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Abstract

The Camassa–Holm equation possesses well-known peaked solitary waves that are called peakons. Their orbital stability has
been established by Constantin and Strauss in [A. Constantin, W. Strauss, Stability of peakons, Comm. Pure Appl. Math. 53 (2000)
603–610]. We prove here the stability of ordered trains of peakons. We also establish a result on the stability of multipeakons.
© 2009
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1. Introduction

The Camassa–Holm equation (C–H)κ , κ � 0,

ut − utxx = −2κux − 3uux + 2uxuxx + uuxxx, (t, x) ∈ R
2, (1)

can be derived as a model for the propagation of unidirectional shalow water waves over a flat bottom by writing the
Green–Naghdi equations in Lie–Poisson Hamiltonian form and then making an asymptotic expansion which keeps the
Hamiltonian structure [5,23]. It was also found independently by Dai [15] as a model for nonlinear waves in cylindrical
hyperelastic rods and was, in fact, first discovered by the method of recursive operator by Fokas and Fuchssteiner [20]
as an example of bi-Hamiltonian equation.

(C–H)κ is completely integrable (see [5–7,10]). It possesses among others the following invariants

E(v) =
∫
R

v2(x) + v2
x(x) dx and F(v) =

∫
R

v3(x) + v(x)v2
x(x) + 2κv2(x) dx (2)

and can be written in Hamiltonian form as

∂tE
′(u) = −∂xF

′(u). (3)

For κ > 0 it possesses smooth positive solitary waves ϕκ,c with speed c > 2κ , their orbital stability has been proved
in [12] by applying the classical spectral method initiated by Benjamin [2] (see also [21]). In [19], following the gen-
eral method developed in [24] (see also [18]), the authors proved the stability of ordered trains of such solitary waves.
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It is worth recalling that this general method requires principally two ingredients: A property of almost monotonicity
which says that for a solution close to ϕκ,c, the part of the energy traveling at the right of ϕκ,c(· − ct) is almost time
decreasing; A dynamical proof of the stability of the solitary wave using the spectral approach (as in [2] or [21] for
instance).

In this paper we consider the Camassa–Holm equation in the case κ = 0, that is

ut − utxx = −3uux + 2uxuxx + uuxxx, (t, x) ∈ R
2. (4)

It is worth noticing that (4) has to be rewritten as

ut − utxx = −3

2
∂x

(
u2) − 1

2
∂x

(
u2

x

) + 1

2
∂3
x

(
u2) (5)

or

ut + uux + (
1 − ∂2

x

)−1
∂x

(
u2 + u2

x/2
) = 0 (6)

to give a meaning to some non-smooth solutions. Henceforth, we refer to (5) as the Camassa–Holm equation (C–H).
(5) possesses solitary waves but they are non-smooth and are called peakons. They are given by

u(t, x) = ϕc(x − ct) = cϕ(x − ct) = ce−|x−ct |, c ∈ R, (7)

and are solutions of (5) in the distribution sense. Let us point out that the presence of a peak at the wave crest is
analogous to the case of exact traveling wave solutions of the governing equations for water waves representing waves
of greatest height (cf. [8] and [9]).

The stability of the peakons seems not to enter the general framework mentioned above (see the beginning of
Section 3 for further commentaries on this aspect). However, Constantin and Strauss [11] succeeded in proving their
orbital stability by a direct approach. In this work, following the general strategy initiated in [24] (note that due to the
reasons mentioned above, the general method of [24] is not directly applicable here), we combine the monotonicity
result proved in [18] with localized versions of the estimates established in [11] to derive the stability of the trains of
peakons.

Before stating the main result we have to introduce the function space where will live our class of solutions to the
equation. For I a finite or infinite interval of R, we denote by Y(I) the function space1

Y(I) := {
u ∈ C

(
I ;H 1(R)

) ∩ L∞(
I ;W 1,1(R)

)
, ux ∈ L∞(

I ;BV(R)
)}

. (8)

We are now ready to state our main result.

Theorem 1.1. Let be given N velocities c1, . . . , cN such that 0 < c1 < c2 < · · · < cN . There exist γ0, A > 0, L0 > 0
and ε0 > 0 such that if u ∈ Y([0, T [), with 0 < T � ∞, is a solution of (C–H) satisfying∥∥∥∥∥u0 −

N∑
j=1

ϕcj

(· − z0
j

)∥∥∥∥∥
H 1

� ε2 (9)

for some 0 < ε < ε0 and z0
j − z0

j−1 � L, with L > L0, then there exist x1(t), . . . , xN(t) such that

sup
[0,T [

∥∥∥∥∥u(t, ·) −
N∑

j=1

ϕcj

(· − xj (t)
)∥∥∥∥∥

H 1

� A
(√

ε + L−1/8) (10)

and

xj (t) − xj−1(t) > L/2, ∀t ∈ [0, T [. (11)

1 W1,1(R) is the space of L1(R) functions with derivatives in L1(R) and BV(R) is the space of function with bounded variation.
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Remark 1.1. We do not know how to prove the monotonicity result in Lemma 4.2, and thus Theorem 1.1, for solutions
that are only in C([0, T [;H 1(R)) which is the hypothesis required for the stability of a single peakon (cf. [11]). Note
anyway that there exists no well-posedness result in the class C([0, T [;H 1(R)) for general initial data in H 1(R). On
the other hand, according to Theorem 2.1 below, u ∈ Y([0, T [) as soon as u0 ∈ H 1(R) and (1 − ∂2

x )u0 is a Radon
measure with bounded variations.

Remark 1.2. Note that, since (5) is invariant by the change of unknown: u(t, x) 	→ −u(t,−x), Theorem 1.1 remains
true, up to obvious changes, in the case where cN < · · · < c2 < c1 < 0, i.e. there are only anti-peakons. On the other
hand, the proof of Theorem 1.1 cannot be directly adapted in the case where all the velocities do not have the same
sign, i.e. there are peakons and anti-peakons. However, we strongly believe that such configuration can be treated by
adding supplementary arguments.

