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Abstract

We discuss an Aubry–Mather-type theory for solutions of non-linear, possibly degenerate, elliptic PDEs and other pseudo-
differential operators.

We show that for certain PDEs and Ψ DEs with periodic coefficients and a variational structure it is possible to find quasi-periodic
solutions for all frequencies. This results also hold under a generalized definition of periodicity that makes it possible to consider
problems in covers of several manifolds, including manifolds with non-commutative fundamental groups.

An abstract result will be provided, from which an Aubry–Mather-type theory for concrete models will be derived.
©
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1. Introduction

The goal of this paper is to develop the beginning of an Aubry–Mather theory for some partial differential equations
and pseudo-differential equations.

Roughly speaking, we establish that if the variational problem is:

• Symmetric under integer translations.
• Invariant under addition of integer constants to the unknown function.
• The gradient flow of the functional (in the case of PDEs, it will often be a semi-flow, but we will also use the more

common name) is well defined, moderately regular and, more crucially, satisfies a weak comparison principle.
• The Euler–Lagrange equations are elliptic (in a rather weak sense).

Then, there are quasi-periodic equilibrium solutions for all frequencies.

* Corresponding author.
E-mail addresses: llave@math.utexas.edu (R. de la Llave), enrico@math.utexas.edu (E. Valdinoci).

2008 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
0294-1449/$ – see front matter ©
doi:10.1016/j.anihpc.2008.11.002

2008 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.



1310 R. de la Llave, E. Valdinoci / Ann. I. H. Poincaré – AN 26 (2009) 1309–1344
We also show that the invariance under integer translations can be generalized to invariance under the action of a
suitable group, provided that we modify accordingly the definition of quasi-periodicity. In particular, we can answer
a question of [58] and develop the theory of variational integrals in some manifolds whose fundamental group is
non-Abelian.

Moreover, the quasi-periodic solutions we construct satisfy an extra geometric property, often called “Birkhoff
property” even if it seems that they were emphasized and used first in [55]. This implies that, when reduced to the
fundamental domain, the solutions give rise to a lamination.

In the Euclidean and non-degenerate settings, results similar to those proved in this paper were proved first in [58]
(see also [61] and [62]) which brought to prominence the relation between Aubry–Mather theory and the variational
formulation of elliptic PDEs. These results were extended in [5] and several papers have been recently appeared, which
developed several features of Aubry–Mather-type theory for PDEs: see, in particular, [15,84,69–72,83,16,9,66,10,27]
and [64].

In the proof presented here we make an important use of the gradient semi-flow of our functional. The idea of using
the gradient semi-flow and its comparison properties for Aubry–Mather theory seems to have originated in [2] and
was used to prove the classical result of Aubry–Mather in [40]. Extensions of this method to difference equations on
lattices and on graphs were considered in [44,17,28,26,25]. The geometric framework of this paper is also similar to
the one in [17]. The latter extensions made it clear that the locality of the interaction, which was assumed in several
proofs of similar results, was only mildly important. This served as a motivation for including pseudo-differential
operators in our formulation. The gradient semi-flow has also been used to prove other results of Aubry–Mather
theory. In [78], for instance, there is a proof of the shadowing lemma in the context of dynamical systems.

The plan of this paper is as follows: In Section 2, we give a proof, using our method, of a result already proved
by [58]. In Section 3, we formulate an abstract theorem whose proof follows exactly the proof of the particular case
in Section 2.

Section 4 develops some analytical techniques related with the regularity of the gradient flow and with the com-
parison principle.

In Section 5, we show that our abstract theorem applies to several examples which are not covered by [58] since
the manifold does not have an Abelian fundamental group and the variational principles are not local or degenerate.

In particular, Section 5.1 deals with degenerate operators of p-Laplacian type, while equations driven by the frac-
tional Laplacian are considered in Section 5.2.

In Section 5.3, we show how the results can be extended to cover not only periodic variational problems in Rd

but also problems in hyperbolic space and in other symmetric spaces. The main new ingredient for these geometric
generalizations is an extension (taken from [17]) of the notion of quasi-periodic functions in Rd to situations where
we have a space and an action of a well behaved (residually finite) discrete group. When the space is Rd and the group
is Zd , we recover the classical notion of quasi-periodicity. As a matter of fact, in the terminology of [74], what we
call here “quasi-periodic” could also be called “almost automorphic”.

It should be clear from the preceding remarks, and even more so from the text, that this paper is somewhat open-
ended. Aubry–Mather theory is very rich and it not only includes the existence result of quasi-periodic solutions, but
also the existence of several quasi-periodic solutions of the same frequency, the non-existence of smooth solutions for
large perturbations, the existence of connecting orbits, etc. To our knowledge, there are no complete generalizations
to PDEs and ψDEs of these features. See, however, [5,15,69,83,16,9,28,27] and [65] for related results.

We also note that, besides the generalization presented here, there are several other possibilities in which the
interaction between Aubry–Mather theory and partial differential equations can be carried out. For example [34,33]
and [15] contain other points of view.

The gradient semi-flow also opens further possibilities, such as the construction of multiple solutions and the
analysis of minimal versus non-minimal solutions (see [9] and [27]).

We remark that, since the main results of this paper are of geometric type, we did not try to minimize regularity
assumptions. We also note that there are different variational principles which lead to the same equations. Notably,
by adding an exact differential, one does not change the critical points, but one changes the minimizers (which, for
instance, is a crucial observation in the construction of connecting orbits in [56] and [57]).
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2. A first illustrative result

In this section we will give the proof of a result which will be very illustrative of the method we present here.
The result itself is a particular case of results which have already been obtained in [58]. Later, we will show how
the method presented here can be given an abstract formulation that follows, roughly, the same steps. The abstract
theorem will have other instances which we discuss in subsequent sections.

A crucial ingredient in our treatment is the following definition, inspired by one that appeared in the classical
Aubry–Mather theory in dynamical systems and that has been also used in [58,5,15,83] and [27].

Definition 2.1. We say that a function u : Rd �→ R has the Birkhoff property (or that it is Birkhoff) when:
For a fixed e ∈ Zd , � ∈ Z

u(x + e) − (
u(x) + �

)
(1)

does not change sign with x, i.e., when, for all values of x, the expression in (1) above is either � 0 or � 0 with the
choice depending on e, � but not on x.

Equivalently, if we consider the graph of the solution folded to the fundamental domain of Td+1, we obtain the set:

C = {(
x,u(x + e) mod 1

)
, x ∈ Td , e ∈ Zd

}
which consists of a countable set of manifolds that do not cross.

The main result of this section is the following:

Theorem 2.2. Let V : Rd × R → R be a C2 function which satisfies:

V (x + e,u) = V (x,u) ∀e ∈ Zd ,

V (x,u + �) = V (x,u) ∀� ∈ Z.

Then, for all ω ∈ Rd , the problem

�u − ∂2V (x,u) = 0 (2)

has a solution which satisfies the Birkhoff property and such that

u(x) − ω · x ∈ L∞(
Rd

)
. (3)

We will refer to ω in (3) as the frequency of the solution. Clearly, a function can only satisfy (3) for one frequency.

Remark 2.3. The reason why the result in Theorem 2.2 can be considered an analogue of the classical Aubry–Mather
theory is discussed in [58] and [59]. Suffice it to note here that if we take n = 1, we are considering the motion in
a time periodic potential, the time one map of this flow will be a twist mapping. Indeed, in [59] it is shown that
the classical Aubry–Mather theorem on the existence of quasi-periodic invariant measures for twist mappings can be
recovered from the consideration of continuous variational principles as above.

Remark 2.4. Notice that the above problem (2) is the Euler–Lagrange equation for the (formal) functional

S(u) =
∫
Rd

1

2

∣∣∇u(x)
∣∣2 + V

(
x,u(x)

)
dx. (4)

Of course, the variational functional above does not make sense and one has to interpret it as usual in the calculus
of variations by considering variations with compact support and extending the integral only to compact sets which
include the support of the variation (see, e.g., [15]). The kind of minimizers obtained by comparing with all the
compactly supported variations are usually referred to with the name of “local” (or “class A”) minimizers. In this
paper, we will be concerned mainly with solutions of the PDE associated to (4) (that is, with critical points of (4))
and not with minimizers. Minimizers of related variational problems have been considered in [15,69], and [83]. In
general, rearrangement methods, such as the ones in [15], are needed both to construct minimizers and to select the
ones with further geometric properties.
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Remark 2.5. Note that in the second formulation of the Birkhoff property in Definition 2.1, the (closure of the) set C
is a lamination, since it consists of leaves which do not cross. In fact, the strong maximum principle implies that they
do not touch.

As it is shown in examples in [4], one can have that C is not dense in Td+1 even if the frequency is irrational. In
classical Aubry–Mather theory, this is analogous to the well-known fact that one can have Aubry–Mather sets with
irrational rotation number which are not invariant circles but Cantor sets.

If ω is Diophantine and V is sufficiently small in a sufficiently smooth norm, [60,46] and [47] used KAM theory
to show that indeed C is dense in Td+1 and that, therefore, it can be extended uniquely to a foliation.

Remark 2.6. Note that the fact that (2) has solutions that grow only linearly is somewhat surprising since by comparing
with the explicit solutions of �u + a = 0, a 	= 0, one would expect that the growth is quadratic. This shows that the
solutions u are rather equidistributed, so that the effective value of the term ∂2V (x,u) is indeed zero. The same
example shows that unless one uses the variational structure and the periodicity of V , there is no hope to obtain a
similar result for general elliptic PDEs.

We also mention that, up to a space scaling, the kind of problems studied in this paper may be related to homoge-
nization procedures in periodic media (see, e.g., [13]).

Remark 2.7. Related problems in a non-variational setting have been studied in [8].

2.1. Proof of Theorem 2.2

We will prove the result first for ω ∈ 1
N

Zd and show that the resulting uω satisfy some uniform a priori estimates.
Then, given ωn ∈ Qd with ωn → ω∗ ∈ Rd , by possibly passing to a subsequence, we can obtain that uωn → uω∗

which
solves Eq. (2) and satisfies condition (3).

Definition 2.8. We denote by

Bω = {
u

∣∣ u is Birkhoff, u(x) − ω · x ∈ L∞(
Rd

)}
.

We will consider this set as a subset of the affine space ω · x + L∞(Rd).

We note that Bω can also be characterized as the set of Birkhoff functions for which the choices of sign in (1) are
the same as in ω · x. That is:

u(x + e) − (
u(x) + �

)
� 0 if ω · e − � � 0,

u(x + e) − (
u(x) + �

)
� 0 if ω · e − � � 0, (5)

for all e ∈ Zd and � ∈ Z. We also observe that the set Bω is closed under several natural topologies. Later, we will use
that it is closed under L2 convergence in all the cells [0,N ]d + k with N ∈ N, k ∈ NZd .

Notice that Bω is not empty since u(x) = ω · x belongs to it. Also, if ω ∈ 1
N

Zd and u ∈ Bω, by taking � = Nω · e
in (5), we see that

u(x + Ne) = u(x) + Nω · e ∀e ∈ Zd . (6)

We will refer to locally bounded functions satisfying (6) as ω-periodic functions and denote the spaces of such func-
tions as Pω. It follows from (6) that if u ∈ Pω, then u(x) = ω · x + û(x) with û(x) NZd -periodic.

We will consider the functional

SN(u) =
∫

[0,N]d

1

2
|∇u|2 + V

(
x,u(x)

)
dx (7)

defined on functions

u ∈ Pω ∩ H 1([0,N ]d) ≡ X.
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The functional in (7) may be viewed as a regularization of the one in (4), since it avoids complications due to un-
bounded domains.

