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Abstract

Using a variational approach we rigorously deduce a nonlinear model for inextensible rods from three-dimensional nonlinear
elasticity, passing to the limit as the diameter of the rod goes to zero. The theory obtained is analogous to the Foppl-von Karméan
theory for plates. We also derive an asymptotic expansion of the solution and compare it to a similar expansion which Murat
and Sili obtained starting from three-dimensional linear elasticity.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Par une méthode variationnelle on dérive rigoureusememaatele non linéaire de poutre inextensionelle. Le modéle est
déduit de I'élasticité non linéaire tridimensionnelle, aprés une mise a I'échelle adéquate, en passant a la limite lorsque le
diameétre de la poutre tend vers zéro. On obtient ainsi une théorie analogue a celle de Féppl-von Karméan pour les plagues. On
dérive aussi une expansion asymptotique des solutions et on la compare avec une expansion similaire que Murat et Sili ont
obtenue a partir de la théorie linéaire de I'élasticité.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

In this paper we continue the rigorous derivation of exgliations by three-dimensional nonlinear elasticity
through I'-convergence. We refer to [2,3] for a survey abouoe-dimensional models and a discussion on the
history of the classical derivations sfich theories (see also [4,9,17]).
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Under the assumption of uniformly small strain Mielke rigorously derived the fully nonlinear rod equations
through a centre manifold argument[10,11]. While Mielke’s approach is based on a deep analysis of the equilibrium
equations, the starting point of our approach is the elastic energy

EM () := / W<(Z1, %) VU(Z)) dz

25

of a deformatiorv € W2(£2;,; R3), wheres2;, := (0, L)xhS, S is an open subset & with Lipschitz boundary,
andz := (z1, 7)) varies in2;,. By heuristic arguments energi@s") of orders? are expected to correspond to
stretching and shearing deformations of the fibre, leadingdiag theory while energiest ) of orderi* to
bending flexures and torsions keeping the fibre unextended, leadingtbtheory If E™ is of orderi®, one
expects that the corresponding deformation is close to a rigid motion, so that one can linearize around it and
obtain a theory analogous to the Foppl—-von Karman theory for plates (see [7]). The elastic theory for strings has
been rigorously derived by Acerbi, Buttazzo and Percival@jywhile the bending-torsiotheory for inextensible
rods has been recently justified in [12] and independently by Pantz in [16]. The mathematical setting in which
both results are formulated is that bf-convergence (see [5] for a comprehensive introduction to this notion of
variational convergence). In this paper we analyse the case \ilt€rés of orders® and we identify thel™-limit
of the functionalg: S E®.

To state our results, it is convenient to introduce the following change of variables:

71 = X1, 7 =hx',

and to rescale deformations accordingtex) := v(z(x)), so thaty belongs tow%?(£2; R%), where 22 :=
(0, L)x S. We will use the notation

1 |1
h)’.,s )

Ey,z
h—le(h)(v)zl(h)(y) :=/W(x,Vhy(x))dx.
2

Vhy = <Y.,1

so that

We assume that the stored energy funciidsatisfies the following assumptions:

(i) W:82xM3*3 [0, 4+00] is a Carathéodory function; for sorde- 0 the functionF — W (x, F) is of class
C? for dist(F, SO(3)) < § and for a.ex € £2;

(i) the second derivative?W/d F2 is a Carathéodory function on the setx{F e M®*3: dist(F, SO3)) < §}
and there exists a constant- 0 such that

2
w .
m(x, F)[G.G]|<yIG|* fordist(F,SQ(3)) < § andG € M3y3;
(iiiy W is frame-indifferent, i.e.W (x, F) = W(x, RF) for a.e.x € £2 and everyF € M®*3, R € SO(3);
(iv) W(x, F)=0if F e SOQ); W(x, F) > Cdist(F, SO3)) for every F € M3, where the constar > 0 is
independent of .

Under these assumptions we first show a compactness result for sequences of deformations whose rescaled energies
h=*1™ are bounded. More precisely, we prove in Theorem 2.2 that for any seqehbesuch that

. 1 . h
lim supﬁl( (y™) < +o0,
h—0
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we can find some constank&” € SO(3), ¢ e R such thatrR ™ — R and the functiong® := (R ™)Ty _
M satisfy (up to subsequences)

~(h

V3" —1d  strongly inL?(£2).

Since the limit deformation is a rigid motion, it is natural to study the behaviour of the deviation (suitably rescaled)
of 3 from the identity. Thus, we introduce the functions

W00 —x h 5 (x)
u™ (x1) ::/lexzdxg, U1(< )(xl) ::/ k dxodxz fork=2,3,

S

w® (x1) :=

/xzyg M (x) — xzy(h)(x) depdrs
n(S) ’

where we have set(S) := [S (x2 + x:,z,) dx2 dx3z and we have chosen the axes in such a way that

/xzxg dxodxz = /xz dxodxz = /xg dxodxz3=0.
S S S

The functionu™ measures the averaged deviation of the deformation component along the fibreu,gi\)hit&a
averaged deviation of the deformation components which are normal to the fibre. The funétiés related to
the twist of the cross section. In Theorem 2.2 we show that (up to subsequences) the following properties hold:

o u™ — y weakly inwl2(0, L);
o v — y strongly inW2(0, L), wherev, € W22(0, L) for k = 2, 3;
o w® — y weakly inW2(0, L).

In Theorem 4.5 we prove that thé-limit of the functionalsh—#1? is an integral functional depending anvy,
andw, of the following form:

L

1 1
1%, vp, v3, w) = 5/ Q(xl, ui-+ 5(”%,1 + U%,l)’ AJ) dx1,

0

where
0 -—w1 —w31
A= 121 0 —w s
V3,1 w 0

and Q(x1,t, F) is a quadratic form in the pair, F) defined through a suitable minimization procedure involving
the quadratic form of linearized elasticigyz(x, G) := 2% (x, 1d)[G, G] (see (4.1)).

A key ingredient in the proof is a rigidity result ?)y Friesecke, James, and Milller (see Theorem 2.1), which
ensures that low energy deformations are close to a rigid motion and provides the crucial estimate in the proof of
compactness.

