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Abstract

The paper defines a symplectic form on an infinite dimensional Fréchet manifold of framed curves over the three dimensional
space forms. The curves over which the symplectic form is defined are called horizontal-Darboux curves. It is then shown that the
projection on the Lie algebra of the Hamiltonian vector field associated with the functional f = 1

2

∫ L
0 κ2(s) ds satisfies Heisen-

berg’s magnetic equation (HME), ∂Λ
∂t

(s, t) = 1
i
[Λ(s), ∂2Λ

∂s2 (s, t)] in the space of Hermitian matrices for the hyperbolic and the

Euclidean case, and ∂Λ
∂t

(s, t) = [Λ(s), ∂2Λ
∂s2 (s, t)] in the space of skew-Hermitian matrices for the spherical case. It is then shown

that the horizontal-Darboux curves are parametrized by curves in SU2, which along the solutions of (HME) satisfy Schroedinger’s
non-linear equation (NSL)

−i
∂ψ

∂t
(t, s) = ∂2ψ

∂s2
(t, s) + 1

2

(|ψ(t, s)|2 + c
)
ψ(t, s)

It is also shown that the critical points of 1
2

∫ L
0 κ2(s) ds, known as the elastic curves, correspond to the soliton solutions of (NSL).

Finally the paper shows that the modifed Korteweg–de Vries equation or the curve shortening equation are Hamiltonian equations
generated by f1 = ∫ L

0 κ2(s)τ (s) ds and f2 = ∫ L
0 τ (s) ds and that f0 = 1

2

∫ L
0 κ2(s) ds, f1 and f2 are all in involution with each

other.
© 2009
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1. Introduction

This paper defines a symplectic form on an infinite dimensional Fréchet manifold of framed curves of fixed length
over a three dimensional simply connected Riemannian manifold of constant curvature. The framed curves are an-
chored at the initial point and are further constrained by the condition that the tangent vector of the projected curve
coincides with the first leg of the orthonormal frame. Such class of curves are called anchored Darboux curves and in
particular include the Serret-Frenet framed curves.
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The symplectic form ω is defined on the space of “horizontal” curves of fixed length in the universal covers of
the orthonormal frame bundles of the underlying manifolds: SL2(C) for the hyperboloid H

3 and SU2 × SU2 for the
sphere S3. The form ω is left invariant and is induced by the Poisson–Lie bracket on the appropriate Lie algebra. More
precisely, the form ω in each of the above cases is defined over the curves whose tangents take values in the Cartan
space p corresponding to the decomposition

g = p + k

of the Lie algebra g subject to the usual Lie algebraic relations

[p,p] = k, [p, k] = p, [k, k] = k.

In the case of the hyperboloid g is equal to sl2(C) and the Cartan space p is equal to the space of the Hermitian
matrices, while in the case of the sphere g is equal to su2 × su2 and the Cartan space is isomorphic to the space
of skew-Hermitian matrices h. The symplectic forms in each of these two cases are isomorphic to each other as a
consequence of the isomorphism between p and h given by ih = p.

The Euclidean space E
3 is identified with p equipped with the metric defined by the trace form, and its framed

curves are represented in the semidirect product p � SU2. The Euclidean Darboux curves inherit the hyperbolic
symplectic form ω which is isomorphic to the symplectic form used by J. Millson and B. Zombro in [16].

Each group G mentioned above is a principal SU2-bundle over the underlying symmetric space with a natural
connection defined by the left invariant vector fields that take values in the Cartan space p. The vertical distribution is
defined by the left invariant vector fields that take their values in k. In this setting then, anchored Darboux curves are
the solutions in G of a differential equation

dg

ds
(s) = g(s)

(
E1 + u1(s)A1 + u(s)A2 + u3(s)A3

)
(1)

with g(0) = I , where E1 is a fixed unit vector in the Cartan space p. The matrices A1,A2,A3 denote the skew-
Hermitian Pauli matrices, and u1(s), u2(s), u3(s) are arbitrary real valued functions on a fixed interval [0,L]. Each
anchored Darboux curve defines a horizontal-Darboux curve h(s) ∈ G that is a solution of the differential equation

dh

ds
(s) = h(s)Λ(s), Λ(s) = R(s)E1R

−1(s) (2)

with R(s) the solution curve in SU2 of the equation

dR

ds
= R(s)

(
u1(s)A1 + u2(s)A2 + u3(s)A3

)
(3)

that satisfies R(0) = I . The symplectic form for the hyperbolic Darboux curves is given by

ωΛ(V1,V2) = 1

i

L∫
0

〈
Λ(s),

[
U1(s),U2(s)

]〉
ds (4)

with U1(s) and U2(s) Hermitian matrices orthogonal to the tangent vector Λ(s), that further satisfy Uj (0) = 0 and
dVj

ds
(s) = Uj (s) for j = 1,2.

In the spherical case the symplectic form has the same form as in the hyperbolic case, except for the factor 1
i
,

which is omitted. The matrices Uj in this case take values in k and satisfy

dVj

ds
(s) = [

Λ(s),Vj (s)
] + Uj (s)

for j = 1,2.
The second part of the paper is devoted to the Hamiltonian flow associated with the function

f
(
g(s)

) = 1

2

L∫ ∥∥∥∥dΛ

ds
(s)

∥∥∥∥2

ds = 1

2

L∫
κ2(s) ds
0 0
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where g denotes a frame-periodic horizontal-Darboux periodic curve, i.e., a Darboux curve for which the solution
R(s) of Eq. (3) is periodic. Here κ(s) denotes the curvature of the projected curve x(s) in the underlying symmetric
space.

It is shown that the Hamiltonian flow induced by the symplectic form ω generates Heisenberg’s magnetic equation
in the Cartan space p given by

∂Λ

∂t
(s, t) = 1

i

[
Λ(s),

∂2Λ

∂s2
(s, t)

]
(5)

in the hyperbolic and the Euclidean case, and by

∂Λ

∂t
(s, t) =

[
Λ(s),

∂2Λ

∂s2
(s, t)

]
in the spherical case.

It is also shown that the corresponding matrix R(s, t) defines a complex function

ψ(s, t) = u(s, t) exp

(
i

s∫
0

u1(x, t) dx

)
(6)

with u(s, t) = u2(s, t) + iu3(s, t) that is a solution of the non-linear Schroedinger’s equation

−i
∂ψ

∂t
(t, s) = ∂2ψ

∂s2
(t, s) + 1

2

(∣∣ψ(t, s)
∣∣2 + c(t)

)
ψ(t, s) (7)

where c(t) = −|u(0, t)|2 (Theorem 5).
This finding clarifies a remarkable observation of H. Hasimoto [7] that the function

ψ(s, t) = κ(s, t) exp

(
i

s∫
0

τ(x, t) dx

)

where κ(t, s) and τ(t, s) are the curvature and the torsion of a curve γ (t, s) that evolves according to the filament
equation

∂γ

∂t
(t, s) = κ(t, s)B(t, s) (8)

is a solution of the non-linear Schroedinger equation (7). Indeed, when the frame R(s) in Eq. (3) is a Serret–Frenet
frame then ψ given by (6) coincides with Hasimoto’s function in the hyperbolic and the Euclidean case but not in the
spherical case since u1(t) = τ + 1

2 .

The curves that correspond to the critical points of f = 1
2

∫ L

0 κ2(s) ds are called elastic. The material in Sec-
tion 5 shows that the elastic curves with periodic curvatures always generate soliton solutions for the non-linear
Schroedinger’s equation. The elastic curves that generate solitons reside on a fixed energy level and propagate with
the speed equal to H1, where H1 is a conserved quantity for the elastic problem. The fact that the equations for the
heavy top form an invariant subsystem of the equations for the elastic curves makes the connection between elastic
curves and solitons even more intriguing: the speed of the soliton corresponds to the angular momentum along the
axis of symmetry for the top of Lagrange.

The formalism of this paper suggests that there is a class of functions f0, f1, f2, . . . over the space of Darboux
curves that begins with f0 = 1

2

∫ L

0 κ2(s) ds having the property that any two functions Poisson commute. It is shown
in the paper that f1 and f2 given by

f1 = i

L∫
0

〈[
Λ(s),

dΛ

ds
(s)

]
,
d2Λ

ds2
(s)

〉
ds, f2 =

L∫
0

(∥∥∥∥d2Λ

dt2

∥∥∥∥2

− 5

4

∥∥∥∥dΛ

dt

∥∥∥∥4)
ds

are in this class.
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The above functions can be expressed either in terms of the geometric invariants of the underlying Darboux curve
as:

f1 =
L∫

0

κ2(s)τ (s) ds, f2 =
L∫

0

(
∂κ

∂s

2

(s) + κ2(s)τ 2(s) − 1

4
κ4(s)

)
ds

in which case they agree with the first three functions on the list presented by J. Langer and R. Perline in [14], or they
can be expressed in terms of the complex function u(s) defined by Eq. (6) as f0 = 1

2

∫ L

0 |u(s)|2 ds and

f1 = 1

2i

L∫
0

(ūu̇ − u ˙̄u)ds, f2 =
L∫

0

(∣∣∣∣∂u

∂s
(s, t)

∣∣∣∣2

− 1

4

∣∣u(s, t)
∣∣4

)
ds

in which case they correspond to the first three conserved quantities, the number of particles, the momentum and the
energy, in the paper by C. Shabat and V. Zakharov in [17].

The paper is organized as follows. Section 2 consists of geometric preliminaries leading up to the basic principal
bundles in terms of which horizontal-Darboux curves are defined. Section 3 describes the symplectic structure for the
space of horizontal-Darboux curves.

Section 4 is devoted to the Hamiltonian flow corresponding to f0 = 1
2

∫ L

0 κ2(s) ds. This section also contains a
discussion of the Euclidean symplectic form and its connection to the existing results in the literature. Section 5 deals
with elastic curves and the soliton solutions for the non-linear Schroedinger’s equation. The final section (Section 6)
contains a brief discussion of the conservation laws associated with f0 and their connections to the hierarchies of
functions presented in [17] and [14].

2. Darboux curves and their symplectic forms

2.1. Notations and geometric preliminaries

For the purposes of this paper it will be most convenient to realize the three dimensional sphere S3 and the three
dimensional hyperboloid H

3 as subsets of SL2(C) via the identification of points z = (z0, z1, z2, z3) in C
4 with the

matrices Z in SL2(C) through

Z =
(

z0 + iz1 z2 + iz3
−z2 + iz3 z0 − iz1

)
, z2

0 + z2
1 + z2

2 + z2
3 = Det(Z) = 1.

Then S3 = {x ∈ R
4: x2

0 + x2
1 + x2

2 + x2
3 = 1} is identified with matrices X = ( u v

−v̄ ū

)
in SU2 when z is restricted to

R
4 while the hyperboloid H

3 = {x ∈ R
4: x2

0 − x2
1 − x2

2 − x2
3 = 1, x0 > 0} is identified with positive definite Hermitian

matrices

P =
(

x0 + x1 x2 + ix3
x2 − ix3 x0 − x1

)
, Det(P ) = 1,

by setting z0 = x0, z1 = −ix1, z2 = ix3, z3 = −ix2.
For notational convenience SL2(C) will be denoted by G and its Lie algebra by g. Then g is the direct sum of the

space of Hermitian matrices p of trace zero and the subalgebra of skew-Hermitian matrices h, the Lie algebra of SU2.
The following relations are basic:

[p,p] = h, [p,h] = p, [h,h] = h, ip = h. (9)

Matrices

B1 = 1

2

(
1 0
0 −1

)
, B2 = 1

2

(
0 −i

i 0

)
, B3 = 1

2

(
0 1
1 0

)
,

known as the Hermitian Pauli matrices, form a basis for p while the skew-Hermitian Pauli matrices

A1 = iB1, A2 = iB2, A3 = iB3
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form a basis for h. Together these matrices form a basis for g and conform to the following Lie bracket table:

Table 1

[ , ] A1 A2 A3 B1 B2 B3
A1 0 −A3 A2 0 −B3 B2
A2 A3 0 −A1 B3 0 −B1
A3 −A2 A1 0 −B2 B1 0

B1 0 −B3 B2 0 A3 −A2
B2 B3 0 −B1 −A3 0 A1
B3 −B2 B1 0 A2 −A1 0

Nota bene. In this paper the Lie bracket is defined as [A,B] = BA − AB .

Definition 2.1. The quadratic form on g defined by 〈A,B〉 = 2 Trace(AB) will be called the trace form.

The trace form is invariant in the sense that〈
A, [B,C]〉 = 〈[A,B],C〉

, and
〈
gAg∗, gBg∗〉 = 〈A,B〉 (10)

for any matrices A,B,C in g, and any g in SU2.
It follows that

〈A,B〉 = a1b1 + a2b2 + a3b3 (11)

for any Hermitian matrices A = ∑3
i=1 aiBi and B = ∑3

i=1 biBi . Since 〈iA, iB〉 = −〈A,B〉 similar formula holds on
h with the sign reversed.