For the moment, we will proceed heuristically, to derive the gradient semi-flow. We will use the gradient semi-flow
to construct our solutions and to establish properties about them.

It can be seen very easily that, on a H 1 dense subset of u and η,

d

dε
SN(u + εη)|ε=0 =

∫ [−�u(x) + ∂2V
(
x,u(x)

)]
η(x) dx

= 〈−�u + ∂2V (·, u), η
〉
L2 .

Hence, the gradient of SN – with respect to the L2 metric – is

∇SN(u) = −�u + ∂2V (·, u). (8)

Inspired by the previous calculation of the gradient of the functional SN , we consider the gradient semi-flow

d

dt
u = −∇SN(u),

which according to the steepest descent method will converge to a critical point. In the light of our calculation, the
steepest descent equation reduces to:

∂u

∂t
= �u − ∂2V (·, u). (9)

We will collect a few properties of Eq. (9) on Pω and Bω, in order to construct a solution of (2) and (3) satisfying
some additional regularity properties.

The following result is well known. For example, it follows from Propositions 4.1 and 4.2 in [81, 15.4, p. 292 ff].
We will review the proof in Section 3. We will not attempt to optimize regularity at this stage, since for the final result,
we can recover sharp regularity results by an approximation argument based on elliptic theory (as in Remark 2.18
below).

Lemma 2.9. Assume that V ∈ Ck+3, with k � 2. Let u0 be such that u0(x) − ω · x ∈ Wk,p(NTd), with 1 � p � ∞.
Then, Eq. (9) with the initial conditions u(0, x) = u0(x) admits a unique solution u(x, t) (or, for short, u(t)), which
satisfies

u(x, ·) − ω · x ∈ C0([0, T ),Wk,p
(
NTd

)) ∀T > 0,

u(x, ·) − ω · x ∈ C1([0, T ),Wk−2,p
(
NTd

)) ∀T > 0.

Moreover, if u0 ∈ Pω, then u(t) ∈ Pω for all times t � 0.

The result in Lemma 2.9 here above states that u(t) is a continuous curve in Wk,p , that we can compute its
derivatives in Wk−2,p and that they have the values that make (9) hold.

As a consequence of the differentiability properties established in Lemma 2.9, we have:

Lemma 2.10. Consider the setting of Lemma 2.9. Assume that k � 2 and p � 2. Then, SN(u(t)) is a Lipschitz function
of t and we have:

d

dt
SN

(
u(t)

) = −
∫

NTd

(−�u + ∂2V (·, u)
)2 � 0. (10)

Proof. Denote

K(u) = 1

2

∫
NTd

|∇u|2.

Clearly, it is a differentiable function when considered as a function in Wk,p and, if η ∈ C∞(NTd),
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DK(u)η =
∫

NTd

∇u∇η = −
∫

NTd

�uη.

Let also

Γ (u) =
∫

NTd

V (·, u).

We have that

V
(
x,u(x) + η(x)

) = V
(
x,u(x)

) + ∂2V
(
x,u(x)

)
η(x) + R(x),

where∣∣R(x)
∣∣ � 1

2
‖V ‖C2

∣∣η(x)
∣∣2

.

Since ∫
NTd

∣∣R(x)
∣∣ � C‖η‖2

L2,

it follows that Γ is differentiable as a function in L2 and

DΓ (u)η =
∫

NTd

∂2V (·, u)η,

for any η ∈ C∞(NTd).
Accordingly, we obtain that SN = K + Γ is differentiable in Wk,p and that

DSN(u)η =
∫

NTd

(−�u + ∂2V (·, u)
)
η, (11)

for any η ∈ L2(NTd).
If we take into account that the solutions of (9) are in C1([0, T ],Wk−2,p), thanks to Lemma 2.9, and we exploit

formula (11) for the derivative with η = ∂tu, we obtain (10). �
Lemma 2.11. Let ũ(t) be any solution of (9) produced in Lemma 2.9 and let

u(t) = ũ(t) −
[

1

|NTd |
∫

NTd

ũ(t) dx

]
,

where [·] here above denotes the integer part.
Then, we can find a sequence tn, and u∗

ω ∈ (ω · x + L2(NTd)) ∩ Pω such that

u(tn) → u∗
ω in L2

and u∗
ω solves (2).

Proof. From the fact that SN(u(t)) is differentiable in t and that

d

dt
SN � 0,

we conclude that SN(u(t)) remains uniformly bounded for all t � 0. Since V is bounded, we gather that ‖∇u(t)‖L2

remains uniformly bounded. By Poincaré Inequality, we conclude that u(t) is contained in an L2 compact set.
Since SN is clearly bounded from below, we can find a sequence of times tn such that

d

dt
SN

(
u(t)

)∣∣∣∣ → 0.

t=tn
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Since we have shown that u(t) lies in an L2 compact set, by passing to a subsequence, if necessary, we can assume
u(tn) → u∗

ω in L2.
Since ∂2V is Lipschitz, we conclude that∥∥∂2V

(·, u(tn)
) − ∂2V

(·, u∗
ω

)∥∥
L2 → 0.

Since the Laplacian is an L2 closed operator, we obtain:

�u∗
ω − ∂2V

(·, u∗
ω

) = 0,

as desired. �
Note that Lemma 2.11 establishes the existence result in Theorem 2.2 (and, precisely, formulas (2) and (3)) when

ω ∈ 1
N

Zd for any N ∈ N. We remark, in particular, that (3) is fulfilled due to the fact that u(t) ∈ Pω, by Lemma 2.9.
Now, we want to obtain enough control on the solutions produced in such a way that when ωi → ω∗, then u∗

ωi
→ u∗

ω

(perhaps after passing to a subsequence) and that the resulting u∗
ω also solves (2) and the satisfies the growth condi-

tion (3). Such passage to the limit will be established by showing that the solutions satisfy some form of equicontinuity
and equiboundedness. The equicontinuity will be a very easy consequence of elliptic estimates (see Lemma 2.17 here
below). The equiboundedness will be a consequence of the Birkhoff property as claimed in Theorem 2.2.

Hence, we will turn our attention to proving that the solutions produced by the argument above are Birkhoff (see
Lemma 2.16 below). Since the Birkhoff property depends on comparing a function with its translates, it is natural to
investigate how these properties interact with the flow in Lemma 2.9.

Also, we will find it convenient to consider the evolution constructed in Lemma 2.9 to act on functions defined on
the whole of Rd . Given that we are considering only solutions in Pω, we identify them with their periodic extension
to Rd .

Following is the very well-known comparison principle.

Lemma 2.12. In the conditions of Lemma 2.9, if we have u(0) � v(0), then u(t) � v(t) ∀t � 0.

Proof. A proof of this result can be found in almost any textbook in PDEs. See, for example, [85]. See also [27] for
further details. We will provide here a different proof of Lemma 2.12, which admits several generalizations and which
is based on the following result:

Proposition 2.13. Denote by Φt the semi-flow of ∂u
∂t

= �u and by ψt the semi-flow of ∂u
∂t

= −∂2V (·, u). Let u� be a
solution of (9). Then,

u�(t) = lim
n→∞(ψt/nΦt/n)

nu�(0). (12)

Formula (12) is a non-linear generalization of Trotter product formula for semigroups (which in turn generalizes
a formula of Lie for finite dimensional Lie groups). A proof of this formula with precise hypothesis, which are
verified in our case, taking the limit in (12) in the L∞ sense, can be found in [81, Proposition 5.1, p. 310] (see also
Propositions 5.2 and 5.3 there), which we reproduce as Proposition 4.5 later in this paper for the convenience of the
reader. The original proof of formula (12) is in [19].

As it is well known, Φt and Ψt satisfies comparison principles.

Proposition 2.14. If u(0) � v(0) and u(0) 	≡ v(0), then Φtu(0) > Φtv(0) for all t > 0.
If u(0) > v(0), then ψtu(0) > ψtv(0).

Proof. The proof of the comparison principle for the heat equation follows easily from the fact that the evolution is
given by convolution with the heat kernel, which is positive. For Ψt , note that when we fix x, the equation satisfied
by u(t, x) is an ODE solutions of ODEs cannot cross, so that if u(t, x) > v(t, x) for t = 0, it has to remain bigger for
later t . �
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Combining Propositions 2.13 and 2.14 (and taking care of some trivial cases such as t = 0, u(0) = v(0)), we
complete the proof of Lemma 2.12. �

As an important corollary of Lemma 2.12, we obtain the following:

Corollary 2.15. Let the conditions of Lemma 2.9 hold. Let u(0) ∈ Bω. Then, u(t) ∈ Bω.

Proof. The idea of the proof goes as follows. The comparison principle in Proposition 2.14 tells us that the semi-flow
preserves the order. Also, by the uniqueness result in Lemma 2.9, the semi-flow of a translate is the translate of the
semi-flow.

Let us now give more details on this proof, in order to introduce some notation that emphasizes the essential
geometric properties, which will be generalized in the sequel. We introduce the operators

(Cku)(x) = u(x + k) k ∈ Zd ,

(R�u)(x) = u(x) + � � ∈ Z

and we denote the evolution in Lemma 2.9 by Ψt . Then,

Ψt Ck = CkΨt ,

Ψt R� = R�Ψt (13)

by the invariance of (9) and the uniqueness in Lemma 2.9.
Note also that the Birkhoff condition can be expressed concisely by saying that for all k ∈ Zd and � ∈ Z we have

Cku ≺ R�u, (14)

where ≺ is either � or �.
By Lemma 2.12, if (14) holds, we have that

Ψt Cku ≺ Ψt R�u

and, by (13), that

CkΨtu ≺ R�Ψtu.

That is, Ψtu is also Birkhoff.
Moreover, using (5), we obtain that Ψtu ∈ Bω. �

Lemma 2.16. The solution u∗
ω produced in Lemma 2.11 can be assumed to be in Bω.

Proof. Consider the semi-flow starting with the initial conditions u(x) = ω · x ∈ Bω. Then, by the previous corollary
u(t) ∈ Bω. In the proof of Lemma 2.11 we constructed a subsequence u(tn) which converges to u∗

ω in L2(NTd).
When considering functions defined on Rd , this translates into u(tn) → u∗

ω in L2([0,N ]d + k) for all k ∈ NZd .
The set Bω is clearly closed in this topology. �

Hence, in virtue of Lemma 2.16, we have established all the claims in Theorem 2.2 for ω rational.
Now we start to consider the passage to the limit to irrational frequencies. We will find it important that the

functions thus produced satisfy regularity estimates which are independent of the frequency considered.
The following result is a consequence of the standard Schauder-type elliptic estimates (see, e.g., [80, Theorem 11.1,

p. 379] or [39, Theorem 6.2, p. 90]):

Lemma 2.17. Assume that u∗
ω solves (2). Then∥∥Dr+2u∗

ω

∥∥
L∞(NTd )

� K‖V ‖Cr+1+ε(NTd ),

where K is independent of N .
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We call attention to the fact that the elliptic estimates of the previous lemma are local. They are independent of N

(that is, the period of the fundamental domain), because

‖V ‖C�(NTd ) = ‖V ‖C�(Td ),

due to the periodicity of V . Let {ωn} ⊂ Qd . Denote by uωn the solutions of (2) produced by applying the argument
above.