In the last part of the paper we also show (under slagditional regularity assaptions) that solutiong )
admit an asymptotic developmefit’ of the form

w(h
U = x1 4 h?(u — xpv2.1 — x3v3.1) + 3B,

S = by + hvg + hPwxi- + 13, fork=2,3,
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wherep € L2(£2; R%) andx* denotes the point0, —x3, x2). The asymptotic expansion has to be interpreted in
the following sense:
~(h) _ ()
— 0, e — ok
h? h

5 _
Y1 TN -0 (k=23 in W),

and

(Va3 )TV, 312 —1d [(Vi3") TV, 3112 — 1d
h2 o h2

This asymptotic analysis generalizes to the nonlinear setting an earlier result by Murat and Sili in the context of
linearized elasticity (see [13,14]).

The plan of the paper is as follows. In Section 2 we prove the compactness result and a lower bound for the
I'-limit, while in Section 3 we show an upper bound; Section 4 contains the identification dfdreit and
some remarks about the characterization of the limit dergityhen W satisfies some additional requirements, as
homogeneity or isotropy; finally, Section 5 is devoted to the study of the asymptotic behaviour of solutions.

—0 inLY().

2. Compactness and lower bound

In the sequek is a bounded open subset®f with Lipschitz boundary. We assume thzd(S) = 1. We recall
that the axes are chosen in such a way that

/xzxg dxodxz = /xz dxodxz = /xg dxodxz3=0. (2.1)
s s s
The following rigidity estimate is proved in [6].

Theorem 2.1.Let U be a bounded Lipschitz domain R, n > 2. Then there exists a consta@i{U) with the
following property for everyv € W12(U; R") there is an associated rotatioR € SO(n) such that
Vv = Rll 2y < C(U)||dist(Vv, SO(n)) ||L2(U).

Using the previous theorem we can show the following compactness result.
Theorem 2.2.Let (y") be a sequence iW1-2(£2; R®) such that

. 1
limsup— [ W(x, Viy™)dx < +o0. (2.2)
h—0 h4

Then, there exist mapR™:[0, L] — SQO(3), _ﬁ(") [0, L] — M3*3 with |[R™| < ¢, and constantsR @ ¢
SO3), ¢™ e R such that the functiong® := (R M)Ty" — ") satisfy

[Vi3® = R®| 20, < CH, (2.3)
|RY = RY) 2,y < CHE [ VRD g,y < Ch. 24
[ =1d] (0., < Ch. 25

Moreover, if we define
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(h) ﬂh)(X) — X1
u"’(x1) ::/72dx2d—x3a
h
N

5P ()
v,(ch)(n) :=/ kh dxodxz fork=2,3,

h) _ (h)
w(h)(xl): (S)/x2y3 (x) x3y (x) dxzdxg,

whereu(S) := [ (x2 + x:,z,) dxo dxs, then, up to subsequences, the following properties are satisfied

(@) u” — u weakly inw12(0, L);

(b) v,ﬁh) — v strongly inW1-2(0, L), wherev;, € W22(0, L) fork =2, 3;

(c) w™ — w weakly inW2(0, L);

(d) (V5™ —1d)/h — A strongly inL2(£2), whereA € WL2((0, L); M®*3) is given by

0 —wvp1 —-v31
A= V2.1 0 —w ; (26)

V3.1 w 0

(e) symR" —Id)/h? — A?/2 uniformly on(0, L):
() the sequences™) defined by

h2

S(h)
1 /5P —ha;
B (x) = (L
j h I

()
,B(h)( )= —(L u™ (x1) +x2v(h)(X1) +x3v(h)(X1)>
- v;h)(xl) - hw(h)(xl)xj-‘) for j =2, 3,

wherex := (0, —x3, x2), is weakly convergent if?(£2) to a functions belonging to the space

B:= {9 e L?(2; R3): /e(x) drodxz =0, 62,0,3 € L?(2; R3), /(xgé’z — x203) dxadxz = 0}. (2.7)
3 3
Moreover,ﬁ’(,f') — Brin L2(2) fork =2, 3.

Proof. The coerciveness assumptionwhand the bound (2.2) imply that
. 1 .
IlTjéjpﬁ/d|st2(vhy(h),80(3))dx < 400.
2
Applying Theorem 2.1 as in the proof of the compactness result of [12], we can find a sequence of piecewise
constant map®® : [0, L] — SO(3) such that

/ Viy® — R [P dx < Ch*,
2
and

/ IR (g + ) — R (xp) [P ey < CH2( ]+ h)>. (2.8)
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where I’ is any open interval compactly contained (@, L) andé € R satisfies|&| < dist(/, {0, L}). Let
n € C§°(0,1) be such thay > 0, andf0 n(s)ds = 1. We sety;, (s) := hn( ) and we define

h
R™ (xq) := / M (s)R™ (x1 — 5) ds,
—h

where we have extendetf”) outside{0, L] by takingR ™ (x1) = R™ (0) for everyxs < 0, R™ (x1) = R (L) for
everyxs > L. Clearly| R | < ¢ for everyh, while properties (2.4) follow by (2.8). Moreover, since by construction
C .
|R™ (x1 +5) — R(h)(x1)|2 < / dis?(V,y™, SO3)) dx < Ch3
2
for every|s| < h, we have by Jensen inequality that

|R® — R® |2 < ch. (2.9)

By the Sobolev—Poincaré inequality and the secomajuality in (2.4), there exist constan@’ such that

[R® — 0|~ < Ch. Combining this inequality with (2.9), we have tHgt’ — 0™ |~ < Ch. This implies

that dist(g", SO(3)) < Ch; thus, we may assume th@ belongs to S@8) by modifying 0™ by orderk, if

needed. Now choosing® = 0™ and replacingr™ by (0")TR™ andR™ by (0™)TR™, we obtain (2.5).
By a suitable choice of the constant® we may assume

/(yg’” x1)dx =0, /y,ﬁ’” dr=0 fork=2,3. (2.10)
2 2
Let A .= (R™ —1d)/h. By (2.5) there existsl € L>((0, L); M3*3) such that, up to subsequences,
AM ~ A weakly* in L0, L). (2.11)
On the other hand, it follows from (2.4) that

R _1g

— A weakly inw%2(0, L).

In particular,A € W1-2((0, L); M3*3) andh~1(R™ — Id) also converges uniformly. Using (2.9) we deduce that
A™ — A uniformly. (2.12)

In view of (2.3), this clearly implies the convergence property in (d).
SinceR™ e SQO(3), we have

AW 4 (A(h))T — _h(A(m)TA(h)_

Hence,A + AT = 0. Moreover, after division by/2 we obtain property (e) by (2.12).

