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Abstract

We prove a local smoothing effect and Strichartz type estimates for the Schrödinger equation on the exterior o
trapping obstacle. As a consequence we deduce global existence and uniqueness results for the Cauchy problem fo
Schrödinger equations in these particular geometries.

Résumé

On démontre un effet de régularisation local et des inégalités de type Strichartz pour l’équation de Schrödinger à l’extérieu
d’un obstacle non captant. On en déduit des résultats d’existence globale et d’unicité pour l’équation de Schrödi
linéaire.
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1. Introduction

Let Θ ⊂ R
d , d � 2, be a compact smooth obstacle. Denote byΩ the complementary ofΘ. In this paper we

shall suppose that the obstacleΘ is non-trapping which means that any light ray reflecting on the boundaryΘ

according to the laws of the geometricoptics leaves any compact set in finitetime. In other words any generalize
bicharacteristic in the boundary cotangent bundlebT ∗Ω (see Melrose and Sjöstrand [23,24] for a precise definit
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leaves any compact set in finite time. Our goal here is to study the existence of global strong solutions
nonlinear Schrödinger equation, posed onΩ ,

(i∂t + �)u = F(u), in R × Ω (1.1)

with initial data

u(0, x) = u0(x), x ∈ Ω, (1.2)

subject to Dirichlet boundary conditions

u(t, x) = 0, (t, x) ∈ R × ∂Ω. (1.3)

The nonlinear interactionF is supposed to be of the formF = ∂V /∂z̄ with F(0) = 0, where the “potential”V is
real valued and satisfiesV (eiθ z) = V (z) for everyz ∈ C, θ ∈ R. Moreover we suppose thatV is of classC3 and∣∣Dk

z,z̄V (z)
∣∣ � Ck

(
1+ |z|)2+α−k

, k = 0,1,2,3.

Some phenomena in Physics turn out to be modeled by exterior problems and moreover one may ex
dynamics under various boundary conditions. A first step in that direction is to establish well defined dynam
in the natural spaces determined by the conservation laws associated to (1.1). Ifu(t, ·) ∈ H 1

0 (Ω) ∩ H 2(Ω) is a
solution of (1.1) then (see Cazenave [13, Theorem 4.1.1]) it enjoys the conservation laws

d

dt

∫
Ω

∣∣u(t, x)
∣∣2 dx = 0 (charge conservation), (1.4a)

d

dt

{∫
Ω

∣∣∇u(t, x)
∣∣2 dx +

∫
Ω

V
(
u(t, x)

)
dx

}
= 0 (energy conservation) (1.4b

and therefore one can obtain via the Gagliardo–Nirenberg inequalities that for a large class of potentialsV the
quantity‖u(t, ·)‖H1

0 (Ω) remains finite along the trajectory starting fromu0 ∈ H 1
0 (Ω)∩H 2(Ω). This fact makes the

study of (1.1) in the spaceH 1
0 (Ω) of particular interest and motivates us to callH 1

0 (Ω) the energy space for (1.1
It is clearly also of interest to study of (1.1) inL2(Ω), the space associated to the conservation law (1.4a).
main issue in the analysis is that the regularities ofH 1 or L2 are a priori too poor to be achieved by the “classi
methods” (see, e.g., Segal [26], Lions [22]) for establishing local existence and uniqueness for (1.1)–(1.2)–(1.

The Cauchy problem associated to (1.1) withΩ = R
d attracted much attentionduring last 20 years (se

the books by Bourgain [3], Cazenave [13], Sulem and Sulem [27] and the references therein) and the the
of existence of finite energy (orL2) solutions to (1.1) for potentialsV of polynomial growth has been muc
developed (for a discussion on this issue and open problems we refer to Bourgain [4]). Roughly spea
argument for establishing finite energy solutions of (1.1) consists of combiningH 1 local well-posedness wit
conservation laws (1.4a), (1.4b) which eventually provide a control on theH 1 norm. The local well-posedness
carried out by the classical Picard iteration scheme and the nonlinearity is controlled in the iteration proc
to some smoothing properties of the free evolution. In the caseΩ = Rd the crucial fact on the free evolution
the family of so called Strichartz estimates which can be deduced from an explicit formula for the free s
and the Tomas–Stein restriction argument from harmonic analysis. Unfortunately in the case of exterior pro
suitable explicit representation of the free evolution is available and therefore the problem of establishing S
estimates for the solution of (1.1) withF = 0 meets serious difficulties. However as it was shown by our experi
with NLS on compact manifolds (see [9]) one may approach the problem of the existence of finite energy s
for (1.1) even with weaker linear estimates than the whole family of Strichartz inequalities. That is exactl
we are going to do here.