We note that, since u + � solves (2) if so does u, we can assume that

uωn(0) ∈ [0,1]. (15)

Given any k ∈ Zd , since uωn ∈ Bωn we conclude that uωn(x + k) − uωn(x) − � has the same sign than ωn · k − �,
independently of x.

Given (15), we conclude that uωn(k) has to lie in an interval with integer endpoints and of length 2 which depends
only on ωn.

Since |uωn(k) − ωn · k| � 2, for all k ∈ Zd , taking into account that for all x ∈ Rd we can find k ∈ Zd such that
|k − x| � √

d , applying Lemma 2.17 for r = 0, we obtain that:∣∣uωn(x) − ωn · x∣∣ �
(
K + |ωn|

)√
d + 2. (16)

In particular, if ωn → ω, the sequence uωn is equibounded in C0(BR) for any R > 0. Since by Lemma 2.17 it is
also equibounded in C2(BR), we obtain that, perhaps passing to a subsequence,

uωn
C0

loc−−→ u∗. (17)

Since the Laplacian is a closed operator under C0
loc limits, we obtain that the limit u∗ also satisfies (2). Since the set

of Birkhoff functions is closed under pointwise limits, we obtain that u∗ is also Birkhoff. It also follows that u∗ ∈ Bω,
ending the proof of Theorem 2.2. �
Remark 2.18. Note that the approximation procedure here above is only carried out on the solutions of (2) which are
rather regular. We do not need to control the approximations of the heat flow.

The same approximation argument works to show that if we have V (n) C1−−→ V we can obtain that the solutions of
(2) for V (n) have a limit that is a solution for V .

This allows us to obtain the theorem for V ∈ C1 even if the estimates for the heat flow require that V is more
regular.

3. An abstract formulation of Aubry–Mather theorem for PDEs and Ψ DEs

In this section, we will examine the proof of Theorem 2.2 presented above and find a general framework that allows
to give an abstract version of that result. As a matter of fact, this section will be developed at the level of generality of
operators in Banach spaces and we will not mention specifically PDEs and Ψ DEs.

We will also develop an abstraction of the notion of quasi-periodicity that can be applied to variational problems
in other manifolds.

Later we will see that, besides the main motivating example of Theorem 2.2, there are other examples of interest
that can be proved following the same strategy.

3.1. Generalization of the notions of periodicity and quasi-periodicity

Our first task will be to generalize the notion of periodicity. We will describe a set up that is well suited for Aubry–
Mather theory and which was introduced in [17]. We will show that this allows us to develop an analogous theory
to the one developed so far for Td and to establish existence of laminations of solutions for other manifolds whose
fundamental group contains a residually finite subgroup.

We see that the main property of Rd and Zd we used in the proof of Theorem 2.2 are the following:

(i) Zd has subgroups GN ≡ NZd of finite index. These subgroups satisfy:
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(i.1) Rd/GN is compact.
(i.2) As N → ∞, Rd/GN → Rd . This convergence happens in the sense that any compact set of Rd is contained

in Rd/GN for sufficiently large N .
(ii) There are functions φω : Rd → R (in the previous example, φω(x) = ω · x) with the property that, given any

k ∈ Zd , we have

φω(x + k) = φω(x) + ω · k.

Note that the constant term ω · k considered as a function of k is a character of the group Zd , that is, ω · (k + k′) =
ω · k + ω · k′.

Note also that the operators Ck can be considered as an action on the space of functions, induced, of course, by an
action on the lattice.

There are several groups – including the fundamental groups of hyperbolic manifolds – for which the essential
parts of this set up still hold.

We recall the following definition (which is well known from group theory: see, e.g., [20]):

Definition 3.1. We say that a group is residually finite when, given any element different from the identity, we can
find a subgroup of finite index which does not contain it.

We say that a function ϕ from a group G to the reals is a cocycle when

ϕ(gg′) = ϕ(g) + ϕ(g′) ∀g,g′ ∈ G.

The space of cocycles is a vector space, which we will denote by H 1(G,R).

The following result is a combination of Propositions 1 and 2 from [17]. We refer to this paper for the proof.

Proposition 3.2. Let M̃ be a manifold. Let G be a countable, finitely generated group acting on M̃ . Assume that M ,
the fundamental domain of the G action, is a compact manifold.

Then,

(i) If G is residually finite, there is a sequence Gi of groups of finite index such that:

Gi ⊃ Gi+1, M/Gi ⊂ M/Gi+1 and
⋃
i

M/Gi = M̃.

(ii) Given any cocycle ϕ, there is sequence of cocycles ϕn such that

ϕn → ϕ

for the generators and, hence, for all the elements of the group, and such that for each of the ϕn we can find a
group Gn of finite index such that ϕn takes only integer values on Gn, that is, ϕn(Gn) ⊂ Z.

Cocycles as the ones in the last statement of Proposition 3.2, that is for which there exists a finite index subgroup G̃

for which ϕ(G̃) ⊂ Z, are called rational cocycles.
When the group that we are considering acts on a manifold in such a way that the fundamental domain is compact

(e.g., when the group is the fundamental group of a compact manifold) it is natural to think of the cocycles as functions
defined in the manifold.

Indeed, take any continuous function u0 in the fundamental domain of the action and then consider the extension
ũ defined in M̃ by

u(g · x) = u0(x) + ϕ(g). (18)

This function does not need to be continuous, but we can construct a smooth function which has bounded Ck norm
and which is at a bounded C0 distance.

The usual linear functions correspond to choosing u0(x) = ω · x in the fundamental domain.
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Note also that, even if the extensions of cocycles are not unique, all the extensions of cocycles obtained in the
manner described above lead to functions that differ only in a L∞ function.

In the context of actions of groups on manifolds, we can also define the notion of Birkhoff property, by using the
following notation. Given an element g ∈ G we define Cg as the action on functions defined by

(Cgu)(x) = u(g · x) (19)

where we have denoted by g · x the action of the group on M̃ .
Similarly, we define R� for � ∈ Z by:

(R�u)(x) = u(x) + �. (20)

Then, we define the Birkhoff property in the following way:

Definition 3.3. Let M̃ be a manifold and G be a group acting on it.
We say that a function u : M̃ �→ R is Birkhoff when given any g ∈ G, � ∈ Z, we have

Cgu(x) ≺ R�u(x) ∀x ∈ M̃, (21)

where ≺ denotes either � or � and the choice of which symbol to chose depends on k, l but not on x.

The interpretation of Definition 3.3 is that if we move the graph of u by transforming the arguments according to
the action of G and the range by integer translations, then these hypersurfaces in M̃ × R do not intersect.

We remark that a cocycle can (and, in the sequel, implicitly, will) be extended to a smooth, Birkhoff function. In
particular, by assuming the existence of cocycles, we have that the set of Birkhoff functions is non-empty.

Remark 3.4. We now list some important examples in which our set up applies:
A particularly important case is

E1 When M is a compact manifold, M̃ is a cover of M , and G is a finitely generated, residually finite subgroup of
the fundamental group Π1(M) acting on M̃ by Deck transformations.

Of course, some major subcases of the above are:

E1.1 The case in which M̃ is the Abelian cover of M and G is the maximal Abelian subgroup of Π1(M).
E1.2 The case in which M̃ is the universal cover of M and G = Π1(M).

The assumption that the fundamental group is residually finite is verified in many examples, such as the torus and
the hyperbolic manifolds (see [20]).

Another interesting example is when

E2 G is a free group.

For instance, if G is the free group generated by two elements (say, a and b), we can consider the following cocycles
of G. Given g = a

e1
1 b

f1
1 . . . a

ek

k b
fk

k ∈ G, with ei, fi ∈ N, we set A(g) = e1 + · · · + ek and B(g) = f1 + · · · + fk . Then,
given α,β ∈ R, one may considers cocycles of the type

ϕα,β(g) = αA(g) + βB(g).

In the above scenario, given a manifold M , we can construct solutions of the Euler–Lagrange equations that “behave
under transformations in G as cocycles do”. Note that the choice of the group is chiefly arbitrary (though, of course,
if G does not have any cocycle our results are void). A precise result will be stated in Theorem 5.12.

For subsequent applications, we will use the cocycles of G. Roughly speaking, we will associate a solution to each
cocycle. Hence, in some sense, we will obtain “more solutions the more cocycles G has”. On the other hand, since
some solutions may be symmetries under G, the results will be “sharper” if G possesses “few” cocycles.
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Even if we will not explicitly use it later, we now show that there is close relation between Birkhoff functions and
cocycles. The following result also generalizes the classical theory of the rotation number for circle maps.

Proposition 3.5. Assume that u is Birkhoff. Then, the following limits exist:

ϕ(g) = lim
n→∞

1

n

(
u
(
gn · x) − u(x)

)
. (22)

Moreover, the limits are reached uniformly in x. The function ϕ obtained above satisfies:

ϕ(g′g) = ϕ(gg′); ϕ(Id) = 1;
If g′g = gg′, we have ϕ(gg′) = ϕ(g) + ϕ(g′). (23)

Proof. This proof is done in [17, p. 654]. We reproduce it, since we will use some of the ingredients.
By the Birkhoff property, given any g we can find l−(g) � l+(g) ∈ Z such that

Rl−(g)u � Cgu � Rl+(g)u. (24)

Moreover, we can assume that l− (resp. l+) is the largest (resp. smallest) integer for which (24) holds. In this case,

l+(g) � l−(g) + 1. (25)

Therefore, there is a point x with

Rl−(g)u(x) � Cgu(x) � Rl−(g)+1u(x).

Notice also that

l+(gg′) � l+(g) + l+(g′)

and analogously

l−(gg′) � l−(g) + l−(g′).

Therefore, by a subadditivity argument (see, e.g., Proposition 10.1 in [15]),

ϕ(g) = lim
n

l+(gn)

n
(26)

exists. By (25), we obtain that

ϕ(g) = lim
n

l−(gn)

n
. (27)

By the subadditivity of l+, we have that

ϕ(gg′) = lim
n

1

n
l+

(
(gg′)n

) = lim
n

1

n
l+

(
g(gg′)n−1g′)

� lim
n

1

n

(
l+(g) + l+

(
(gg′)n−1) + l+(g′)

)
� ϕ(g′g).

Hence,

ϕ(gg′) = ϕ(g′g).

What is more, by (24),

u(gn · x) − u(x)

n
∈

[
l−(gn)

n
,
l+(gn)

n

]
.

Consequently,
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lim
n

1

n

(
u
(
gn · x) − u(x)

) = ϕ(g)

and that the limit is reached uniformly in x, due to (26) and (27). �
Remark 3.6. A function ϕ as in (23) is sometimes called a quasi-cocycle. We do not know whether the notions of
cocycles and quasi-cocycles are equivalent. We will see in Theorem 3.7 that, given any cocycle ϕ, one can construct
a Birkhoff solution u for which ϕ “plays the role of a rotation number”. As a partial counterpart, Proposition 3.5 says
that any Birkhoff function u has a quasi-cocycle ϕ which “plays the role of a rotation number”.

3.2. Formulation of an abstract version of Theorem 2.2

Now, we turn our attention to the formulation of an abstract version of the variational scheme in Theorem 2.2. We
will first abstract the argument in terms of existence of a gradient semi-flow enjoying certain regularity properties as
well as a comparison principle, and apriori regularity properties of the equilibrium solutions.

The existence of flows and their regularity properties can still be discussed for a while at the level of functional
analysis (and, in fact, at the level of the theory of semi-groups and their generators) without discussing concrete
models. In this section, we will discuss the abstract set up and the functional analysis that can be used to verify the
properties of the set up. Then, we will show how these abstract properties can be verified in concrete models: for
this, several useful analytic tools will be collected in Section 4, and they will be applied in several concrete cases in
Section 5.