As discovered by Camassa and Holm [5], (C–H) possesses also special solutions called multipeakons given by

u(t, x) =
N∑

i=1

pj (t)e
−|x−qj (t)|,

where (pj (t), qj (t)) satisfy the differential system (61). In [1] (see also [5]), the asymptotic behavior of the multi-
peakons is studied. In particular, the limits as t tends to +∞ and −∞ of pi(t) and q̇i (t) are determined. Combining
these asymptotics with the preceding theorem we get the following result on the stability of the variety N of H 1(R)

defined by

N :=
{

v =
N∑

i=1

pje
−|·−qj |, (p1, . . . , pN) ∈ (R+)N , q1 < q2 < · · · < qN

}
.

Corollary 1.1. Let be given N positive real numbers p0
1, . . . , p

0
N and N real numbers q0

1 < · · · < q0
N . For any B > 0

and any γ > 0 there exists α > 0 such that if u0 ∈ H 1(R) satisfies2 m0 := u0 − u0,xx ∈ M+(R) with

‖m0‖M � B and

∥∥∥∥∥u0 −
N∑

j=1

p0
j exp

(· − q0
j

)∥∥∥∥∥
H 1

� α (12)

then

∀t ∈ R, inf
P∈(R+)N ,Q∈RN

∥∥∥∥∥u(t, ·) −
N∑

j=1

pj exp(· − qj )

∥∥∥∥∥
H 1

� γ. (13)

Moreover, there exists T > 0 such that

∀t � T , inf
Q∈G

∥∥∥∥∥u(t, ·) −
N∑

j=1

λj exp(· − qj )

∥∥∥∥∥
H 1

� γ (14)

and

∀t � −T , inf
Q∈G

∥∥∥∥∥u(t, ·) −
N∑

j=1

λN+1−j exp(· − qj )

∥∥∥∥∥
H 1

� γ, (15)

where G := {Q ∈ R
N, q1 < q2 < · · · < qN } and 0 < λ1 < · · · < λN are the eigenvalues of the matrix

(p0
j e

−|q0
i −q0

j |/2
)1�i,j�N .

2 M(R) is the space of Radon measures on R with bounded total variation and M+(R) is the subset of non-negative measures.
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Remark 1.3. From Theorem 2.1 below, note that u ∈ Y([0, T ]) as soon as (1− ∂2
x )u0 is a positive (or negative) Radon

measure with finite variations. This is of course the case for any initial data of the form
∑N

i=1 cie
|x−qj | with ci > 0,

i = 1, . . . ,N .

This paper is organized as follows. In Section 2 we state a well-posedness result for (C–H) established in [13]
and [16]. This allows us to work in the function space Y([0, T ]) that contains the peakons. Next, in Section 3 we
present the result and the proof of Constantin and Strauss on the stability of peakons. Section 4 is devoted to the proof
of Theorem 1.1. It is divided into four subsections. First we use a modulation argument in order to control the distance
between the different bumps of the solution we consider. Then we state a monotonicity result that was established
in [18]. In Section 4.3 we establish a local version of an estimate involved in the stability of a single peakon. The
proof of Theorem 1.1 is completed in Section 4.4. In Section 5 we recall some properties of the multipeakons and
prove Corollary 1.1. Finally in Appendix A we give the proof of the monotonicity result for sake of completeness.

As mentioned above, the proof of the stability of trains of peakons does not enter the general framework [24,18,
25,19] on orbital stability of ordered trains of solitary waves. However, the strategy of combining the orbital stability
of a single solitary wave with a monotonicity result seems to be quite robust.

2. Well-posedness result

Recall that the peakons do not belong to H 3/2(R). In [13,16] (see also [26]) the following existence and uniqueness
result is derived.

Theorem 2.1. Let u0 ∈ H 1(R) with m0 := u0 − u0,xx ∈ M(R) then there exists T = T (‖m0‖M) > 0 and a unique
solution u ∈ Y([−T ,T ]) to (C–H) with initial data u0. The functionals E(·) and F(·) are constant along the trajectory
and if m0 has a definite sign then u is global in time.

Moreover, let {u0,n} ⊂ H 1(R) with {u0,n − ∂2
xu0,n} bounded in M+(R) such that u0,n → u0 in H 1(R). Then, for

all T > 0,

un → u in C
([−T ,T ];H 1(R)

)
. (16)

Let us note that the last assertion of the above theorem is not explicitly contained in the works mentioned above.
However, following the same arguments as those developed in these works (see for instance Section 5 of [26]), one
can prove that there exists a subsequence {unk

} of solutions of (4) that converges in C([−T ,T ];H 1(R)) to some
solution v of (4) belonging to Y(−T ,T ). Since u0,nk

converges to u0 in H 1, it follows that v(0) = u0 and thus v = u

by uniqueness. This ensures that the whole sequence {un} converges to u in C([−T ,T ];H 1(R)) and concludes the
proof of the last assertion.

It is worth pointing out that recently, in [3] and [4], Bressan and Constantin have constructed global conservative
and dissipative solutions of the Camassa–Holm equation for any initial data in H 1(R). However, even if for the
conservative solutions, E(·) and F(·) are conserved quantities, these solutions are not known to be continuous with
values in H 1(R). Therefore, as noticed in Remark 1.1, even one single peakon is not known to be orbitally stable with
respect to this class of solutions. For this reason we will work in the class of solutions constructed in Theorem 2.1.

3. Stability of a single peakon

Recall that the classical proof of orbital stability (see [2,21]), successfully used in the case κ > 0 in [12], is based on
the spectral properties of the second differential operator of the invariant functional Lc(·) := cE(·) − F(·) evaluated
at the solitary wave ϕκ,c of (1). Indeed, using a Liouville substitution (cf. [12]), it can be shown that the spectrum of
the L2-self-adjoint operator

Hc := L′′
c (ϕκ,c) = −∂x

(
(2c − 2ϕκ,c)∂x

) − 6ϕκ,c − 2∂2
xϕκ,c + 2(c − 2κ)

contains a unique negative eigenvalue which is simple and that 0 is a simple eigenvalue associated with ∂xϕκ,c . The
rest of the spectrum consists of a finite number of positive eigenvalues and of the essential spectrum [2c − 4κ,+∞[.
Therefore, controlling the negative direction by modulating the velocity c and using that 〈E′(ϕκ,c), u−ϕκ,c〉 ∼ 0 (since
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E(·) is conserved) and the kernel direction by choosing a suitable translation ϕκ,c(· − r) of ϕκ,c, the orbital stability
is proven by writing the Taylor expansion of cE(·) − F(·) at ϕκ,c, recalling that cE′(ϕκ,c) − F ′(ϕκ,c) vanishes.

Now, in the case κ = 0, Hc is degenerate since, in view of (7), ϕc(0) = c and the Liouville substitution is no
more well-defined. However, Constantin and Strauss (cf. [11]) succeeded in proving the orbital stability by a direct
approach (see also [14] for another stability result, using Cazenave–Lions method, under additional assumptions on
the initial data). Actually, a by-product of their proof is the following very rigid property: for any function v in some
H 1-neighborhood of ϕc it holds∥∥v − ϕc(· − ξ)

∥∥2
H 1 �

∣∣E(v) − E(ϕc)
∣∣ +

√
c
∣∣Lc(v) − Lc(ϕc)

∣∣
where v(ξ) = maxR v. Since E(·) and F(·) are conserved and are continuous functional on H 1(R), this clearly leads
to the orbital stability.

Since we will use similar considerations, we present here a sketch of the proof of the stability of peakons (Theo-
rem 3.1) proved by Constantin and Strauss in [11].

Theorem 3.1. Let be given c > 0. There exist C > 0 and ε0 > 0 such that if u ∈ C([0, T [;H 1(R)) is a solution of (4)

such that E(u(t)) and F(u(t)) are conserved quantities on [0, T [ and ‖u(0) − ϕc‖H 1 � ε2 for some 0 < ε � ε0, then∥∥u(t, ·) − ϕc

(· − r(t)
)∥∥

H 1 � C
√

ε, ∀t ∈ [0, T [, (17)

where r(t) ∈ R is any point where the function u(t, ·) attains its maximum.

The proof of this theorem is principally based on the following lemma of [11].

Lemma 3.1. For any u ∈ H 1(R) and ξ ∈ R,

E(u) − E(ϕc) = ∥∥u − ϕc(· − ξ)
∥∥2

H 1 + 4c
(
u(ξ) − c

)
. (18)

For any u ∈ H 1(R), let M = maxx∈R{u(x)}, then

F(u) � ME(u) − 2

3
M3. (19)

Remark 3.1. It is worth noticing that (18) ensures that, for c > 0, the minimum of the H 1-distance between u and
{ϕc(· − ξ), ξ ∈ R} is exactly reached at any point ξ where u attains its maximum on R.

Proof of Theorem 3.1. Let u ∈ C([0, T [;H 1(R)) be a solution of (4) with ‖u(0) − ϕc‖H 1 � ε2 and let ξ(t) ∈ R be
such that u(t, ξ(t)) = maxR u(t, ·). By the remark above, t 	→ ‖u(t) − ϕc(· − ξ(t))‖H 1 is continuous on [0, T [ and
‖u(0) − ϕc(· − ξ(0))‖H 1 � ε2. Moreover, as shown in [11], it is no to hard to check that for any v ∈ H 1(R) such that
‖v − ϕc‖H 1 < γ for some γ < c/2, it holds∣∣E(v) − E(ϕc)

∣∣ < 4cγ and
∣∣F(v) − F(ϕc)

∣∣ < 10c2γ. (20)

From the conservation laws it follows that for any t ∈ [0, T [,∣∣E(
u(t)

) − E(ϕc)
∣∣ < 4cε2 and

∣∣F (
u(t)

) − F(ϕc)
∣∣ < 10c2ε2. (21)

Therefore, by a classical continuity argument, it suffices to prove that for any v ∈ H 1(R) satisfying (21) and ‖v −
ϕc(· − ξ)‖H 1 � ε1/4, with v(ξ) = maxR v, it holds actually∥∥v − ϕc(· − ξ)

∥∥
H 1 �

√
ε.

Setting M = v(ξ) and δ = c − M = c − v(ξ), we notice that (18) ensures that for δ � 0,∥∥v − ϕc(· − ξ)
∥∥2

H 1 � E(u0) − E(ϕc) � ε2.

Hence to prove the stability it remains to examine the case δ > 0, that is the maximum of the function u is less than
the maximum of the peakon ϕc. Substituting M by c − δ in (19), using (21) and that
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E(ϕc) = 2c2 and F(ϕc) = 4

3
c3, (22)

one can easily check that

4

3
c3 − O

(
ε2) � (c − δ)

(
2c2 + O

(
ε2)) − 2

3
(c − δ)3

which leads to

δ2(c − δ/3) � O
(
ε2). (23)

On the other hand, on account of the hypothesis ‖v −ϕc(·− ξ)‖H 1 � ε1/4 and of the continuous embedding of H 1(R)

into L∞(R), it holds δ < c/2 for ε small enough. Therefore (23) ensures that δ � Cε, the constant C depending only
on c. This estimate on δ combining with (18) and (21) concludes the proof of Theorem 3.1. �
4. Stability of multipeakons

For α > 0 and L > 0 we define the following neighborhood of all the sums of N peakons of speed c1, . . . , cN with
spatial shifts xj that satisfied xj − xj−1 � L,

U(α,L) =
{

u ∈ H 1(R), inf
xj −xj−1>L

∥∥∥∥∥u −
N∑

j=1

ϕcj
(· − xj )

∥∥∥∥∥
H 1

< α

}
. (24)

By the continuity of the map t 	→ u(t) from [0, T [ into H 1(R), to prove Theorem 1.1 it suffices to prove that there
exist A > 0, ε0 > 0 and L0 > 0 such that ∀L > L0 and 0 < ε < ε0, if u0 satisfies (9) and if for some 0 < t0 < T ,

u(t) ∈ U
(
A

(√
ε + L−1/8),L/2

)
for all t ∈ [0, t0], (25)

then

u(t0) ∈ U

(
A

2

(√
ε + L−1/8), 2L

3

)
. (26)

Therefore, in the sequel of this section we will assume (25) for some 0 < ε < ε0 and L > L0, with A, ε0 and L0 to be
specified later, and we will prove (26).

4.1. Control of the distance between the peakons

In this subsection we want to prove that the different bumps of u that are individually close to a peakon get away
from each others as time is increasing. This is crucial in our analysis since we do not know how to manage strong
interactions.

Lemma 4.1. Let u0 satisfying (9). There exist α0 > 0, L0 > 0 and C0 > 0 such that for all 0 < α < α0 and 0 < L0 < L

if u(t) ∈ U(α,L/2) on [0, t0] for some 0 < t0 < T then there exist C1-functions x̃1, . . . , x̃N defined on [0, t0] such that

d

dt
x̃i = ci + O(

√
α ) + O

(
L−1), i = 1, . . . ,N, (27)∥∥∥∥∥u(t) −

N∑
i=1

ϕci

(· − x̃i (t)
)∥∥∥∥∥

H 1

= O(
√

α ), (28)

x̃i (t) − x̃i−1(t) � 3L/4 + (ci − ci−1)t/2, i = 2, . . . ,N. (29)

Moreover, setting Ji := [yi(t), yi+1(t)], i = 1, . . . ,N , with

y1 = −∞, yN+1 = +∞ and yi(t) = x̃i−1(t) + x̃i (t)

2
, i = 2, . . . ,N, (30)

it holds



K. El Dika, L. Molinet / Ann. I. H. Poincaré – AN 26 (2009) 1517–1532 1523
∣∣xi(t) − x̃i (t)
∣∣ � L/12, i = 1, . . . ,N, (31)

where x1(t), . . . , xN(t) are any point such that

u
(
t, xi(t)

) = max
Ji (t)

u(t), i = 1, . . . ,N. (32)

Proof. To prove this lemma we use a modulation argument. The strategy is to construct N C1-functions x̃1, . . . , x̃N

on [0, t0] satisfying a suitable orthogonality condition, see (37). Thanks to this orthogonality condition we will be able
to prove that the speed of the x̃i stays close to ci on [0, t0]. �
Remark 4.1. It is crucial to note that in the previous works on stability of sum of solitary waves [24,18,19] one needs
similar modulation to ensure (among other things) that v remains in a subspace of codimension two of H 1(R) where
the operator Hc (see the beginning of this section) is positive. Here, as already mentioned, we do not use such operator
in the proof of orbital stability of peakons but we still need a modulation to ensure that the different bumps of u get
away from each others.

For Z = (z1, . . . , zN) ∈ R
N fixed such that zi − zi−1 > L/2, we set

RZ(·) =
N∑

i=1

ϕci
(· − zi).

For 0 < α < α0 we define the function

Y : (−α,α)N × BH 1(RZ,α) → R
n,

(y1, . . . , yN ,u) 	→ (
Y 1(y1, . . . , yN ,u), . . . , YN(y1, . . . , yN ,u)

)
with

Y i(y1, . . . , yN ,u) =
∫
R

(
u −

N∑
j=1

ϕcj
(· − zj − yj )

)
∂xϕci

(· − zi − yi).

Y is clearly of class C1. For i = 1, . . . ,N ,

∂Y i

∂yi

(y1, . . . , yN ,u) =
∫
R

(
ux −

N∑
j=1, j �=i

∫
R

∂xϕcj
(· − zj − yj )

)
∂xϕci

(· − zi − yi) dx, (33)

and ∀j �= i,

∂Y i

∂yj

(y1, . . . , yN ,u) =
∫
R

∂xϕcj
(· − zj − yj )∂xϕci

(· − zi − yi) dx.

Hence,

∂Y i

∂yi

(0, . . . ,0,RZ) = ‖∂xϕci
‖2
L2 � c2

1, (34)

and, for j �= i, using the exponential decay of ϕc and that zi − zi−1 > L we infer that for L0 large enough (recall that
L > L0),

∂Y i

∂yj

(0, . . . ,0,RZ) =
∫
R

∂xϕcj
(· − zj )∂xϕci

(· − zi) dx � O
(
e−L/4).

We deduce that, for L > 0 large enough, D(y1,...,yN )Y (0, . . . ,0,RZ) = D + P where D is an invertible diag-
onal matrix with ‖D−1‖ � (c1)

−2 and ‖P‖ � O(e−L/4). Hence there exists L0 > 0 such that for L > L0,
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D(y1,...,yN )Y (0, . . . ,0,RZ) is invertible with an inverse matrix of norm smaller than 2 (c1)
−2. From the implicit func-

tion theorem we deduce that there exists β0 > 0 and C1 functions (y1, . . . , yN) from B(RZ,β0) to a neighborhood of
(0, . . . ,0) which are uniquely determined such that

Y(y1, . . . , yN ,u) = 0 for all u ∈ B(RZ,β0).

In particular, there exits C0 > 0 such that if u ∈ B(RZ,β), with 0 < β � β0, then

N∑
i=1

∣∣yi(u)
∣∣ � C0β. (35)

Note that β0 and C0 only depend on c1 and L0 and not on the point (z1, . . . , zN). For u ∈ B(RZ,β0) we set x̃i (u) =
zi + yi(u). Assuming that β0 � L0

8C0
, (x̃1, . . . , x̃N ) are thus C1-functions on B(RZ,β) satisfying

x̃j (u) − x̃j−1(u) > L/2 − 2C0β > L/4. (36)

For L � L0 and 0 < α < α0 < β0/2 to be chosen later, we define the modulation of u ∈ U(α,L/2) in the following
way: we cover the trajectory of u by a finite number of open balls in the following way:{

u(t), t ∈ [0, t0]
} ⊂

⋃
k=1,...,M

B(RZk ,2α).

It is worth noticing that, since 0 < α < α0 < β0/2, the functions x̃j (u) are uniquely determined for u ∈ B(RZk),2α)∩
B(R

Zk′ ,2α). We can thus define the functions t 	→ x̃j (t) on [0, t0] by setting x̃j (t) = x̃j (u(t)). By construction

∫
R

(
u(t, ·) −

N∑
j=1

ϕcj

(· − x̃j (t)
))

∂xϕci

(· − x̃i (t)
)
dx = 0. (37)

Moreover, on account of (35) and the fact that ϕ′′
c is the sum of an L1 function and a Dirac mass it holds∥∥u(t) − R

X̃(t)

∥∥
H 1 � C0

√
α, ∀t ∈ [0, t0]. (38)

Let us now prove that the speed of x̃i stays close to ci . We set

Rj (t) = ϕcj

(· − x̃j (t)
)

and v(t) = u(t) −
N∑

i=1

Rj(t) = u(t, ·) − R
X̃(t)

.

Differentiating (37) with respect to time we get∫
R

vt∂xRi = ˙̃xi

〈
∂2
xRi, v

〉
H−1,H 1,

and thus∣∣∣∣
∫
R

vt∂xRi

∣∣∣∣ �
∣∣ ˙̃xi

∣∣O(‖v‖H 1

)
�

∣∣ ˙̃xi − ci

∣∣O(‖v‖H 1

) + O
(‖v‖H 1

)
. (39)

Substituting u by v + ∑N
j=1 Rj in (6) and using that Rj satisfies

∂tRj + ( ˙̃xj − cj

)
∂xRj + Rj∂xRj + (

1 − ∂2
x

)−1
∂x

[
R2

j + ∂xR
2
j /2

] = 0,

we infer that v satisfies on [0, t0],

vt −
N∑

j=1

( ˙̃xj − cj )∂xRj = −1

2
∂x

[(
v +

N∑
j=1

Rj

)2

−
N∑

j=1

R2
j

]
− (

1 − ∂2
x

)−1
∂x

[(
v +

N∑
j=1

Rj

)2

−
N∑

R2
j + 1

2

(
vx +

N∑
∂xRj

)2

− 1

2

N∑
(∂xRj )

2

]
.

j=1 j=1 j=1
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Taking the L2-scalar product with ∂xRi , integrating by parts, using the decay of Rj and its first derivative, (38), (39)
and (36), we find

∣∣ ˙̃xi − ci

∣∣(‖∂xRi‖2
L2 + O(

√
α)

)
� O(

√
α ) + O

(
e−L/8). (40)

Taking α0 small enough and L0 large enough we get | ˙̃xi − ci | � (ci − ci−1)/4 and thus for all 0 < α < α0 and
L � L0 > 3C0ε, it follows from (9), (35) and (40) that

x̃j (t) − x̃j−1(t) > L − C0ε + (cj − cj−1)t/2, ∀t ∈ [0, t0], (41)

which yields (29).
Finally from (38) and the continuous embedding of H 1(R) into L∞(R), we infer that

u(x) = R
X̃
(x) + O(

√
α ), ∀x ∈ R.

Applying this formula with x = xi = maxJi (t) u(t) and taking advantage of (29), we obtain

u(xi) = ci + O(
√

α ) + O
(
e−L/4) � 2ci/3.

On the other hand, for x ∈ Ji\ ]x̃i − L/12, x̃i + L/12[, we get

u(x) � cie
−L/12 + O(

√
α ) + O

(
e−L/4) � ci/2.

This ensures that xi belongs to [x̃i − L/12, x̃i + L/12].

4.2. Monotonicity property

Thanks to the preceding lemma, for ε0 > 0 small enough and L0 > 0 large enough, one can construct C1-functions
x̃1, . . . , x̃N defined on [0, t0] such that (27)–(31) are satisfied. In this subsection we state the almost monotonicity of
functionals that are very close to the energy at the right of the ith bump, i = 1, . . . ,N − 1 of u. The proof is similar to
the one of Lemma 4.2 in [19]. We give it in Appendix A for sake of completeness.

Let Ψ be a C∞ function such that 0 < Ψ � 1, Ψ ′ > 0 on R, |Ψ ′′′| � 10|Ψ ′| on [−1,1],

Ψ (x) =
{

e−|x|, x < −1,

1 − e−|x|, x > 1.

Setting ΨK = Ψ (·/K), we introduce for j ∈ {2, . . . ,N},

Ij,K(t) = Ij,K

(
t, u(t)

) =
∫
R

(
u2(t) + u2

x(t)
)
Ψj,K(t) dx,

where Ψj,K(t, x) = ΨK(x − yj (t)) with yj (t), j = 2, . . . ,N , defined in (30). Note that Ij,K(t) is close to
‖u(t)‖H 1(x>yj (t)) and thus measures the energy at the right of the (j − 1)th bump of u. Finally, we set

σ0 = 1

4
min(c1, c2 − c1, . . . , cN − cN−1). (42)

In [19], using some tricks developed in [17], the following monotonicity result is derived.

Lemma 4.2. Let u ∈ Y([0, T [) be a solution of (C–H) satisfying (28) on [0, t0]. There exist α0 > 0 and L0 > 0 only
depending on c1 such that if 0 < α < α0 and L � L0 then for any 4 � K � L1/2,

Ij,K(t) − Ij,K(0) � O
(
e− σ0L

8K
)
, ∀j ∈ {2, . . . ,N}, ∀t ∈ [0, t0]. (43)
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4.3. A localized and a global estimate

We define the function Φi = Φi(t, x) by Φ1 = 1 − Ψ2,K = 1 − ΨK(· − y2(t)), ΦN = ΨN,K = ΨK(· − yN(t)) and
for i = 2, . . . ,N − 1,

Φi = Ψi,K − Ψi+1,K = ΨK

(· − yi(t)
) − ΨK

(· − yi+1(t)
)
,

where ΨK and the yi ’s are defined in Section 4.2. It is easy to check that
∑N

i=1 Φi,K ≡ 1. We take L > 0 and L/K > 0
large enough so that Φi satisfies

|1 − Φi,K | � 4e− L
4K on [x̃i − L/4, x̃i + L/4], (44)

and

|Φi,K | � 4e− L
4K on [x̃j − L/4, x̃j + L/4] whenever j �= i. (45)

We will use the following localized version of E and F defined for i ∈ {1, . . . ,N}, by

Et
i (u) =

∫
R

Φi(t)
(
u2 + u2

x

)
and F t

i (u) =
∫
R

Φi(t)
(
u3 + uu2

x

)
. (46)

Please note that henceforth we take K = L1/2/8.
The following lemma gives a localized version of (19). Note that the functionals Ei and Fi do not depend on time

in the statement below since we fix x̃1 < · · · < x̃N .

Lemma 4.3. Let be given N real numbers x̃1 < · · · < x̃N with x̃i − x̃i−1 � 2L/3. Define the Ji ’s as in (30) and
assume that, for i = 1, . . . ,N , there exists xi ∈ Ji such that |xi − x̃i | � L/12 and u(xi) = maxJi

u := Mi . Then, for
any u ∈ H 1(R), it holds

Fi(u) � MiEi(u) − 2

3
M3

i + ‖u0‖3
H 1O

(
L−1/2), i ∈ {1, . . . ,N}. (47)

Proof. Let i ∈ {1, . . . ,N} be fixed. Following [11], we introduce the function g defined by

g(x) =
{

u(x) − ux(x) for x < xi,

u(x) + ux(x) for x > xi.

Integrating by parts we compute

∫
ug2Φi =

xi∫
−∞

(
u3 + uu2

x − 2u2ux

)
Φi +

+∞∫
xi

(
u3 + uu2

x + 2u2ux

)
Φi

= Fi(u) − 4

3
u(xi)

3Φi(xi) + 2

3

xi∫
−∞

u3Φ ′
i − 2

3

+∞∫
xi

u3Φ ′
i . (48)

Recall that we take K = √
L/8 and thus |Φ ′| � C/K = O(L−1/2). Moreover, since |xi − x̃i | � L/12, it follows from

(44) that Φi(xi) = 1 + O(e−L1/2
) and thus∫

ug2Φi = Fi(u) − 4

3
M3

i + ‖u0‖3
H 1O

(
L−1/2). (49)

On the other hand,

∫
ug2Φi � Mi

∫
g2Φi � Mi

(
Ei(u) − 2

xi∫
−∞

uuxΦi + 2

+∞∫
xi

uuxΦi

)

� MiEi(u) − 2M3
i + ‖u0‖3

H 1O
(
L−1/2). (50)

This proves (47). �
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Now let us state a global identity related to (18).

Lemma 4.4. For any Z ∈ R
N such that |zi − zi−1| � L/2 and any u ∈ H 1 it holds

E(u) −
N∑

i=1

E(ϕci
) = ‖u − RZ‖2

H 1 + 4
N∑

i=1

ci

(
u(zi) − ci

) + O
(
e−L/4). (51)

Proof. Using the relation between ϕ an its derivative and integrating by parts, we get

E(u − RZ) = E(u) + E(RZ) − 2
N∑

i=1

∫
uϕci

(· − zi) + ux∂xϕci
(· − zi)

= E(u) + E(RZ) − 2
N∑

i=1

∫
uϕci

(· − zi) + 2
N∑

i=1

+∞∫
zi

uxϕci
(· − zi) − 2

N∑
i=1

zi∫
−∞

uxϕci
(· − zi)

= E(u) + E(RZ) − 4
N∑

i=1

ciu(zi).

On the other hand, since |zi − zi−1| � L/2, it is not too hard to check that

E(RZ) =
N∑

i=1

E(ϕci
) + O

(
e−L/4) = 2

N∑
i=1

c2
i + O

(
e−L/4).

Combining these two identity, the desired result follows. �
As a consequence of this lemma, we obtain an estimate on the H 1 distance between u(t) and RX(t).

Lemma 4.5. Under the same hypotheses as in Lemma 4.1, the function X = (x1, . . . , xN) constructed in Lemma 4.1
satisfies on [0, t0],∥∥u(t) − RX(t)

∥∥
H 1 � O(α) + O

(
e−L/8). (52)

Proof. Since u(t) ∈ U(α,L/2) for t ∈ [0, t0], on account of Lemma 4.1 for any t ∈ [0, t0] there exists Z =
(z1, . . . , zn) with zi ∈ Ji(t) such that E(u(t) − RZ) = O(α2). Recalling that u(t, xi(t)) = maxJi(t) u(t), we deduce
(52) from (51). �
4.4. End of the proof of Theorem 1.1

Recall that
∑N

i=1 Ei(v) = E(v) for any v ∈ H 1(R). From (9) it is easy to check that

E
(
u(t)

) = E(u0) =
N∑

j=1

E(ϕcj
) + O

(
ε2) + O

(
e−L/4), ∀t ∈ [0, T ]. (53)

Let us set Mi = u(t0, xi(t0)) and δi = ci − Mi . To conclude the proof, it thus suffices to prove that there exists C > 0
which does not depend on A such that

δi � C
(
ε + L−1/4) for all i. (54)

Indeed, in this case (53) and (51), with Z = X(t0), ensure the existence of C > 0 independent of A such that∥∥∥∥∥u −
N∑

ϕcj
(· − xj )

∥∥∥∥∥
1

< C
(
ε1/2 + L−1/8),
j=1 H
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so that one can take A = 2C to conclude the proof (recall that we already know from (29)–(31) that xi − xi−1 � 2L/3
for i ∈ {2, . . . ,N}). Let us prove (54). From (47) by taking the sum over i one gets:

F
(
u(t0)

) =
N∑

i=1

Fi

(
u(t0)

)
�

N∑
i=1

MiEi

(
u(t0)

) − 2

3

N∑
i=1

M3
i + O

(
L−1/2).

Setting �
t0
0 F(u) = F(u(t0)) − F(u(0)) and �

t0
0 E(u) = E(u(t0)) − E(u(0)), this implies

0 = �
t0
0 F(u) =

N∑
i=1

�
t0
0 Fi(u) �

N∑
i=1

Mi�
t
0Ei(u) − 2/3

N∑
i=1

M3
i +

N∑
i=1

(−Fi(u0) + MiEi(u0)
) + O

(
L−1/2).

(55)

By (9), the exponential decay of the ϕci
’s and the Φi ’s, and the definition of Ei and Fi , it is easy to check that∣∣Ei(u0) − E(ϕci

)
∣∣ + ∣∣Fi(u0) − F(ϕci

)
∣∣ � O

(
ε2) + O

(
e−√

L
)
, ∀i ∈ {1, . . . ,N}.

Setting M0 = 0 and using (22), one thus finds after having substituted Mi by ci − δi that

N∑
i=1

(−Fi(u0) + MiEi(u0) − 2/3M3
i

) = 2
N∑

i=1

(
−ciδ

2
i + 1

3
δ3
i

)
+ O

(
ε2) + O

(
e−√

L
)
. (56)

Note that by (52) and the continuous embedding of H 1(R) into L∞(R), Mi = ci + O(α) + O(e−L/8), and thus

0 < M1 < · · · < MN and δi < ci/2 (57)

for α0 = A(
√

ε0 + L
−1/8
0 ) small enough. Using the Abel transformation and the monotonicity estimates (43), we thus

get

N∑
i=1

Mi�
t
0Ei(u) =

N∑
i=1

(Mi − Mi−1)�
t
0Ii � O

(
ε2 + e−√

L
)
. (58)

Injecting (56) and (58) in (55) we obtain

N∑
i=1

(
ciδ

2
i − 1

3
δi(t)

3
)

=
N∑

i=1

δ2
i

(
ci − 1

3
δi

)
� O

(
ε2 + L−1/2). (59)

(57) and (59) yield (54) and concludes the proof of the theorem.

5. Proof of Corollary 1.1

As written in the introduction, Camassa and Holm discovered that (4) possesses special solutions given by

u(t, x) =
N∑

i=1

pi(t)e
|x−qi (t)| (60)

where the (pi, qi) ∈ (R2) satisfy the Hamiltonian system⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

q̇i =
N∑

j=1

pje
−|qi−qj |,

ṗi =
N∑

j=1

pipj sgn(qi − qj )e
−|qi−qj |.

(61)

It is easy to check that the local solution of this differential system can be uniquely extended as soon as the qi ’s
stay distinct from each other. Indeed, if for some time qi = qj , with i �= j , then uniqueness fails and one has to
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distinguish between conservative and dissipative solutions (cf. [3,4]). In [22], Holden and Raynaud proved that the
qi ’s stay distinct from each other if the pi ’s are all positive at time t = 0, i.e. there are only peakons (the case with
only anti-peakons works also but in the case with peakon and anti-peakon this is no longer true). More precisely, they
proved that if at time t = 0,

p1, . . . , pN > 0 and q1 < q2 < qN (62)

then (62) remains true for all time. In particular, under these hypotheses the different peakons never overlap each
others. For example, if a larger peakon follows a smaller one, it will come close to this last one and then transfer part
of its energy to it. In this way, the smaller one will become the larger one and the two peakons will be well ordered. In
[1] (see also [5]), using the integrability of (4), Beals et al. established a formula for the asymptotics of the qi ’s and
the pi ’s. In particular, they prove the following limits for the pi and q̇i , i ∈ {1, . . . ,N},

lim
t→+∞pi(t) = lim

t→+∞ q̇i (t) = λi (63)

and

lim
t→−∞pi(t) = lim

t→−∞ q̇i (t) = λN+1−i , (64)

where 0 < λ1 < · · · < λN are the eigenvalues of the matrix (pj (0)e−|qi (0)−qj (0)|/2)i,j .

Remark 5.1. The matrix AN := (pj e
−|qi−qj |/2)1�i,j�N is obtained by substituting the multipeakon solution (60) in

the isospectral problem

Ψxx =
(

1

4
− m(t, ·)

2λ

)
Ψ, with m = u − uxx, (65)

associated with the Camassa–Holm equation. More precisely, any solution of (65) with m = 2
∑N

i=1 piδqi
, that van-

ishes at ∓∞, is completely determined by its values at the qj ’s and satisfies

λΨ (qi) =
N∑

j=1

pje
−|qi−qj |/2Ψ (qj ), ∀i ∈ {1, . . . ,N}. (66)

In [1], (65) is transformed into a density problem on [−1,1] by applying a Liouville transformation. The correspond-
ing N -multipeakon matrix is then proved to possess N distinct positive eigenvalues. The arguments of [1] hold also
clearly for AN . Indeed, first since for any fixed λ, (65) has clearly at most one solution (up to multiplication by a
scalar) that vanishes at ∓∞, it follows that the eigenvalues of AN are all of geometric multiplicity one. Next, setting
D = diag(pi) and Λi,j = e−|qi−qj |/2, AN can be rewritten as DΛ. Since Λ is symmetric with Λii = 1 and |Λij | < 1
for i �= j , Λ is actually positively defined. Therefore there exists B a symmetric positively defined matrix such that
Λ = B2. It is then easy to check that AN and BDB have got the same spectrum and since BDB is symmetric
positively defined, this ensures that AN possesses N distinct positive eigenvalues.

Now, let be given (pi(0), qi(0)) satisfying (62) and γ > 0. From the asymptotics above there exists T > 0 such
that

qi(T ) − qi−1(T ) > L and qi(−T ) − qi−1(−T ) > L (67)

with

L > max

(
L0,

(
γ

2A

)8)
. (68)

From the last assertion of Theorem 2.1, for any given B > 0, there exists α > 0 such that if u0 satisfies (12) then for
all t ∈ [−T ,T ],∥∥∥∥∥u(t) −

N∑
pi(t)e

|x−qi (t)|
∥∥∥∥∥

1

�
(

γ

2A

)4

. (69)

i=1 H
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At this stage, it is crucial to remark that since (4) is invariant under the transformation (t, x) 	→ (−t,−x), Theorem 1.1
remains true when replacing t by −t , z0

j by −z0
j and xj (t) by −xj (−t). This gives a stability result in the past for

trains of peakons that are ordered in the inverse order with respect to Theorem 1.1.
Combining (67), (69), Theorem 1.1 and the remark above, the first part of the corollary follows.
Finally, from (63)–(64), we can also assume that

∣∣pi(T ) − λi

∣∣ � 1

100N

(
γ

2A

)4

and
∣∣pi(−T ) − λN−i

∣∣ � 1

100N

(
γ

2A

)4

so that∥∥∥∥∥u(T ) −
N∑

i=1

λie
|x−qi (T )|

∥∥∥∥∥
H 1

�
(

γ

2A

)4

and

∥∥∥∥∥u(−T ) −
N∑

i=1

λN−ie
|x−qi (−T )|

∥∥∥∥∥
H 1

�
(

γ

2A

)4

.

This completes the proof of the corollary.

Appendix A

Proof of Lemma 4.2. Let us assume that u is smooth since the case u ∈ Y([0, T [) follows by modifying slightly the
arguments (see Remark 3.2 of [19]). From (5), it is not too hard to check that for any smooth space function g, the
following differential identity on the weighted energy holds:

d

dt

∫
R

(
u2 + u2

x

)
g dx =

∫
R

(
u3 + 4uu2

x

)
g′ dx −

∫
R

u3g′′′ dx −
∫
R

ug′(1 − ∂2
x

)−1(2u2 + u2
x

)
dx. (70)

Applying (70) with g = Ψj,K one gets

d

dt

∫
R

Ψj,K

(
u2 + u2

x

)
dx = −ẏj

∫
R

Ψ ′
j,K

(
u2 + u2

x

) +
∫
R

Ψ ′
j,K

(
u3 + 4uu2

x

)
dx

−
∫
R

Ψ ′′′
j,Ku3 dx −

∫
R

Ψ ′
j,Ku

(
1 − ∂2

x

)−1(2u2 + u2
x

)
dx

� −c1

2

∫
R

Ψ ′
j,K

(
u2 + u2

x

) + J1 + J2 + J3. (71)

We claim that for i ∈ {1,2,3}, it holds

Ji � c1

8

∫
R

Ψ ′
j,K

(
u2 + u2

x

) + C

K
e− 1

K
(σ0t+L/8). (72)

To handle with J1 we divide R into two regions Dj and Dc
j with

Dj = [
x̃j−1(t) + L/4, x̃j (t) − L/4

]
.

First since from (29), for x ∈ Dc
j ,

∣∣x − yj (t)
∣∣ � x̃j (t) − x̃j−1(t)

2
− L/4 � cj − cj−1

2
t + L/8,

we infer from the definition of Ψ in Section 4.2 that∫
Dc

Ψ ′
j,K

(
u3 + 4uu2

x

)
� C

K
‖u0‖3

H 1e
− 1

K
(σ0t+L/8).
j
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On the other hand, on Dj we notice, according to (28), that

∥∥u(t)
∥∥

L∞
Dj

�
N∑

i=1

∥∥ϕci

(· − x̃i (t)
)∥∥

L∞(Dj ) +
∥∥∥∥∥u −

N∑
i=1

ϕci

(· − x̃i (t)
)∥∥∥∥∥

L∞(Dj )

� Ce−L/8 + O(
√

α ). (73)

Therefore, for α small enough and L large enough it holds

J1 � c1

8

∫
R

Ψ ′
j,K

(
u2 + u2

x

) + C

K
e− 1

K
(σ0t+L/8).

Since J2 can be handled in exactly the same way, it remains to treat J3. For this, we first notice as above that

−
∫
Dc

j

uΨ ′
j,K

(
1 − ∂2

x

)−1(2u2 + u2
x

)
� 2‖u‖∞ sup

x∈Dc
j

∣∣Ψ ′
j,K

(
x − yj (t)

)∣∣ ∫
R

e−|x| ∗ (
u2 + u2

x

)
dx

� C

K
‖u0‖3

H 1e
− 1

K
(σ0t+L/8), (74)

since

∀f ∈ L1(R),
(
1 − ∂2

x

)−1
f = 1

2
e−|x| ∗ f. (75)

Now in the region Dj , noticing that Ψ ′
j,K and u2 + u2

x/2 are non-negative, we get

−
∫
Dj

uΨ ′
j,K

(
1 − ∂2

x

)−1(2u2 + u2
x

)
�

∥∥u(t)
∥∥

L∞(Dj )

∫
Dj

Ψ ′
j,K

(
1 − ∂2

x

)−1(2u2 + u2
x

)

�
∥∥u(t)

∥∥
L∞(Dj )

∫
R

(
2u2 + u2

x

)(
1 − ∂2

x

)−1
Ψ ′

j,K . (76)

On the other hand, from the definition of Ψ in Section 4.2 and (75) we infer that for K � 4,

(
1 − ∂2

x

)
Ψ ′

j,K �
(

1 − 10

K2

)
Ψ ′

j,K ⇒ (
1 − ∂2

x

)−1
Ψ ′

j,K �
(

1 − 10

K2

)−1

Ψ ′
j,K .

Therefore, taking K � 4 and using (73) we deduce for α small enough and L large enough that

−
∫
Dj

uΨ ′
K

(
1 − ∂2

x

)−1(2u2 + u2
x

)
� c1

8

∫
R

(
u2 + u2

x

)
Ψ ′

K. (77)

This completes the proof of (72). Gathering (71) and (72) we infer that

d

dt

∫
R

Ψj,K

(
u2 + u2

x

)
dx � −c1

8

∫
R

Ψ ′
j,K

(
u2 + u2

x

) + C

K
‖u0‖3

H 1e
− 1

K
(σ0t+L/8).

Integrating this inequality between 0 and t , (43) follows. �
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