In 2d , local well-posedness inHs
D(Ω) (see the next section for definition of that space),s > 1, for the initial

boundary value problem (1.1)–(1.2)–(1.3) can be obtained by “classical methods” and therefore one bare
the key regularityH 1. Nevertheless it is known that forα � 2 (see Cazenave [13, Theorem 4.5.1], Brézis
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Gallouet [5], Vladimirov [38], Ogawa and Ozawa [25]) one can obtain the global existence ofH 1 solution to (1.1)
for a suitable class of potentialsV . The work of M. Tsutsumi [32] shows that one could extend the resu
α ∈ ]2,3] if the datau0 ∈ H 1

0 (Ω) is such that such that�u0 ∈ H 1
0 (Ω). Here we will be able to extend the

results to much more general nonlinearities. Even whenα � 3 we have a stronger result comparing to the ab
mentioned works since we obtain that the flow map is Lipschitz continuous on bounded sets ofH 1

0 (Ω). On the other
hand the considerations in [5,38,25,32] are valid on any domainΩ with smooth boundary without any geomet
assumption.

The main difficulty in higher dimensions is that one needs to “gain at least 1/2 derivative” with respect to th
classical well-posedness results. We will be able to do this as far asα < 2

d−2 which does not cover all possib
nonlinearities forH 1 theory in the caseΩ = Rd . Recall that (see, e.g., Kato [18]) whenΩ = Rd the critical order
of the nonlinearity for the well-posedness in the energy spaceH 1 turns out to beα = 4

d−2. It seems howeve
that here we obtain the first global existence and uniqueness results in dimensionsd � 3 for (1.1)–(1.2)–(1.3) with
large initial data. It should be mentioned that “small data techniques” can be applied to (1.1)–(1.2)–(1.3)under som
geometric assumptions (which imply our non-trapping assumption) onΘ (see Y. Tsutsumi [34], M. Tsutsumi [33]
That approach yields the global existence of small amplitude solutions to (1.1)–(1.2)–(1.3) in any dimen
nonlinearities of sufficiently high order (and initial data sufficiently smooth).

We now state our result concerning finite energy solutions.

Theorem 1. Suppose thatα < 2
d−2, V (z) � −C(1+ |z|)β , β < 2+ 4

d
and thatΘ is non-trapping. Then

(1) For any u0 ∈ H 1
0 (Ω) the initial boundary value problem(1.1)–(1.2)–(1.3)has a unique global solutio

u ∈ C(R;H 1
0 (Ω)) satisfying the conservation laws(1.4a), (1.4b).

(2) If d = 2,3,4, for anyT > 0 the flow mapu0 �→ u is Lipschitz continuous from any bounded set ofH 1
0 (Ω) to

C([−T ,T ];H 1
0 (Ω)).

(3) Whend = 3 andα = 2 statements(1) and (2) hold provided‖u0‖H1
0 (Ω) be sufficiently small.

Our proof of Theorem 1 strongly relies on a local smoothing effect for the free evolution exp(it�D), where
�D is the Laplace operator acting onL2(Ω), with domainD = H 2(Ω) ∩ H 1

0 (Ω). This phenomenon has bee
first observed in the case ofRd in the works of Constantin and Saut [14], Sjölin [28] and Vega [37]. It was l
generalized by many authors to different perturbations of the flat Laplacian (see Ben Artzi and Klainerm
Constantin and Saut [15], Doi [17] . . . ). It is important to realize that the local smoothing can be reduced tobounds
on the cut-off resolvent of the corresponding stationary operator. Since such resolvent estimates are fortuna
available for the exterior problem of non-trapping obstacle we will be able in Section 2 below to derive
smoothing estimate for exp(it�D) and hence to extend the above mentioned results to the case of bou
value problems, a fact which seems to be of independent interest. Following a strategy suggested by
and Tataru [30], we shall also be able to prove that away from the obstacle the free evolution enjoys the Strich
estimates exactly as for the flat space. Once we have thelinear estimates we perform the usual Picard iteratio
to getH 1 well-posedness for the nonlinear problem. Let us mention that the assumptionV (z) � −C(1 + |z|)β
in Theorem 1 is crucial for the global existence of solutions. For example, ifα = 2, d = 2 andV (z) = −|z|4,
regular solutions can develop singularities in finite time (see [11], Remark 1.1). Blow up phenomena for bound
problems with more general nonlinearities are displayed in Kavian [19] by using viriel type identities, how
is not clear to us whether these arguments can be applied to exterior domains. Note that despite of the fac
functionalF is not Lipschitz continuous on bounded sets ofH 1

0 (Ω), due to the “dispersive properties” of the line
part of the equation, the flow map turns out to have that property at least ford � 4. It is an interesting problem t
check that property in dimensions higher than 4.

Our second global well-posedness result deals withL2 solutions.
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Theorem 2. Suppose thatα < 2/d and thatΘ is non-trapping. Then for anyu0 ∈ L2(Ω) the initial boundary
value problem(1.1)–(1.2)–(1.3)has a unique global solution in the following classX:

• If α < 1
d

thenX = C(R;L2(Ω)).

• If α � 1
d

then X is any of the spacesC(R;L2(Ω)) ∩ L
p

loc(R;Lq(Ω)) where (p, q) satisfy 1
p

+ d
q

= d
2 ,

2 < p < 2(α+1)
αd−1 .

Moreover

(1) The solutionu satisfies the conservation law(1.4a).
(2) For any pair(p, q) satisfying2 < p � ∞, 1

p
+ d

q
= d

2 one hasu ∈ L
p

loc(R;Lq(Ω)).

(3) For any T > 0 the flow mapu0 �→ u is Lipschitz continuous from any bounded set ofL2(Ω) to
C([−T ,T ];L2(Ω)).

Remark 1.1. The result of Theorem 2 is in strong contrast with the case of a bounded open setΩ . Indeed, in [12],
we proved that, ifΩ is a ball, there exists someα0 > 0 such that, for everyα ∈ ]0, α0], the Cauchy problem for

i∂tu + �Du = (
1+ |u|2)α/2

u

is not well-posed onL2(Ω) in the sense of Theorem 2.

Remark 1.2. For the sake of conciseness, we have chosen to restrict the study to the case of Dirichlet bound
ditions. However, the case of Neumann conditions could be handled using the same ideas (see Remarks 2.

Remark 1.3. The structural assumptions on the nonlinear interactionF are needed to establish the global we
posedness. If one is interested only in local in time results then we can assume only the following growth con∣∣F(z1) − F(z2)

∣∣ � |z1 − z2|
(
1+ |z1| + |z2|

)α
,∣∣(Dz,z̄F )(z1) − (Dz,z̄F )(z2)

∣∣ � |z1 − z2|
(
1+ |z1| + |z2|

)max{α−1,0}
.

The rest of the paper is organized as follows. We complete this section by introducing some nota
Section 2, we first state the Sobolev embeddings we need for the sequel. Then we state some estimat
cut-off resolvent of�D . Further we prove local smoothing estimates in the form needed for the proof of the c
nonlinear estimate. We complete Section 2 by proving Strichartz type inequalities for exp(it�D). We distinguish
the cases when we evaluate the free wave away from the obstacle. Section 3 is devoted to the proof of T
while Section 4 deals with the proof of Theorem 2.

Notations.For T > 0, p ∈ [1,+∞], if X is a Banach space, we denote byL
p
T X the Banach space ofX valued

functions on[0, T ] equipped with the following norm

‖f ‖L
p
T X =

{ T∫
0

∥∥f (t)
∥∥p

X
dt

}1/p

with the usual modification forp = +∞. For any positiveA andB the notationA � B (respectivelyA � B) means
that there exists a positive constantc such thatA � cB (respectivelyA � cB).

2. Linear estimates

2.1. Functional spaces and embeddings

Let Ω ⊂ Rd , d � 2, be a smooth domain. Fors � 0, p ∈ [1,+∞], we denote byWs,p(Ω) the Sobolev space
on Ω . We write Lp(Ω) and Hs(Ω) instead ofW0,p(Ω) and Ws,2(Ω) respectively. Fors ∈ Z+ the norm in
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Ws,p(Ω) can be expressed in an explicit way while for non-integer values ofs more care is needed and one c
define in this case the spacesWs,p(Ω) by suitable interpolation (see [2]). ByW1,q

0 (Ω), we denote the closure o

C∞
0 (Ω) in W1,q(Ω). The spaceW1,2

0 (Ω) is usually denoted byH 1
0 (Ω). If Ω has compact boundary then we ha

W1,q(Ω) ∩ H 1
0 (Ω) ⊂ W

1,q

0 (Ω), q � 2. (2.1)

In order to obtain (2.1), we can use thatW
1,q

0 (Ω) can be identified with the kernel of the natural trace map fr
W1,q (Ω) to Lq(∂Ω) and then use thatLq(∂Ω) ⊂ L2(∂Ω), q � 2, which follows from the compactness of th
boundary. By�D we denote the Dirichlet Laplacian onΩ . The domain of�D is H 1

0 (Ω) ∩ H 2(Ω). Fors � 0, we
can define(−�D + 1)s/2 via the functional calculus of self-adjoint operators. We denote byHs

D(Ω) the domain of
(−�D + 1)s/2. It is known that (see, e.g., [31])

H 1
D(Ω) = H 1

0 (Ω) (2.2)

and we will make often use of (2.2) without explicit mention. We next defineH−1
D (Ω) (this space is often denote

in the literature simply byH−1(Ω)) as the dual ofH 1
D(Ω). Then we defineHs

D(Ω) for s ∈ [−1,0] via interpolation
and due to Corollary 4.5.2 in [2], we have the duality betweenHs

D(Ω) andH−s
D (Ω) for s ∈ [0,1]. We now state

the Sobolev embeddings that will be used in that paper.

Proposition 2.1. LetΩ ⊂ Rd , d � 2 be smooth domain. Then the following continuous embeddings hold

H 1
0 (Ω) ⊂ Lp(Ω), 2 � p � 2d

d − 2
(p < +∞ if d = 2), (2.3)

Hs
D(Ω) ⊂ Lp(Ω),

1

2
− 1

p
= s

d
, s ∈ [0,1[, (2.4)

Hs+1
D (Ω) ⊂ W1,p(Ω),

1

2
− 1

p
= s

d
, s ∈ [0,1[, (2.5)

W1,p(Ω) ⊂ Lq(Ω),
1

p
− 1

q
= 1

d
, 1 � p < q < +∞, (2.6)

Ws,p(Ω) ⊂ L∞(Ω), s >
d

p
, p � 1, (2.7)

H
s+ 1

p

D (Ω) ⊂ Ws,q(Ω),
1

p
+ d

q
= d

2
, p � 2, s ∈ [0,1]. (2.8)

The proof of Proposition 2.1 follows from the standard Sobolev embeddings and the use of extension operators

2.2. Resolvent estimates

Since−�D is a positive self-adjoint operator the resolvent(−�D − λ)−1 is analytic inC \ R+. In this section
we collect several bounds for(−�D − λ)−1 whenλ approachesR+. We first state the high frequencies bound.

Proposition 2.2. For everyχ ∈ C∞
0 (Rd), d � 2, there exists a positive constantC such that for every|λ| � 1 and

0 < ε 
 1 one has∥∥χ
(−�D − (λ ± iε)2)−1

χ
∥∥

L2(Ω)→L2(Ω)
� C|λ|−1.

The result of Proposition 2.2, for which the non-trapping assumption plays a crucial role, is proven for|λ| � 1 in
greater generality by Lax and Phillips [21], Melrose and Sjöstrand [23,24], Vainberg [35], Vasy and Zworsk
We also refer to [8] for a self contained proof which, joined with the results in [6], would relax the smoo
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assumption. The boundedness of the cut-off resolvent onL2(Ω) for finite |λ| �= 0 results from Rellich uniquenes
theorem (see [21] or [7, Annexe B.1]). Proposition 2.2 can be also stated as a weightedL2 estimate for the operato
(−�D − (λ ± iε)2)−1.

Remark 2.3. Proposition 2.2 is also true for the resolvent associated to Neumann boundary conditions. The pr
in this case is the same, using propagation of singularities arguments.

Next we state the small frequencies bound.

Proposition 2.4. Assume thatΘ �= ∅. Then for everyχ ∈ C∞
0 (Rd ), d � 2, the cut-off resolventχ(−�D − (λ ±

iε)2)−1χ , |λ| � 1, 0< ε 
 1 is a bounded operator onL2(Ω) with an operator norm independent ofλ andε.

For the proof of Proposition 2.4, we refer to [7, Annexe B.2]. Remark that this latter proof breaks d
Θ = ∅ since the Poincaré inequality is used to control the localL2-norm of a function by the localL2-norm of
its gradient (that is is whyΘ �= ∅ is required). Propositions 2.2, 2.4 canbe used to prove the boundedness of
cut-off resolvent between Sobolevspaces as shows the next proposition.

Proposition 2.5. Assume thatΘ �= ∅. Then for everyχ ∈ C∞
0 (Rd), d � 2, χ � 0, everys � −1 there exists a

positive constantC such that for everyλ ∈ R and0 < ε 
 1 one has∥∥χ
(−�D − (λ ± iε)2)−1

χ
∥∥

Hs
D(Ω)→Hs+1

D (Ω)
� C. (2.9)

Remark 2.6. For Rez < 0, an integration by parts gives∥∥χ(−�D − z)−1χ
∥∥

Hs
D(Ω)→Hs+1

D (Ω)
� C

(1+ |Rez|)1/2 (2.10)

which, in the region−ε2 < Rez < 0, implies the same estimate as in (2.9) (one can get even better).

Proof of Proposition 2.5. Setµ = λ ± iε and letu andf be such that

(�D + µ2)u = χf. (2.11)

We multiply (2.11) byχū and after integration onΩ , we get

−
∫

χ |∇u|2 + µ2
∫

χ |u|2 −
∫

(∇u,∇χ)χ1ū =
∫

χ2f ū,

whereχ1 ∈ C∞
0 (Rd), χ1 � 0, is equal to one on the support ofχ and(· , ·) denotes the scalar product inCd . Since

χ � χ2
1 and using that|µ| � |λ| + 1 we obtain that for everyδ > 0,∫

χ |∇u|2 �
(|λ| + 1

)2
∫

χ2
1 |u|2 + δ

∫
|∇χ |2|∇u|2 + (4δ)−1

∫
|χ1u|2 +

∣∣∣∣∫ χ2f ū

∣∣∣∣.
Since|∇χ |2 � χ and by choosingδ small enough, we get∫

χ |∇u|2 �
(|λ| + 1

)2‖χ1u‖2
L2(Ω)

+ ‖χf ‖2
L2(Ω)

.

Using Propositions 2.2, 2.4, we deduce that(|λ| + 1
)‖χ1u‖L2(Ω) �

(|λ| + 1
)∥∥χ1(�D + µ2)−1(χ1χf )

∥∥
2 � ‖χf ‖L2(Ω)
L (Ω)
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χ |∇u|2 � ‖χf ‖2

L2(Ω)
.

Using again Propositions 2.4 and 2.2, we get

‖χu‖H1
D(Ω) � ‖χf ‖L2(Ω).

This completes the proof of Proposition 2.5 fors = 0, i.e.,∥∥χ
(−�D − (λ ± iε)2)−1

χ
∥∥

L2(Ω)→H1
D(Ω)

� C. (2.12)

Dualizing (2.12), we obtain,∥∥χ
(−�D − (λ ± iε)2)−1

χ
∥∥

H−1
D (Ω)→L2(Ω)

� C (2.13)

which yields Proposition 2.5 withs = −1.
We next prove it fors = 1. Let againu andf be such that (2.11) holds andχ1 ∈ C∞

0 (Rd), χ1 � 0, be equal to
one on the support ofχ . Write

‖χu‖H2
D(Ω) ≈ ‖χu‖H1

D(Ω) + ∥∥�D(χu)
∥∥

L2(Ω)
.

Since‖χu‖H1
D(Ω) can be estimated by means of (2.12), we only need to bound‖�D(χu)‖L2(Ω). Further we write

�D(χu) = χ�Du + [�D,χ]χ1u

and using that the commutator[�D,χ] is bounded fromH 1
D(Ω) to L2(Ω), we get∥∥[�D,χ]χ1u

∥∥
L2(Ω)

� ‖χ1u‖H1
D(Ω).

Using (2.12), we obtain

‖χ1u‖H1
D(Ω) = ∥∥χ1(�D + µ2)−1(χ1χf )

∥∥
L2(Ω)

� ‖χf ‖L2(Ω).

It remains to bound‖χ�Du‖L2(Ω). Since�Du = χf − µ2u, we deduce that�Du ∈ H 1
D(Ω). Since�Du solves

the equation

(�D + µ2)(�Du) = �D(χf ),

a use of (2.13) yields

‖χ�Du‖L2(Ω) � ‖χ1�D(χf )‖
H−1

D (Ω)
� ‖χf ‖H1

D(Ω),

where we used thatχ1�D is bounded fromH 1
D(Ω) to H−1

D (Ω). This proves the result fors = 1. Since we
obtained (2.9) fors = −1 and s= 1 we can use an interpolation argument to get it fors ∈ [−1,1]. Applying the
operator�D to the equation and an induction argument give the result for anys ∈ N. Finally we use interpolation
to get it for anys � 1. �
2.3. Local smoothing

Now we are going to use the resolvent bounds of the previous section to deduce several estimates for
Schrödinger equation posed onΩ with Dirichlet boundary conditions. This procedure is known in the literature
least for the homogeneous estimates (see, for example, [1]). The proof presented here is based on the o
that it is sufficient to establish the non-homogeneous bound and then all other estimates follow by the s
T T � argument together with a simple symmetry consideration. Finally the nonhomogeneous estimate is p
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performing Fourier transform in time and applying Proposition 2.5. From now on we shall work on positive tim
intervals only. Of course similar considerations apply to negative time intervals.

Proposition 2.7. Assume thatΘ �= ∅. Then for everyT > 0, for everyχ ∈ C∞
0 (Rd ), d � 2,

‖χu‖
L2

T Hs+1
D (Ω)

� C‖χf ‖L2
T Hs

D(Ω), (2.14)

wheres ∈ [−1,1] andu(t) = ∫ t

0 ei(t−τ )�Dχf (τ)dτ ,

‖χv‖
L2

T H
s+1/2
D (Ω)

� C‖v0‖Hs
D(Ω), (2.15)

wheres ∈ [0,1] andv(t) = eit�Dv0.

Remark 2.8. Remark that in the estimate abovev0 is not assumed to have compact support. Remark also tha
proof will show that the constantsC do not depend onT , i.e., the estimates areglobal in time.

Proof of Proposition 2.7. We first prove (2.14). Extendf (τ, ·) by zero forτ /∈ [0, T ]. According to the suppor
properties off andu their Fourier transforms (in time) are holomorphic in the domain{Im z < 0} and satisfy the
equation

(−z + �D)û(z, ·) = χf̂ (z, ·).
Takingz = λ − iε, λ ∈ R, ε > 0, lettingε tend to zero, using Proposition 2.5 and Remark 2.6, we get

‖χû‖
L2(R;Hs+1

D (Ω))
� ‖χf̂ ‖L2(R;Hs

D(Ω)), s ∈ [−1,1].
The proof of (2.14) is completed by observing that the Fourier transform of any function fromR to a Hilbert space
H defines an isometry onL2(R;H).

Now we turn to the proof of (2.15). We first prove it fors = 0, i.e. if we denote byA the operator which to
givenu0 ∈ L2(Ω) associatesχeit�Du0, we need to prove thatA is bounded fromL2(Ω) to L2

T H
1/2
D (Ω). But the

continuity ofA from L2(Ω) to L2
T H

1/2
D (Ω) is equivalent to the continuity of its adjoint

(A�f )(t) =
T∫

0

e−iτ�Dχf (τ)dτ

from L2
T H

−1/2
D (Ω) to L2(Ω), which in turn is equivalent to the continuity ofAA� from L2

T H
−1/2
D (Ω) to

L2
T H

1/2
D (Ω). Write

(AA�f )(t) =
T∫

0

χei(t−τ )�Dχf (τ)dτ

=
t∫

0

χei(t−τ )�Dχf (τ)dτ +
T∫

t

χei(t−τ )�Dχf (τ)dτ

and it suffices to apply (2.14) withs = −1
2 (together with time inversion for the second term) in order to conc

thatAA� is bounded fromL2
T H

−1/2
D (Ω) to L2

T H
1/2
D (Ω). This completes the proof of (2.15) fors = 0.

We now prove (2.15) fors = 1. Observe that the boundedness ofχeit�D from H 1
D(Ω) to L2

T H
3/2
D (Ω) is

equivalent to the continuity of(−�D + 1)χeit�D from H 1
D(Ω) to L2

T H
−1/2
D (Ω). Write

(−�D + 1)χeit�D = χ(−�D + 1)eit�D − [�D,χ]eit�D .
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Let χ̃ ∈ C∞
0 (Rd) be such that̃χ = 1 on the support ofχ . Then∥∥[�D,χ]eit�Du0

∥∥
L2

T H
−1/2
D (Ω)

�
∥∥[�D,χ]χ̃eit�Du0

∥∥
L2

T H
−1/2
D (Ω)

�
∥∥χ̃eit�Du0

∥∥
L2

T H
1/2
D (Ω)

� ‖u0‖L2(Ω),

where in the last line we used that (2.15) fors = 0 is already established. Therefore[�D,χ]eit�D is bounded
from L2(Ω) to L2

T H
−1/2
D (Ω) and in particular fromH 1

D(Ω) to L2
T H

−1/2
D (Ω). Hence it remains to prove that th

operator

B := χ(−�D + 1)eit�D

is bounded fromH 1
D(Ω) to L2

T H
−1/2
D (Ω) or equivalently thatB(−�D + 1)−1B� is bounded fromL2

T H
1/2
D (Ω) to

L2
T H

−1/2
D (Ω). An easy computation yields

(
B(−�D + 1)−1B�f

)
(t) =

T∫
0

χ(−�D + 1)ei(t−τ )�Dχf (τ)dτ

= (−�D + 1)χ

T∫
0

ei(t−τ )�Dχf (τ)dτ + [χ,�D]
T∫

0

ei(t−τ )�Dχf (τ)dτ.

Observe that

(−�D + 1)χ

T∫
0

ei(t−τ )�Dχf (τ)dτ = (−�D + 1)(AA�f )(t)

and therefore using (2.14) withs = 1
2 together with a splitting of the integration on[0, T ] as shown above, w

readily get that(−�D + 1)AA� is bounded fromL2
T H

1/2
D (Ω) to L2

T H
−1/2
D (Ω). Next we write

[χ,�D]
T∫

0

ei(t−τ )�Dχf (τ)dτ = [χ,�D](AA�f )(t)

and again due to (2.14) withs = 1
2 we obtain the boundedness of[χ,�D]AA� from L2

T H
1/2
D (Ω) to L2

T H
−1/2
D (Ω).

This completes the proof of (2.15) fors = 1. We finally obtain (2.15) fors ∈ [0,1] via an interpolation argumen
which ends the proof of Proposition 2.7.�
Remark 2.9. If one considers the Neumann Laplacian�N , we can obtain a similar result as in Proposition 2
with constants depending on the time interval. Indeed takeΨ ∈ C∞

0 (R) equal to 1 close to 0 and decompose

u = Ψ (−�N)u + (1− Ψ )(−�N)u,

f = Ψ (−�N)f + (1− Ψ )(−�N)f, (2.16)

v0 = Ψ (−�N)v0 + (1− Ψ )(−�N)v0.

Taking into account Remark 2.3, we can apply the strategy of the proof of Proposition 2.7 to(1 − Ψ )(−�N)u,
(1 − Ψ )(−�N)f and(1− Ψ )(−�N)v0 to obtain estimates similar as (2.14), (2.15) for the contributions of t
terms. To deal with the contributions of the other terms, we simply use the conservation of theL2 norms and the
fact that for these parts, theL2 andHk

N norms are equivalent (due to the spectral cut-off). This argument giv
L∞ in time estimate for these terms which can be converted (using Hölder inequality) into anL2 in time estimate.
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2.4. Strichartz type estimates

In the next proposition we show that away from the obstacle the free evolution satisfies the usual Stricha
bounds. We will use a strategy of [30] where similar considerations are performed in the context ofC2 short range
perturbation of the free Laplacian onRd .

Proposition 2.10. For everyT > 0, for everyχ ∈ C∞
0 (Rd), χ = 1 close toΘ there existsC > 0 such that∥∥(1− χ)u

∥∥
L

p
T Ws,q (Ω)

� C‖u0‖Hs
D(Ω), (2.17)

wheres ