 2pg <202Cpe + € +0(€”)
LeHINLIW!SnL 70~ wl2ro

where € comes from initial data, 0(62) from all the nonlinear terms save for the Rm 0 (a)o)zm " terms which contribute
the 2¢,Coe. Let now fy = g + h with

igr = {Hay + £(0)(Pr(@1) — P—(@1))}g + X + O1oc (V). 2(0) = fn (0),
ihy = {Ho, + () (Ps(@1) — P_(01)) }h +O(f3) + O(f%’), h(0)=0
in the notation of Lemma 4.5. Then, by Lemmas 3.2 and 3.3 and by the estimates in Lemma 4.5 we get [[g]l ;2,1 S
t

2Coe + O(ez) + coe for a fixed cg. Finally,

/“e_i(t—S)Hw]eiif;@(r)dr(o(f/%/)+O( ))(S)”L2H1 TN/H( () +O(f) @] 1 S

So if we set C1 ~2Cg + co + 1 we obtain (4.11). We need to bound Cy.
Proof of (4.12). We first need:
Lemma 4.6. We can decompose fyi+1 = hy + ha + h3 + ha with for a fixed large M > 0:

(D IIhlllLtz am < O(e?);

2 |Ih2||Lr2 0(e?);

3) ||h3||LtzL§,M < O(?);

(4 |lhall 2, 2m < c(w1)€ for a fixed c(wi) upper semicontinuous in w.
t X

//\ N

Proof of Lemma 4.6. We set
iih1 = (Ho, + L) (P — P))hy,

hi© = Y Ry, ((m—nmin)+i0)R\) (@)7" (0)Z"(0).
m+n=N+1

We get [|1ll,2, 2-w < c(@)]2(0)2 X | Ry (@1 20 = O(e?) by the following lemma:
t x

Lemma 4.7. There is a fixed so such that for s > s,

e Rit, (A +i0) Pe(@)p | 22 < Cs (A, ) )] 20

t
/e—in(r—r)RHw(A+i0)Pc(w)g(f)df
0

<Cs(4,0)|g.x)| 2,26 (4.13)
L2128 ’

with Cs(A, o) upper semicontinuous in w and in A > .
Let us assume Lemma 4.7 for the moment, for the proof see Section 9. We set /,(0) = 0 and
i0hy = (Hy, + €()(Py — P_))hy + O(ez" )Ry, ((N + DA(@1) +i0) Ry, o(wo)
+0(ezV ) Ry, (—(N + Dr(wr) +i0)R} +1(w1)
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Then we have hy = haj + hop with hyj =)~ hyj+ with
t

hate (1) = / e o (=) H [ 6@ AT pL o (2N Y Ry, (N + Di(wr) +i0)RYY, (w1 ds

0
and hyy defined similarly but with Ry, (—(N + 1)A(1) +i0) Ry, . Now by (4.13) we get

2] 2 < Cellzll e

and so [[h2(1)|| 2, 2.-m = O(€?). Let h3(0) =0 and
t bx

id; Pe(@1)h3 = (Hy, +£(1)(Py (1) — P_(@1))) Pe(w1)h3 + Pe(w1) Eppg(N).
Then by the argument in the proof of (4.11) we get claim (3). Finally let 24(0) = fn(0) and

i0; Pe(w1)h4 = (Ho, + £(t) (Pr(@1) — P—(®1))) Pe(®1)hs.
Then by Lemma 3.2 ||<x>_Mh4||L,2X < ”fN(O)”LE <c(wp)e weget(4). O
Continuation of proof of Lemma 4.3. We integrate (4.9) in time. Then by Theorem 2.1 and by Lemma 4.4 we get,
for Ag an upper bound of the constants Ag(w) of Theorem 2.1,

1212055 < Aoe® + €121 +o(€?).
Then we can pick Co = (Ag + 1) and this proves that (4.10) implies (4.12). Furthermore z() — O by %E(I) =
O(e). O

As in [10,7] in the above argument we did not use the sign of I" (w, wp). With the same argument in [10,7] one can
prove

Corollary 4.8. If Hypothesis 4.2 holds, then I' (w, w) > I.

The proof that, for / fi (t) = (h(z), h(1)), h(¢) is asymptotically free for r — oo, is similar to the analogous one in
[10] and we skip it.

5. Limiting absorption principle and L? theory for H,,

In Sections 5-7 we prove Proposition 1.2. We start emphasizing two consequences of hypothesis (H9), in particular
(b) clarifies the absence of resonance at £w:

(a) H, has no eigenvalues in [w, +00) U (—00, —w];
(b) if g € W>®(R?, C?) satisfies H, g = wg or H,g = —wg then g =0.

Because of the fact that H,, is not a symmetric operator, we need some preparatory work to show that in fact H,,
is diagonalizable in the continuous spectrum. This work is done in Section 5 which ends with a formula for the wave
operator W which is the basis to develop in Sections 6 and 7 a transposition of the work of Yajima [40].

We first need a preliminary on Schrodinger operators. We will denote by ¢ (x) a real valued function with: g(x) > 0
with g(x) > 0 at some points; g(x) € C(C)><> (R2). We set hg = —A + g(x). Then we have:

Lemma 5.1. Let C;. = {z € C: Iz > 0}. Suppose q(x) =0 for r = ro > 0. Then we have the following facts.

(1) There exists so > 0 and Coy > 0 such that for s > so, Ry, (z) extends into a function 7 — R;l: (z) which is in
(L® N CO(Cy, B(L>S, L>7%)).
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(2) For any ngy € N there exists so > 0 such that for any ag > 0 there is a choice of C > 0 such that for n < ng

1 -
< Colz) 2 vz e Cy N {z: Iz] > ao}.

s (z):L** (Rz) Ny (Rz)

‘ dz"

(3) The same argument can be repeated for C_ = {z € C: Iz < 0} and R,:q (2).

Claim (2) follows from [1] and [16] and claim 3) follows along the lines of the previous two claims. In view
of (2), it is enough to prove (1) for z ~ 0. For ¢ = re'? with 0 € (—m, ) let V= ﬁe’e/z. With this convention for
2 ¢ [0, 00) for Ry(z) = (—A —z)~! we have

Ro(2) = 5 Ko(V/ 2 ) = £ Hy (/=2 el = = Hy (~iv/ =2 el

for the Macdonald function K and the Hankel functions H(;—L. We set Gop = — 5= log |x|*, Pof = fR2 f dx. We have
for M(z) = (1 + \/qRo(z)/q) the identity
Ry, (z) = Ro(z) — Ro(2)y/GM ™' (2) /g Ro(2). 4)

From the expansion at 0 in C4 of HJ and by the argument in Lemma 5 [26] we have in B(L>*, L>~%), for s
sufficiently large,

Ro(@) = c(2)Po — Go + O(—zlog/~2).  c(2) = - — % — 5= log(v=2/2). 5)

Consider the projections in L*(R?), P = Vi f /lgllprand Q=1—P.LetT =1+ fGof Then QT Q is
invertible in Q L2(R?). Denote its inverse in Q L2(R2) by Do = (QT Q)~!. Consider the operator in L’=PL*®QL?
defined by

S_[ P —PTQODyQ ]
| —0DoQTP ODyQTPTQDoQ

and h(z) = ||g |l 1c(2) + trace(PT P — PT QDo QT P). Then by [26]

R, (2) = Ro(z) — ™' (2) Ro(2)/S+/qRo(2) — Ro(2)x/q QDo Q/q Ro(2)
— Ro(2)5/q O(—zlogv/—2)/q Ro(2). (6)

By direct computation

2
H @ RUEIVSVTROE) = S (e VISV 1+ 5 (DS VTG0 + 0 GoVS Vit
+ %G VaSJ/qGo+ O(—zlogv/=2).

where all terms, except the first on the right-hand side, admit continuous extension in C, at 0. We have
1)/gS/q(-. 1) = llqll .1 Po and so by (5)

c2(2)
h(z)

admits continuous extension in C, at 0. By direct computation
Ro(2)/4QDoQ/qRo(2) = Go/gQDoQ/qGo + O(—zlog/—z)

admits continuous extension in C at 0. So Ry, (z) admits continuous extension in C4 at0,and so on all C,.
A consequence of Lemma 5.1 is the #, smoothness in the sense of Kato [19] of multiplication operators involving
rapidly decreasing functions y:

Ro(2) — llgll 1 Po
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Lemma 5.2. Let ¥ (x) € L¥(R*) N L>%(R?) for s > 1 and q as in Lemma 5.1. Then the multiplication operator  is
hg smooth, that is, for a fixed C > 0

/ |v Rn, (,\+is)uH§d)\ <Cllull} forallu e L*(R?) and & #0.
R

This follows from one of the characterizations of H smoothness in the case H is selfadjoint, see Theorem 5.1 [19],
specifically from the fact that by Lemma 5.1 we have that for v/, ¥; € L% N L?* for s > 1 there is a number C > 0
such that for all z ¢ R we have [|y/1 Ry, (2)¥2llp2 12 < C.

We consider now H; = 03(—A + g + o) and consider our linearization H,. Write H, = H; + (V, — 03q),
and factorize V,, — 03¢ = B*A with A, B smooth |8,’?A(x)| + |8£B(x)| < Ce~@l vy, for some «, C > 0 and for
|81 < No, Ny sufficiently large. We have o1 H; = —H,01, 01 H, = —H,01. We choose the factorization B*A so that
o01B* = —B*0|, 01 A = Aoj. By these equalities o1RH,(2) = —Rp,(—z)o1 and 01Ry,,(2) = —Rp,(—2)o1, S0 in
some of the estimates below it is enough to consider z € C, ; with C, = {z: 3z >0, Rz > 0}.

Lemma 5.3. For z € C. the function Rj{lq (z) is well defined and satisfies the following properties:

(1) There exists so > 0 and Co > 0 such that for s > s the function z — R}'_’IQ (z) isin (L®°NCY(Cy, B(L>S, L>~%)).
(2) For any ng € N there exists so > 0 such that for any ap > 0 there is a choice of C > 0 such that for n < ng and
Vz € C. N{z: dist(z, £w) > ap},

< Cof) 20+,

n
” ;z” R, @: L (R?) — L>7* (R?)

(3) For any y(x) € L¥(R?) N L>*(R?) for s > 1 the multiplication operator V is H, smooth, that is, for a fixed
C=>0

f|’1/fRHq(A+i8)u||§dk<C||u||% forallu € L*(R?) and & #0.
R

(4) Analogous statements hold for z € C_ and the function Rl_iq (2).

Lemma 5.3 is a trivial consequence of Lemmas 5.1-5.2. The properties in Lemma 5.4 are partially inherited by H,,,.
Let 0 (z) = ARZq (z)B*. Then for z € C1

Lemma 5.4. Fix an exponentially decreasing bounded function . For z € C the function ARy, (2)Y extends into a
function AR;_}M ()Y for z € Cy\oy(Hy) with the following properties:
(1) Vap > 0 3C¢ > 0 such that for X, = C__,_ N{z: dist(z,04(Hy)) = ao}

AR}, (@)Y € (L® N C°)(Xa, B(L?, L?));

(2) For any ng € N there exists so > 0 such that for any ay > 0 there is a choice of C > 0 such that for n < ng and
Vz € X4y N{z: dist(z, £w) > ap},

< Co(Zr%(H")-

AR v () 1)

(3) There is a constant C > O such that

/”ARHw(k—i—ie)u“;d)»gC||u||% forallu e L>(H,) and & #0.

(4) Analogous statements hold for z € C_ and the function RI;w (2).
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Proof. Let us write Q;r(z) = AR;;q (z)B* and for z € C

-1
ARp,(2) = (1+ 0F (2))” ARH, (2). (5)
By Lemma 5.3 we have lim,_, || Q;‘(z)ll 12,12 = 0. By analytic Fredholm theory 1 + Q;]" (z) is not invertible only

at the z € C_+ where ker(1 + Q;}'(z)) # 0. This set has 0 measure in R. By Lemma 2.4 [11] if at some z # £ we

have ker(1 + Q;‘ (z)) # 0, then z is an eigenvalue. By hypothesis there are no eigenvalues in o, (H,). Hence we get
claim (2).

Lemma 5.5. [fker(1 + O/ (w)) # 0 then there exists g € W**°(R?) with g # 0 such that H,g = wg.

Let us assume Lemma 5.5. By hypothesis such g does not exist. This yields (1). By (5), claim (4) Lemma 5.4 and
Neumann expansion we get (4). Next, apply (5) to u € L.(H,). ARy, (z)u is an analytic function in z with values
in L2(R?) for z near any isolated eigenvalue zo of H, because the natural projection of u in Ng(Hy, — zo) is O.
Away from isolated eigenvalues of H, (1 + Q;’ (z))~! is uniformly bounded. Hence (3) in Lemma 5.3 implies (3) in
Lemma54. O

Proof of Lemma 5.5. Let 0 # g € ker(1 + Q;(w)). Then
B*§ + (Vo — )Ry, (@) B*g =0.

Set g = Ry, (w)B*g. Then Ag = —g and so g # 0. By g + R, (0)(Vy, — q)g =0 we have g € HI%)C(RZ) and H,g =
wg. We want now to show that g € L°(R?), contrary to the hypotheses. We have g = (g1, g2) with g2 = (A — g —
2w)~ ' (B*g),, where B*g € L>*(R?) for any s, so g» € H>(R?). We have g = R,jq (0)(B*g); with g1 € L>~(R?)
for sufficiently large s. We split L2Es = L%’is ® (L%’jF‘Y)J- where L%’is are the radial functions and we are considering
the standard pairing L>* x L% — C given by [p, f(x)g(x)dx. We decompose g1 = g1, + g1nr with g1, € L7~
and ginr € (L2)L. In (L275)% - (L2%)L we have R (0) = Go — Gog(1 + 0Gog @)~ Go with @ =1 — P, for
P = Poqo, g0 = C(;]q, co= Jgaqdx, Pou= [g>udx. Then

giar = Go(B*D1ar — Gog(1 + 0Gog @)~ Go(B* @)1
and by asymptotic expansion for [x| — oo we conclude that for some constants
bix1 + byxs

y <glnr —a-— T) = O(|x|717a7€)

for some € > 0. Finally we look ar g;,. We can consider solutions ¢ (r) and v (r) of hyu =0 with: ¢(0) =1 and
¢-(0) =0; ¥ (rg) =1 and [ (r)| bounded for r > rg, ¥ (ro) = clogr with ¢ 0 for r — 0. In terms of these two
functions the kernel of R;[q (0) in L2((0, 00), dr) is

BV oo

RF (0)(r1.r) = (W(’f) ’

! 7(15 roy (r1) ifry >rp,
W(rp)

with W(r) = [¢ (), ¥ (-)](r) = ¢/r for some ¢ # 0. We have

r +00
glr(r):Cilw(")/¢(S)(B*g)lr(s)5ds+Cil¢(r) / V() (B*8)1r(s)s ds.
0 r

Then for r > ry,

lg1 ()| < ey ()

r +00
/|¢(r)(3*§)1r(z)rdz+|c—‘¢(r>! / [Y (1) (B*8) 1 ()|t dt
0 r

< |log(x) ||L2,7S(Rz)||B*§||L213(1R2) +10g(2 + )| B*gl 125 ((xer2: x| >rp) = O(D)-
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Then we conclude that we have a nonzero g € H . 2 (R2) N L°(R?) such that H,g = wg. But this is contrary to the

nonresonance hypothesis. 0O

Analogous to Lemma 5.4 is:
Lemma 5.6. Fix an exponentially decreasing bounded function . For z € C. the function BRpx(z)y extends into a
function BR;* () for z € Cy\oq(H,) with the following properties:
(1) For any ag > 0 there exists Co > 0 such that BRITI* (DY € L®(Xq,, B(L2, L?)) where

Xao =Cy N {z: dist(z, 04(Ho)) = ao}.
(2) For any ngy € N there exists so > 0 such that for any ag > 0 there is a choice of C > 0 such that for n < no and
Vz e Xqy N {z: dist(z, £w) > aop},

< Cofg) 20+,

@y L2 (R?) — L*(R?)

dn
dz"
(3) There is a constant C > 0 such that

/|yBRH$(A+is)uH§dA<C||u||§ forallu e LE(H}) and & #0.

(4) Analogous statements hold for z € C_ and the function Ry (2).

From [19, Section 2] we conclude:

Lemma 5.7. There are isomorphisms W:L? — Lg(Hw) and 7 : Lg(Hw) — L2, inverses of each other, defined as

follows:
foruel? ve L%(Hw*),

+o0
~ 1
(Wu,v) = (u, v) + 11%1 5 / (ARp, (. +i€)u, BRys (A +i€)v)di
€—> s
forue L%(H,), vel?
| +o00
(Zu,v) = (u,v) + lim — / (ARu, (A +i€)u, BRy, (A +i€)v)dA
e—0t 2mi @ q
—00

We have H,W = WH and H, 7Z =ZH,, ¢"HoW = Wei'Hs qnd ¢i'Ma 7 = Zei'Ho P.(H,,). The operators W and Z
depend continuously on A and B* and can be expressed as
Wu= lim e"Hoe ey foranyu e L?,

t——+00

Zu =, 1121 eMae=itHo  for any u € L*(H,).
—>T0Q

In particular we remark:

Lemma 5.8. We have for C(w) upper semicontinuous in @ and

|e"*Hog|, < C(@)liglla forany g € L2(H,).

Having proved that e~i'"Ho P (H,,) are bounded in L%, we want to relate H,, to Hy = 03(—A +w). Write H = Hy+
Ve, Voo = B*A. We have o1 Hy = — Hyo1, o1 H, = —H,01. We choose the factorization of V,, so that o1 B* = B*o1,
01A = —Ao. By these equalities 01 Ry, (z) = —Rp,(—z)o1 and 01 Rp, (2) = —Rp, (—2)o1. We have the following
result about existence and completeness of wave operators:
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Lemma 5.9. The following limits are well defined:

(1) Wu =1lim;_s 4o et Hoe=Hoy for any u e L?,
(2) Zu =lim,_ 4o e 0e~ 1 oy for any u € L2(H,).

W(L?) = Lg(Hw) is an isomorphism with inverse Z.

Proof. The existence of P.(H,) o W follows from Cook’s method and Lemma 5.8. By an elementary argument
Wu € L2(H,,) for any u € L%, so W = P.(H,) o W. We have W = W o W with
Wiu= lim ¢"Hae=i"Hoy forany u e L?(R?),
t—400
Wu — lim ¢'fHow—itH,

for any u € L2.
t—+00

By standard theory W is an isometric isomorphism of L*(R?) into itself with inverse Zju = lim;— 4 oo e!tHo =it Hyy,

and by Lemma 5.7 W is an isomorphism L?(R?) — L2(H,,) with inverse Z. Then by product rule the limit in (2)
exists and we have Z =7 o 7 with Z the inverse of W. 0O

Lemma 5.10. For u € L>*(R?) with s > 1/2 we have

1 _ _
Wu=u— o / RHw(x)vw[Rgo(x) - RHO(,\)]ud,\.
=

Proof. Wu € L*(R?) by Lemma 5.9, but the above formula is meaningful in the larger space L>~*(R?). For
ve LSRN LZ(H;)“) and for (u, v); = fRZ u - Udx the standard L? pairing, we have by Plancherel

+00
(Wu,v)s = (u,v)s + lim (Vwe_"HO’_“u, e_iH:;’_“v> dt
e—0F 2
0
1 o
= {u,v) + lim —— f (ARp, (A +i€)u, BRys (A +i€)v),dA
€e—
—00

By the orthogonality in L?(R) of boundary values of Hardy functions in H?(C,.) and in H*(C_) we have for € > 0

+00 +00
/(ARHO(A~|—ie)u,BRH$(A+ie)v>2dA= / (A[Ruy(A +i€) — Rpy(A —i€)|u, BRys (A +i€)v),dA
— 0 —00

Byuce L%(R?) and v € L%>*(R%) N Lg(Ha’)") the limit in the right-hand side for € “\( O exists and we have

<Wu,v>z=<u,v>z+%/(A[RHO(A+i0>—RHO(A—iO)]u,BRH;(HiO)vbd)»

—00

1 , . ,
= (u,v)2 + 5~ / (A[Ruy(A +i0) — Rpzy (A — i0) |u, BRys (A +i0)v), d
Iz
This yields Lemma 5.10. O

The crucial part of our linear theory is the proof of the following analogue of [40]:

Lemma 5.11. For any p € (1,00) the restrictions of W and Z to L*> N LP extend into operators such that for
C(w) < o0 semicontinuous in w

IWlLe®2), 22 m,) T 1212 H,), e r2) < C(@).
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In the next two sections we will consider W only, since the proof for Z is similar. The argument in the following
two sections is a transposition of [40]. We consider diagonal matrices

E, =diag(1,0) and E_ =diag(0, 1).
Keeping in mind Lemma 5.10, 01 R(z) = —R(—z)o for R(z) equal to Ry, (z) or to Ry, (z) and o Lg(Hw) =

L%(Hw), it is easy to conclude that the L?” boundness of W is equivalent to L” boundness of

Uu := / Ry O)Vu[Rf, ) — Ry () ]uda
AZw

= / Rl_{m(k)Vw[Rar(k)—R(;(A)]E+udk.
>15)

As in [40] we deal separately with high,treated in Section 6, and low energies, treated in Section 7. We introduce
cut-off functions v (x) € C°(R), and ¥2(x) € C*(R), with ¥ (x) + ¥2(x) = 1, ¥1(—=x) = ¥1(x), ¥1(x) =1 for
[x] < C and ¥1(x) =0or |x| > 2C for some C > w.

6. L? boundness of U: high energies

This part is almost the same of the corresponding part in [40]. For vr;(x) the cutoff function introduced after
Lemma 5.11, ¥ (Hp) is a convolution operator with symbol 1//1(|§|2 + w). Both 1 (Hpy) and v, (Hp) are bounded
operators in L”(R?) for any p € [1, 00]. In order to estimate the high frequency part (the so called high energy)
Uy (Hp), we expand RI;w (A) into the sum of few terms of Born series

Ry, () = Ry (1) — Ry, () ViR, (1) + Ry 0) Ve Ry, (W ViR, (1),
getting by Lemma 5.10 the decomposition U = Uy + U + Uz with
1
_ — +
Uiu= 5 / Ry, MVoRy (A —w)E udh,
AZw
1
- - +
Uru = 3 f Ry M VoRy M VoRy (A —@)ELudh,
10}
1 _ _ -
Usu = 5= / Ry, (,\)VwRHO(A)VwRHw(A)Vng(A —w)E udh.
yY>10)
Lemma 6.1. The operator Uyyry(Hy) is bounded in LP (R?) for all 1 < p < oo. Specifically for any s > 1 there exists
a constant Cg > 0 so that for T = U1yr2(Hp)
ITullr < Col[(x)* V| o lullr  forallu e LP(R?). (1)

Proof. Recall Ry(z) = (—A —z)~! and R,f,o (z) = diag(RT (z — w), —R3 (z + w)). For u = (uy, u2), and for F the
Fourier transform, we are reduced to operators of schematic form

1 -~
F(ELU = dr | ——————i1E—ms(h— (1€ — 0> +@)) V() dn,
(ExUru)(§) / / |§|2+w¢k+i0u1($ m8(r = (1§ = nl* +w))V(mdn
10} R2
with V the Fourier transform of the generic component of V,,. Then

EiUlbt:/d??‘?(n)Tniuln
RZ



S. Cuccagna, M. Tarulli / Ann. I. H. Poincaré — AN 26 (2009) 1361-1386 1377

where u 1, (x) = e My (x), T, uiy = #KO(,/nzM—i—a)l - ) * uy, and by [39]

o0
i .
Tn+u1,7(x) = Tn'/e”l"lum(x +tn/|n|)dt
0

By [40] we have that T = E U, satisfies inequality (1) while for T = E_U; we use

1 n?
I7iul0 < g Kol 2 + o)

andso |E_Ujullee STV /Mg luilier. O

—1
luillr < C)~ llutllLe
L}

Lemma 6.2. The operator Usyr(Hy) is bounded in LP(R?) for all 1 < p < 0o, moreover, there exists a constant
Cs > 0 so that for T = U o (Hp)

ITulLr < Csl| (x)* Voo 1o llullLo  for all u € LP(R?) 0

is valid, provided s > 1.

Proof. By [39] and with the notation of Lemma 6.1 we are reduced to a combination of operators

Iﬂu—/dm /dnzV(m)V(nz T Euy,.

Tf = I —u satisfies inequality (1) by [40, Proposition 2.2]. The other cases follow from Lemma 6.1. For example,
for K (n1,12) = V1)V (2 —m) and K (x, n2) = [ dne!"™ K (n, m2),

e xullLr = “/dﬂzfdﬂlK(WI’WZ) ST

Lp

<&, / dm | (e B (e.n) | 1T, o
RZ

~ ~ _ 2
< Csfdnz | ) K o) 2 )"l e Co [ ) Voo [ 2 lunllze. O
R2
Lemma 6.3. Set T = Uz (Ho). Then T is bounded in L? (R?) for all 1 < p < oo.
Proof. Schematically
EL Uy (Ho)u = / Ry (R)VF (K + o) VRS (k) = Ry () [y 0. + @)uik dk,
k=0

with F(k? 4+ w) = R;IO (k)VR™ (k) and V the generic component of V,. By (3) Lemma 5.4 for G,j;y x) =
ejFik‘Y|Gi(x — v, k) with G*(x, k) = :t%HgE (k|x|) we have the following analogue of inequality (3.5) [40]
Cjllx)* Vol

k3 /(x)(y)

and by [40, Proposition 3.1] this yields the desired result for T = E_ Usy»(Hp). Since (1) continues to hold if we
replace G+ with e ’k|x|Gk « With G (y) = G(x — y, k), where G(x, k) = Ko(vk? + w|x|), we get also the desired
result for T E_Usyn(Hp). O

[OU{F (K + )V Gy, VG )| < M
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7. L? boundness of U: low energies

Set
Tu:= / R;Im(x)vw[RaL(,\ —w)— Ry (A — o) |[¥1 (W Euda.
Y1)

We want to prove:

Lemma 7.1. For any p € (1, 00) the restriction of T on L*> N\ LP extends into an operator such that || T || LP(R2).LP(R2) <
C(w) for C(w) < oo semicontinuous in .

Let Vo =V ={Vy: £, j =12}, W={W;: £, j=1,2} with Wi = Wh; =0, Wy =1 € R and Wy (x) =1 for
Vi1(x) = 0and W;(x) = —1 for Vi1 (x) <0. Set B* = (x)~" for some large N > 0,and A = {Ay;: €, j = 1,2} with
A1 (x) = Vi1 ()], Ar2(x) = Wi1(x) Vi2(x) and Az (x) = V2 (x). Then W?=1,B*WA=V.Letk > 0be such that
kX=X —wandset M(k) =W + ARy, () B*. Then

R;w(k) = R;IO()») — R;,O(A)B*M_l(k)AR;IO(A).

We have M (k) =W +c (k)P + AGE)B* +O0(k? logk) where: ¢~ (k) =a~ + b~ logk; P is a projection in L? defined

by
P:I:All] (',BT1> :
Aot | Vil

~ 1
Go= diag(—— log |x |, —Ro(—2w));
2
|d’ /dk!O(k* logk)|| 2 ;> < CK* I {logk), j=0,1,2, 0<k <c.

Let Q=1—Pandlet Mo=W + A@BB*. Then QM Q is invertible in QL? if and only if w is not a resonance or
an eigenvalue for H,, and in that case

M~ (k) =g ' (k) (P — PMoQDoQ — QDoQMoPMyQDoQ + QDo Q + O (k*logk))

with g(k) = ¢  logk +d~ for ¢~ # 0 and Dy = (QM()Q)_1 by [17]. We claim now that QDoQ — QW Q is a
Hilbert—Schmidt operator. In fact, following the argument in Lemma 3 [18], we get that the operator L = P + QMo Q
is invertible in QL?, and Dy = QL~' Q. We have

L=W+[AGoB* + P+ PMyP — PMyQ — QMo P].
Set L:=W(1+ §), the operators P, PMyP, PMyQ, QMyP are of rank one while A@BB* is a Hilbert—Sshmidt
operator. F{pm the fact that W is invertible, we get that also (1 + S) is invertible. Moreover the identity (1 + S Yl =
1— S +98)"! yields

L' —w=-S1+%5""'w,
that is the product of an Hilbert—-Schmidt operator with one in B(L*(R?), L>(R?)). Finally, an application of the
Theorem VI.22, Chapter VI, in [25], shows that L~! — W is of Hilbert-Schmidt type.

So we are reduced to the following list of operators:

Tyfu:= / Ry (K*)E+VoEL[RS (K*) — Ry (K*) ]y (Muk dk,
0

and 7, defined as above but with R, (k) E ; replaced by Ro(—k> — 2w)E_ which are bounded in L? for I < p < 00
by Lemma 6.1;

T, u = / Ry (K*)EL+N &Ry (k) — Ry (k*)]vr1 (W) E-yuk dk
0
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with
|/ /dk/ N (kP loghk) | o ;20 < CK*/(logk), j=0,1,2, 0<k<c

which is bounded in L? for 1 < p < oo by Proposition 4.1 [40];
00
Tshu:= / Ry (K*)ELB*(d(k)F + L+ W)A[R{ (k) — Ry (k*) |1 (W) Euk dk
0
with F a rank 3 operator, L a Hilbert—Schmidt operator in L2, and d(k) = g’l (k). There are also operators T;,
for j=0,1,2, defined as above but with R_(k )E replaced by Ro(— k% — 2w)E_ and bounded in L?. So TjE
d W—=A)+ T2 5t T2 5 with T 27 for j = 1,2, 3 operators bounded in L? for 1 < p < oo because of the f0110w1ng

statement proved in [40] (the + case is exactly that in [40], and the — case can be proved following the same argument):
if K is an operator with integral kernel K (x, y) such that for some s > 1

1
1K |Is :=/dy(/dx )| K (x, x — )| > <00

R2 R2

then the operators

Ztu:= | Ry (K*)K[R{ (k*) — Ry (k*)]uk dk,

Zu:= | Ro(—k* +20)K[R] (K*) — Ry (k*)]uk dk

0\8 0\8

are bounded in L? for 1 < p < oo with ||Zi||Lp,Lp < CsplKlls. O
8. Proofs of Lemmas 3.2, 3.3 and 3.4

We mimic Mizumachi [22]. By the limiting absorption principle we have

o0

. 1 .
Pe(@)e M f = -— / e Pe(@)[RYy, (W) — Ry, (W] f do.

—00

We consider a smooth function x (x) satisfying 0 < x(x) <1 forx e R, x(x)=1ifx >2and x(x) =0if x <1
XM (x) is an even function satisfying xps(x) = x (x — M) for x > 0. Let xp(x) =1 — xp(x). We have:

Lemma 8.1. For any fixed s > 1 there exists a positive C(w) upper semicontinuous in w, such that for any u € S(R?)
we have

| R O F 2 e 2 < CF L2
First, we prove Lemma 3.2 assuming Lemma 8.1.

Proof of Lemma 3.2. We split
Pe(w)e "o f = P (w)e™ "oy (Hy) f + Po(w)e™ o 3y (Hy) f

with
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‘ -

é\g é\g

Pe() xm (Hp)e e f = e " xu (R, V) — Ry, (V) Pe(w) f dA,

[\

i

‘

Pe(@)e™ "o gy (H,) f = e am(RY, W) = Ry (W) Pe(@) f d.

N

i

Integrating by parts, in S, (R?) for any t # 0 and f € S, (R?)

J ® . .
Po(w)e o f — (12:)” /d)\e*l“agpc(w){(kj,w(x)—R;,w(x))XM(A)}f.

Since by (3) Lemma 5.4 for high energies we have

||3{Pc(w)Rf,w(A):(x>(f+1)/2+0L2 - (x>—(j+1)/2—oL2” < ()b,

the above integral absolutely converges in (x)~U+D/2=012 for j > 2. Let g(¢, x) € S(R x R?). By Fubini and inte-
gration by parts, j > 2,

. 1 . . .
(xm(Hp)e "M P() f 8), . = 5 / dr (i)™ / dre 0] (xm (W) (R, ) — Ry, (W) £ 8),
R

R

T 2w
R

X

1 ; .
= d)»<3]{XM()»)( () = R;}w()»))}Pc(w)f,/dt(—it)’g(t)e“>
R

1 i
= dx M(RE (W) —R; (V)P e .
\/Eiﬁ! () (R, () — Ry, (D) Pel@) £, B0,

Hence, by Fubini and Plancherel, we have

(X (Ho)e™ o Pe(w) £ g), | < @) ™2 [ xm G (R, ) = Ry, ) F [ 125 11125

= @m) 2| xR, 3 = Ry, D) £ 2 o2 1811 22

§(s ) ”LiLE'S

In a similar way we have
™" % (Ho) £.8), | < @)™ 2([[ 7aa (o) (R, ) = Ry OO) £ 2 02 1811 212
therefore we achieve
[{e™" " Pe(o) £.8), | < @) 2 (| O (R, (A +0) = Rig o = i0)) £ 2 227
+ ” xm () (RZH) ) = R;lm ()”))f “ Li(Uc(Hw);L)zf'_s) ”g”LtzLE‘S

and by Lemma 8.1 this estimate yields Lemma 3.2. O

Proof of Lemma 3.3. By Plancherel’s identity and Holder inequalities we have

t

/e—i(t—S)Hw P.(w)g(s, ) ds

0

<R, CIPe@)f10,400) %2 8 00| 25
Ly7L7

< IR 0P 3o

X[0,+00) *3. &, X) HL% 12
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By Lemma 5.4 sup; >, ||R;;w (W) Pe(@) || r2s 12— S (A) 712, and so
Su§” R[-;w (A)Pc(w) || B(L%’S sz*S) ”g ”LZJL% g C”g”LZvSLtZ .
)\.E A X X X
The above inequalities yields Lemma 3.3. O

Proof of Lemma 3.4. Let (g, r) be admissible and let T be an operator defined by

Tg(r) = / dse o P (w)g(s).
R

Using Lemmas 3.2 and 3.3 we get f := [, dse™Ho P.(w)g(s) € L2(R) and that there exists a C > 0 such that

for every g € S(R x R2). Since q > 2, it follows from Lemma 3.1 in [28] (see also [2]) and (1) that

< 2,5«
L?Lf ~ ”g”L,zLXS

/dse_"(t_”H‘”Pc(w)g(S)

s<t

This yields Lemma 3.4. O

To prove Lemma 8.1 observe that it is not restrictive to prove
+
| R, O | 2, 00p;17) < CIF N2 8.1)

Following the argument in [22, Section 4] we need the following:

Lemma 8.2. There exists a positive constant C such that for s > 1

| Ryt 12512, 00) < CIF N2

Proof. E+Rf,0 (X)) f = Ry (A — ) E4 f and by Lemma 4.2 [22] we get

+ +
| Rg ()‘)E+fHL}*SL§(0,oo) < Csup|[Ry W E+f| 12(0.00) S CIE+fllz2- (1
X
We have E_Rflo(k)f =—Ro(—0 —VE_f=—=F£H=L R (. —w)E_f.Soby (1)
E_RE W)l 2y <|l—2= REMNE_F]|, 2
D =1 PN L (O] R

<Cil| R WE-f| 2~ <CICIE-fl 2. D

L2(0,00)

Proof of inequality (8.1). We consider the operator 7, = —A + g (x) introduced in Section 5 and H, = 03(h, + ).
We claim that

| R, O F 1 12 09,2275y < CUL N2 ()

Indeed E+R;E1q W f= R,fq (A—w)E,4 f and ||Rhiq WELfll,2
hand

E_R}, () f ==Ri, (=% = @)E_ f = —Ro(= = ©)E_f + Ro(~1 — @)q Ry, (~ — ) E_F.

0.00).L27%) < C fll;2 by [22, Lemma 4.1]. On the other

The bound for the first term comes from Lemma 8.2 and
| Ro(=2 = @)q Ruy (=2 = @) E_f | 252 S [ Ro(=2 = @)q Ry (=4 = ) E_f | oo 2
S g Ry (=3 = @ E_f| o p2 < CIE-flILz.
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Armed with inequality (1) we consider the identity
-1
Ry, 00 = (1+ Ry, (Ve — 030)) Ry ()
-1
= Ry, () = Ry, () (Voo — 039) (1 + Ry (W) (Voo = 039)) ™ Ry, (3. (8:2)
By (1) it is enough to bound the last term in the last sum. This is bounded by
—1
| R, )V = 030) (14 Ryg, () (Voo = 030)) ™ R OO f | 122
-1
<[ Ry, W Voo = 030) (1+ Rig 00V = 030)) ™ | o g2ms 205 | Ry, 0 f | 225
+ + -1
SR, O sewzs. iz [+ Ry, ) Vo = 030)) |

SUFl2

by (1) and by the fact that the above L3°(w, 00) norms are bounded by Lemmas 5.1 and 5.4. O

LiOB(L,%’is,L'%’ij) ” f ||L%

9. Proof of Lemma 4.7
The proof is standard and analogous to [9, Lemma 5.8]. Recall:

Lemma 4.7. We have for ¢(x) and ¢(t, x) Schwarz functions, for t € [0, 0o) and for fixed s > 1 sufficiently large

[ Ry, (D) Pe(@)g] 2,25 < C(A @) o) ] 2.
t

/equ(r*f)R;w(A)Pc(w)t/)(f)dr
0

<CA e, 0] 22
L2127

with C (A, o) upper semicontinuous in w and in A > .

Proof. We consider v <a/ <a << A < b < 00 and the partition of unity 1 = g + g with g € C3°(R) with g =1 in
[a,b] and g =01in [a/2,2b]. By Lemma 3.2 we get
—iHpt p+ = + 5
[e™" Ry, (M) Pe(@)3(Ho)¢ | 2,2 < C@)|[ Ry, (4) Pe@)g(Ho)o 2
< Cl@)co(a, b, o)|¢ll 2.
Similarly by the proof of Lemma 3.3, for any s > 1

t

/ e*i(f*S)Hw R;w (A)Pé(a))g'(Hw)‘P(Sv ) ds
0

L2752
< R, CIRE, (M3 (Ho) Pe(@) 310,400 %3 § 00 1) 252
|87, DR, (D H) Pe@)] 25 2

C(s,a,b, )¢l 25,2

< R10.400) #2 GO 1) | 2] 2
<

by (A — AR (MR} (A) =Rf; (\) — Rf; (A), Lemma 5.4 and |3 — A| > a A b. We consider now

()Y g(Hp)e Mol Ry (A +i€)Pe(Hy)(y) ™7
+o0
=e M (x)TY / e Ho=A=1OS o (| VP.(H,,) ds(y) 7. 9.10)
t

We claim the following:
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Lemma 9.1. There are functions u(x, &) defined for x € R* and for || € [a/2, 2b] with values in C? such that for any
x € Cg°(a/2,2b) we have (for "uos f the product row column and 'u the transpose of a column vector)

X (Hy) f(x) =(27r)_2/u(x,E)tﬁ(yvé)aaf(y)x(lélz+w) dg dy. 9.2)
R4

There are constants cqp such that
|a§§a§u(x, 6)| < capx)?! forall x e R? and |€| € [a/2, 2b]. (9.3)
Let us assume Lemma 9.1. Then we can write the kernel of operator (9.1) as
(X) 77 g(Hy)e ™ Ry, (A +i€)(y) "
= (constant) {x) / u(x, §)e N OE TN (£2 4 )iy, £) dE(y) V. (9.4)
R3
Estimates (9.3) and elementary integration by parts yields
9.4)| < clx) 7 (y) 7757 e and 50| (9. 1o+ | < cfx) T (y) TV ()L
For y > r + 1 and r > 3, we obtain
™" Ry, (Mg (Hw) Pe(HW)@ | 120,00y 12y < Cle @) | 2

Similarly

t
[ R () Pe@ s ds
0

<

2 <Cligl 220
L2y

t
[ =97t ds] 2
0

L

We need now to prove Lemma 9.1. 0O
10. Proof of Lemma 9.1

First of all we explain how to define the u(x, £). We set V,, = B*A with A(x) and B*(x) rapidly decreasing and
continuous. Then we have
Lemma 10.1. For any A > w and any & € R* with » = w + |&|%, in L*(R?) the system
(1+ AR}, (1) BY)i = Ae 67, (1)

admits exactly one solution ti(x, &) € H? such that for any [a, b] C (1, 00) \ 0, (H) there is a fixed C < o0 such that
for any X € [a, b] and any & as above we have

lac, & . <cC. )

Proof. AR} (3.)B* is compact and ker(1 + AR}, (A)B*) = {0} for A > w by [11], since in that case A ¢ o, (H,). By
Fredholm alternative we get existence and uniqueness of i (x, ). Regularity theory and continuity of the coefficients
of system (1) with respect to £ yield (2). O

Let now ‘e; = (1,0) and Go(|x|, k) = diag(%HO*'(k|x|), —%Ko(vk2 + 2wlx|)) for k > 0. We have Gy(r, k) =

iN2 ke -3 _ 2k ikr -3
Wi e1 +0(r~2) and 0,Go(r, k) = k4me e1 +0(r—2). We set

u(x, &) =e""Yer +v(x,&) =e ' Fer — Ry (W BYi(, §).
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Then (H, — Mu(x,§) = B*(Ae™"%e; —ii — AR (\)B*ii) = 0. Notice B*ii = V,u 50 v(x,§) = e " Fw(x, §)

where w(x, &) is the unique solution in Lz_s, s > 1, of the integral equation
wx, €)= —F(x,&) — / Go(lx =zl 1])e' 9% Vo (2w (z, §) dz, (1)
R2

with
F.6) = [ Gollx =21, ) Va0 e dz
R2
It is elementary to show that, for |£] € [a, b], then |9¢ 85 F(x,8)| <cup (x)!1=1/2 By standard arguments and Lem-

mas 5.3 and 5.4 we have |a;gfa§w(x, £)| < Cap(x)Pl. This yields (9.3). To get (9.2) we follow the presentation in
Chapter 9 [32]. We denote by Rfi[m (x, y, k) the kernel of Rliim (k% + w). We set

Rf (x,y,k) = Go(lx — yl, k) +h(x,y, k)

with h(-, y, k) = —R;;O (k%> + w)V,Go(] - —yl, k). Let (r, ) be polar coordinates on the sphere S!, then we claim:

Lemma 10.2. Let k > 0. For r — 00 we have uniform convergence on compact sets of, with u - (1, 0) the raw column
product between column u and raw (1, 0),

i2

R}, (x.rX.k)= 4meikru(x, kX)-(1,0)+0(r?), (1)
;—rR;}w(x, rok)=-7 fkrkeikru(x, kX) - (1,0)+0(r?), )
R} (rX.y.k) = 4\1'/%4’” [H "u(y, kX)os +0(r ), (3)
aa—rR};w(rE, v, k) = —4%@”” [(1)} "u(y, kX)os +0(r7?). 4)

For Ry (x,y, k) the asymptotic expansion follows from Ry (x,y, k)= R—;'Iw(x, v, k).

We write R;;w(x, rX,k)=Go(lx —rX|, k) + h(x,r X, k) with

h(x,rX,k)=—R} (k* + ) VoGo(| - —r Z|. k)

=_R+ k2+60 |:V X (lielkrg—lkz‘-x dia 1’0 +0 r—3/2 )i|
We have
iv2 oo
Vo, ()Go(lx —r 2|, k) — Vo (x) ———e'* e~k Z % diao(1, 0 =0(r=3/?).
‘ »@Gol 1K) = Vo) ghO . (r=)

From v(x,§) = — R, (K* + )V (x)e *E%e; with ey = (1,0) we get
vix, &) er = =R, (K + @) Vo, (x)e > diag(1, 0).

Then we conclude for any s > 1

iv2

v(x,kX) e
VT

—o(?)

Hh(x,rE,k) —
LZ,—S
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and
i\ 2
HR,T, (x,rX,k)— iv2 ux,kx) e =0(r3/2).
@ 4/imkr 12—
Then point wise h(x,r X,k +i0) — 4\"/%1)(& kX)e = O(r*3/2) and
iN2
RY (x,rX., k) — ulx, kXY e =0(r—3/?).
(0o r B = e kE) e = O( )

This yields (1) in Lemma 10.2. (2) can be obtained with a similar argument. (3) and (4) follow from (1) and (2) by
03R,i1w(x, y,k)o3z = Rio,;(x, v, k) = ’sz(y, x, k).

By Lemma 3.5 for v € L>(H,,) N C{° and for ¢ € C;°(R) supported in (w, 00) we have

2 o0
@(Hy)v(x) = ;fkdk/go(kz—i—w)SR;w(x,y,k)v(y)dy.
0 R2

We prove (here u'u is a raw column product between column u and raw ’ir)

1
SR (x, k) = S—fu(x,kE)’ﬁ(y,kZ’)ogdZ, 3)
w 7-[
Sl

where d ¥ is the standard measure on S!. By the Green theorem for Sg = {z € R?: |z] = R}, |x| < R, |y| < R and
r=1z|.
By Green theorem for Sg ={z € R%: |z| =R}, |x| < R and |y| < R,

1
SR (b =5 [ 16z 0 de),
Sk
I(x,y,2,k):= R;;w(x, 2, k)03 Ry (2, y, k) — (8|Z|R;L1w(x, Z k))a_:,R,}(ﬁ(z, v, k).

By Lemma 10.2

1
SR;w(x,y,k)— g/u(x,kz)’ﬁ(y,kz)awrz‘
Sl
R 1 ‘- _3
== | I(x,y,rX2,k) d¥ — — [ u(x, kX)) u(y, kX)o3d X gO(R 2).
2i F=R 8w

st st

Therefore, taking R — 400, we arrive at (3). Moreover, we obtain

o(Hu)v(x) = ; / kdk / ok + @)3G(x, y. Dv(y) dy
0 R2

= #/kdk//u(x,kZ)tﬁ(y,kE)agv(y)w(kz+w)d2dy
0 R2 §!
— om / u(x. )iy, )osv(e(I& 1 + o) dé dy,
R4

that is the integral representation (9.2). This completes the proof of Lemma9.1. 0O
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