Property (b) immediately follows from the convergence in (d) and (2.10). Moreaver A1 for k=2, 3, so
thatv, € W22(0, L), sinceA € WH2(0, L).

The convergence ai:) follows from (2.3), property (€), and the normalization (2.10).

By the convergence in (d) we deduce that

NGO
(1/h> : .
/ 3%y = Azgrs i LA(2),
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and analogously,
s(h) _
A/ )7y 1 g _
T / hzyé N —A23x2 N LZ(.Q).
S

Now, sincew™ can be written as

1/ )y 1
(h)(xl) (S)/ (%_/ﬁygﬂ) dxp dxs
S
1 1/ b7 1.
S [ (T [ s
S S

it is clear thatw™ converges to the functiom = —A»3 = A3 in L2(0, L). The convergence is actually weak in
w12(0, L), since one can check thebfi‘)) is bounded in.2(0, L) by (2.3).

By differentiatingﬂih) with respect toy, with k = 2, 3, we have

1 1 1/1
(h) ~(h) (h) ~(h) (h)
Pre=73Y16 T 3 V%1 = hz(h lk+/yk 1dx2dX3>- (2.13)
S
Note that this can be rewritten as
~(h h ~(h h
W A/WF ()_R<> ylg,{_Rl(d)d | R 4 R
'Blk h2 + 72 X2 0x3 + T,

S

where the right-hand side is now boundedif(£2) by virtue of (2.3) and property (e). Therefore, the sequence
(ﬁ(h)) is bounded inL2($2) for k = 2, 3; using the Poincaré inequality and the fact tyisaﬁ(h) dx2dx3 =0, we
deduce that there exists a constant 0 such that

[ B w)ands<c [[(6300) + (b5 drods
N N

fora.e.x1 € (0, L) and for everyi. Integrating both sides with respectitg, we obtain that the sequen(;@fh)) is
bounded inZ2(£2); so, up to subsequenced” — g1 andﬂ(h) — Bux weakly inL?(£2).
As for the sequencdﬁéh)), (ﬁéh)), we have by differentiation that

Bl = 1(“’”—5 hw<h><1—8jk><—1>k)

0 ik
for j,k=2,3. Now it is easy to check that
s(BY) = S (B0 + A1) = S [sym(wis® — )], (2.14)

for j, k = 2,3; thus,(e;x(8™)) is bounded inL?(£2) by (2.3) and (e). Note that, thanks to the definitiorudh,
the funcuon(ﬂ(h)(xl, 9, ﬂ(h)(xl, -)) belongs for a.ex; € (0, L) to the closed subspace

{a: (a2, a3) € WH2(S; R?): /adxzdx3=0, /(X3az—x2a3) dxde3=0},
S N
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where an inequality of Korn type holds (see [15]). Thus, there exists a coidstaft such that

185”1, ) [ Gaegs) + 1857 et ) [yaasy < € 3 fesn(B® (e 9) | s, (2.15)
J.k

for a.e.x1 € (0, L) and for every:. Integrating (2.15) with respect tq, we find that the sequence&g’)) (ﬁ(h)
are bounded i.2(£2), as well as their derivatives with respecti x3. This concludes the proof of (f). O

Lemma 2.3.Assumé?2.2)is satisfied. LeR?, 3 u, A, andp be as in Theorer.2 Then

gt RV —1d
= 12
and the symmetric part af, denoted by, satisfies

—~G inL%), (2.16)

~ A? 0
G=uje1Q@es — 7 +sym| A1| x2)|B2|B3]- (2.17)
X3
Moreover,
1 1 ~
iminf — MYdx > =
liminf h4/W(x,Vhy ) dx > Z/Qg(x,G(x))dx, (2.18)

where Q3 is twice the quadratic form of linearized elasticity, i.e.,

2w
Q3(x, F) 3=m(x7|d)[F, Fl. (2.19)

Proof. The estimate (2.3) implies that ti&-norm of G is bounded:; therefore, up to subsequences, there exists
G e L?(£2; M®*3) such that (2.16) is satisfied.
In order to identify the symmetric part ¢f we decompos®& " G as follows:

V3™ —1d B RM —d

(h) (h) _
RTGH = h2 h2 ’

so that
V3™ —1d —1d
FO . SymhyT sym(RWGM) + SymT
The right-hand side converges weakIyGo+ A?/2 by (2.5), (2.16), and property (e) of Theorem 2.2. Therefore,
the sequencéF™) has a weak limitF in L2(0, L), satisfying F = G + A?/2. To conclude we need only to
identify F.
Consider the functions

which satisfyqsﬁ = Fﬁ) for everyh. From property (f) of Theorem 2.2 it follows that the functiaﬁ@ —u® 4

xzvéhi + x:gvéh])_, which are equal tdzﬁf'), converge to 0 strongly ii?(£2). Thus, by properties (a) and (b) of
Theorem 2.2 we have that

qb(h) — U — Xxu21 — Xx3v3,1 1IN L2(2). (2.20)

Now, smceqb(h) converges weakly td11 in L2(£2) by construction, we deduce that
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F11(x) =u,1(x1) — x2v2,11(x1) — x3v311(x1)

=u,1(x1) + Z Ak, 1(x1)x. (2.21)
k=23
Passing to the limit in the equality (2.14) we immediately have that
ejk(B)=Fjr forj, k=23 (2.22)

It remains to identifyFy; for k =2, 3. By (2.13) we can WriteFl(,]:) as follows:

Sr i 1
(h) _ 7k, L ~(h) = (h) (h)
2Flk = ? + F = ﬁ(yk!l — /yk’ldxzdx:g) +'31,k'

Using the definition of; for j =2, 3 it is easy to show that

1/ ~(h h h
12 (52 [ 50 dvactea) =g+ w0t
s
hence
h h h h

2F) = hp!") +wPxt + LY.
Since the right-hand side convergesagxkl + B1.x weakly inW—12(£2) by properties (c) and (f) of Theorem 2.2,
we have that

2Fy = w,lx,g‘ + B1k. (2.23)

Combining (2.21), (2.22), and (2.23), we obtain (2.17).
We now show the lower bound (2.18). By Taylor expansion we have that

192w
W(x,ld+A)= EW(x, Id+7A)[A, A, (2.24)

where O< ¢t < 1 depends on andA. We introduce the functions

1 ifxef{lcP™|<nty,

0 otherwise.