Definition 2.2. The restriction of the trace form to p will be denoted by 〈,〉h and 〈,〉s will denote the negative of the
restriction of the trace form to h. Then ‖ ‖h and ‖‖s will denote the induced norms on p and h.

It follows that Hermitian Pauli matrices form an orthonormal basis for p relative to 〈,〉h and that skew-Hermitian
Pauli matrices form an orthonormal basis on h relative to 〈,〉s .

Throughout the paper g∗ denotes the Hermitian transpose of a matrix g. Then g ∈ SU2 whenever g∗ = g−1. We
now pass to the universal covers SU2 × SU2 and SL2(C) of the orthonormal frame bundles of the sphere or the
hyperboloid.

These groups will be considered principal SU2-bundles over S3 and H
3 respectively via the following construc-

tions.
For G = SU2 × SU2 the action of SU2 is R(p,q) = (pR∗, qR∗) for each (p, q) in SU2 × SU2 and each R ∈ SU2,

and the projection map π is given by X = π(p,q) = pq∗.
For G = SL2(C) the action is (R,g) → gR∗ for all g ∈ G and R ∈ SU2, and the projection map π is given by

π(g) = gg∗. In the material below we will rely on the notion of a connection on a principal bundle (in that context
see [18]).

Definition 2.3. Curves g(t) = (p(t), q(t)) in SU2 × SU2 will be called spherical horizontal if

p∗ dp

dt
(t) = P(t), q(t)∗ q

dt
(t) = −P(t)

for some curve P(t) in h. The left invariant distribution Hs((p, q)) = {(pP,q(−P)): P ∈ h} in SU2 × SU2 will be
called the spherical connection.

Definition 2.4. Curves g(t) in SL2(C) will be called hyperbolic horizontal if

g−1(t)
dg

dt
(t) = B(t)

for some curve of matrices B(t) in p. The left invariant distribution Hh(g) = {gB: B ∈ p} will be called the hyperbolic
connection.
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Definition 2.5.

(a) The length of any spherical horizontal curve (g1(t), g2(t)) in an interval [0, T ] is equal to
∫ T

0 ‖P(t)‖s dt .

(b) The length of a hyperbolic horizontal curve g(t) in [0, T ] is equal to
∫ T

0 ‖B(t)‖h dt .

It can be easily shown that the projection X(t) = ( x0+ix1 x2+ix3
−x2+ix3 x0−ix1

)
on S3 of any spherical horizontal curve

(p(t), q(t)) is a solution of dX
dt

(t) = X(t)(2q(t)P (t)q(t)∗) and

T∫
0

√
dx0

ds

2

+ dx1

ds

2

+ dx2

ds

2

+ dx3

ds

2

dt =
T∫

0

∥∥P(t)
∥∥

s
dt.

Similarly the length of a hyperbolic horizontal curve coincides with the Riemannian length

T∫
0

√
−dx0

ds

2

+ dx1

ds

2

+ dx2

ds

2

+ dx3

ds

2

dt

of the projected curve X(t) = g(t)g∗(t).
It can also be shown that every curve in the base manifold can be lifted to a horizontal curve and that any two

liftings differ by an element in SU2, consistent with the general theory of principal bundles.

Remark 1. The preceding paragraphs reveal that the metric induced by trace form differs by a factor of 2 from the
natural metric on the base manifold inherited from either the Euclidean or the Lorentzian metric in R

4. The present
choice of the metric offers some conveniences on the level of Lie algebras that the other choice does not do. For
instance, Pauli matrices A1,A2,A3 form an orthonormal basis relative to the trace metric and the coordinates of the
matrices in h relative to the Pauli matrices satisfy the property that the Lie bracket coincides with the cross product—a
fact that is important for this paper. Relative to the natural metric on the sphere, however, vectors Ei = 2Ai , i = 1,2,3,
are orthonormal but then [Ei,Ej ] = −2Ek and the correspondence with the cross product is changed.

2.2. Darboux curves

It follows from above that the Riemannian metric of the base manifold is induced by the left invariant metric defined
on the connection distributions in terms of the trace form. On the sphere each pair (p, q) in SU2 × SU2 defines an
orthonormal frame (v1, v2, v3) at X = pq∗ where

v1 = 2pA1q
∗ = 2pq∗(qA1q

∗), v2 = 2pA2q
∗ = 2q∗(qA2q

∗), v3 = 2pA3q
∗ = 2pq∗(qA3q

∗).
Conversely, every orthonormal frame at a point X ∈ SU2 can be represented by the tangent vectors v1 = 2XU1,
v2 = 2XU2, v3 = 2XU3 for some matrices U1,U2,U3 in h that are orthonormal relative to the trace form. There are
exactly two matrices ±q ∈ SU2 such that

U1 = qA1q
∗, U2 = qA2q

∗, U3 = qA3q
∗.

Having found q , p is uniquely defined by p = Xq .
In the case of the hyperboloid SO(1,3) is the orthonormal frame bundle of H

3 and SL2(C) is its double cover. We
will identify each g in SL2(C) with the frame

v1 = 2gB1g
∗, v2 = 2gB2g

∗, v3 = 2gB3g
∗ (12)

at X = gg∗. Conversely every orthonormal frame v1, v2, v3 at a point X ∈ H
3 can be identified with exactly two

matrices ±g ∈ SL2(C) via the above relations.

Definition 2.6. Curves g(t) in the universal covers of the orthonormal frame bundle will be called framed curves.
Framed curves defined on a fixed interval [0,L] which define an orthonormal frame v1, v2, v3 at the base curve
X(s) in the underlying symmetric space such that dX

ds
= v1(s) will be called Darboux. Darboux curves which satisfy

g(0) = I will be called anchored.
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Remark 2. Condition dX
ds

= v1(s) implies that X(s) is parametrized by arc length and therefore L is the length
of X(s). The fact that the orthonormal bundles are replaced by their universal covers does not matter in the subsequent
exposition since all Darboux curves will be anchored.

In the spherical case anchored Darboux curves g(s) = (p(s), q(s)) are the solutions of

dp

ds
(s) = p(s)P (s),

dq

ds
(s) = q(s)Q(s), P (s) − Q(s) = 2A1

satisfying the initial conditions p(0) = I , q(0) = I . Condition P(s) − Q(s) = A1 can be expressed also as

P(s) = U(s) + A1, Q(s) = U(s) − A1, where U(s) = 1

2

(
P(s) + Q(s)

)
. (13)

Definition 2.7. Anchored spherical Darboux curves are said to be reduced if the curve U(s) in (13) is of the form
U(s) = ( 0 u(s)

−ū(s) 0

)
for some complex curve u(s).

Every anchored Darboux curve (p(s), q(s)) can be transformed into a reduced Darboux curve (p̃(s), q̃(s)), without
altering the base curve X(s), by taking p̃ = ph, q̃ = qh with h(s) the solution of dh

ds
= −h(s)

( iu1(s) 0
0 −iu1(s)

)
, h(0) = I

where the matrix
( iu1(s) 0

0 −iu1(s)

)
denotes the diagonal part of U(s). Thus X(s) can be lifted also to a reduced Darboux

curve. On the other hand, reduced Darboux framed curves exclude the Serret–Frenet frames as we will see later on.
The significance of these observations will become clear further on in the paper.

Definition 2.8. Curves (p(s), q(s)) in SU2 × SU2 which are the solutions of

d

ds

(
p(s), q(s)

) = (
p(s), q(s)

)(
Λ(s),−Λ(s)

)
, Λ(0) = A1,

∥∥Λ(s)
∥∥ = 1, p(0) = q(0) = I (14)

will be called spherical horizontal-Darboux curves.

Every anchored spherical Darboux curve g(s) = (p(s), q(s)) can be transformed into a spherical horizontal-
Darboux curve

p̃(s) = p(s)R∗(s), q̃(s) = q(s)R∗(s)

for some matrix R(s) ∈ SU2, R(0) = I without altering the projected curve X(s) = p(s)q∗(s). In fact, R(s) is a
solution of dR

ds
= 1

2R(s)(P (s) + Q(s)), and p̃ and q̃ are the solutions of

dp̃

ds
= p̃

(
1

2
R(P − Q)R∗

)
= p̃

(
RA1R

∗), dq̃

ds
= q̃

(
1

2
R(Q − P)R∗

)
= q̃

(−RA1R
∗). (15)

Conversely, every curve Λ(s) ∈ h with ‖Λ(s)‖ = 1,Λ(0) = A1 can be written as Λ(s) = R(s)A1R
∗(s) for some curve

R(s) in SU2 with R(0) = I because SU2 acts transitively by conjugations on the sphere ‖Λ‖ = 1. The correspondence
between Λ and R is not bijective: if R0 → Λ then R0h → Λ for any h = (

z 0
0 z̄

)
,‖z‖ = 1.

Curves R(s) defined by Λ(s) = R(s)A1R
∗(s) with R(0) = I define spherical Darboux curves (p(s), q(s)) via

the relations (13) where U(s) = R∗(s) dR
ds

(s). If the diagonal part of U(s) is equal to zero then (p(s), q(s)) is a
reduced Darboux curve. It follows that such curves set up a bijective correspondence between the horizontal-Darboux
curves and the reduced Darboux curves. Thus every curve X(s) parametrized by arc length on the interval [0,L] with
boundary conditions X(0) = I and dX

ds
(0) = 2A1 can be lifted to a unique spherical horizontal-Darboux curve and

also to a unique reduced anchored spherical Darboux curve.
In the subsequent exposition we will be less formal and refer to the spherical horizontal-Darboux curves as the

solutions of the initial value problem

dp

ds
(s) = p(s)Λ(s),

∥∥Λ(s)
∥∥ = 1, p(0) = I, (16)

since then the second factor q(s) is defined by of dq = q(s)(−Λ(s)), q(0) = I .

ds
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Definition 2.9. Spherical horizontal-Darboux curves p(s) for which Λ(s) = R(s)A1R
∗(s) for some curve R(s) ∈ SU2

such that R(L) = R(0) = I are called frame-periodic.

Remark 3. Frame-periodicity implies not only that Λ(s) is periodic but also implies that the corresponding Dar-
boux curve (p(s), q(s)) is a solution of an equation with periodic right-hand side since the matrix U(s) is peri-
odic. However, if U(s) is periodic its diagonal part D = ( iu1 0

0 −iu1

)
is periodic and therefore h(s), the solution of

dh
ds

= −h(s)D(s), h(0) = I satisfies h(L) = I , from which it follows that the reduced Darboux curve that corresponds
to the horizontal-Darboux curve has periodic right-hand side as well.

Definition 2.10. The set of anchored spherical Darboux curves will be denoted by Ds(L). The set of spherical
horizontal-Darboux curves will be denoted by H Ds(L) and the set of frame-periodic horizontal curves by P H Ds(L).

In the case of the hyperboloid an anchored Darboux curve g(s) ∈ SL2(C) defines frames v1(s) = 2g(s)B1g
∗(s),

v2 = 2g(s)B2g
∗(s), v3(s) = 2g(s)B3g

∗(s) over the projected curve X(s) = g(s)g∗(s) such that dX
ds

= 2g(s)B1g
∗(s).

It then follows that
dg

ds
= g(s)

(
B1 + A(s)

)
(17)

for some matrix curve A(s) in h for the following reasons:
If dg

ds
= g(s)(B(s) + A(s)) with B(s) ∈ p and A(s) ∈ h, and if g̃(s) = g(s)R−1(s) for some R(s) ∈ SU2 then both

g and g̃ project onto the same curve X(s). In particular if dR
ds

= R(s)A(s) then dg̃
ds

= g̃(s)(R(s)B(s)R∗(s)). Hence

dX

ds
= 2g̃(s)

(
R(s)B(s)R∗(s)

)
g̃∗(s) = 2g(s)B(s)g∗(s) = 2g(s)B1g

∗(s),

and therefore B(s) = B1.
Similar to the spherical case, hyperbolic Darboux curves for which the diagonal part of the matrix A is equal to

zero will be called reduced. It follows that any base curve X(s) of an anchored Darboux curve is initially fixed at
X(0) = I and has a fixed initial tangent vector dX

ds
(0) = 2B1. Furthermore, it follows from above that X(s) is the

projection of a horizontal curve g̃(s) such that

g̃∗ dg̃

ds
(s) = Λ(s) = R(s)B1R

∗(s)

for some curve R(s) in SU2.

Definition 2.11. Hyperbolic horizontal curves g(s) will be called hyperbolic horizontal-Darboux if g(0) = I and

g−1(s)
dg

ds
(s) = Λ(s), Λ(s) ∈ p,

∥∥Λ(s)
∥∥

h
= 1, Λ(0) = B1. (18)

It follows that every curve X(s) on the hyperboloid parametrized by arc length on [0,L] that satisfies X(0) = I

and dX
ds

(0) = 2B1 is the projection of a unique hyperbolic horizontal-Darboux curve g(s). Moreover, the relation
Λ(s) = R(s)B1R

∗(s), R(0) = I defines an anchored hyperbolic curve g̃ = gR over X. As in the spherical case, the
correspondence between hyperbolic horizontal-Darboux curves and reduced hyperbolic anchored Darboux curves is
bijective.

It follows from above that the horizontal-Darboux curves in both the spherical and the hyperbolic case are
parametrized by matrices R(s) in SU2 which are solutions of dR

ds
= R(s)U(s), R(0) = I , with U(s) = ( 0 u(s)

−ū(s) 0

)
for some complex curve u(s) through the relations

dg

ds
= Λ(s) = R(s)CR∗(s), R(0) = I (19)

where C = A1 in the spherical case and C = B1 in the hyperbolic case.

Definition 2.12. Hyperbolic horizontal-Darboux curves g(s) are frame-periodic if Λ(s) in (2.11) satisfies Λ(s) =
R(s)B1R

∗(s) for some curve R(s) ∈ h such that R(0) = R(L) = I .
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Definition 2.13. The space of all anchored hyperbolic Darboux curves will be denoted by Dh(L), the space of hy-
perbolic horizontal-Darboux, respectively frame-periodic hyperbolic horizontal-Darboux curves will be denoted by
H Dh(L) and P H Dh(L).

In both the spherical and the hyperbolic case frame-periodicity implies that the matrix U(s) = R(s)∗ dR
ds

is smoothly
periodic. The same applies to the matrix Λ(s) = R(s)A1R

∗(s) (respectively Λ(s) = R(s)B1R
∗(s)). This implies that

the projections of frame-periodic curves necessarily have periodic curvature and torsion, but need not be closed.
Conversely, all smoothly periodic curves have periodic curvature and torsion. However, it might not be true that

smooth periodic curves in the base space lift to frame periodic curves in the orthonormal frame bundle.

3. Darboux curves as Fréchet manifolds

On the basis of the general theory developed in [6] each space of anchored or frame-periodic Darboux curves and
their horizontal projections can be considered as an infinite-dimensional Fréchet manifold. Recall that a topological
Hausdorff vector space V is called a Fréchet space if its topology is induced by a countable family of semi-norms pn,
and if it is complete relative to the semi-norms in {pn}. A Fréchet manifold is defined as follows:

Definition 3.1. A Fréchet manifold is a topological Hausdorff space equipped with an atlas whose charts take values
in open subsets of a Fréchet space V such that any change of coordinate charts is smooth.

The paper of R.S. Hamilton [6] singles out an important class of Fréchet manifolds, called tame, in which the
implicit function theorem is true. One of the main theorems in [6] is that the set of smooth mappings from a compact
interval into a finite-dimensional Riemannian manifold M is a tame Fréchet manifold. It therefore follows from the
implicit function theorem that closed subsets of tame Fréchet manifolds M, defined by the zero sets of finitely many
smooth functions on M are tame sub-manifolds of M. Since the anchored Darboux curves are particular cases of
the above situation, it follows that each of them is a tame Fréchet manifold and the same applies to their horizontal
projections. Tangent vectors and tangent bundles of Fréchet manifolds are defined in the same manner as for finite
dimensional manifolds. In particular tangent vectors at a point x in a Fréchet manifold M are the equivalence classes
of curves σ(t) in M all emanating from x (i.e., σ(0) = x), and all having the same tangent vector dσ

dt
(0) in each

equivalence class. The set of all tangent vectors at x denoted by Tx M constitutes the tangent space at x.
The tangent bundle of a Fréchet manifold M is a Fréchet manifold. A vector field X on M is a smooth mapping

from M into the tangent bundle T M such that X(x) ∈ Tx M for each x ∈ M. On tame Fréchet manifolds vector
fields can be defined as derivations in the space of smooth functions on M.

3.0.1. Tangent spaces for horizontal-Darboux curves
The calculations in this section make use of covariant derivatives which are recalled below for reader’s convenience.

Definition 3.2.

(a) The covariant derivative of a curve of tangent vectors v(s) = X(s)U(s) along a curve X(s) in SU2 is given by

DX

ds
(v)(s) = X(s)

(
dU

ds
+ 1

2

[
U(s),Λ(s)

])
(20)

where Λ(s) = X∗(s) dX
ds

(s).

(b) The covariant derivative Dg

ds
(v) of a curve of tangent vectors v(s) = g(s)U(s), U(s) ∈ p, along a horizontal curve

g(s) in SL2(C), is defined by

Dg

ds
(v)(s) = g(s)

dU

ds
(s) (21)

for all s ∈ [0,L].
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The reader can easily verify that the covariant derivative on SU2 is equal to the orthogonal projection of the
ordinary derivative in R

4 onto the tangent space of the sphere when the sphere is considered a submanifold of R
4.

On the hyperboloid, however, the notion of covariant derivative for vectors in the horizontal distribution Hh coincides
with the usual notion of covariant derivative in the base manifold H

3 in the sense that

Dπ(g)

ds

(
π∗(gV )

)
(s) = π∗

((
g(s)

dV

ds

))
(s).

The subsequent material also makes use of the following

Lemma 1. Suppose that X(s, t) is a field of curves in SU2 with its infinitesimal directions

A(s, t) = X∗(s, t)∂X

∂s
(s, t) and B(s, t) = X∗(s, t)∂X

∂t
(s, t).

Then

∂A

∂t
− ∂B

∂s
+ [A,B] = 0. (22)

Proof. On any Riemannian manifold DX

ds
( ∂X

∂t
) = DX

ds
( ∂X

∂s
). Hence,

X

(
∂B

∂s
+ 1

2
[B,A]

)
= X

(
∂A

∂t
+ 1

2
[A,B]

)
and therefore,

∂A

∂t
− ∂B

∂s
+ [A,B] = 0. �

Eq. (22) is also known as the zero-curvature equation [5].

Theorem 1.

(a) The tangent space Tp(H Ds)(L) at a spherical horizontal-Darboux curve p(s) with Λ(s) = p∗(s) dp
ds

(s) consists
of curves v(s) = X(s)V (s) with V (s) the solution of

dV

ds
(s) = [

Λ(s),V (s)
] + U(s) (23)

such that V (0) = 0, where U(s) is a curve in h subject to the conditions that U(0) = 0 and 〈Λ(s),U(s)〉s = 0.
(b) Tangent vectors v(s) = X(s)V (s) at frame-periodic horizontal-Darboux curves X(s) are generated by smoothly

periodic curves U(s) whose period is equal to L.

Proof. Let Y(s, t) denote a family of anchored horizontal-Darboux curves such that Y(s,0) = p(s). Then, v(s) =
∂Y
∂t

(s, t)t=0 is a tangent vector at X(s) for which v(0) = 0 since the curves Y(s, t) are anchored.
Let Z(s, t) and W(s, t) denote the matrices defined by

Z(s, t) = Y(s, t)∗ ∂Y

∂s
(s, t), W(s, t) = Y(s, t)∗ ∂Y

∂t
(s, t).

It follows that Λ(s) = Z(s,0), V (s) = W(s,0). Equation

∂Z

∂t
− ∂W

∂s
+ [Z,W ] = 0

for t = 0 reduces to

dV

ds
(s) = [

Λ(s),V (s)
] + U(s)

where U(s) = ∂Z (s,0).

∂t
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Since the curves s → Y(s, t) are Darboux for each t , 〈Z(s, t),Z(s, t)〉s = 1 and Z(0, t) = A1. Therefore,〈
Z(s, t),

∂Z

∂t
(s, t)

〉
= 0, and

∂Z

∂t
(0, t) = 0

which implies that 〈Λ(s),U(s)〉s = 0 and U(0) = 0.
It remains to show that any curve V (s) in h that satisfies (23) can be realized by the perturbations Y(s, t) used above.

So assume that V (s) be any solution of (23) generated by a curve U(s) with U(0) = 0 that satisfies 〈Λ(s),U(s)〉s = 0.
Let φ(t) denote any smooth function such that φ(0) = 0 and dφ

dt
(0) = 1. Define

Z(s, t) = 1

1 + φ2(t)〈U(s),U(s)〉s
(
Λ(s) + φ(t)U(s)

)
.

Evidently Z(0, t) = A1 for all t , and an easy calculation shows that 〈Z(s, t),Z(s, t)〉s = 1. Therefore Y(s, t), the
solution of

∂Y

∂s
(s, t) = Y(s, t)Z(s, t)

with Y(0, t) = I corresponds to an anchored horizontal-Darboux curve for each t . Since U(s) = ∂Z
∂t

(s,0) our proof
of part (a) is finished.

To prove part (b) assume that the curves Y(s, t) used above belong to P H Ds(L). Then, s → Z(s, t) are L-periodic
for each t , and therefore, U(s) = ∂Z

∂t
(s,0) is also L-periodic. �

Tangent spaces of H Dh(L) and P H Dh(L), obtained along similar lines as in the spherical case, are described by
the following

Theorem 2.

(a) The tangent space Tg(H Dh)(L) at a hyperbolic horizontal-Darboux curve g(s) with Λ(s) = g−1(s)
dg
ds

(s) consists
of curves v(s) = g(s)V (s) such that

dV

ds
= U(s), V (0) = 0, (24)

where U(s) is a Hermitian curve subject to the following conditions:

U(0) = 0,
〈
Λ(s),U(s)

〉
h

= 0.

(b) For frame-periodic horizontal-Darboux curves the curve dV
ds

(s) must be smoothly periodic having the period
equal to L.

Proof. Let h(s, t) denote a family of anchored horizontal-Darboux curves such that h(s,0) = g(s). Then v(s) =
∂h
∂t

(s, t)t=0 is a tangent vector at g(s) such that v(0) = 0 since the curves h(s, t) are anchored.
Let Z(s, t) and W(s, t) denote the matrices defined by

Z(s, t) = h(s, t)−1 ∂h

∂s
(s, t), W(s, t) = h(s, t)−1 ∂h

∂t
(s, t).

It follows that Λ(s) = Z(s,0) and v(s) = g(s)V (s) with V (s) = W(s,0). Then

∂Z

∂t
(s, t) = ∂W

∂s
(s, t)

is the hyperbolic analogue of the zero-curvature equation (22). For t = 0 the above equation reduces to

dV

ds
(s) = ∂W

∂s
(s,0) = U(s),

where U(s) = ∂Z (s,0). Then

∂t
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〈
Z(s, t),Z(s, t)

〉
h

= 1, and Z(0, t) = B1

imply that 〈Λ(s),U(s)〉h = 0 and U(0) = 0.
Conversely any curve V (s) in h that satisfies (24) can be realized by the perturbations h(s, t) defined in the first

part of the proof. The argument is the same as in the spherical case and will be omitted. The same applies to the proof
of part (b). �
3.1. The symplectic structure of horizontal-Darboux curves

The basic notions of symplectic geometry of infinite-dimensional Fréchet manifolds are defined through differential
forms in the same manner as for the finite-dimensional situations. In particular, differential forms ω of degree n are
mappings

ω : X (M) × · · · × X (M)︸ ︷︷ ︸
n

→ C∞(M)

that are C∞(M) multilinear and skew-symmetric. Here X (M) denotes the space of all smooth vector fields on M.

Definition 3.3. The exterior derivative dω of a form of degree n is a differential form of degree n + 1 defined by

dω(X1, . . . ,Xn+1) =
n+1∑
i=1

(−1)i+1Xi

(
ω(X1, . . . , X̂i , . . . ,Xn)

)
−

∑
i<j

(−1)i+jω
([Xi,Xj ], . . . , X̂i , . . . , X̂j ,Xn+1

)
where the roof sign above an entry indicates its absence from the expression (i.e., w(X̂1,X2) = w(X2) and
w(X1, X̂2) = w(X1)).

A differential form ω is said to be closed if its exterior derivative dω is equal to zero.

Definition 3.4. A differential form ω of degree 2 is said to be symplectic whenever it is closed and non-degenerate, in
the sense that the induced form (iXω)(Y ) = ω(X,Y ) is non-zero for each non-zero vector field X.

The differential df of a smooth function f is a form of degree 1 defined by df (v) = d
dt

f ◦σ(t)|t=0 for any smooth
curve in M such that σ(0) = x, and dσ

dt
(0) = v.

In finite dimensional symplectic manifolds with a symplectic form ω there is a unique vector field Xf such that
df = iXf

ω. Xf is called the Hamiltonian vector field induced by f , and f is called the Hamiltonian of Xf . However,
in infinite dimensional manifolds it may happen that the form df is not equal to iXw for any X ∈ X (M). This is due to
the fact that the cotangent bundle of an infinite dimensional Fréchet space is never a Fréchet manifold. Nevertheless,

Definition 3.5. A vector field X is said to be Hamiltonian if there exists a smooth function f such that

df (Y ) = ω(X,Y )

for all vector fields Y on M. The dependence of X on f shall be noted explicitly by Xf .

The manifold consisting of horizontal-Darboux curves admits a natural 2-form ω which will be defined first
for spherical horizontal-Darboux curves. In the process it will become clear how to adapt the results to hyperbolic
horizontal-Darboux curves. Let v1(s) = X(s)V1(s) and v2(s) = X(s)V2(s) denote any tangent vectors at a horizontal-
Darboux curve p(s) that is defined by dp

ds
(s) = p(s)Λ(s). According to (23) there exist unique curves U1(s) and U2(s)

such that

Ui(0) = 0,
〈
Λ(s),Ui(s)

〉 = 0

s
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and

Ui(s) = dVi

ds
(s) − [

Λ(s),Vi(s)
]
, i = 1,2. (25)

Then ω is given by

ωΛ(V1,V2) = −
L∫

0

〈
Λ(s),

[
U1(s),U2(s)

]〉
s
ds. (26)

Remark. As in finite dimensional situations the choice of sign is a matter of convention. The justification for the
above choice of sign will be given later in the paper.

Theorem 3. Both H Ds(L) and P H Ds(L) are symplectic Fréchet manifolds relative to ω defined by (26).

The following lemmas will be useful for the proof of the theorem.

Lemma 2.[
A, [B,C]] = 〈A,C〉sB − 〈A,B〉sC

for any elements A,B,C in h.

We leave the proof to the reader.

Lemma 3. Suppose that v(s) = g(s)V (s) is a tangent vector at a horizontal-Darboux curve g(s). Let U(s) be defined
by (23). Then there exists a curve C(s) in k such that

U(s) = [
Λ(s),C(s)

]
.

Proof. The mapping C → [Λ(s),C(s)] restricted to the orthogonal complement of Λ(s) is surjective. Since U(s) is
orthogonal to Λ(s) the proof follows. �
Proof of the theorem. The proof is the same for each of H Ds(L) and P H Ds(L) and will be presented formally
without any reference to the underlying space.

Evidently ω is skew-symmetric. To show that it is non-degenerate, assume that ωΛ(V1,V ) = 0 for all tangent
vectors gV . Let U1(s) correspond to V1(s) defined by Eqs. (25). Then U(s) = [Λ(s),U1(s)] satisfies U(0) = 0, and
〈Λ(s),U(s)〉s = 0. Therefore the corresponding vector gV with V the solution of Eq. (25) belongs to the tangent
space at g. It follows from Lemma 2 that[

U1, [Λ,U1]
] = 〈U1,U1〉sΛ = ‖U1‖2

sΛ.

Therefore,〈
Λ(s),

[
U1(s),U(s)

]〉
s
= ∥∥Λ(s)

∥∥2
s

∥∥U1(s)
∥∥2

s
= ∥∥U1(s)

∥∥2
s

which implies that U1(s) = 0 since 0 = ωΛ(V1,V ) = ∫ L

0 ‖U1(s)‖2 ds. But then (25) implies that V1(s) = 0. Hence, ω

is non-degenerate.
To show that ω is closed let vi(s) = g(s)Vi(s), 1 � i � 3 denote any three tangent vectors at a fixed Darboux curve

g(s). It is required to show (Definition 3.3) that

dω(X1,X2,X3) =
∑

cyclic

Xi

(
ω(Xj ,Xk)

) +
∑

cyclic

ω
([Xi,Xj ],Xk

) = 0 (27)

where Xi denote any vector fields such that Xi(g) = vi for each i = 1,2,3.
Let Xi(z) = zZi, i = 1,2,3 denote vector fields over Darboux base curves z with Zi the solutions of

dZi
(s) = [

Λz(s),Zi(s)
] + Ui(s) where Λz = z∗ dz

.

ds ds
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Let Ci(s) denote the curves such that Ui(s) = [Λ(s),Ci(s)] (Lemma 3). Then, dVi

ds
= [Λ,Vi + Ci], and an easy

calculation based on Jacobi’s identity yields

d

ds

([Vi,Vj ]
) = [

Λ, [Vi,Vj ]
] + [[Λ,Ci],Vj

] + [
Vi, [Λ,Cj ]

]
.

Therefore,

∑
cyclic

ω
([Xi,Xj ],Xk

) =
∑

cyclic

L∫
0

〈
Λ,

[[[Λ,Ci],Vj

] + [
Vi, [Λ,Cj ]

]
, [Λ,Ck]

]〉
s
ds

= −
∑

cyclic

L∫
0

〈
Λ,

[(〈Vi,Λ〉sCj − 〈Vj ,Λ〉sCi

) + (〈Vj ,Ci〉sΛ − 〈Vi,Cj 〉sΛ
)
, [Λ,Ck]

]〉
s
ds

=
∑

cyclic

L∫
0

〈Vj ,Λ〉s〈Ci,Ck〉s − 〈Vi,Λ〉s〈Cj ,Ck〉s ds = 0.

The calculations involving Xi(ω(Xj ,Xk)) in (27) require additional notations. Let t → zi(s, t) denote the integral
curves of the vector field Xi that originate at g(s) for t = 0, and let

∂zi

∂t
(s, t) = zi(s, t)Zi

(
zi(s, t)

)
and

∂zi

∂s
(s, t) = zi(s, t)Λi

(
zi(s, t)

)
.

For simplicity of notation let Zi(zi(s, t)) and Λi(zi(s, t)) be denoted by Zi(s, t) and Λi(s, t) Then

∂Λi

∂t
− ∂Zi

∂s
+ [Λi,Zi] = 0, (28)

which at t = 0 reduce to

Ui − dVi

ds
+ [Λ,Vi] = 0.

As in the preceding calculation, Ui will be represented by Ui = [Λ,Ci].
Then,

Xi

(
ω(Xj ,Xk)

) = ∂

∂t

L∫
0

〈
Λi(s, t),

[[
Λj(s, t),Cj

]
,
[
Λk(s, t),Ck

]]〉
s
ds

∣∣
t=0

=
L∫

0

〈
∂Λi

∂t
(s, t),

[[
Λj(s, t),Cj

]
,
[
Λk(s, t),Ck

]]〉
s

ds

∣∣∣∣
t=0

+
L∫

0

〈
Λi(s, t),

[[
∂Λj

∂t
(s, t),Cj

]
,
[
Λk(s, t),Ck

]]〉
s

ds
∣∣
t=0

+
L∫

0

〈
Λi(s, t),

[[
Λj(s, t),Cj

]
,

[
∂Λk

∂t
(s, t),Ck

]]〉
s

ds

∣∣∣∣
t=0

=
L∫

0

〈
Ui, [Uj ,Uk]

〉
s
ds +

L∫
0

〈
Λ,

([[Uj ,Cj ], [Λ,Ck]
] + [[Λ,Cj ], [Uk,Ck]

])〉
s
ds.

The first integral
∫ L

0 〈Ui, [Uj ,Uk]〉s ds is equal to zero because 〈Ui, [Uj ,Uk]〉s is the volume of the parallelepiped
with sides Ui,Uj ,Uk each of which is in the plane orthogonal to Λ.
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The second integral
∫ L

0 〈Λ,([[Uj ,Cj ], [Λ,Ck]] + [[Λ,Cj ], [Uk,Ck]])〉s ds is also equal to zero because〈
Λ,

([[Uj ,Cj ], [Λ,Ck]
] + [[Λ,Cj ], [Uk,Ck]

])〉
s

= −〈
Λ,

(〈[Uj ,Cj ],Λ
〉
s
Ck − 〈[Uj ,Cj ],Ck

〉
s
Λ − 〈[Uk,Ck],Λ

〉
s
Cj − 〈[Uk,Ck],Cj

〉
s
Λ

)〉
s

= 〈[Uk,Ck],Cj

〉
s
− 〈[Uj ,Cj ],Ck

〉
s
.

Since Uk,Ck,Cj are all in the plane orthogonal to Λ the preceding expression is equal to zero.
Thus ω is closed, and hence symplectic. �

Corollary 1. The 2-form ω defined on the space of anchored hyperbolic horizontal-Darboux curves given by

ωΛ(V1,V2) = 1

i

L∫
0

〈
Λ(s),

[
DV1

ds
(s),

dV2

ds
(s)

]〉
h

ds (29)

for any tangent vectors V2(s),V2(s) at a horizontal curve g(s) is symplectic.

Proof. Recall that tangent vectors at a horizontal curve g(s), defined by Theorem 2, are of the form v(s) = g(s)V (s)

with V (s) a Hermitian curve that satisfies the following conditions:

V (0) = 0,
dV

ds
(0) = 0,

〈
Λ(s),

dV

ds
(s)

〉
h

= 0.

Let

Λ̃ = iΛ, Ũ1 = i
dV1

ds
, Ũ2 = i

dV2

ds
.

Since [p,p] = h and ip = h, matrices Λ̃, Ũ1, Ũ2 belong to h and satisfy 〈Λ̃, Ũi〉h = 0 for i = 1,2. Therefore,

ωΛ(V1,V2) = 1

i

L∫
0

〈
Λ(s),

[
dV1

ds
(s),

dV2

ds
(s)

]〉
h

ds

= −
L∫

0

〈
Λ̃(s),

[
Ũ1(s), Ũ2(s)

]〉
s
ds

coincides with the form given in Definition 26. �
The isomorphism ip = h, apart from justifying the choice of sign in (26), also makes transparent the proof of the

following theorem.

Theorem 4. Both H Dh(L) and P H Dh(L) are symplectic manifolds relative to ω defined by Corollary 1.

Remark 4. It may be appropriate to point out that both the spherical and the hyperbolic symplectic form defined above
are isomorphic to the symplectic structure of anchored loops on the sphere S2 given explicitly by

ωλ(u1, u2) =
∫

λ(s) · (u1(s) × u2(s)
)
ds

where u1(s) and u2(s) are tangent vectors at λ(s) on S2. For when λ, u1and u2 are identified with coordinates vectors
of Λ, U1 and U2 relative to the Pauli matrices, then the coordinate vector of [U1,U2] is given by the cross product
u1 × u2. Therefore,∫ 〈

Λ, [U1,U2]
〉
s
ds =

∫
λ(s) · (u1(s) × u2(s)

)
ds.
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In each of the two cases the right action of SU2 extends to the space of anchored horizontal-Darboux curves with
(g, a) → ag(s)a∗ for each horizontal curve g(s) and each a ∈ SU2. This action is symplectic relative to the forms used
in this paper and J (g) = ∫ L

0 Λ(s)ds is the moment map associated with this action (under the implicit assumption
that the dual g∗ of the Lie algebra g is identified with g via the trace form).

The moment map induces a function JA(g) = ∫ L

0 〈Λ(s),A〉ds on the space of horizontal anchored curves for each
element A ∈ g. The Hamiltonian vector field induced by this function coincides with the infinitesimal generator of the
action-induced one-parameter group of transformations {etAγ e−tA}. Then it is well known [1] that J is an integral of
motion for each Hamiltonian function which is invariant under the action.

The moment map will be taken up again in the problems of mathematical physics further down in the text. There
is another symplectic form on the space of anchored curves given by the following expression:

ΩΛ(V1,V2) =
L∫

0

〈
Λ, [V1,V2]

〉
ds.

Such a form is mentioned elsewhere in the literature (see for instance [2,3,14]). This form is compatible with the
form used in this paper and can be used to get the integrability results for systems which are bi-Hamiltonian [15].
However, such investigations seem too particular for the scope of this paper and will not be pursued here.

4. The Hamiltonian flow of 1
2

∫ L
0 k2(s) ds

Recall now that the geodesic curvature κ(s) of a curve x(s) on a Riemannian manifold M is defined by ‖Dx

ds
( dx

ds
)‖

provided that ‖ dx
ds

‖ = 1. Spherical curves which are the projections of Darboux curves are parametrized by arc length
and

DX

ds

(
dX

ds

)
(s) = 2X(s)

(
dΛ

ds
+ 1

2

[
Λ(s),Λ(s)

]) = 2X(s)
dΛ

ds
.

Therefore, κ(s) = ‖ dΛ
ds

‖s . In the hyperbolic case κ(s) = ‖ dΛ
ds

‖h where Λ(s) is the matrix that defines the horizontal
lift of a base curve X(s). Since every curve in the base manifold with proper initial conditions can be lifted to a
horizontal-Darboux curve the above formulas are valid for any base curve.

Consider now any curve R(s) in SU2 that satisfies either Λ(s) = R(s)A1R
∗(s) or Λ(s) = R(s)B1R

∗(s). Each such
R(s) defines an anchored Darboux curve over X(s) provided that R(0) = I . Suppose that

A(s) = R∗(s)dR

ds
= u1(s)A1 + u2(s)A2 + u3(s)A3.

The corresponding Darboux curve is reduced precisely when u1 = 0. In the spherical case

dΛ

ds
= d

ds

(
R(s)A1R

∗(s)
) = u3R(s)A2R

∗(s) − u2R(s)A3R
∗(s),

as can be easily read from Table 1, and therefore

κ2(s) = u2
2(s) + u2

3(s). (30)

This formula remains unchanged in the hyperbolic case as can be verified by an analogous argument.
The expression for the torsion τ associated with X(s) depends on the choice of the frame above X. Recall now

that the Serret–Frenet frame v1(s), v2(s), v3(s) along a curve X(s) is defined through the following relations:

dX

ds
= v1,

DX

ds
(v1) = κv2,

DX

ds
(v2) = −κv1 + τv3,

DX

ds
(v3) = −τv2.

In the case that R(s) defines the Serret–Frenet frame, u2 = 0, u1 + 1
2 = τ on the sphere and u1 = τ on the hyperboloid,

and u3 = κ . These details will be left to the reader.
Consider now the functional

1

2

L∫
k2(s) ds = 1

2

L∫ ∥∥∥∥dΛ

ds

∥∥∥∥2

ds
0 0
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on the space of frame-periodic horizontal-Darboux curves. Here it will be understood that Λ(s) is either a periodic
Hermitian matrix and the metric is defined by trace form, or Λ(s) is periodic skew-Hermitian and the metric is defined
by the negative of the trace form.

It will be shown below that the Hamiltonian vector field Xf obtained through the symplectic structure on the
space of frame-periodic horizontal-Darboux curves leads to Heisenberg’s magnetic equation and the non-linear
Schroedinger’s equation. A derivation of this fact, together with the connections to the known results in the litera-
ture constitute the subject matter for the remaining part of the paper.

4.1. Heisenberg’s magnetic equation

Although conceptually alike, the calculations in the spherical setting are different in several aspects from those in
the hyperbolic setting and will be done separately in each of the above mentioned cases. For notational simplicity the
inner products in both cases will be denoted by the single symbol 〈,〉 and the same will apply to the induced norms.

Hyperbolic Darboux curves. To calculate the directional derivative dfΛ(V ), let ĝ(s, t) be a family of anchored
horizontal-Darboux curves that are the solutions of

∂ĝ

∂s
= ĝ(s, t)Λ̂(s, t)

such that ĝ(s,0) = g(s), Λ̂(s,0) = Λ(s), ∂Λ̂
∂t

(s,0) = dV
ds

(s). The directional derivative dfΛ(V ) is given by

dfΛ(V ) = 1

2

∂

∂t

L∫
0

b

〈
∂Λ̂

∂s
(s, t),

∂Λ̂

∂s
(s, t)

〉
ds

∣∣∣∣
t=0.

Then

1

2

∂

∂t

L∫
0

〈
∂Λ̂

∂s
(s, t),

∂Λ̂

∂s
(s, t)

〉
ds

∣∣∣∣
t=0

=
L∫

0

〈
∂Λ̂

∂s
(s, t),

∂

∂s

∂Λ̂

∂t
(s, t)

〉
ds

∣∣∣∣
t=0

=
L∫

0

〈
dΛ

ds
,

d

ds

(
dV

ds

)〉
ds

= −
L∫

0

〈
d2Λ

ds2
,
dV

ds

〉
ds +

〈
dΛ

ds
,
dV

ds

〉∣∣∣∣s=L

s=0
.

In the space of frame-periodic horizontal-Darboux curves the boundary terms 〈 dΛ
ds

, dV
ds

〉|s=L
s=0 are equal to 0 because

of periodicity. Consequently,

dfΛ(V ) = −
L∫

0

〈
d2Λ

ds2
,
dV

ds

〉
ds.

The Hamiltonian vector field is of the form Xf (g) = gF for some Hermitian matrix F(s) that satisfies

dfΛ(V ) = 1

i

L∫
0

〈
Λ(s),

[
dF

ds
,
dV

ds

]〉
ds

for an arbitrary tangential direction V (s). The above is equivalent to

L∫ 〈(
d2Λ

ds2
+ 1

i

[
Λ(s),

dF

ds

])
,
dV

ds

〉
ds = 0. (31)
0
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Since the mapping U → i[Λ,U ] is bijective on the space of Hermitian matrices orthogonal to Λ(s) there exists a
Hermitian matrix U(s) such that U(0) = 0 and dV

ds
= i[Λ(s),U(s)]. Then Eq. (31) becomes

L∫
0

〈(
i

[
d2Λ

ds2
,Λ(s)

]
+

[[
Λ(s),

dF

ds

]
,Λ(s)

])
,U(s)

〉
ds = 0.

It follows that

i

[
d2Λ

ds2
,Λ(s)

]
+

[[
Λ(s),

dF

ds

]
,Λ(s)

]
= 0 (32)

because U(s) is sufficiently arbitrary. Since[[A,B],C] = 〈B,C〉A − 〈A,C〉B
for any Hermitian matrices A,B,C, as can be readily verified through Table 1, [Λ(s), [Λ(s), dF

ds
]] = − dF

ds
and

Eq. (32) becomes i[ d2Λ

ds2 ,Λ(s)] − dF
ds

= 0.
It follows that

Xf (g) = g(s)F (s) with F(s) = i

s∫
0

[
d2Λ

dx2
(x),Λ(x)

]
dx

is the Hamiltonian vector field that corresponds to f .
The integral curves t → g(s, t) of Xf are the solutions of the following partial differential equations

∂g

∂t
(s, t) = g(s, t)i

s∫
0

[
d2Λ

dx2
(x, t),Λ(x, t)

]
dx, (33)

∂g

∂s
(s, t) = g(s, t)Λ(s, t). (34)

The equality of mixed partial derivatives Dg

ds
(
∂g
∂t

) = Dg

dt
(
∂g
∂s

) implies that the matrices Λ(s, t) evolve according to

∂Λ

∂t
(s, t) = i

[
∂2Λ

∂s2
,Λ(s, t)

]
. (35)

Eq. (35) when expressed in terms of the coordinates λ(s, t) of Λ(s, t) relative to the basis of Hermitian Pauli
matrices becomes:

∂λ

∂t
(s, t) = λ(s, t) × ∂2λ

∂s2
(s, t). (36)

Eq. (36) is well known in the literature in applied mathematics. L.D. Faddeev and L.A. Takhtajan refer to it as the
continuous isotropic Heisenberg ferromagnetic model [5, Part II, Chapter 1] which they treat in an ad hoc manner as
an equation in the space of Hermitian matrices. V.I. Arnold and B. Khesin [2] connect (36) to the filament equation
which they further consider as a special type of a Landau–Lifschitz equation on so3(R).

Spherical Darboux curves. The derivation of the corresponding Hamiltonian equations on the sphere is simi-
lar to the preceding case except for the details related to the covariant derivative. Recall that the tangent space
TX(Horiz(Ds)(L)) at an anchored spherical horizontal-Darboux curve X(s) consists of tangent curves v(s) =
X(s)V (s) with V (s) the solution of

dV

ds
(s) = [

Λ(s),V (s)
] + U(s) (37)

with V (0) = 0. The matrix Λ(s) is the tangent vector of X, i.e.,
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dX

ds
(s) = X(s)Λ(s)

and U(s) is a curve in h subject to U(0) = 0 and 〈Λ(s),U(s)〉 = 0.
Let v(s) = X(s)V (s) be a fixed tangent vector at an anchored horizontal-Darboux curve X(s). To find the appro-

priate expression for the directional derivative dfX(V ) at X in the direction V , let Y(s, t) denote a family of anchored
horizontal-Darboux curves such that Y(s,0) = X(s) and such that v(s) = ∂Y

∂t
(s, t)t=0.

Let Z(s, t) denote the matrices defined by

∂Y

∂s
(s, t) = Y(s, t)Z(s, t).

It follows that Λ(s) = Z(s,0), and that V (s) is the solution of (37) with U(s) = ∂Z
∂t

(s,0).
Then,

dfΛ(V ) = 1

2

∂

∂t

L∫
0

〈
∂Z

∂s
(s, t),

∂Z

∂s
(s, t)

〉
ds

∣∣∣∣
t=0

=
L∫

0

〈
dΛ

ds
(s),

dU

ds
(s)

〉
ds

= −
L∫

0

〈
d2Λ

ds2
(s),U(s)

〉
ds +

〈
dΛ

ds
(s),U(s)

〉s=L

s=0
.

Analogous to the hyperbolic case the boundary terms vanish in the frame-periodic case, and therefore

dfX(V ) = −
L∫

0

〈
d2Λ

ds2
,U(s)

〉
ds. (38)

The Hamiltonian vector field Xf that corresponds to f is of the form

Xf (X)(s) = X(s)F (s)

for some curve F(s) ∈ h. Since Xf (X) ∈ TX(Horiz(P D)s(L)), F(s) is the solution of

dF

ds
(s) = [

Λ(s),F (s)
] + Uf (s), F (0) = 0

for some curve Uf (s) ∈ h that satisfies

Uf (0) = 0 and
〈
Λ(s),Uf (s)

〉 = 0.

The curve Uf (s) is determined by the symplectic form ω with

dfΛ(U) = −
L∫

0

〈
Λ(s),

[
Uf (s),U(s)

]〉
ds (39)

where U(s) is an arbitrary curve in h that satisfies U(0) = 0 and 〈Λ(s),U(s)〉 = 0. Eqs. (38) and (39) yield

L∫
0

〈
d2Λ

ds2
− [

Λ(s),Uf (s)
]
,U(s)

〉
ds = 0. (40)

Then U(s) can be written as U(s) = [Λ(s),C(s)] where C(s) is any curve that satisfies C(0) = 0, in which case (40)
becomes

L∫ 〈[
d2Λ

ds2
(s),Λ(s)

]
− [[

Λ(s),Uf (s)
]
,Λ

]
,C(s)

〉
ds = 0. (41)
0
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Since C(s) is arbitrary,[
d2Λ

ds2
,Λ

]
− [[Λ,Uf ],Λ] = 0. (42)

Lemma 2 implies that[[Λ,Uf ],Λ] = Uf

and therefore,

Uf = −
[
Λ,

d2Λ

ds2

]
.

The integral curves t → X(s, t) of Xf are the solutions of

∂X

∂t
(s, t) = X(s, t)F (s, t), and

∂X

∂s
= X(s, t)Λ(s, t) (43)

where F(s, t) is the solution of ∂F
∂s

(s, t) = [Λ(s, t),F (s, t)] − [Λ(s, t), ∂2Λ

∂s2 (s, t)]. But then zero-curvature equation
(22) implies that

∂Λ

∂t
− ∂F

∂s
+ [Λ,F ] = 0,

and therefore

∂Λ

∂t
(s, t) =

[
∂2Λ

∂s2
(s, t),Λ(s, t)

]
. (44)

Thus in both the hyperbolic and the spherical case Λ(s, t) evolves according to the same equation; in the hyperbolic
case Λ is Hermitian, while in the spherical case, Λ is skew-Hermitian. To pass from the hyperbolic case to the spherical
case multiply Λ(s, t) in Eq. (35) by i.

Definition 4.1. Eqs. (35) and (44) will be referred to as Heisenberg’s magnetic equations.

4.2. The non-linear Schroedinger equation

Each solution Λ(s, t) of Heisenberg’s magnetic equation generate a family of matrices R(s, t) periodic in s for each
t through the relations Λ(s, t) = R(s, t)B1R

∗(s, t) in the hyperbolic case, and through Λ(s, t) = R(s, t)A1R
∗(s, t) in

the spherical case. Curves R(s, t) then evolve according to

∂R

∂s
(s, t) = R(s, t)U(s, t), and

∂R

∂t
= R(s, t)V (s, t)

for some matrices U(s, t) and V (s, t) in h, which further conform to the zero-curvature equation

∂U

∂t
(s, t) − ∂V

∂s
(s, t) + [

U(s, t),V (s, t)
] = 0. (45)

Moreover, V (0, t) = 0 for all t because horizontal-Darboux curves are anchored at s = 0.
The results that follow make a use of the following formulas:[

A, [A,B]] = 〈A,B〉A − 〈A,A〉B, for A and B in p, (46)

and [[A,B],B] = 〈B,B〉A − 〈A,B〉B, for A in h and B in p. (47)

Theorem 5. Let U(s, t) = ∑
uj (s, t)Aj generate a solution of Heisenberg’s magnetic equation and let u(s, t) =

u2(s, t) + iu3(s, t). Then,

ψ(s, t) = u(s, t) exp

(
i

s∫
u1(x, t) dx

)

0
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is a solution of the non-linear Schroedinger’s equation

∂

∂t
ψ(s, t) = i

∂2ψ

∂s2
(s, t) + i

(
1

2

∣∣ψ(s, t)
∣∣2 + c

)
ψ(s, t), (48)

where c(t) = − 1
2 |u(0, t)|2.

Proof. The proof of the theorem will be done for the hyperbolic case although the arguments are the same in both
cases, as will become clear below.

Since Λ(s, t) = R(s, t)B1R
∗(s, t)

∂Λ

∂t
= ∂

∂t

(
R(s, t)B1R

∗(s, t)
) = R[B1,V ]R∗, ∂Λ

∂s
= R[B1,U ]R∗ and

∂2Λ

∂s2
= R

([[B1,U ],U] +
[
B1,

∂U

∂s

])
R∗.

The fact that Λ(s, t) evolves according to Heisenberg’s magnetic equation implies that

[B1,V ] = i

([[[B1,U ],U]
,B1

] +
[[

B1,
∂U

∂s

]
,B1

])
. (49)

Relations (46) imply that[[B1,U ],U] = 〈U,B1〉U − 〈U,U 〉B1 = −(
u2

2 + u2
3

)
B1 + u1u2B2 + B3u1u3,

hence[[[B1,U ],U]
,B1

] = u1u3A2 − u1u2A3.

Similarly,[
B1,

∂U

∂s

]
= ∂u3

∂s
B2 − ∂u2

∂s
B3, and

[[
B1,

∂U

∂s

]
,B1

]
= −∂u3

∂s
A3 − ∂u2

∂s
A2.

Eq. (49) then reduces to

[B1,V ] = i

(
u1(u3A2 − u2A3) − ∂u3

∂s
A3 − ∂u2

∂s
A2

)
= −u1(u3B2 − u2B3) + ∂u3

∂s
B3 + ∂u2

∂s
B2.

If V = v1A1 + v2A2 + v3A3 then [B1,V ] = v3B2 − v2B3, which, when combined with the above, yields

v2 = −u1u2 − ∂u3

∂s
, and v3 = −u1u3 + ∂u2

∂s
,

or

v(s, t) = −u1(s, t)u(s, t) + i
∂u

∂s
(s, t), (50)

where u = u2 + iu3 and v = v2 + iv3. The zero curvature equation implies that

∂u1

∂t
= ∂v1

∂s
+ 1

2

∂

∂s

(
u2

2 + u2
3

)
, (51)

and that

∂u

∂t
= i

∂2u

∂s2
− 2u1

∂u

∂s
− ∂u1

∂s
u − i

(
v1 + u2

1

)
u. (52)

Eq. (51) implies that

∂

∂t

s∫
u1(x, t) dx = v1(s, t) + 1

2

(
u2

2(s, t) + u2
3(s, t)

) + c(t)
0
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where c(t) = −v1(0, t) − 1
2 (u2

2(0, t) + u2
3(0, t)) = − 1

2 (u2
2(0, t) + u2

3(0, t)), since V (0, t) = 0. The substitution of
v1(s, t) = ∂

∂t

∫ s

0 u1(x, t) dx − 1
2 |u(s, t)|2 − c into (52) leads to

∂u

∂t
+ iu

∂

∂t

s∫
u1(t, x) dx = i

∂2u

∂s2
− 2u1

∂u

∂s
− u

∂u1

∂s
− i

(
−1

2
|u|2 − c + u2

1

)
u. (53)

After the multiplication by exp (i
∫ s

0 u1(x, t) dx) Eq. (53) can be expressed as

∂

∂t
ψ(s, t) =

(
i
∂2u

∂s2
− 2u1

∂u

∂s
− u

∂u1

∂s
− i

(
u2

1 − 1

2
|u|2 − c

)
u

)
exp

(
i

s∫
0

u1(x, t) dx

)
e−ict

where

ψ(s, t) = u(s, t) exp

(
i

s∫
0

u1(x, t) dx

)
. (54)

Since

∂ψ

∂s
=

(
∂u

∂s
+ iuu1

)
exp

(
i

s∫
0

u1(x, t) dx

)

and

∂2ψ

∂s2
=

(
∂2u

∂s2
+ 2iu1

∂u

∂s
+ iu

∂u1

∂s
− u2

1u

)
exp

(
i

s∫
0

u1(x, t) dx

)
.

It follows that

i
∂2ψ

∂s2
=

(
i
∂2u

∂s2
− 2u1

∂u

∂s
− u

∂u1

∂s
− iu2

1u

)
exp

(
i

s∫
0

u1(x, t) dx

)
,

and therefore

∂

∂t
ψ(t, s) = i

∂2ψ

∂s2
+ i

(
1

2
|ψ |2 + c(t)

)
ψ. �

In the spherical case the evolution along Heisenberg’s magnetic equation leads to

[A1,V ] =
([[[A1,U ],U]

,A1
] +

[[
A1,

∂U

∂s

]
,A1

])
. (55)

The preceding equation is the same as Eq. (49) because A1 = iB1. Therefore the calculations that led to the non-linear
Schroedinger equation in the hyperbolic case are equally valid in the spherical case with the same end result.

The steps taken in the passage from Heisenberg’s equation to the Schroedinger’s equation are reversible. Any
solution ψ(s, t) of (48) generates matrices

U = 1

2

(
0 ψ

−ψ 0

)
and V = 1

2

(− 1
2 i(|ψ |2 + c(t)) i

∂ψ
∂s

i
∂ψ̄
∂s

1
2 i(|ψ |2 + c(t))

)
that satisfy the zero-curvature equation. Therefore, there exist unique curves R(s, t) in SU2 with boundary conditions
R(0, t) = I that evolve according to the differential equations:

∂R

∂s
(s, t) = R(s, t)U(s, t),

∂R

∂t
(s, t) = R(s, t)V (s, t).

Such curves define Λ(s, t) through familiar formulas Λ(s, t) = R(s, t)B1R
∗(s, t) or Λ(s, t) = R(s, t)A1R

∗(s, t) de-
pending on the case. It then follows that Λ is a solution of the Heisenberg’s magnetic equation because ψ = u and
v = i ∂u , and each Eqs. (49) and (55) is satisfied.
∂s
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Remark 5. Theorem 5 reveals that SO2 = {( z 0
0 z̄

)
, |z| = 1} is a symmetry group for the non-linear Schroedinger

equation, reflected in the fact that ψ(s, t) = u(s, t) exp(i
∫ s

0 u1(x, t) dx) is a solution of the non-linear Schroedinger
equation independently of u1. That fact, together with the results presented in [7], motivated calculations with a
general A(s, t) rather than the one with diagonal part equal to zero.

To correlate the findings of this paper with the related existing literature, which almost exclusively deals with
curves in R

3, it seems appropriate to include a discussion of the only remaining simply connected three dimensional
symmetric space, namely the Euclidean space.

4.3. Euclidean Darboux curves

The most convenient way to pass to Euclidean Darboux curves is to realize the Euclidean group of motions as the
semi direct product SH (p) = p � H where H = SU2.

Recall that the semi direct product of a vector space V and a group H which acts linearly on V consists of pairs
(x,R) with x ∈ V and R ∈ H with the group operation given by (x,R)(y,T ) = (x + Ry,RT ). In this general setting
the Lie algebra sH (V ) of SH (V ) consists of pairs (a,A) with a ∈ V and A ∈ h with the Lie bracket[

(a,A), (b,B)
] = (

A(b) − B(a), [A,B]).
In our specific situation H = SU2 acts on the space of Hermitian matrices p by conjugations. In this context, A(a) =
[a,A] for a ∈ p and A ∈ h, and the Lie bracket is given by[

(a,A), (b,B)
] = ([b,A] − [a,B], [A,B]).

As a vector space p � h can be identified with sl2(C) via the embedding (a,A) → a + A for any (a,A) in p � su2.
With this identification, sH (V ) = p ⊕ h and

[p,p] = 0, [p,h] = p, [h,h] = h.

The group SH (p) acts on p by (x,R)(y) = R(y) + x for each (x,R) ∈ SH (p) and each y ∈ p. The action is
transitive, and H is equal to the isotropy group of the orbit through the origin y = 0. Then p, when identified with the
orbit through the origin, becomes the coset space SH (p)/H .

The space of Hermitian matrices endowed with the metric induced by the trace form becomes a three dimensional
Euclidean space E

3. The preceding action extends to an action on the tangent bundle of E
3 in which a tangent vector v

at y is taken to the tangent vector R(v) at x under the action by an element (x,R) ∈ SH (E3). The action on the tangent
bundle extends further to an action on the orthonormal frame bundle of E3 such that a frame (v1, v2, v3) at a point
y ∈ E

3 is taken to the frame (R(v1),R(v2),R(v3)) at x under the action by an element (x,R) ∈ SH (E3). The kernel of
this action consists of ±I , and hence SH (E3)/{±I } can be identified with the positively oriented orthonormal frame
bundle of E

3 as the orbit through the standard frame (B1,B2,B3) at the origin.
In the left-invariant representation of the tangent bundle of SH (E3) tangent vectors at a point (x,R) are given

by pairs (R(a),RA) with a ∈ E
3 and A ∈ h. Hence curves (x(s),R(s)) in SH (E3) are represented by differential

equations

dx

ds
(s) = R(s)

(
a(s)

)
,

dR

ds
(s) = R(s)A(s). (56)

The terminology concerning Darboux curves in non-Euclidean cases extends naturally to the Euclidean setting. In
particular, curves (x,R) ∈ SH (E3) are Euclidean anchored Darboux curves if dx

ds
(s) = R(s)(B1), i.e., whenever

a(s) = B1, subject to further boundary conditions x(0) = 0, R(0) = I . Euclidean horizontal-Darboux curves are
the projections x(s) of Euclidean anchored Darboux curves, i.e., they are the solutions of

dx

ds
(s) = R(s)(B1), x(0) = 0

with R(s) an arbitrary curve in H such that R(0) = I . Frame-periodic Darboux curves (x,R) conform to the period-
icity of R(s) with its period equal to the length of x(s).
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For any horizontal-Darboux curve x(s)

d2x

ds2
(s) = R(s)

([
B1,A(s)

])
,

and therefore

κ2(s) =
∥∥∥∥d2x

ds2
(s)

∥∥∥∥2

= u2
2(s) + u2

3(s)

where A(s) = ∑
ui(s)Ai . The frame R(s) is a Serret–Frenet frame if A(s) = τ(s)A1 + κ(s)A3, in which case the

frame vectors T (s), N(s), B(s) are given by

T (s) = R(s)(B1), N(s) = R(s)(B2), B(s) = R(s)(B3).

The reader may easily verify that the tangent space at each anchored horizontal-Darboux curve x(s) consists of
curves v(s) such that

(a) v(0) = dv
ds

(0) = 0, and

(b) 〈 dx
ds

(s), dv
ds

(s)〉 = 0.

The space of frame-periodic Euclidean horizontal-Darboux curves inherits the symplectic structure given by Corol-
lary 1. This symplectic structure is isomorphic to the structure used by J. Millson and B.A. Zombro in [16]. More
precisely, in the Millson–Zombro paper Euclidean space E

3 is identified with so3(R) and their symplectic form is
isomorphic to the one given by Eq. (26) in view of the isomorphism between su2 and so3(R).

It can be shown by arguments identical to the ones already presented in this paper that the Hamiltonian flow
induced by the function f (x(s)) = 1

2

∫ l

0 κ2(s) ds leads to Heisenberg’s magnetic equation, and that the passage to the
non-linear Schroedinger’s equation is the same as the one presented for the non-Euclidean cases.

The present formalism clarifies Hasimoto’s first observation that ψ = κ exp(i
∫

τ dx) of a curve γ (s, t) that satisfies
the filament equation

∂γ

∂t
(s, t) = κ(s, t)B(s, t) (57)

is a solution of the non-linear Schroedinger equation [7]. In this notation, it is understood that t → γ (s, t) denotes a
family of curves in R3 parametrized by t and that B(s, t) denotes the binormal vector along the curve s → γ (s, t).

When the solution curves of the filament equation are restricted to curves parametrized by arc-length, i.e., curves
γ (s, t) such that ‖ ∂γ

∂s
(s, t)‖ = 1, then

T (t, s) = ∂γ

∂s
(t, s) and

∂T

∂s
(s, t) = κ(s, t)N(s, t) = ∂2γ

∂s2
(s, t).

Moreover, B(s, t) = T (s, t) × N(s, t). It then follows that in the space of arc-length parametrized curves the filament
equation can be written as

∂γ

∂t
= ∂γ

∂s
× ∂2γ

∂s2
. (58)

For each solution curve γ (s, t) of (58) the tangent vector T (s, t) satisfies

∂T

∂t
= T × ∂2T

∂s2
(59)

as can be easily verified by differentiating with respect to s.
Any solution T (s, t) of the preceding equation may be interpreted as the coordinate vector of Λ(s, t) relative to an

orthonormal basis in either h or p. In the first case Λ(s, t) evolves according to

∂Λ
(s, t) = i

[
∂2Λ

2
(s, t),Λ(s, t)

]

∂t ∂s
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and in the second case Λ evolves according to

∂Λ

∂t
(s, t) =

[
∂2Λ

∂s2
(s, t),Λ(s, t)

]
.

The function ψ(s, t) = u(s, t) exp (i
∫ s

0 u1(x, t) dx) generated by R(s, t) that is associated with Λ(s, t) is a solution
of the non-linear Schroedinger’s equation independently of the choice of the symmetric space (Theorem 5). When the
frame R(s, t) is a Serret–Frenet frame then:

u1 = τ , u2 = 0, u3 = κ in the Euclidean and the hyperbolic case, while
u1 = τ + 1

2 , u2 = 0, u3 = κ in the spherical case.

Hasimoto’s function κ(s, t) exp(i
∫ s

0 τ(x, t) dx) coincides with u(s, t) exp(i
∫ s

0 u1(x, t) dx) in the hyperbolic and
the Euclidean case, but not in the spherical case. Of course, the most natural frame is the reduced frame u1 = 0 which
bypasses these inessential connections with the torsion.

The geometry of the underlying space becomes visible only when the integration of the Hamiltonian equations is
carried out on the full tangent bundle of the Lie group and not just on the part of the equations that resides in the Lie
algebra g.

5. Elastic curves and solitons

For mechanical systems the Hamiltonian function represents the total energy of the system and its critical points
correspond to the equilibrium configurations. In an infinite-dimensional setting the behavior of a Hamiltonian system
at a critical point of a Hamiltonian seems not to lend itself to such simple characterizations.

For the Hamiltonian function f = 1
2

∫ L

0 k2 ds the critical points are the elastic curves. The solutions of the as-
sociated Hamiltonian system that originate at an elastic curve, instead of being stationary, form traveling waves
known as solitons (first noticed in [8]). Soliton solutions of either Heisenberg’s magnetic equation or the non-linear
Schroedinger’s equation are waves that travel at constant speeds with an elastic curves at their wave fronts. To explain
these statements in some detail it will be necessary to make a small detour into the geometry of elastic curves [10–12].

5.1. Elastic curves and their Hamiltonian systems

To maintain continuity with the material already presented and yet to keep the detour at a minimum, the discussion
will be confined to the Euclidean and the hyperbolic case. The spherical case requires adjustments in notation but is
otherwise similar to the other two cases (as demonstrated in [10], [12], and [13]).

For notational simplicity Gε will denote SH (E3) for ε = 0, and SL2(C) for ε = −1. The Lie algebra of Gε will be
denoted by gε . As vector spaces g0 and g−1 are equal to each other, but as Lie algebras they are different. Their Lie
brackets conform to the following table

Table 2

[ , ] A1 A2 A3 B1 B2 B3
A1 0 −A3 A2 0 −B3 B2
A2 A3 0 −A1 B3 0 −B1
A3 −A2 A1 0 −B2 B1 0

B1 0 −B3 B2 0 −εA3 εA2
B2 B3 0 −B1 εA3 0 −εA1
B3 −B2 B1 0 −εA2 εA1 0

Definition 5.1. The problem of finding the minimum of the integral

1

2

L∫ (
u2

2(s) + u2
3(s)

)
ds
0
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over all curves g(s) in Gε that are the solutions of
dg

ds
(s) = g(s)

(
B1 + u2(s)A2 + u3(s)A3

)
(60)

and satisfy fixed boundary conditions at s = 0 and s = L shall be called the elastic problem on Gε .

Since the elastic problem is left-invariant, the initial point can always be taken at the identity. It is evident from the
first part of the paper that

1

2

L∫
0

(
u2

2(s) + u2
3(s)

)
ds = 1

2

L∫
0

κ2(s) ds

where κ(s) is the curvature of the projected curve πε(g(s)). The set of curves (60) may be considered as a “reduced”
Darboux space for the function f (g) = 1

2

∫ L

0 κ2(s) ds for the following reasons:
For any Darboux curve g(s) that is a solution of

dg

ds
(s) = g(s)

(
B1 + u1(s)A1 + u2(s)A2 + u3(s)A3

)
g0(s) = g(s) exp(−A1

∫ s

0 u1(x) dx) projects onto the same base point as g(s) and satisfies (60). Consequently,

f
(
g(s)

) = f
(
g0(s)

)
.

Definition 5.2. The projections x(s) = πε(g(s)) of the “extremal curves” g(s) on the underlying space Gε/K are
called elastic curves.

It is known that the elastic problem has a solution for any pair of boundary points provided that L is sufficiently
large. Moreover, the solutions are the projections of integral curves of a single Hamiltonian system on the cotangent
bundle T ∗Gε of Gε [10]. Since the setting in [10] is sufficiently different from the one adopted in this paper (S3 =
SO4(R)/SO3(R) and H

3 = SO(1,3)/SO3(R) rather than S3 = SU2 and H
3 = SL2(C)/SU2) it seems more expedient

to re-do the basic results rather than quote them from [10].
To take advantage of the left-invariant symmetries, the cotangent bundle T ∗Gε will be realized as Gε × g∗

ε via
the left-translations, where g∗

ε denotes the dual of gε . Then linear functions in g∗
ε will be represented by coordinate

functions h1, h2, h3,H1,H2,H3 relative to the dual basis B∗
1 ,B∗

2 ,B∗
3 ,A∗

1,A
∗
2,A

∗
3 defined by the Pauli matrices .

An easy application of the Maximum Principle shows that the regular extremal curves of the elastic problem are
the projections of the integral curves of the Hamiltonian vector field �H defined by the Hamiltonian function

H = 1

2

(
H 2

2 + H 2
3

) + h1 (61)

induced by extremal controls

u2 = H2, u3 = H3. (62)

Remark 6. The abnormal extremal curves shall be ignored since all optimal solutions are the projections of regular
extremal curves [10].

The most direct way to get the equations of �H is via the Poisson brackets involving the variables h1, h2, h3, H1,
H2, H3. The Poisson brackets of these variables are isomorphic to the Lie brackets in Table 2, and are reproduced in
Table 3 below.

Table 3

{ , } H1 H2 H3 h1 h2 h3
H1 0 −H3 H2 0 −h3 h2
H2 H3 0 −H1 h3 0 −h1
H3 −H2 H1 0 −h2 h1 0

h1 0 −h3 h2 0 −εH3 εH2
h2 h3 0 −h1 εH3 0 −εH1
h3 −h2 h1 0 −εH2 εH1 0
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Remark 7. The reader may readily verify by appealing to the isomorphism so4(R) ∼= su2 × su2 that there exists a
basis in (su2 × su2)

∗ that conforms to the above Poisson bracket table for ε = 1.

Then Hamiltonian equations associated with (61) are given by:

dH1

ds
= {H1,H } = H2{H1,H2} + H3{H1,H3} + {H1, h1} = 0,

dH2

ds
= {H2,H } = H3{H2,H3} + {H2, h1} = −H3H1 + h3,

dH3

ds
= {H3,H } = H2{H3,H2} + H3{H3,H3} + {H3, h1} = H2H1 − h2,

dh1

ds
= {h1,H } = H2{h1,H2} + H3{h1,H3} + {h1, h1} = H3h2 − H2h3,

dh2

ds
= {h2,H } = H2{h2,H2} + H3{h2,H3} + {h2, h1} = −H3h1 + εH3,

dh3

ds
= H2{h3,H2} + H3{h3,H3} + {h3, h1} = {h3,H } = H2h1 − εH2. (63)

It is well known that

I1 = h2
1 + h2

2 + h2
3 + ε

(
H 2

1 + H 2
2 + H 2

3

)
and

I2 = h1H1 + h2H2 + h3H3

are Casimir functions on gε and hence are integrals of motion for (63), which together with H1 and H account for
four independent constants of motion. Therefore, (63) is completely integrable.

Any solution h1(s), h2(s), h3(s), H1(s), H2(s), H3(s) of (63) defines complex functions u(s) = H2(s) + iH3(s)

and w(s) = h2(s) + ih3(s). Then,

Theorem 6. There exists a number ξ such that ψ(s, t) = u(s + ξ t) is a solution of the non-linear Schroedinger’s

equation ∂ψ
∂t

= −i(
∂2ψ

∂s2 + 1
2 |ψ |2ψ) precisely when H = ε, and ξ = −H1.

Proof. It follows from Eqs. (63) that

du

ds
(s) = iH1u(s) − iw(s), and

dw

ds
= i(h1 − ε)u(s). (64)

Therefore,

∂ψ

∂t
= iξ(H1ψ − w), and

∂2ψ

∂s2
= −H 2

1 ψ + H1w + (h1 − ε)ψ.

Since H = 1
2 |ψ |2 + h1,

−i
∂ψ

∂t
−

(
∂2ψ

∂s2
+ 1

2
|ψ |2ψ

)
= ξ(H1ψ − w) − (−H 2

1 ψ + H1w + (h1 − ε)ψ + ψ(H − h1)
)

= −(ξ + H1)w + (
ξH1 + H 2

1 + ε − H
)
ψ.

The preceding equation implies that

ξ = −H1 and H = ε. � (65)

Thus the extremals which reside on energy level H = ε generate soliton solutions of the non-linear Schroedinger’s
equation traveling with speed equal to the level surface H1 = −ξ . These soliton solutions degenerate to the stationary
solution when H1 = 0. To show that periodic solutions u(s) exist on energy level H = ε requires explicit formula for
u(s) in terms of the remaining constants of motion I1 and I2.
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To begin with, note that

(H2h3 − H3h2)
2 + (H2h2 + H3h3)

2 = (
H 2

2 + H 2
3

)(
h2

2 + h2
3

)
.

Then,(
d

ds
h1

)2

= (
H2h3 − H3h2

)2 = (
H 2

2 + H 2
3

)(
h2

2 + h2
3

) − (H2h2 + H3h3)
2

= (
H 2

2 + H 2
3

)(
I1 − ε

(
H 2

1 + H 2
2 + H 2

3

) − h2
1

) − (I2 − h1H1)
2

= 2(H − h1)
(
I1 − εH 2

1 − 2ε(H − h1) − h2
1

) − (I2 − h1H1)
2

= 2h3
1 + c1h

2
1 + c2h1 + c3 (66)

where c1, c2, c3 are the constants of motion given by the following expressions

c1 = −(
H 2

1 − 2H − 4ε
)
, c2 = (

2I2H1 − 2εH 2
1 + 4εH − 2I1

)
, c3 = 2H

(
I1 − εH 2

1 − 2εH
) − I 2

2 .

Therefore, h1(s) is expressed in terms of elliptic functions, and since k2 = H 2
2 + H 2

3 = 2(H − h1) the same can be
said for the curvature of the projected elastic curve. The remaining variables u = H2 + iH3 and w = h2 + ih3 can be
integrated in terms of two angles θ and φ defined as follows:

I1 = h2
1 + |w|2 + ε

(
H 2

1 + |u|2) = h2
1 + |w|2 + ε

(
H 2

1 + 2(H − h1)
)

= (h1 − ε)2 + |w|2 + εH 2
1 + 2εH − ε2

and therefore,

(h1 − ε)2 + |w|2 = J 2 (67)

where J 2 denotes I1 − εH 2
1 − 2εH + ε2. Since J is constant along each extremal trajectory, Eq. (67) defines a sphere

along each extremal curve. The angles θ and φ are defined on that sphere by(
h1(s) − ε

) = J cos θ(s) and w(s) = J sin θ(s)eiφ(s). (68)

It follows that
dh1

ds
= −J sin θ

dθ

ds
, and

dw

ds
= w

(
cos θ

sin θ

dθ

ds
+ i

dφ

ds

)
. (69)

Furthermore,

u

w
= uw̄

|w|2 = H2h2 + H3h3 + i(H3h2 − H2h3)

J 2 − (h1 − ε)2

= I2 − h1H1 + i dh1
ds

J 2 sin2 θ

= I2 − h1H1

J 2 sin2 θ
− i

J sin θ

dθ

ds
.

According to Eqs. (64) and (68) then

w

(
cos θ

sin θ

dθ

ds
+ i

dφ

ds

)
= dw

ds

= i(h1 − ε)u =
(

iJ cos θ
(I2 − h1H1)

J 2 sin2 θ
+ cos θ

sin θ

dθ

ds

)
w

hence,

dφ

ds
= J cos θ

(I2 − h1H1)

J 2 sin2 θ
= J cos θ(I2 − εH1 − H1J cos θ)

J 2 sin2 θ
. (70)

The first line of Eq. (66) can be written also as(
dh1

)2

= 2(H − h1)|w|2 − (I2 − H1h1)
2.
ds
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The substitutions from (68) and (69) in the preceding equation define θ as the solution of the following differential
equation(

dθ

ds

)2

= 2(H − ε − J cos θ) − (I2 − H1(ε + J cos θ))2

J 2 sin2 θ
. (71)

The solutions θ(s) of (71) parametrize the extremal curves: for then φ is given by Eq. (70) and u and w by Eqs. (68)
and (69).

We now return to the question of periodicity. Evidently, both u and w are periodic whenever φ(0) = φ(L) and
θ(0) = θ(L). Soliton solutions propagate with speed −ξ = H1 on energy level H = ε. On this energy level φ(0) =
φ(L) and θ(0) = θ(L) if and only if

L∫
0

J cos θ(I2 + H1 − H1J cos θ)

J 2 sin2 θ
ds = 0 (72)

where θ denotes a closed solution of the equation(
dθ

ds

)2

= −2J cos θ − (I2 − H1(ε + J cos θ))2

sin2 θ
. (73)

It is known that there are infinitely many closed solutions for suitable constants I1, I2,H1 (for instance, in [9]),
however, we will not go into such details here.

6. Complete integrability

There are further connections between elastic curves and solutions of the non-linear Schroedinger equation that
were first noticed by J. Langer and R. Perline, namely that some of the integrals of motion for the elastic curves
correspond to the integrals of motion for the non-linear Schroedinger’s equation [14].

We will illustrate this phenomenon by considering the functional

f (γ ) =
L∫

0

κ2τ ds,

where κ and τ are the curvature and torsion of a periodic curve γ . To begin with, is well known that κ2(s)τ (s) is an
integral of motion for the elastic problem ([12] or [10]). Then f (γ ) is an integral of motion for Heisenberg’s magnetic
equation as described by the following

Theorem 7.

(a) The Hamiltonian flow of f = ∫ L

0 κ2(s)τ (s) ds is given by

∂Λ

∂t
= 2

(
∂3Λ

∂t3
−

〈
∂3Λ

∂t3
,Λ

〉
Λ

)
− 3

〈
Λ,

∂2Λ

∂t2

〉
∂Λ

∂t
. (74)

(b) Function f Poisson commutes with f0 = 1
2

∫ L

0 κ2(s) ds.

Proof. For simplicity of exposition the proof will be confined to the hyperbolic case. Other cases, which can be
analyzed similarly, will be left to the reader. The first part in the proof consists in showing that

κ2τ = −i

〈[
Λ,

dΛ

ds

]
,
d2Λ

ds2

〉
.

Suppose now that T (s) = Λ(s) denotes the Hermitian matrix that corresponds to the tangent vector of a horizontal
Darboux curve that projects onto a curve γ ∈ H

3. Then N(s) and B(s), the matrices that correspond to the normal
and the binormal vectors, are given by

N = 1 dΛ
and B(s) = 1 [

T (s),N(s)
] = − i

[
Λ,

dΛ
]
.

κ ds i κ ds
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According to the Serret–Frenet equations dN
ds

= −kΛ + τB . Therefore,

τ =
〈
dN

ds
,B

〉
= −i

〈
− 1

κ2

dκ

ds

dΛ

ds
+ 1

κ

d2Λ

ds2
,

1

κ

[
Λ,

dΛ

ds

]〉
= −i

1

κ2

〈[
Λ,

dΛ

ds

]
,
d2Λ

ds2

〉
,

and hence

κ2τ = −i

〈[
Λ,

dΛ

ds

]
,
d2Λ

ds2

〉
.

Let V (s) be an arbitrary tangent vector at a frame-periodic horizontal-Darboux curve g(s). Then the directional
derivative of f at g in the direction V is given by the following expression:

df (V ) = −i
∂

∂t

L∫
0

〈[
Z(s, t),

∂Z

∂s
(s, t)

]
,
∂2Z

∂s2
(s, t)

〉
ds

∣∣∣∣
t=0

where Z(s, t) denotes a field of Hermitian matrices such that

Z(s,0) = Λ(s) and
∂Z

∂t
(s,0) = dV

ds
(s).

It follows that

df (V ) = −i

L∫
0

〈 ...
V , [Λ,Λ̇]〉 + 〈

Λ̈, [V̇ , Λ̇]〉 + 〈
Λ̈, [Λ, V̈ ]〉ds

= −i

L∫
0

2
〈[Λ̈,Λ], V̈ 〉 − 〈[Λ̈, Λ̇], V̇ 〉

ds

= i

L∫
0

〈
2

(
d

ds

([Λ̈,Λ]) + [Λ̈, Λ̇]
)

, V̇

〉
ds

= i

L∫
0

〈
2[...Λ,Λ] + 3[Λ̈, Λ̇], V̇ 〉

ds,

where the dots indicate derivatives with respect to s. In the preceding calculations periodicity of Λ is implicitly
assumed to eliminate the boundary terms in the integration by parts.

Let now V1(s) denote the Hermitian matrix such that df (V ) = ωΛ(V1,V ) for all tangent vectors V .
Then,

i

L∫
0

〈
2[...Λ,Λ] + 3[Λ̈, Λ̇], V̇ 〉

ds = 1

i

L∫
0

〈[Λ, V̇1], V̇
〉
ds

which implies

L∫
0

〈[Λ, V̇1] + 2[...Λ,Λ] + 3[Λ̈, Λ̇], V̇ 〉
ds = 0.

When V̇ = [Λ,C] the above becomes

L∫ 〈[[Λ, V̇1],Λ
] + 2

[[...Λ,Λ],Λ] + 3
[[Λ̈, Λ̇],Λ]

,C(s)
〉
ds = 0.
0
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Since C(s) can be an arbitrary curve with C(0) = 0 the preceding integral equality reduces to[[Λ, V̇1],Λ
] + 2

[[...Λ,Λ],Λ] + 3
[[Λ̈, Λ̇],Λ] = 0.

The Lie bracket relations in Lemma 2 imply that

V̇1 + 2
(〈...Λ,Λ〉Λ − ...

Λ
) + 3〈Λ̈,Λ〉Λ̇ = 0.

Now it follows by the arguments used earlier in the paper that the Hamiltonian flow Xf satisfies

∂Λ

∂t
= 2

(...
Λ − 〈...Λ,Λ〉Λ) − 3〈Λ,Λ̈〉Λ̇.

Thus part (a) is proved.
To prove part (b) it is required to show that the Poisson bracket of f0 and f , given by the formula

{f0, f }(Λ) = ωΛ

(
V0(Λ),V1(Λ)

) = 1

i

L∫
0

〈
Λ(s),

[
V̇0(s), V̇1(s)

]〉
ds

with V̇0(Λ) = i[Λ̈,Λ] and V̇1 = −(2(〈...Λ,Λ〉Λ − ...
Λ) + 3〈Λ̈,Λ〉Λ̇), is equal to 0.

An easy calculation shows that

[V̇0, V̇1] = i
(
2
(〈...Λ,Λ̈〉) − 〈Λ,Λ̈〉〈...Λ,Λ〉) − 3〈Λ̈,Λ〉〈Λ̈, Λ̇〉Λ.

Hence,

{f0, f } =
L∫

0

(
2〈...Λ,Λ̈〉 − 2〈Λ,

...
Λ〉〈Λ,Λ̈〉 − 3〈Λ,Λ̈〉〈Λ̇, Λ̈〉)ds.

The integral of the first term is zero because 2〈...Λ,Λ̈〉 = d
ds

〈Λ̈, Λ̈〉.
Since

2〈Λ,Λ̈〉〈Λ,
...
Λ〉 = d

ds
〈Λ,Λ̈〉2 − 2〈Λ,Λ̈〉〈Λ̇, Λ̈〉,

the remaining integrand reduces to one term −〈Λ,Λ̈〉〈Λ̇, Λ̈〉. But then 1
4

d
ds

〈Λ̇, Λ̇〉2 = 〈Λ,Λ̈〉〈Λ̇, Λ̈〉 because
〈Λ̇, Λ̇〉 = −〈Λ,Λ̈〉, and part (b) is proved. �
Theorem 8. Suppose that Λ(s, t) = R(s, t)B1R

∗(s, t) evolves according to Eq. (74) where R(s, t) is the solution of

∂R

∂s
(s, t) = R(s, t)

(
0 u(s, t)

−ū(s, t) 0

)
, R(0, t) = I.

Then, u(s, t) is a solution of

∂u

∂t
− 3|u|2 ∂u

∂s
− 2

∂3u

∂s3
= 0. (75)

This theorem is proved by a calculation similar to the one used in the proof of Theorem 5, the details of which will
not be re produced here.

Eq. (75) is similar to the modified Korteweg–de Vries equation (R. Abraham and J. Marsden [1])

vt − 6v2vx + vxxx = 0 (76)

with some notable differences. Eq. (75) is a complex equation while the modified Korteweg–de Vries equation is a
real equation. Because of the difference in sign in front of the third derivative it is not apparent that Eq. (75) is the
complexification (modulo some homothetical transformation) of the Eq. (76). It remains an intriguing question if there
are any connections between the Korteweg–de Vries equation and the elastic curves.

Functions f0 and f1 = f also appear in a paper on integrability of the non-linear Schroedinger’s equation by C.
Shabat and V. Zacharov [17], as first noticed by J. Langer and R. Perline [14], but in a completely different context.
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The first two integrals of motion in the paper of Shabat and Zacharov are up to the constant factors given by the
following integrals:

C1 =
∞∫

−∞

∣∣u(s, t)
∣∣2

ds, C2 =
∞∫

−∞

(
u(s, t) ˙̄u(s, t) − ū(s, t)u̇(s, t)

)
ds

where they are interpreted as the number of particles and the momentum. To see that C1 and C2 are in exact cor-
respondence with functions f0 and f1 assume that the Darboux curves are expressed by reduced frames R(s) as in
Definition 5.1 i.e., as the solutions of

dR

ds
(s) = R(s)U(s) with U(s) = u2(s)A2 + u3(s)A3.

Then,

f0 = 1

2

L∫
0

∥∥Λ̇(s)
∥∥2

ds = 1

2

L∫
0

∥∥[
B1,U(s)

]∥∥2
ds = 1

2

L∫
0

∣∣u(s)
∣∣2

ds.

Hence, C1 corresponds to
∫ L

0 κ2(s) ds. Furthermore,

L∫
0

κ2τ ds = 1

2i

L∫
0

(
u(s) ˙̄u(s) − ū(s)u̇(s)

)
ds

because

i
〈
Λ, [Λ̇, Λ̈]〉 = 〈[[B1,U ], [B1, U̇ ]],B1

〉 = Im(ūu̇),

where Im(z) denotes the imaginary part of a complex number z. Therefore f1 corresponds to C2.
In the language of mathematical physics vector

∫ L

0 Λ(s)ds is called the total spin [5]. In this paper it appears as
the moment map discussed in the previous section. It is a conserved quantity since the Hamiltonian is invariant under
the action of SU2. This fact can be verified directly as follows:

∂

∂t

L∫
0

Λ(t, s) ds =
L∫

0

∂Λ

∂t
(t, s) ds = i

L∫
0

[
∂2Λ

∂s2
,Λ

]
ds = i

L∫
0

∂

∂s
[Λ,Λ̇]ds = 0.

The third integral of motion C3 in [17], called the energy, is given by

C3 =
∞∫

−∞

(∣∣∣∣∂u

∂s
(s, t)

∣∣∣∣2

− 1

4

∣∣u(s, t)
∣∣4

)
ds.

It corresponds to the function

f2 =
L∫

0

(∥∥Λ̈(s)
∥∥2 − 5

4

∥∥Λ̇(s)
∥∥4

)
ds =

L∫
0

(
∂κ

∂s
(s)2 + κ2(s)τ 2(s) − 1

4
κ4(s)

)
ds.

It can be shown that functions f0, f1, f2 are in involution, i.e., that they Poisson commute with each other. There
seems to be a hierarchy of functions that contains f0, f1, f2 such that any two functions in the hierarchy Poisson
commute. For instance, D. Krepski (in a personal communication) has shown that f3 = ∫ L

0 τ(s) ds is in this hierarchy,
and he has also shown that the flow of the corresponding Hamiltonian vector field generates the curve shortening
equation [4]

∂Λ

∂t
(s, t) = ∂Λ

∂s
(s, t) = κ(s, t)N(s, t).

A detailed investigation of this hierarchy of Poisson commuting functions and its relation to the hierarchies obtained
by Langer–Perline and Shabat–Zacharov will be deferred to a separate study.
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