We point out that the arguments in Section 2 use several steps, which we abstract as:

H1 We are considering a problem in a manifold M̃ . This manifold is endowed with a smooth action by a finitely
generated, residually finite group G. The fundamental domain M of the action is compact.
Note that the action of G on M by x → gx induces an action in spaces of functions given by

u(·) → (Cgu)(·) ≡ u(g·).
H2 The problem has a variational structure compatible with the action C on functions and with the action R of the

group Z given by

(R�u)(x) ≡ u(x) + �.

This assumption will be made more precise in H2.1, H2.2 and H2.3 here below. We assume that our problem is
the Euler Lagrange equation of a variational problem S(u). In order to include in our theory general equations,
such as equations involving pseudo-differential operators, we will not assume that the variational problem is the
integral of a function.
In the case that we are dealing with PDEs, the functional will be of the form

S(u) =
∫

F
(
x,u(x),∇u(x)

)
dx, (28)

but more general functionals are allowed.
As usual in the calculus of variations, we will not need that S(u) is a well defined functional – that is, it may
diverge when the integral is computed over the whole space. In the case that our functional is not local, the
precise meaning of the Euler–Lagrange will need to be made precise in the following points. We will also assume
that S(Cg Rlu) = S(u) in a formal sense. In the case that we are dealing with local functionals as in (28), we can
just assume that:

F
(
x,u ◦ g(x) + �, (∇u ◦ g)(x)

)
Jg(x) = F

(
g−1x,u(x) + �,Dg

(
g−1x

)∇u(x)
)

(29)

so that the change of variable gives formally the invariance. For the Ψ DE case, which does not have a local vari-
ational principle, a simple characterization of invariance of the variational principle such as (29) is not possible.
The exact meaning of such formal invariance is that we can define the functional in the quotients of the manifold
under the group action. In that case, the functional is a well defined functional. This will be made precise in the
following:
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H2.1 The variational principle is a well defined functional for smooth enough functions that are periodic restricted
to a fundamental domain of the period. We refer to these variational principles on a compact quotient as
reduced variational principles.

H2.2 The reduced variational principle is invariant under the G action and under the addition of constants.
H2.3 For every subgroup H of finite index (and, therefore by hypothesis H1, such that the action by H has

compact fundamental domain), the reduced variational principle is bounded from below. Note that we
allow that these lower bounds depend on the subgroup H .

Points H2.1 and H2.2 mean that, given any subgroup of finite index H , we can define SH (u) on Cr functions of
M̃/H . This is a well defined functional with Euler–Lagrange equations, which we will write as

(∇SH )(u) = 0.

The way that we can define the Euler–Lagrange equations on the manifold is through and inductive limit process.
We have that if H ⊂ H ′ are two subgroups of finite index, we can consider M̃/H ′ ⊂ M̃/H and, hence, any func-
tion in M̃/H as a function in M̃/H ′. We will need that if a function u is H -periodic and it satisfies ∇SH (u) = 0,
then, it also satisfies ∇SH ′ = 0. Of course, this is obvious for local variational principles but it is not automatic
for the non-local problem for Ψ DEs.
This will allow us to define the notion of a solution to the Euler–Lagrange equations as the existence of a sequence
of subgroups of finite index

Hi ⊂ Hi+1

such that

∇SHi
(u) = 0.

We will see that this notion agrees with the usual notion for local operators.
H3 The gradient of the reduced variational principle generates a semi-flow Ψt . Moreover, this semi-flow satisfies:

H3.1 It is defined for all times when the given data are in a closed subspace of C0 functions.
H3.2 For any fixed u, SH ◦ Ψt(u) is a continuously differentiable function of t for t > 0. Moreover

d

dt
SH ◦ Ψt(u) = −∥∥∇SH ◦ Ψt(u)

∥∥2
L2 � 0.

H3.3 There exist sequences kn ∈ Z, tn ∈ R such that tn → +∞ and Ψtn(u) − kn → u� a.e. x ∈ M̃/H ,
with ∇SH (u�) = 0.

H3.4 Ψt admits a weak comparison principle.
In the applications we have in mind, the verification of these properties will come from the theory of parabolic
equations.
Finally, we will include some hypotheses about the behavior of the solutions of the Euler–Lagrange equations:

H4 The equilibrium solutions of the reduced variational principle have a Cr+α
loc norm which is bounded independently

of which is the subgroup we are considering, for suitable r ∈ N and α > 0.
H5 The gradient of the functional S is a closed operator under convergence in Cr

loc in the domain and L2
loc in the

range. That is, if un

Cr
loc−−→ ũ and ∇SH (un)

L2
loc−−→ ṽ, then ∇SH (ũ) = ṽ.

Note that hypotheses H1 and H2 are about the set up of the problem, which in practical cases are easy to verify
(they only require inspection). Hypothesis H3 is fulfilled once the solutions of the gradient semi-flow for SH are
regular enough, and checking this requires some methods from the theory of evolution equations (for instance, in the
case of Theorem 2.2, they are verified by parabolic equation methods). Note that parts H3.1–H3.3 are rather abstract
properties of the evolution that can often be established at the functional analysis level for very broad classes of
equations. Property H3.4 – the existence of a comparison principle – is much more geometric in nature.

Property H4 deals with the equilibrium solutions and it is usually established using methods from elliptic regularity
theory. Notice also that H4 is the only uniform assumption in the subgroup H .

Property H5 is a rather harmless assumption. For linear operators it can be proved very often using functional
analysis methods. In the case that the equilibrium equations are second order elliptic equations (as in [58] and [5]),
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one can also use the theory of viscosity solutions to show that the passage to the C0 limit is also a viscosity solution
(see [14, Proposition 4.11, p. 38]).

One should also notice that properties H4 and H5 are very similar in spirit to the usual Palais–Smale conditions,
which allow to take limits of solutions of approximate variational problems.

In fact, as we will see, conditions H4 and H5 are only needed to deal with irrational cocycles.
If we are only interested in rational cocycles, H5 is not needed and H4 may be weakened to

H4′ For any finite index subgroup H , the equilibrium solutions of the reduced variational principle in M̃/H are
continuous.

A detailed statement of the abstract result will be given in Theorem 3.7. See also Remark 3.10 for additional
comments.

The verification of some of the hypotheses can also be reduced to some other abstract hypotheses. For example,
it is customary in PDE theory to obtain the existence of evolutions defined for all time and regularity from abstract
semigroup theory assuming properties of the generator. The verification of the comparison principle can be reduced,
via Proposition 2.13, to the hypothesis that the semi-flow is the sum of two semi-flows admitting comparison and
satisfying the hypothesis of the product formula.

As we will now see, under these hypotheses, the argument we have presented in Section 2 goes through without
too many changes. We thus have the following generalization of Theorem 2.2:

Theorem 3.7. Consider a manifold M̃ endowed with an action of a discrete group G. Consider a formal variational
principle S defined on functions from M̃ to R.

Assume that the variational principle and that the group action satisfy the hypotheses H1–H5 above.
Then, for every cocycle ϕ of the group G, we can find a critical point u for S such that

u(x) − ϕ(x) ∈ L∞(M̃). (30)

Moreover, u is Birkhoff in the sense of Definition 3.3.
In case only hypotheses H1–H3 and H4′ are fulfilled, the above result holds true for rational cocycles.

Proof. The proof is just going over the proof of Theorem 2.2 and verifying that all the main steps are captured by
some assumption in H1–H5 (or in H1–H3 and H4′).

The first step is:

Lemma 3.8. Given any subgroup of finite index Ĝ, and any cocycle ϕ such that ϕ(Ĝ) ⊂ Z, we can find a critical
point u of S

Ĝ
in Bϕ . Moreover, u is uniformly bounded in Cr .

Then, a density argument will establish a result analogous to Lemma 3.8 for all the cocycles.
We will refer to cocycles taking integer values in subgroups of finite index as rational cocycles.

Proof. Let ϕ be a rational cocycle with ϕ(Ĝ) ⊂ Z. We will consider the set of functions such that

u(g · x) = u(x) + ϕ(g) ∀g ∈ Ĝ.

On this set of functions we can define the reduced variational principle S
Ĝ

. Notice that these functions can be consid-

ered as functions in the manifold M̃/Ĝ. Since Ĝ is a subgroup of finite index, M̃/Ĝ is a finite cover of M/G and is,
therefore, compact.

By assumption H3, we can define a semi-flow associated to the steepest descent

d

dt
Ψt = −∇S

Ĝ
◦ Ψt .

We start this semi-flow on the cocycle function ϕ and we denote the solution of this problem by u(t) (or by u(p, t),
if we want to emphasize its dependence on the point p ∈ M̃/Ĝ).
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By assumption H3.2, S
Ĝ
(u(t)) as a function of the real variable t is differentiable and decreasing. Since

t �→ S
Ĝ
(u(t)) is bounded from below and decreasing, we can find a sequence tn → ∞ such that

d

dt
S

Ĝ

(
u(tn)

) → 0.

By assumption H3.3, we can assume that u(tn) − kn → ũ, with ∇S
Ĝ
(ũ) = 0.

This establishes Lemma 3.8 except for the fact that the solution this produced is Birkhoff.
This will be a fairly easy consequence of the following

Proposition 3.9. Assume H3.1, H3.4 and H2.2. Then, the gradient semi-flow preserves the set of Birkhoff functions
(as defined in Definition 3.3).

Proof. The proof of this proposition is quite simple. Note that if we have (21) for some k, � Cku ≺ R�u, then, the
comparison principle H3.4 implies that for all t � 0, Ψt Cku ≺ Ψt R�u.

Now note that, by the conditions of symmetry, we see that the equation is invariant under the action of Ck , R�.
Therefore, by the uniqueness of solutions, the semi-flow commutes with these symmetries. Hence, CkΨtu ≺ R�Ψtu.
Therefore, Ψtu is Birkhoff. �

Using Proposition 3.9, we have that u(tn) are Birkhoff. Hence, so are u(tn) + kn. The passage to the limit also
preserves the set of Birkhoff functions. This finishes the proof of Lemma 3.8 (and of Theorem 3.7 in case only H1–H3
hold). �

To finish the proof of Theorem 3.7 (in case the whole set of assumptions H1–H5 holds), given any cocycle ϕ, we
approximate it by a sequence {ϕn} of rational cocycles (see Proposition 3.2).

Applying Lemma 3.8 we can produce solutions uϕn which are ϕn-periodic.
We can assume, by adding appropriate integers to the uϕn , which does not affect the fact that they are critical points

of the functional, that uϕn(p) ∈ [0,1].
By assumption H4, we have that uϕn are uniformly differentiable.
Since uϕn(gp) − (uϕn(p) + �) and ϕn(g) − � have the same sign, we see that uϕn(gp) has to belong to an interval

of length 2 and with rational endpoints. Since ϕn converges to ϕ over the generators of the group (and therefore
uniformly on bounded sets of g), we have that the above intervals have to converge as n → ∞.

By the uniform continuity given by assumption H4, the uniform bounds on uϕn(gp) and the fact that the action has
compact fundamental domain, we obtain that the sequence uϕn is equibounded and equicontinuous on compact sets.

Hence, we can extract a subsequence which converges uniformly on compact sets. By assumption H5, the limit
will also be a solution of the Euler–Lagrange equation. Since the set of Birkhoff functions is closed under uniform
convergence on compact sets, we see that the limit will also be Birkhoff and it will also be at a finite distance of the
cocycle ϕ. This ends the proof of Theorem 3.7. �
Remark 3.10. A statement analogous to Theorem 3.7 may be obtained only under conditions H1–H3: in this case, the
bound in (30) gets replaced by∣∣u(g · x) − u(x) − ϕ(g)

∣∣ � 1

for any x ∈ M̃ and g ∈ G.

4. Some tools from functional analysis

In this section, we discuss some functional analysis tools that can help in the verification of the abstract hypotheses
in concrete cases. Later, we will have to show how the concrete models that we have in mind verify the hypothesis we
introduce here.

All the tools included in this section are in the literature. Some of them are quite well known among the practition-
ers, but others may have become forgotten. Hence, we will not present all the proofs of the results, but limit ourselves
to making precise statements, which will be needed in the verification in concrete models, and give references for the
proofs.
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4.1. Verification of existence and regularity of the gradient flow and regularity of equilibrium solutions

The verification of the assumptions H3 and H4 in Section 3.2 (out of other more accessible assumptions) follows,
in many concrete cases, from standard PDE theory. Roughly speaking, H3 involves parabolic theory and H4 involves
elliptic theory.

We have found useful for our purposes the books [41,76,75,81] and [37] for the parabolic theory, and the books [81]
and [37] for the elliptic theory. We refer to these books for references to the original literature. Of course, using the
more advanced theory of fully non-linear equations one can consider other problems. References for this theory
are [14] and [48].

The following two results come from classical parabolic theory. We will use them in the verification of the abstract
hypotheses in concrete models.

Theorem 4.1. Let H be a Hilbert space, D ⊂ H a linear subspace dense in H . Let A be a linear (possibly unbounded)
operator A : D → H which is m-accretive, that is

(−Au,u) � 0 ∀u ∈ D and

(−A + Id)D = H. (31)

Then, given u0 ∈ H it is possible to find a unique u(t) ∈ C0([0,∞),H) ∩ C1((0,∞),H) solving

d

dt
u(t) = Au(t); u(0) = u0. (32)

If we introduce the linear operator etA by etAu0 = u(t), where u(t) is the solution above, we have that for every
t > 0 ∈ R and n ∈ N \ {0}, the operator etA is in the domain of An and

∥∥AnetA
∥∥ �

(
n

t
√

2

)n

. (33)

Therefore, u(t) ∈ C0([0,∞),H) ∩ C∞((0,∞),H).

Proof. This is the celebrated Hille–Phillips–Yoshida Theorem. See, for instance, I.5 of [76] or Theorem 1.2, p. 95
of [37]. In particular, the existence of u, the estimate in (33) and the regularity of u are discussed, respectively, in
Corollaries 5.3, 5.4 and 5.5 of [76]. �
Remark 4.2. If, for some a ∈ R, we have

(−Au,u) � a(u,u) (34)

then, (A − a) is also m-accretive, and so we can define e(A−a)t . It is easy to check that e(A−a)t = eat e−At .
If we apply (33) to A − a, we obtain, under the hypothesis (34), that

∥∥AnetA
∥∥ �

(
n

t
√

2

)n

e−at . (35)

Moreover, the use of interpolation spaces (see, e.g., p. 275 in [80], and also [45] and [53]) allows us to extend
formula (33) to any positive real power of the operator A. For instance, for any α,T > 0, we have that

∥∥(−A)αetA
∥∥ � Cα,T

(
α

t

)α

, (36)

for any t ∈ (0, T ], for a suitable Cα,T > 0.
To prove this, one may consider the domain D(A) of the operator A and (as done, for instance, on p. 33 of [53])

endow such a space with the “graph norm”

‖u‖D(A) = ‖u‖H + ‖Au‖H .

Then, one considers the operator B = (−A)m, where α ∈ [m − 1,m) and m ∈ N and exploits Proposition 2.2.15 and
Definition 1.1.1 of [53] to deduce that
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‖u‖D(Bα/m) � const‖u‖1−α/m
H ‖u‖α/m

D(B),

for any u ∈ D(B). Therefore, from (33),∥∥(−A)αetAf
∥∥

H
= ∥∥Bα/metAf

∥∥
H

�
∥∥etAf

∥∥
D(Bα/m)

� const
∥∥etAf

∥∥1−α/m

H

∥∥etAf
∥∥α/m

D(B)

= const
∥∥etAf

∥∥1−α/m

H

(∥∥etAf
∥∥

H
+ ∥∥BetAf

∥∥
H

)α/m

= const
∥∥etAf

∥∥1−α/m

H

(∥∥etAf
∥∥

H
+ ∥∥AmetAf

∥∥
H

)α/m

� const‖f ‖1−α/m
H

((
1 + (m/t)m

)‖f ‖H

)α/m

� const(α/t)α‖f ‖H ,

where the constants here may depend on α and T , proving (36).
Also, from (36), it is possible to obtain short-time estimates (as the ones in (41) below). Namely, we fix α ∈ (0,1)

and we consider the “graph space” Y = D((−A)α) endowed with the “graph norm”

‖u‖Y = ‖u‖H + ∥∥(−A)αu
∥∥

H
.

Then, we gather from (36) that

∥∥etA
∥∥

L(H,Y )
� Cα,T

(
1 +

(
α

t

)α)
,

for any t ∈ (0, T ], for a suitable constant Cα,T . Furthermore, using again (36) (and the fact that α ∈ (0,1)),

∥∥etA − Id
∥∥

L(Y,H)
� sup

u

∫ t

0 ‖AesAu‖H ds

‖u‖H + ‖(−A)αu‖H

� sup
u

∫ t

0 ‖(−A)1−αesA(−A)αu‖H ds

‖(−A)αu‖H

� sup
v

∫ t

0 ‖(−A)1−αesAv‖H ds

‖v‖H

� const

t∫
0

(
1 − α

s

)1−α

ds

= const · tα.

In the case of fractional powers of the Laplacian, related estimates may be obtained by Fourier analysis (see Proposi-
tion 5.9 below).

Analogously, to study non-linear problems, as in [41], it is convenient to interpret (33) and (35) for even n as stating
that the operator e−tA is bounded from the Hilbert space H to the Hilbert space Y obtained by completing the domain
of An endowed with the inner product

〈u,v〉Y = 〈u,v〉H + 〈
Anu,Anv

〉
H

.

Once we have defined these spaces for any even integer n, one can use interpolation to define them for n ∈ R+ (see,
e.g., 4.2 in [80]).

In case that we take A = �, we obtain the classical Sobolev spaces.

The control of the non-linear terms is easily done using the following so-called Duhamel formula.
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Proposition 4.3. Let H , Y be Hilbert spaces Y ⊂ H . Let N : H → Y be a locally Lipschitz function. Assume that for
some 0 � α < 1∥∥etA

∥∥ � Ct−α ∀t > 0. (37)

A function u(t) ∈ C0([0, T ),H) ∩ C1((0, T ),H) is a solution of

d

dt
u(t) = Au(t) + N

(
u(t)

)
, u(0) = u0 (38)

if and only if it is a solution of

u(t) = etAu0 +
t∫

0

e(t−s)AN
(
u(s)

)
ds. (39)

Moreover, for T sufficiently small, we can find a unique solution u(t) ∈ C0([0, T ),H) of (39). Such T can be
estimated from below in terms of ‖u0‖H . Also, u ∈ C0((0, T ), Y ).

Proof. See [81, p. 272]. The basic idea is to show that the right-hand side of (39) is a contraction operator for T small.
Once we have a solution of (39) in C0([0, T ),H), it follows from (37) that the right-hand side of (39) is in

C0((0, T ), Y ). �
In the applications we have in mind, this basic result can be extended in several ways:

Proposition 4.4. Assume that A is m-accretive in all Sobolev spaces Ws,2, for s � s∗ and that N is Lipschitz in all
the spaces Ws,2 for s � s∗. Then, the solution produced in Proposition 4.3 is C0((0, T ),Ws∗,2).

Proof. We can take H to be L2 and then apply Proposition 4.3 to conclude existence for short time with Y = Wα,2

with α any number smaller than the order of the linear operator.
If N is such that it maps Wα,2 into itself, we can see that the right-hand side of (39) belongs to W 2α,2.
The process can be iterated to conclude that u(t) ∈ C0((0, T ),Wnα,2) provided that N is Lipschitz in the spaces

Wiα,2, i = 1, . . . , n. �
In the applications we have discussed in detail, the operator N is a composition operator. The regularity of the

composition of a Cr functions considered as an operator among Sobolev spaces is a consequence of Moser estimates
(see, e.g., [81, 13.3] and, for a more comprehensive study, [3] and [24]).

Since the time of existence depends only on the Y norm, in the situations when the Y norm remains bounded by
apriori bounds, we have existence for all times.

4.2. Verification of comparison

In this subsection, we collect several functional analysis tools which can be used to verify the comparison princi-
ple H3.4.

Of course, the literature on comparison results for parabolic equations is quite extensive and we cannot hope to
make it justice here. We just mention that the classic [68] is still very useful for us.

In this subsection, we will just discuss two functional analysis methods that can be used to reduce the comparison
results to simpler ones: namely, product formulas and subordination identities.

4.2.1. Product formulas
The product formula that we have found useful is the non-linear analogue of the Trotter product formula of [19].

We reproduce the version of [81, Proposition 5.1, p. 310].
This formula is applied to the study of equations of the form
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d

dt
u = Lu + X(u); u(0) = u0, (40)

where L is a linear operator and X is a vector field.

Proposition 4.5. Let V , W be Banach spaces of l-tuples of functions for which etL satisfies the estimates∥∥etL
∥∥

L(V )
� ect ,

∥∥etL
∥∥

L(W,V )
� Ct−γ ,

∥∥etL − Id
∥∥

L(V ,W)
� Ctδ, (41)

for 0 < t < T , with some δ > 0, 0 < γ < 1.
Let X be a vector field generating a flow F t

X on Rl , satisfying, for ‖f ‖ � C1,∥∥F t
X(f )

∥∥ � C2 (42)

and, for ‖f ‖ � C1,∥∥F t
X(f )

∥∥ � ect‖f ‖, (43)

for any 0 � t � T . Assume also that

X : V → V and G : V × V → L(W) ∩ L(V ) (44)

are bounded, where(
X f

)
(x) = X

(
f (x)

)
,

[
G(f, g)

]
(x) = Y

(
f (x), g(x)

) =
1∫

0

DX
(
sg(x) + (1 − s)f (x)

)
ds. (45)

Let u0 ∈ V , and let u(t) ∈ C0([0, T ],V ) be a solution of (40). We define v(t) by

vk = (
e(1/n)LF 1/n

X

)n
(u0),

v(t) = esLF s
Xvk (46)

for t = k/n + s and 0 � s < 1/n. Then,∥∥v(t) − u(t)
∥∥

V
� C

(‖u0‖V

)
n−δ. (47)

One consequence of Proposition 4.5 is that, if both the semigroup etL and F t
X satisfy comparison, then so does the

evolution generated by (40). In this sense, Proposition 4.5 is an abstract version of Proposition 2.13.

Remark 4.6. Notice that only a weak comparison principle is needed in this paper to obtain solutions of our problem.

4.2.2. Subordination identities
Subordination identities are another tool that proves useful in the verification of comparison in several occasions,

such as the case of fractional operators.
Subordination identities come from Laplace transform identities. The following one comes from [67] (see also

section IX.11 in [87]):

Proposition 4.7. Let 0 < λ < 1 and let x be a non-negative number. Then, we have:

e−xλt =
∞∫

0

e−st1/λxφλ(s) ds, (48)

where φλ is a suitable non-negative function.

When λ = 1/2, formula (48) can be made particularly explicit and is the Bochner subordination identity (see,
e.g., [80] formula (5.22), p. 219, and formula (A.21), p. 264):
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Proposition 4.8. Let x be a non-negative number. We have:

e−tx1/2 = (1/2)tπ−1/2

∞∫
0

e−sxe−t2/4ss−3/2 ds

= (1/2)π−1/2

∞∫
0

e−sxt2
e−1/4ss−3/2 ds. (49)

Remark 4.9. By comparing (48) and (49), one sees that

φ1/2(s) = (1/2)π−1/2e−1/4ss−3/2. (50)

The following argument deduces Proposition 4.7 from the particular case in Proposition 4.8 and it gives an alternative
to the proof in [67].

Due to a scaling argument, we may and do assume t = 1 for proving Proposition 4.7. First of all, by applying
Proposition 4.8 repeatedly, we get Proposition 4.7 for λ = 1/2m.

Moreover, using the fact that if a = ∫ ∞
0 φa(s)e

−s ds, b = ∫ ∞
0 φb(s)e

−s ds, then:

a · b =
∞∫

0

φab(s)e
−s ds

where

φab(s) =
s∫

0

φa(s − τ)φb(τ ) dτ,

we obtain that if two functions can be represented as the Laplace transform of a non-negative function so can the
product.

Therefore, we obtain that e−xλ
is the Laplace transform of a positive function whenever

λ =
N∑

i=0

2−mi (51)

and mi ∈ N.
We also recall the well known inverse Laplace transform formula (see, e.g., [22] for the basics of the Laplace

transform theory).
If F(x) = ∫ ∞

0 f (u)e−xu du, then

f (u) =
c+i∞∫

c−i∞
F(x)exu dx. (52)

If we take

Fλ(x) = exp
(−xλ

)
,

for 0 < λ < 1 and c > 0, setting x = c + iy, we get that

e(c+iy)u = exu.

On the other hand, if we choose the branch of xλ which takes real values when x is real – as is implicit in the previous
discussion – we have that

(c + iy)λ ≈ |y|λ(cos(λπ/2) + i sin(λπ/2)
) + O

(
yλ′)

, λ′ < λ,
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for large |y|. Accordingly,∣∣e−(c+iy)λ
∣∣ ≈ e− cos(λπ/2)|y|λ ,

for large |y|. Hence, when

Fλ(x) = exp
(−xλ

)
,

the integral in (52) converges uniformly when λ ∈ (0,1) ranges over a compact set of values.
We also note that when λn → λ, xλn → xλ uniformly on compact sets of the right hand plane.
The two previous observations imply that as λn → λ, for a fixed x ∈ R,

fλn(x) → fλ(x). (53)

We remark that, in fact, with only slightly more work, one can show that they converge uniformly on compact subsets
of x, but we will not need it here.

By the arguments above, given 0 < λ < 1, we chose a sequence 0 < λn < 1 contained in the set in (51) and such
that λn → λ. We had argued that for all the λn, fλn(x) � 0. By (53), we have proved Proposition 4.7.

Notice that the gist of these formulas is that we can express e−xλt as a superposition of e−tx with positive coeffi-
cients. If we interpret x to be an operator and e−tx to denote the semigroup generated by it, we obtain formally the
semigroup generated by xλ can be obtained by superposing the semigroup generated by x with positive coefficients.

In particular, if the semigroup generated by x is positive preserving, the semigroup generated by xλ will also be
positive preserving.

To justify these formal considerations, we note that it is easy to verify that, if x indeed defines a semigroup,
then, the right-hand side of (48) is also a semigroup. In many cases, depending on the asymptotic properties of the
semigroup e−sx , it is possible to justify that the semigroup is continuous at 0. By the Hille–Phillips theorem (see,
e.g., [43] and [86]) this semigroup should have a generator. This can be taken as the definition of xλ.

For example, for m-accretive self-adjoint operators on Hilbert spaces, we can use the functional calculus to show
that indeed formulas (48) and (49) do define a good operator and that this definition agrees with that of the functional
calculus. In particular, interesting representation formulas and analytic bounds may be obtained from (48) and (49),
as we show in Lemma 4.10 and Proposition 4.11 here below.

Lemma 4.10. Let A be a self-adjoint operator on a Hilbert space with non-negative spectrum and let λ ∈ (0,1). Then,

e−tAλ =
∞∫

0

e−st1/λAφλ(s) ds. (54)

Proof. The Spectral theorem (see, e.g., Theorem VIII.6 in [73]) gives that

A =
+∞∫
0

σ dE(σ),

for suitable projection-valued measures E(σ) and that

g(A) =
+∞∫
0

g(σ )dE(σ),

for any Borel function g. In particular, taking g(r) = e−trλ
and g(r) = e−st1/λr and using Proposition 4.7, we obtain

e−tAλ =
+∞∫

e−tσ λ

dE(σ)
0
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=
+∞∫
0

+∞∫
0

e−st1/λσ φλ(s) ds dE(σ)

=
+∞∫
0

e−st1/λAφλ(s) ds,

which gives (54). �
Note that the subordination identity not only gives us the existence of the semigroup given by the roots, but also

establishes asymptotic bounds similar to those used in Proposition 4.5, as next result shows:

Proposition 4.11. Let A and λ be as in Lemma 4.10. Assume that e−tA satisfies∥∥e−tA
∥∥

L(X,Y )
� Ct−α, (55)

for some α � 0. Then, for every m ∈ N, e−tA1/2m

is also bounded in the same spaces and it satisfies the bounds∥∥e−tA1/2m ∥∥
L(X,Y )

� Ct−α2m

, (56)

for a suitable C > 0, possibly depending on d and α. In particular, when α = 0 and X = Y , i.e., when e−tA is a
continuous semigroup in the Banach space X, then so is e−tA1/2

.

Proof. Note that taking norms inside (54) and exploiting (50) and (55), we obtain:

∥∥e−tA1/2∥∥
L(X,Y )

� (1/2)tπ−1/2

∞∫
0

e−t2/4sCs−αs−3/2 ds. (57)

It is easy to check that, for t > 0 the integral converges, since α > −1/2. Using the change of variables u = s/t2, we
obtain that the integral in the right-hand side of (57) is C̃t−2α . The desired result follows by induction over m. �
5. Some applications of the abstract theorem

In this section we discuss some applications of Theorem 3.7.

5.1. Degenerate elliptic operators

We now extend Theorem 2.2 to possibly degenerate elliptic operators. Though more general operators may be dealt
with using similar techniques, we will focus on the standard p-Laplacian operator, with p � 2. We recall that

�pu = div
(|∇u|p−2∇u

)
(58)

for any smooth function u. As usual, when u is not smooth, say u ∈ W 1,p , then (58) is interpreted in the weak
distributional sense (see [52,31] and [42] for further details on p-Laplace equations).

The main result of this section is the following:

Theorem 5.1. Let p ∈ [2,+∞). Let V : Rd × R → R be a C2 function which satisfies:

V (x + e,u) = V (x,u) ∀e ∈ Zd ,

V (x,u + �) = V (x,u) ∀� ∈ Z.

Then, for all ω ∈ Rd , the problem

�pu − ∂2V (x,u) = 0
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has a solution which satisfies the Birkhoff property and such that

u(x) − ω · x ∈ L∞(
Rd

)
.

Since p-Laplacian-type equations are a delicate subject, we need some preliminary result for the proof of Theo-
rem 5.1. We first point out a regularity result:

Lemma 5.2. Let T > 0. Suppose that u − ω · x ∈ W 1,p(NTd × [0, T ]) ∩ C(NTd × [0, T ]) weakly satisfies

∂tu(x, t) = �pu(x, t) − ∂2V
(
x,u(x, t)

)
. (59)

Then, ∇u ∈ Cα
loc, for some α > 0 and the Cα-norm of ∇u in any subdomain of {t > 1} is bounded uniformly by a

quantity which only depends on N , on ‖∇u(x,0)‖Lp(NTd ) and on the structural constants.

Proof. That ∇u ∈ Cα
loc follows from [30]. Let us now explicitly bound its norm.

We write

E(t) :=
∫

NTd

1

p

∣∣∇u(x, t)
∣∣p + V

(
x,u(x, t)

)
dx.

By differentiating, as done in Lemma 2.10, it follows from (59) that E′ � 0. Thence,∫
NTd

1

p

∣∣∇u(x, t)
∣∣p dx � E(t) + ‖V ‖L∞

∣∣NTd
∣∣

� E(0) + ‖V ‖L∞
∣∣NTd

∣∣
�

∫
NTd

1

p

∣∣∇u(x,0)
∣∣p dx + 2‖V ‖L∞

∣∣NTd
∣∣. (60)

We will denote the latter quantity by C0.
By Theorem 5.1 in page 238 of [30], we know that

∣∣∇u(xo, to)
∣∣ � C

to∫
to−1/2

∫
NTd

∣∣∇u(x, t)
∣∣p dx dt

for any xo ∈ NTd and to > 9/10, where C > 0 is a suitable constant.
So, by (60),∣∣∇u(xo, to)

∣∣ � CC0

for any to > 9/10.
We can therefore make use of Theorem 1.1′ on page 256 of [30] (taking the quantity μ there to be simply CC0

here). Such result then bounds the Cα seminorm of ∇u in terms of C0, in any subdomain of {t > 1}. �
Following is a modification of Lemma 3.1 on page 160 of [30]:

Lemma 5.3. Let T > 0. Let f : Rd × [0, T ] × R → R be a bounded function, uniformly Lipschitz in its last variable.
Suppose that u − ω · x ∈ W 1,p(NTd × [0, T ]) ∩ C(NTd × [0, T ]) weakly satisfies

∂tu(x, t) � �pu(x, t) + f
(
x, t, u(x, t)

)
(61)

and that v − ω · x ∈ W 1,p(NTd × [0, T ]) ∩ C(NTd × [0, T ]) weakly satisfies

∂tv(x, t) � �pv(x, t) + f
(
x, t, v(x, t)

)
. (62)

Suppose that
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u(x,0) � v(x,0). (63)

Then, u(x, t) � v(x, t) for any t ∈ [0, T ].

Proof. Fix ε > 0, to be taken arbitrarily small in the sequel. Let w := u − v and W := max{w,0}. Note that 0 � W ∈
W 1,p(NTd × [0, T ]). We also define

Φ(t) := 1

2

∫
NTd

W 2(x, t) dx.

Note that, by (63), w(x,0) � 0 and so

Φ(0) = 0. (64)

Also, using Lemma 4.4 on page 13 of [30],(|∇u|p−2∇u − |∇v|p−2∇v
) · ∇(u − v) � 0

and therefore∫
NTd

(∣∣∇u(x, t)
∣∣p−2∇u(x, t) − ∣∣∇v(x, t)

∣∣p−2∇v(x, t)
) · ∇W(x, t) dx � 0 (65)

for any t ∈ (0, T ).
Exploiting (61), (62) and (65), we obtain

Φ ′(t) =
∫

NTd

W(x, t)∂tW(x, t) dx

=
∫

NTd

W(x, t)∂t

(
u(x, t) − v(x, t)

)
dx

�
∫

NTd

∇W(x, t) · (∣∣∇v(x, t)
∣∣p−2∇v(x, t) − ∣∣∇u(x, t)

∣∣p−2∇u(x, t)
)
dx

+
∫

NTd

W(x, t)
(
f

(
x, t, u(x, t)

) − f (x, t, v(x, t)
)
dx

� 0 + C

∫
NTd

W(x, t)
∣∣u(x, t) − v(x, t)

∣∣dx

= C

∫
NTd

W 2(x, t) dx

for a suitable C > 0.
Consequently, if C̄ := 2C,

Φ ′(t) � C̄Φ(t) + ε.

Since Φ � 0 by construction, this means that

∂t log
(
C̄Φ(t) + ε

)
� C̄

and so, by integrating and making use of (64),
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C̄Φ(t) � εeC̄T

for any t ∈ [0, T ].
Since ε may be taken arbitrarily small, we conclude that Φ is identically zero, which gives the desired claim. �
We now complete the proof of Theorem 5.1. This will be accomplished via Theorem 3.7.
To this end, we need to check conditions H1–H5. Conditions H1 and H2 are obvious, just taking the manifold

to be Rd , the fundamental domain to be the torus, the group action to be the integer translation and the variational
principle to be

S(u) =
∫

1

p
|∇u|p + V (x,u)dx. (66)

The existence of the degenerate parabolic semi-flow is assured by Théorème 1.1 on page 156 of [52], thus H3.1 is
satisfied. By differentiating, as done in Lemma 2.10, we obtain H3.2.

The fact that H3.3 holds may be obtained as follows. We take kn to be the integer part of Ψtn(u)(0). In this
way |Ψtn(u)(0) − kn| � 1. Therefore, Lemma 5.2 gives that Ψtn(u) − kn is locally equicontinuous and equibounded
together with its derivatives. Accordingly, H3.3 holds.

Lemma 5.3 implies that H3.4 holds.
The regularity results of [29] or [82] give H4, with r := 1 and a suitable α ∈ (0,1).
Since only first derivatives of solutions are involved in the gradient of the functional in (66), the fact that r = 1

gives H5.
The above arguments yield that all the hypotheses H1–H5 are satisfied in the p-Laplacian setting. Making use of

Theorem 3.7, we thus end the proof of Theorem 5.1.

5.2. Fractional powers of the Laplacian

In this section, we will consider some generalizations of Theorem 2.2 to fractional powers of the Laplacian instead
of the Laplacian (see, e.g., [49] and [79] for the basic properties of the fractional Laplacian operator).

A representative result is the following:

Theorem 5.4. Let V : Rd × R → R be a C∞ function which satisfies:

V (x + e,u) = V (x,u) ∀e ∈ Zd ,

V (x,u + �) = V (x,u) ∀� ∈ Zd .

Let 0 < λ < 1. Then, for all ω ∈ Qd , the problem

(−�)λ(u − ω · x) + ∂2V (x,u) = 0 (67)

has a solution such that

u(x) − ω · x ∈ L∞(
Rd

)
. (68)

Moreover, the solution claimed above can be assumed to have the Birkhoff property.

Remark 5.5. Equations similar to (67) for λ = 1/2 appear in several fields where the (−�)1/2 operator plays a role.
For examples in the ultrarelativistic limit of quantum mechanics, see [35]. See also [54] and [21] for related problems
in the theory of quasi-geostrophic flow. Similar equations also arise in the theory of water waves: see, e.g., [23]
and [63]. For this latter application, we note that the operator (−�)1/2 appears frequently as an approximation to the
Dirichlet to Neumann operator.

The operator (−�)1/2 also plays an important role in the wave equation approach to inverse spectral problems
(see [32]) and in the thin obstacle problem (see [12]).

Several applications to phase transition problems driven by either the fractional Laplacian or non-local interactions
have recently appeared in the literature: see, for instance, [1,7,18,11,38,77] and references therein.

For further motivation, see also [6].
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Remark 5.6. The method of proof works for more complicated problems such as

Lu + ∂2V (x,u) = 0, (69)

where L is an operator obtained by from the Laplacian by repeated taking of roots and combination with positive
numbers For example, we could consider:

L = (
2(−�)1/2 + 17(−�)4/3)1/4 + (−�)1/16.

The result that we will need is the following.

Proposition 5.7. e−t (−�)λ is positive preserving in L2.

Proof. By (54), applied with A = −�,

e−t (−�)λ =
∞∫

0

est1/λ�φλ(s) ds.

Then, the result follows from the fact that et� is positive preserving and φλ � 0. �
Remark 5.8. We also note that in [79] one can find explicit realizations of the semigroup e−t (−�)1/2

. This reference
also contains a different proof of the positivity of this semigroup. It is shown that P(t, x) = e−t (−�)1/2

f (x) is the
solution of � + ∂2

t P = 0 with boundary values at t = 0 given by f . Therefore, the positivity preserving of the
semigroup is implied by the maximum principle of the Laplacian in one dimension more.

With the goal of checking (41) in the case of the fractional Laplacian, we now point out some Fourier analysis
estimates on the fractional Laplacian operator, quite related to the ones on p. 193 of [51]. Since we supposed ω ∈ Qd ,
say ω ∈ 1

N
Zd , such analysis will involve periodic functions on NTd . For typographical reasons, we denote the Fourier

transform of a function v ∈ L2(Rd) equivalently by v̂ and by F (v).
Note that, if v ∈ W 2λ,2(NTd),

v̂k = 1

Nd

∫
NTd

v(x)e−2πix·k/N dx and

v(x) =
∑
k∈Zd

vke
2πix·k/N ,

it follows that

∂j v(x) =
∑
k∈Zd

2πikj

N
v̂ke

2πix·k/N

and so

F
(
(−�)λv

)
k
= const

∣∣∣∣ k

N

∣∣∣∣
2λ

v̂k. (70)

Proposition 5.9. For any t > 0,∥∥e−(−�)λt
∥∥

L(L2(NTd ))
+ ∥∥e−(−�)λt

∥∥
L(Wλ,2(NTd ))

� C,

∥∥e−(−�)λt
∥∥

L(L2(NTd ),Wλ,2(NTd ))
� C

(
1 + 1√

t

)
and

∥∥e−(−�)λt − Id
∥∥

L(Wλ,2(NTd ),L2(NTd ))
� C

√
t,

for a suitable constant C > 0, possibly depending on N .
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Proof. From (70), we have∥∥e−(−�)λt v
∥∥2

L2(NTd )
� const

∑
k∈Zd

∣∣F
(
e−(−�)λtv

)
(k)

∣∣2

� const
∑
k∈Zd

∣∣v̂ke
−const|k|2λt

∣∣2

� const‖v‖2
L2(NTd )

.

Analogously,∥∥e−(−�)λt v
∥∥2

Wλ,2(NTd )
� const

∑
k∈Zd

(
1 + |k|λ)2∣∣F

(
e−(−�)λtv

)
(k)

∣∣2

= const
∑
k∈Zd

(
1 + |k|λ)2∣∣v̂ke

−const|k|2λt
∣∣2

� const
∑
k∈Zd

(
1 + |k|λ)2|v̂k|2

= const‖v‖2
Wλ,2(NTd )

.

The first estimate in Proposition 5.9 then follows. Also, the function

[0,+∞) � θ �→ θe−θt

reaches its maximum for θ = 1/t and so

θe−θt � 1

et

for any θ � 0. Accordingly,∥∥e−(−�)λt v
∥∥2

Wλ,2(NTd )
� const

∑
k∈Zd

(
1 + |k|λ)2∣∣F

(
e−(−�)λtv

)
(k)

∣∣2

= const
∑
k∈Zd

(
1 + |k|λ)2∣∣v̂ke

−|ξ |2λt
∣∣2

� const

( ∑
k∈Zd

|v̂k|2 +
∑
k∈Zd

|k|2λe−2|k|2λt |v̂k|2
)

� const

(
1 + 1

t

)
‖v‖2

L2(NTd )
,

which yields the second estimate in Proposition 5.9.
We now observe that

1 − e−τ � min{τ,1}
and so∥∥e−(−�)λt v − v

∥∥2
L2(NTd )

� const
∑
k∈Zd

∣∣F
(
e−(−�)λtv

)
(k) − v̂k

∣∣2

= const
∑
k∈Zd

(
1 − e−|k|2λt

)2|v̂k|2

� const
∑

|k|2λt�1

|v̂k|2 +
∑

|k|2λt<1

|k|4λt2|v̂k|2

� const
∑
2λ

|k|2λt |v̂k|2 +
∑
2λ

|k|2λt |v̂k|2

|k| t�1 |k| t<1
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� const t
∑
k∈Zd

(
1 + |k|λ)2|v̂k|2

= const t‖v‖2
Wλ,2,

which ends the proof of Proposition 5.9. �
Following is the weak comparison principle that we need for our purposes:

Proposition 5.10. Let f ∈ C1(Rd+1) and suppose that both u1 and u2 are in L2(NTd) and satisfy

∂tui(x, t) = −(−�)λui(x, t) + f
(
x,ui(x, t)

)
i = 1,2,

for any x ∈ Rd and t ∈ [0, T ]. Suppose that u1(x,0) � u2(x,0) for any x ∈ Rd . Then, u1(x, t) � u2(x, t) for any
x ∈ Rd and t ∈ [0, T ].

Proof. We will make use of Proposition 4.5. For this, we set l = d + 1 and consider the vector field on Rl given by

X : (x, r) ∈ Rd × R �→ (
0, f (x, r)

) ∈ Rd × R × R.

We also consider the Banach (and, in fact, Hilbert) spaces V = Rd × Wλ,2 and W = Rd × L2. We define the linear
operator L on W as

L : (x,u) ∈ Rd × L2 �→ (
0,−(−�)λ

)
.

Then, etL = (0, e−t (−�)λ), and so estimates (41) are satisfied, thanks to Proposition 5.9.
Furthermore, the flow F t

X generated by X is, in this case,

F t
X(x0, r0) = (

x0, r(t)
)

where r(t) is the solution of the ODE{
ṙ(t) = f

(
x0, r(t)

)
,

r(0) = r0.

Note that∥∥F t
X(x0, r0)

∥∥ �
∥∥(x0, r0)

∥∥ + ‖f ‖L∞ t

and so it satisfies (42) and (43).
Also, if X and G are as in (45), we have that

X (x,u) = (
0, f

(
x,u(x, t)

))
for any (x,u) ∈ Rd × L2 and that G sends (x′, u′, x′′, u′′) = (v′, v′′) ∈ V × V to the linear operator G(v′, v′′) on W

given by

[
G(v′v′′), v′′′] =

(
0,

1∫
0

x′′′ · ∂xf (�) + u′′′(x)∂rf (�) ds

)
,

for any v′′′ = (x′′′, u′′′) ∈ W where “�” above is short for(
sx′ + (1 − s)x′′, su′(x) + (1 − s)u′′(x)

)
.

Then, X and G are as requested in (44).
Moreover, if we define Ui(x, t) = (x,ui(x, t)) for i = 1,2, we have that Ui is a solution of (40). We define vi(t)

as in (46) (obviously, by replacing u0(x) there with Ui(x,0)).
Then, we deduce from (47) that

vi approaches Ui in V when n → +∞. (71)
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We know observe that F t
X satisfies the comparison principle (because of the Cauchy Uniqueness Theorem for ODEs)

and so does etL (because of Proposition 5.7) and therefore v1 � v2. Consequently, possibly taking a subsequence
which converges almost everywhere, we gather from (71) that U1 � U2 and so that u1 � u2. �

We now recall the following compact embedding of Wλ,2(Td) into L2(Td):

Lemma 5.11. Let C > 0. Consider a family F of functions in L2(NTd) such that

sup
v∈F

∑
k∈Zd

k2λ|v̂k|2 � C. (72)

Then, given any sequence v(j) ∈ F , we have that the sequence

v(j) −
[

1

|NTd |
∫

NTd

vj (x) dx

]
(73)

is compact in L2(NTd), where [·] here above denotes the integer part.

Proof. The proof is a variation of the standard diagonal trick. For this, we first note that∣∣∣∣v̂(j)

0 −
[

1

|NTd |
∫

NTd

vj (x) dx

]∣∣∣∣ = ∣∣v̂(j)

0 − [
v̂

(j)

0

]∣∣ � 1,

hence we may and do assume that

lim
j→+∞ v̂

(j)

0 −
[

1

|NTd |
∫

NTd

vj (x) dx

]
= v̂∞

0 ,

for a suitable v̂∞
0 , with |v̂∞

0 | � 1.
Fix now M > 0. By (72),∑

0<|k|�M

∣∣v̂(j)
k

∣∣2 � C.

That is, the sequence {v̂(j)
k ,0 < |k| � M} is bounded in a finite dimensional space. So, for 0 < |k| � M , we can

consider subsequences v̂
φM(j)
k such that v̂

φM+1(j)

k is a subsequence of v̂
φM(j)
k and

lim
j→+∞ v̂

φM(j)
k = v̂∞

k ,

for any 0 < |k| � M and suitable v̂∞
k .

We now show that, if ṽ(j) is the sequence in (73), then the sequence ṽφj (j) converges in L2(Td) to the function

v∞(x) =
∑
k∈Zd

v̂∞
k eik·x.

Indeed,∑
k∈Zd

∣∣v̂∞
k

∣∣2 = ∣∣v̂∞
0

∣∣2 + lim
M→+∞

∑
k∈Zd

0<|k|�M

∣∣v̂∞
k

∣∣2

= ∣∣v̂∞
0

∣∣2 + lim
M→+∞ lim

j→+∞
∑
k∈Zd

0<|k|�M

∣∣v̂φj (j)

k

∣∣2 � 1 + C,

in force of (72), thence v∞ ∈ L2(NTd).
Also, using again (72), for any M > L > 0,
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L2λ
∑

L+1�|k|�M

∣∣v̂(j)
k

∣∣2 �
∑

L+1�|k|�M

|k|2λ
∣∣v̂(j)

k

∣∣2 � C

and so

L2λ
∑

L+1�|k|�M

∣∣v̂∞
k

∣∣2 � C.

Accordingly,∑
L+1�|k|

(∣∣v̂(j)
k

∣∣ + ∣∣v̂∞
k

∣∣)2 � 3
∑

L+1�|k|

(∣∣v̂(j)
k

∣∣2 + ∣∣v̂∞
k

∣∣2) � 8C

L2λ
.

Thus, fixed any L ∈ N,

lim
j→+∞

∥∥ṽφj (j) − v∞∥∥2
L2(NTd )

= lim
j→+∞

∣∣ ˆ̃vφj (j)

0 − v̂∞
0

∣∣2 +
∑
k∈Zd

k 	=0

∣∣v̂φj (j)

k − v̂∞
k

∣∣2

� 0 + 8C

L2λ
+ lim

j→+∞
∑
k∈Zd

0<|k|�L

∣∣v̂φj (j)

k − v̂∞
k

∣∣2

= 0 + 8C

L2λ
+ 0.

Since L may be taken as large as we wish, we conclude that ṽφj (j) approaches v∞ in L2(Td). �
We now complete the proof of Theorem 5.4. To this purpose, we set v(x) = u(x) − ω · x, with ω ∈ 1

N
Zd , and we

seek v : NTd → R. Note that the fractional Laplacian operator (−�)λ is well defined on W 2λ,2(NTd) ⊂ L2(NTd)

by Fourier series.
Given the above setting, we consider the functional

SN(v) = 1

2

∥∥(−�)λ/2v
∥∥2

L2(NTd )
+

∫
[0,N]d

V
(
x, v(x) + ω · x)

dx.

Notice that critical points of S satisfies (67) since (−�)λ/2 is self-adjoint.
Also, H1 and H2.1 are here obviously satisfied. Moreover, if v ∈ L2(NTd), we have that F (v + 1)k = F (v)k = v̂k

for any k ∈ Z \ {0} and so

F
(
(−�)λ(v + 1)

)
k
= (|k|2λF (v + 1)k

) = (|k|2λv̂k

) = F
(
(−�)λv

)
k

for any k ∈ Zd and so

(−�)λ(v + 1) = (−�)λv.

Consequently, the invariance property in H2.2 is satisfied in this case. Of course, SN is bounded from below, since V

is smooth enough, thus fulfilling condition H2.3.
Besides,〈

(−�)λv, v
〉
L2(Td )

= 〈
(−�)λ/2v, (−�)λ/2v

〉
L2(Td )

� 0 (74)

for any v ∈ W 2λ,2(Td), since the fractional Laplacian is self-adjoint.
Furthermore, given any f ∈ L2(Td), if we define v by

v̂k = f̂k

1 + |k|2λ

we have that v ∈ W 2λ,2(Td) and
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(
(−�)λ + Id

)
v = f.

The latter argument and (74) imply that the operator −(−�)λ satisfies (31) with D = W 2λ,2(Td) and H = L2(Td),
so it is m-accretive and thus it generates a heat flow, thanks to Theorem 4.1. Then, the gradient of SN generates a
semi-flow by Proposition 4.3 (which may be applied here due to the first estimate in Proposition 5.9) and this argument
gives condition H3.1. Condition H3.2 is obtained by the standard argument in Lemma 2.10.

Assumption H3.3 is fulfilled in the light of the following argument. Since the fractional Laplacian is self-adjoint,

d

dt
SN

(
v(t)

) = −∥∥(−�)λ/2v + ∂2V (x, v + ω · x)
∥∥

L2(NTd )
� 0

and so SN(v(t)) � SN(v(0)). This yields that∑
k∈Zd

k2λ
∣∣v̂k(t)

∣∣2 � C1
(
N,v(0)

)

for a suitable C1(N,v(0)) independent of t . Then, recalling Lemma 5.11, by possibly subtracting the integer part
of its average to v(t), we have that, for t → +∞, up to subsequences, v is compact in L2. Therefore, since the
fractional Laplacian is self-adjoint, v(t) converges pointwise, as t → +∞, up to subsequences, to a suitable v� which
solves (−�)λ/2v� + ∂2V (x, v� + ω · x) = 0. This shows that condition H3.3 is satisfied.

Also, condition H3.4 is warranted by Proposition 5.10.
Condition H4′ is checked by Fourier analysis on (70), which gives W 2λ,2 estimates, and standard bootstrap.
Thus, the proof of Theorem 5.4 is ended by the use of Theorem 3.7.

5.3. Quasi-periodic solutions in manifolds with residually finite fundamental group

In this section, we show how the results of [58] can be extended to other manifolds than the torus and, in particular,
to some manifolds with a non-Abelian fundamental group. This answers a question that was posed in [58].

We will establish:

Theorem 5.12. Let M be a compact Riemannian manifold. Let G be a finitely generated subgroup of the fundamental
group Π1(M).

Let M̃ be the universal cover associated to G, i.e. M = M̃/G. Denote by gx the action of G on M̃ by Deck
transformations.

Let F : T M × R → R be a C3 function which we can write in local coordinates as F(x,u,p).
Consider the formal variational principle

S(u) =
∫
M̃

F
(
x,u(x),∇u(x)

)
dx (75)

whose Euler–Lagrange equations are

∇S(u) = −div
(∇pF

(
x,u(x)∇u(x)

) + ∇uF
(
x,u(x)∇u(x)

) = 0. (76)

Assume:

(i) The group G is residually finite.
(ii) F(x,u + �,p) = F(x,u,p), ∀� ∈ Z.

(iii) The quadratic form Fpp is positive definite and there is a lower bound for it which is independent of x and u.

Then, for every cocycle ϕ of G, we can find a u : M̃ → R solving (76) and such that

u(·) − ϕ(·) ∈ L∞(M̃).

Moreover, u is Birkhoff.
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Proof. We will need to verify the abstract framework of Theorem 3.7. Note that, in the particular case that
F(x,u,p) = Q(x)[p,p] + V (x,u) where Q is a quadratic form and V is a function V (x,u + �) = V (x,u), the
variational equations are such that the higher order term is linear. Then, the theory discussed in Section 4 is enough to
verify the hypothesis of Theorem 3.7. In the full generality considered in Theorem 5.12 we will need to use a part of
the theory of fully non-linear equations.

For our purposes, we only require existence, uniqueness and small amounts of regularity. Moreover, our coefficients
and functions being periodic are quite well behaved. Moreover, since our equations are gradient flows, the energy
estimates are automatic. Hence, the required properties will be within easy reach of textbook theory, such as [81,36]
and [50].

Clearly, the geometric hypothesis H1 and H2 are verified. The variational principle, being local is invariant under
Deck transformations. In particular, H2.2 is a consequence of assumption (ii) in Theorem 5.12.

We recall that the assumption that the manifold M has a finite fundamental group includes in particular, the tori
considered in [58] and [5], manifolds of negative curvature and other manifolds such as Heisenberg groups and
products of the above, etc.

Hypothesis H3 about existence of the gradient flow and its regularity and comparison properties for the case at
hand fits into the classical theory of parabolic equations explained in different versions of varying sophistication
in [81] 15.7, 15.8 and 15.9 (p. 327 ff.) We just summarize the argument as developed in the above source, to which
we refer for references to the original literature.

We call attention to the fact that the only term of (76) involving derivatives of second order is (in local coordinates)∑
i,j

−Fpi,pj
(x,u,∇u)∂xj

∂xj
u. (77)

Hence, the equation for the gradient semi-flow is quasilinear.
Recall that we are working in a compact manifold and note that the “strong parabolicity condition” (see [81, (7.2),

p. 327]) is assumption (iii) of Theorem 5.12 here.
The classical theory of quasilinear equations starts by establishing local existence and uniqueness using a Galerkin

method. The uniform parabolicity is used to show that, for short enough time, the Galerkin approximations converge
to a solution which is unique. Of crucial importance is the fact that the solution persists if it is regular enough.

The following is Proposition 8.2 of [81, p. 339]:

Proposition 5.13. Assume that F is as indicated and s > d/2 + 1. Then, provided u0 ∈ Hs , the equation

∂tu = ∇S(u), u(0) = u0

has a unique solution in C0((0, T ],H s(M)) ∩ C1((0, T ],H s−2(M)).
If also

sup
t∈[0,T ]

‖u‖C1+r < ∞

for some r > 0, then, it is possible to find a T ′ > T for which the same conclusions hold.

The proof of Theorem 5.12 is thus ended by the following argument. Assumption (iii) in Theorem 5.12 gives that
the operator in (77) is m-accretive and so its heat flow satisfies H3.1, according to Theorem 4.1. Condition H3.2
follows from the standard arguments in Lemma 4.1.

The fact that the energy decreases on the semi-flow u(t) implies a control of the L2 norm of the gradient ∇u(t)

which is independent of t and then, by Poincaré Inequality, a control of the L2 norm of u(t) (up to subtracting the
integer part of the average): this and standard compactness arguments yield H3.3.

Condition H3.4 follows from Proposition 4.5 and H4 is warranted by elliptic regularity.
Then, exploiting Theorem 3.7, we conclude the proof of Theorem 5.12. �
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