Note that from the boundedness®@f" in L2(£2) it follows that x;, — 1 in measure. Hence

xnG"M —~ G inL2(Q). (2.25)
Using the frame-indifference and (2.24) we obtain

1 1 1
ﬁ/W(x,Vhy(h))dXEﬁ/XhW(x,Vhy(h))dx=ﬁ/XhW(X,(R(h))TVhy(h))dx
2

Xn(x) = {

2 2
1 9%w
:/EX,,W()C, Id +1%1, (x)GM)[GP, GM]dx, (2.26)
2

where O< #;,(x) < 1. Itis convenient to write the last integral as

2Xh 5 F2 (xs h(;f) )[ 3 ] X ( . )
2

1/ 9w 1
:/E(Xhm(x,Id+th(x)h2G(h))[G(h),G(h)]— Qg(x,XhG(h)))dx—i-/EQg(x,XhG(h))dx.
2 2
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By Scorza—Dragoni theorem there exists a compact subseft 2 such thataZW/8F2|me is continuous
(hence, uniformly continuous on compact subsets). Therefore, for evefywe have for: sufficiently small

1/ 92w
/ E(Xhm(x’ Id+1(0)h*GD)[GP, GP] — Ogx. th“”)) dr
2
1 (h)|2
> —58/Xh|G |“dx > —Ce. (2.28)

K

As for the second integral on the right-hand side of (2.27), it is lower semicontinuous with respect to the
convergence (2.25), sin@@s is a honnegative quadratic form. Combining this fact with (2.26), (2.27), and (2.28),
we obtain

1

1

liminf — Viy®™ >—/ — Ce. 2.29

imin h4/W(x, ny)de >3 [ Qa(x, G)dx — Ce (2.29)
2 2

Sincee is arbitrary andQ3(x, G) depends only on the symmetric part @Gf(by frame-indifference), the thesis
follows immediately from (2.29). O

3. Upper bound

In this section we prove that the lower bound shown in Lemma 2.3 is optimal in the sense specified by the
following theorem.

Theorem 3.1.Letu, w € WH2(0, L), andv, € W22(0, L) for k = 2, 3. Let 8 be a function in3 (see(2.7))and let
A e WH2((0, L); M®*3) be defined as if2.6). Set
ﬁ,s) .

~ A2 0
G = u,1e1®e1—7+sym Al x2
Then there exists a sequer@é”) c W12(£2; R3) such that propertiega)—(f) of Theoren®.2 are satisfied and

x3
limsup— W(x,Vhy )dxé = Q3(x,G(x))dx, (3.2)
hso h? 2
2 2

B.2

where Q3 is defined as i2.19)

Proof. Assume first that, w, vk, B are smooth. For everly > 0 let us consider the function

x1 h2u X2v2,1 4 X3v31
yM(x) = (hxz) + (hv2> —h? ( X3Ww ) + h3B. (3.2)
hx3 hvs —X2Ww
Then, properties (a)—(f) ardearly satisfied. Moreover,
hu1 —hvp1 —hvzy X2v2,11 + X3v3,11
Viy® =1d+ | hvpgr 0 —hw | —h? X3W 1 ‘ﬁ,z B.a | +0O(13).
hvz1  hw 0 —X2Ww,1

Using the identityld+B7)(Id +B) = Id+2 symB + BT B, we obtain for the nonlinear strain

0
(th//(h))TVhy(h) =Id +2h2u,161 ®e1+ 2h23ym(A,1 <x2> B.2

X3

/3,3) +h?ATA +O(h%).
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Taking the square root and using the definitiorGofwe have that
[(Va3 ") V3P = 1d+42G + O(). (3.3)
We have deV, 7 > 0 for sufficiently smallz. Hence by frame-indifference
W (e, V3 ™) = (e [(95 ) Va3 P T):
thus, by (3.3) and Taylor expansion, we obtain
S V) > 20s(x, ) ae.
and

1 . 1 ~p2
W VI P) <Sy[GI 4+ Ch<C(IA 414417 +1821° + 183l + w1l + 1) € L1(2).
Now the inequality (3.1) follows by the dominated convergence theorem.

In the general case, it is enough to smoothly approximatein the strong topology o 12, v, in the strong
topology of W22, andg, g in the strong topology of.2, and to use the continuity of the right-hand side of (3.1)
with respect to these convergencess

4. |dentification of the I'"-limit

Let 0: (0, L)xRxMZ3 s [0, +00) be defined as

skew
0
O(x1,t, F) = min /Qg x,| F|x2]+rter|a2as dxo dx3, (4.2)
acWL2(S;R3) X3
N

where Q3 is the quadratic form defined in (2.19). Physically the minimizén (4.1) corresponds to the warping
of cross-section, induced by the bending and torsion encodEdaimd the stretchin the direction of the rod.
Foru, w € WH2(0, L) andv,, vs € W22(0, L) we introduce the functional

1 1
Io(u, V2, U3, W) = > / Q(xl, ui+ E(vil + U:%,l)’ A,1> dxq, 4.2)
0

whereA € W12((0, L): M3*3) denotes the matrix

0 —wv1 —-wv31
A= v21 0 —w
V3,1 w 0

The main result of this section is the proof of tHeconvergence of the functionals/z*) 1™ to I°. Before stating
the theorem we analyse some properties of the limit dernity

Remark 4.1. The minimum in (4.1) is attainedlo prove this, recall first tha@3(x, G) depends only on the

symmetric part ofG. Thus the functional in (4.1) is invariant under the transformadies o + c1 + coxt, and
hence the minimum can be computed on the subspace

V= {0{ € Wl’Z(S; R3)Z /adxzdxgz 0, /(xgolz — xoa3) dxodxz = 0}.
S S
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Since Q3(x, F) > C|symF|? for every F, the minimizing sequences containedlinare compact with respect

to the weak topology of¥12(S; R3) (using again Korn’s inequality fofxz, a3), see, e.g., [15]). Moreover, the
functional to minimize is lower semicontinuousdrwith respect to this convergence. This is enough to guarantee
the existence of a minimizer. The strict convexity@$(x, -) on the set of symmetric matrices ensures also that the
minimizer is unique inv'.

Remark 4.2 (Euler-Lagrange equationfix x1 € (0, L), 7 € R, andF € M33  Leta™" € V be the minimizer of
the problem (4.1). For sake of notation we set

0 92w
(x2,x3):=F | x2 | +te1 b (x) 1= ————(x.1d)
§li2, 3): s ’ AFpdF

and we callB"* the matrix inM>*3, whose elements are given b§’*),; = bf'j". Thena™" satisfies the following
Euler-Lagrange equation:

/ Z Bhk ’mm,(ph)dxde3——/ Z(Bhlg,(p,h)dxde3 (4.3)

hk=2.3 s h=2.3

for everyp € W1-2(S; R3). _
From this equation itis clear thatf"" depends linearly on the pair, F). HenceQ is a quadratic form ofz, F).
Moreover,Q is uniformly positive definite, i.e.,

Q(x1.1, F) > C(r*+|F|?) VieR, YF e MyS, (4.4)

where the constar does not depend on . To see this note tha@z(x, G) > C|symG|? by hypothesis (iv) orW.
Thus it suffices to establish the bound (4.4) for the special quadraticfyta, G) = |symG 2. If it failed, there
would exist(z, F) # (0, 0) anda = «™" € V such that

0
sym(F <x2> +teq a,g) =0.
x3

The equations for the 1éomponent yield

o2

Fiox2 + Fiaxa+1t =0,
Foaxz+oa12=0,
—Fo3x2+a13=0.

ThusFi2 = Fi3=1t = 0, and by derivation of the two last identities we dedéigg= 0, a contradiction.

Remark 4.3.For future reference we note that there exists a conétafindependent o, 7, andF) such that
inn2 inn2
Ha,rg'”ﬂ st Ho‘,rg»m” L2(s) S C/”g”iZ(S)' (4.5)
Indeed, sinc&s(x, F) > C|symF|? for every matrixF, we have
1

ol 3o (B%ox0n) = Y lenilP+ Y. le@]? Vo e WHE(s:R?),

hk=23 k=2,3 jk=2,3

where 2,(¢) == ik + ¢k, ). Takinga™n as test function in (4.3) and using the above inequality, we obtain
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/ ‘“ﬂn\zdwd%+/ > |ejk(ami”)|2dx2dx3<_%/ 3 (B, o) dry s

s § k=23 5 h=23

1 :

C 2. ||BhlgHL2(S) [ Lzcs)- (4.6)
h=2.3

<

By Korn inequality there exists a constart > 0 such that
/ Z |aT,i(n|2dx2dx3 < C1/ Z |ejk(amin)|2dx2dx3;
s Jk=23 s Jk=2.3
hence, by (4.6) we have
o o .
Ha,?'”ll L2 T Ho‘,rg»m” L2(s) S €2 Z H BhlgHLZ(S) Ha,r?«"”” L2(S)
h=2,3

< C3||g||L2(S) Z ||a,mhin}’L2(S)v (47)
h=2,3

where the last inequality follows from the boundedness of the entrieB”bf(this is a consequence of the
assumption (ii) or). Inequality (4.5) follows immediately from (4.7).

Remark 4.4. When Q3 does not depend arp andx3, we can find a more explicit representation for More
precisely, the formQ can be decomposed into the sum of two quadratic forms

O(x1,t, F) = Q1(x1,1) + Q2(x1, F),

where
Q1(x1,1) := min Q3(x1, (re1lalb)), (4.8)
a,beR3
Q2(x1, F) := Q(x1,0, F). (4.9)

To see this fixc1, 7, and F, and lete € W2(S; R3). Itis convenient to introduce the following quantities:

a :=/a}2dx2dxg, bZZ/a,gdxzdxg,

S s
B(x2, x3) 1= a(x2, x3) — x2a — x3b.

By expanding the quadratic forfz we have that

0
/Q3 (xl, (F (xz) +teq a,3>> dxodxs
N 3 0
= Q3(x1, (te1lalb)) +/ 03 (XL (F <x2> ‘ﬁ,z

y X3

o2

ﬁ,3)> dx2 dxs. (4.10)
The absence of a coupling terndge to the fact that the matrixe1|a|b) is independent afz, x3, while the matrix

(2

has zero average of by (2.1) and by the definition of. Now, equality (4.10) implies thaQ(x1,1, F) >
O1(x1, 1) + Q2(x1, F).

B.2
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Vice-versa, lets € W2(S; R®) be a minimizer for the problem definin@(x1, 0, F). Then expanding the
quadratic formQ3 and using the fact tha®s is nonnegative, it is possible to show tiamust satisfy

/ﬁ,zdxzdx3=/ﬁ,3dxzdx3=0.
S

S
Let (a, b) € R3xR3 be a minimizer for (4.8) and let
a(x2, x3) := B(x2, x3) + x2a + x3b.

The identity (4.10) now implies the required inequality.
The formula (4.9) can be further simplified if the stored energy function is isotropic $risfa circle (see
Remarks 3.5 and 3.6 in [12]).

We now state and prove the convergence result.

Theorem 4.5.Ash — 0, the functionalg1/h*) 1" are I'-convergent to the functiondP given in(4.2), in the
following sense

(i) (compactness and liminf inequalityf) limsup, ,oh~*1™ (y) < 400, then there exist constani®®) e
SO3) andc™ e R such that(up to subsequence® ™ — R and the functions defined by

~(h)
- —nT Vi (x) —x1
FO) = (RP) YD) =™, u® ) = / S drpdy,
S

~(h)
v (x1) _/yk h(x) dxpdrs fork=2,3,

h) _ (h)
w (xq) := (S)/xzy3 (x) x3y2 (x)d 2xs,

satisfy

(1) V,3™ = 1din L2(£2);

(2) there exisu, w € W-2(0, L) such that«” — u andw™ — w weakly inw1-2(0, L);
(3) there existy € W22(0, L) such thatv(h) — vy strongly inw12(0, L) for k = 2, 3.
Moreover, we have

Il}r,n |nf I(h) (y(h)) > Io(u, V2, U3, W); (4.12)

(i) (limsup inequality)for everyu, w € WH2(0, L), vz, v3 € W22(0, L) there existgy™) such that(1)—(3)hold
(with ™ replaced byy ™) and

1
lim sup-— 1P (M) < 1%, v, v3, w).

h—0

Proof. (i) Properties (1)—(3) follow from Theorem 2.2. By Lemma 2.3 we know that

hlr;mrgf—/w x1, Viy®) dx > = /Qg x,G(x))dx, (4.12)

whereG can be written as
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,3,3)

- A2 0
G(x)=u,161®€1—?+3ym Axl x2]1B2

X3
0
= Sym<A,1 <x2> + <u,1 +3(v3,+ vil))el B2 ﬁ,s)
X3
0 v3,1W —Vv2, 1w
+ % V31w w? + vil v2,1v31 |. (4.13)

—v21w  U2,1U31 w2+v§,1

Seta(x) := B(x) + 3x2y2(x1) + 3x3y3(x1), where
ya(x1) := 2vgawer + (w? + v3 1)e2 + v2 103 13, (4.14)
y3(x1) 1= —2vp 1weq + v2,1v3.1€2 + (w2 + vil)eg. (4.15)
Using these new definitions, we have that

0
Sy — 15 2
Gx)y=sym{ A x2 |+ u1+ 2(”2,1"‘”3,1) el

X3

)

01,3). (4.16)

Sincea(x1, -) € WH2(S; R3) for a.e.x1 € (0, L), it follows from the definition ofQ that

L
~ 1
/ Q03(x, G(x)) dx > f Q(xl,u,1+ 5(v§,1+v§,1),A,1> dxy. (4.17)
2 0

The thesis (4.11) now simply follows from (4.12) and (4.17).
(i) Let u, w € W2(0, L) and vy, vz € W22(0, L). Leta(x1, -) € V be the solution of the minimum problem
defining Q(x1,u 1 + %(v%l +v$,). A1) (see Remark 4.1 for the definition of the spacg Thena and its

derivativesx,», @ 3 belong toL?(£2; R®). Indeed, by the Sobolevecaré inequality we have
2 2 2
Joe . ')HLZ(S) < C([lerz(xa, ')HLZ(S) +[eata, ')HLZ(S))
for a.e.x1 € (0, L); thus, integrating with respect tq, we deduce
el ) < Cle2llZ o) + e sliZa q))-

Therefore it is enough to prove thab, « 3 € L?(2; R3). This can be done by integrating the estimate (4.5) with
respect tocg; in that way, we obtain the following inequality:

le 21172 ) + 3172 ) < C/(||A,1||iz(o,m +lualZao,+ D ||vk,1||i4(o,L)).
k=2,3

The right-hand side is bounded, sindes W12((0, L); M3*3), u € W1-2(0, L), andv;.1 = Az1 € L*®(0, L) by
the Sobolev embedding theorem.
Now lety,, y3 be defined as in (4.14), (4.15). We denoteibthe function given by

a(x) = a(x) — w(xp)xt,

wherew is chosen in such a way that the function

1 1
Bx):=alx)— EXZVZ(Xl) — Exsm(m)
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belongs to the sdf defined in (2.7). Sinc®3(x1, F) = Q3(x1, SymF), itis clear that(x1, -) is still a minimizer
for the problem defining (x1, u 1 + %(vil + vil), A 1). To conclude it is enough to use the equivalence of (4.16)
and (4.13) and to apply Theorem 3.1 to the functionsv, v, andg. O

5. Asymptotic behaviour of solutions

In Theorem 2.2 we have shown that sequences whose e¢igiighy 1 " is finite, converge strongly itV 1-2(2)
to a rigid motion. The aim of this section is to characterise the asymptotic behaviour of the deviation of solutions
from the rigid motion and of the nonlinear strain from the identity. We will then compare this result with the
expansion obtained by Murat and Sili in the setting of linear elasticity [13].

Theorem 5.1.Let (y) be a sequence iW1-2(2; R3) such that
. 1
lim sup. W (x, Viy™) dx < +o0.
h—0
Let R™ e SOM3) and ¢ e R be as in Theoren?.2 and let 3 := (R™)Ty® _ ¢ Then there exist

u,we W20, L), va, vz € W22(0, L), andB € B (seg(2.7)for the definition of3) such that the scaled deviations
of 3 from the identity satisfy, up to subsequences,

~(h)
— X .
o = % —u —xov21 —x3vg1  weakly inwl2(02), (5.1)
50
o = kT — v strongly inW2(), (5.2)

while the scaled nonlinear strain satifies

[(Vay")TVhy™1H2 — 1d

3 —~ G weakly inL?(2), (5.3)

,3,3)

where

- A? 0
G=u,1€1®€1—7+3ym Axl x2)|B,2

x3

and A is defined as irf2.6).
If we assume in addition that

L
1 1 1, 2
}lllinoﬁ / W(x, Vhy(h)) dx = > / Q<x1, u1+ E(Uz’l + v3)1), A,l) dxq, (5.4)
Q2 0
then the convergence {8.1)and (5.3) are strong. Furthermore, the matri% satisfies
G:u,1e1®e1+sym<A,1 (xz) ag'” ag'”), (5.5)
X3

wherea™" is the solution inV’ of the minimum problem definin@(x1. u,1 + 3(v3  +vZ ), A 1).

Proof. Properties (5.1) and (5.2) are consequences of Theorem 2.2. Indeed, from (2.3), (e), and (d) it follows that
the sequenceve!”) is bounded inL2($2). Since¢"” — u — xpv21 — xava 1 strongly in L2(2) by (2.20), we
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have that (5.1) holds up to subsequences. From (d) it foIIowszkbé’f) — w11 Strongly inL2(£2). By (2.10)
and the Poincaré inequality we conclude that (5.2) holds true.

The convergence in (5.3) easily follows from (2.16).

Assume now that (5.4) holds. Combining it with (2.26), (2.27), and (2.28), we obtain

L
1 1
5/ Q<X1, Ui+ 5(”%,1 +v8 ), A,1) dx1
0

. 1
—imsup k[ (e, W) x> imsup k[ (s, i) a
h—0 h—0 h

I|msup 03(x, xnGP)dx = = /Qg x,G(x))dx (5.6)
h—0
:z

Since the last term is always greater or equal than the first one, all the inequalities above are equalities and for
a.ex1€(0,L)

1 ~
Q<x1,u,1+E(vg,l+v§’1),A,1) :/Qg(x,G(x))dxzdx3.
S

As proved in Remark 4.1, the minimum problem defin@ddas a unique solutiom™" in the subspac#, so that,
writing G as in (4.16),

a™N(x) = a(x) — w(x)x ", (5.7)
where
1 1
a(x)=px)+ 5)62)/2()61) + 5)63)/3()61), (5.8)

y2, 3 are defined as in (4.14) and (4.15), ands uniquely determined by the requirement that wx' € V.
Substituting (5.7) in the expression Gfwe obtain (5.5).

Next, using the coerciveness @&, from (2.25) and the fact that the equality holds in the last inequality of (5.6)
we can deduce that

xn SymG™ — G strongly inL?(2). (5.9)
By the definition ofG® we obtain

(Vay®) T,y ® =1d+2n2symG " + h*(GM) G,
so that we have the following bound

[(Vay®) Wy P2 = (1d +h2symG ™) | < 4GP 2.
Multiplying both sides by(1/42) x; and using the fact that?|G V| < h on the sefx € 2: x(x) # 0}, we get

[(Vay ™) TVyy ™2 —
Xh 2
Since the equality holds in the first inequality of (5.6), we have that

— G strongly inL?(£2).

|ILn m/(l )(h)W(x Vhy(h)) dx=0 (5.10)
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Using the inequality
(ATA)Y? —1d|? < dis?(4, SOB)) < %W(x, A) VA e M3,

we have by (5.10)

(Vay™)TViy ™12 —1d |2

2 dx <0.

limsup | (1— Xh)‘ [
h—0
Q

This concludes the proof of the strong convergence of the scaled nonlinear strain.
To establish the strong convergence{@f’)) in W1-2(£2), we first prove that

1 ~
3 dist(V4 3", SO3)) — |G| in L%(2). (5.11)
From the definition of5® it follows that

1 1
5 X0 dist( Vs 77, s03)) = 5 dist(id + h?G™M, SO3))

1
= xn|symG™ | + xho(ﬁ|G(’”|2>.
By (5.9) and the fact that;, (1/42)|G |2 is bounded by:, we deduce that
1 . - ~ .
5 X dist(V, 3™, SO3)) — |G| in L2(%2).

In combination with (5.10) this yields (5.11). In paxlar, the convergence (5.11) implies that the sequence
((1/h* disB (v, 7™, SO))) is equi-integrable. By a refined versiohTheorem 2.1 (see Proposition 5.2 below)
this implies that

1

IGM|? = X [(R")Tv,5® —1d|? is equi-integrable. (5.12)
By (5.9) and (5.12) we have that
symG" — G strongly inL?(2). (5.13)

SinceR" — 1d strongly inL*°, we obtain
(R™ —1d)G™ — 0 strongly inL?(£2).
Thus,

1 - ~ .
i sym(V;, 3™ — R™) = sym(RMWG™) — G strongly inL?(£2). (5.14)
Now, since we can decompwg’{ as

~(h)
Y11~

Ry R _1
h?2 + h2
we have by (5.14) and property (e) of Theorem 2.2 twifl{) is strongly convergent ir.2(s2). The strong

convergence o¢¢ﬁ’,§) for k = 2, 3 follows from property (d) of Theorem 2.2. This concludes the proaf.

() _
$11=

Proposition 5.2.Let (y) be a sequence iW12(£2; R3) such that
dist(Vay™, SO3)) < h*(M + f),
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whereM e R, M >0, and f € L2(£2). Let R™ be the map constructed in Theor@x. Then
[Viy™ — RP| < h2(G1+ Go)

with
|G1llLr2) <CM  for somep > 2, 1G2ll 22y < Cllf I L2(0)-

In particular, if x=*dist(V,y™, SO(3)) is equi-integrable, thea =4V, y™ — RM |2 is equi-integrable.
For a proof we refer to [8].
5.1. Comparison with linear elasticity

The result of Theorem 5.1 can be read as follows. The sgqu(eﬁée, which describes the scaled deviation of
7™ from the identity, behaves asymptotically as the sequépte) defined by

2 (h
qbi ) = u — xpup1 — x3v3.1 + h1,

oM = v + hwxt + 1B (k=2.3),
in the following sense. We set fgre W1-2($2; R3)
DB (g) = < 1¢1,1 %‘Ibl,k
7Pl 79k
Then it is easy to see that the scaled nogdinstrain can be expressed in termg@t as
(Va3 ") TV 3@ 1H2 — 1d
h2

>, j.kef{2,3}.

and that
symD® () + %hz[D(m (™) DP ($0) = G + o(h)

provideds € W12(£2; R3). In this case, the convergence result of Theorem 5.1 and the fagtsiiatD ™ (¢ M) —
symA =0 in L?(2) imply that

1 T
(h) (4 (1) Z12[ nh) (4 (1) (h) (4 (h)
(symp (6 + 512D (6] D (6))
- <symD(") (™) + %hZ[D(") (qu("))]TD(") (é("))) — 0 strongly inL(£2).

The conditions € W12(2; R3) corresponds to higher regularity of the solution, as shown in Lemmas 5.3 and 5.4
below.

The comparison o™ and$™ generalizes to the nonlinear setting an earlier result by Murat and Sili in the
context of linearized elasticity. More precisely, Murat and Sili have studied in [13] the asymptotic behaviour of the
solutiong™ of a linearized elasticity problem in an inhomogeneous cylinder, whose diamtgads to 0. They
show thatp™ has the same asymptotic behaviour of

oM =+ hy + h%¢
in the following sense:
o™ — ¢ strongly inwt?2,
eM (™) —e® (™M) - 0 stronglyinL?,
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wheree™ (f) := symD™ (f). The functionsp, ¥, ¢ enjoy the following propertiesp satisfies the Bernoulli—
Navier equation, i.e., there existe W1-2(0, L) andv; € W%2(0, L) such that

@1 =1u — X2V21 — X303 1, Pk = Vk;
the functiony; belongs toL?(£2; R3) with derivativesyy », ¥1.3 in L2(£2; R3), while there exists a function
w e WL2(0, L) such that

Y2(x) = —w(x1)x3, PY3(x) = w(x1)x2;

finally, the functionz belongs to the space

{9 € L?(2;R%): 61 =0, 6 j € L¥(2) for j,k=2,3, /(xgez — x203) dxp g = o}.
N

This linear asymptotic result is in agreement with Theorem 5.1. Indg/él,as solution of a linearized elasticity
problem, is defined as a suitable rescaling of the deviation of the deformgfibrirom the identity (which
corresponds tg¢ in our notation), while™ (™) is the linearized strain. Moreover, the asymptotic development
¢™ found by Murat and Sili has exactly the same structure of the asymptotic developifiefiound in the
nonlinear case.

We conclude the section with two lemmas showing that higher regularjyi@felated to higher regularity of
solutions.

Lemma 5.3.Assume that the function — %%‘,_f((xl, x"), 1d) is differentiable for a.ex’ € S and
a [9%W
OF2

— )(x,ld)’<c~’ fora.e.x € 2.
0x1

Letu € W22(0, L) and A € W22((0, L); M3*3). Leta™"(x, -) denote the solution itV of the problem(4.1)
definingQ (x1, u 1 + %(v%l +v5 1), A.1). Thena™" belongs toW2(2; R3), as well as the functiop determined
by (5.8)and(5.7).

Proof. Let I’ be an open interval compactly contained (®y L). Let x1 € I’ and ¢ > 0. For any function
f: 82— RN we set

Acf) = 2 (fntex) — £(0)). (5.15)
&

Using the Euler-Lagrange equation (4.3) we obtain

/ Y (B 1+ e x) A PP(x), g () dY’
N

h,k=2,3

= —/ Z (A:B"(x)g(x) + B" (x1 + £, ) Apg(x), 9 4 (x))) dx’

o h=23
- / > (AB™)a PN (x). . (x)) d, (5.16)
© hk=23
whereg is any test function i 12(s; R®) and
0 1 1
2 2
g(x) == A 1(x1) (X2> + (u,l(xl) + Evz,l(xl) + Evg)l(xl))el. (5.17)
X3
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Taking A.a™N(xy, -) as test function in (5.16) and arguing as in the proof of (4.5), we obtain that there exists a
constantC (independent aty, I’, ande) such that

H Aea,rgmHiZ(S) + ” As“,rgmHiz(S) <C Z H A:B"g + B" A g + Z Athk“,rEin”iZ(S)
h=2,3 k=23
< C(”g”iZ(S) + H Asg”iZ(S) + ”“,nZ]mHiZ(S) + ||a,m3i"||iz<5))~ (5.18)

By the Sobolev—Poincaré inequality we know that

H Aea™(x1, )” L2(s) S C(H Aeo‘,rgin”iZ(S) + ” Ae“,m3inHi2(5))‘
Integrating both sides off and using (5.18), we have

i 2 in2 in2
H Aso‘mmHLZ(I’xS) < C(”g”iZ(Q) + ||A€g||L2(I/><S) + ||“,n2"nHL2(.(2) + Ho‘,nsanZ(Q))-

To conclude it is enough to show that the riglard side is bounded by a constant independetit ahde. The
only term for which this is not trivial is the quantityA: gl 2/« 5)- By (5.17) we have

0
g1=A11 (X2) + (1,11 + v2,1v2,11 + v3,1V3 11)€e1.
X3

From the regularity assumptions @nandu it follows that g 1 belongs toL?(s2; R3). This implies the required
bound on[A:gll 2(y/xs)- O

Let f2, f3 € L2(0, L). We introduce the functional

L
T, v2,v3, w) 1= 1%u, v2, v3, w)—/ > fiuedry (5.19)
o k=23

for everyu € WH2(0, L), vo, v3 € W22(0, L), andw € WL2(0, L).

32w

Sz ((x1, x), 1d) is differentiable for a.ex’ € S and

Lemma 5.4.Assume that the function —
9 <82W

9x1\ 9F2

)(x, Id)‘ <C forae.xes. (5.20)

Let f», f3 € L%(0,L) and let (u, v2, v3, w) be a minimizer forJ°. Thenu,w € W20, L) and vp, v3 €
W30, L). In particular, A € W2>°((0, L); M3*3).

Proof. LetB: (0, L) — M3*3 be the symmetric matrix associated to the quadratic forn, -) defined in (4.1);
thus, we can expres3 as

t t

1z F12 F12 3x3

QGvt. )= B0 [ 27| | g Vi € R, VF € Mgy,
F32 F32

The matrix B is uniformly positive definite by (4.4). Moreover, from the assumption of differentiability of
82w /dF? and (5.20), it foIIowE tha§ is differentiable with respect te; and its derivative is bounded @f, L).
We will denote thej-th row of B by B;.



292 M.G. Mora, S. Mdller / Ann. I. H. Poincaré — AN 21 (2004) 271-293

For simplicity of notation we introduce the functigre L2((0, L); R%) defined by
Ui+ %Uil + %“%,1
V2,11

V3,11
w,1

¢(x1) =

If (u, v2, v3, w) is @ minimizer of/°, then the following Euler—Lagrange equations hold:

L
/<p1,1§1§ dx1 =0, (5.21)
0

L L L
/(Pz,11§2§ dyx1 = —/¢2,1v2,1§1C d)C1+/f2<p2 dxg, (5.22)
0 0 0

L L L
/¢3,11§3§ dyx1 = —/¢3,1v3,1§1C d)C1+/f3<p3 dxg, (5.23)
0 0 0

L
/ ¢a1Bag diy =0 (5.24)
0

for everyp; € C*°(0, L). From these equations we want to deduce some higher regulatity of
From (5.21) it follows that there exists a constant R such that

Bi(x1)¢(x1) =c1 fora.exie (0, L). (5.25)
Analogously, (5.24) implies that there exists a constamt R such that
Ba(x1)t(x1) =ca  fora.exie (0,L). (5.26)
Using (5.25) in (5.22) and (5.23), we have foe 2, 3
L L L
/¢k,11§k§ dx; = /(fk(Pk — C1Vk, 190, 1) dx1 = /(fk + c1vr1)ec dxr Vor € C°(0, L).
0 0 0

This implies that the second derivative §f<§ belongs toL2(0, L) and coincides withf; + c1vk,11 almost
everywhere. Therefore, there exigise W22(0, L) such thatg; 11 = fx and

Br(x1)¢(x1) = gx(x1) fora.exie (0, L). (5.27)
Combining together (5.25), (5.26), and (5.27), we have
B(x1)¢(x1) = g(x1) € W22((0, L); R?),

vAvhere we have seat:= c1e1 + goe2 + g3e3 + caeq. SinceB belongs tow 1> and is uniformly coercive, the inverse
B~ 1is stillin w1.°; therefore,
¢(x1) = (B7Y)(x1)g(x1) € WH((0, L); RY).

This immediately implies that; € W3°°(0, L) andw € W2 (0, L). Moreover, we have that + 3v3 , + v2,

belongs tow!>(0, L). Sincev?; € W->(0, L), we can conclude that; belongs toW>(0, L) too. This
finishes the proof of the lemma.o
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Remark 5.5.The functional/° defined in (5.19) can be obtained Aslimit of the energieg1/4%) 1™ by adding
a term describing transversal body forces of ovdfeand by imposing a boundary condition which eliminates rigid
motions of the body.
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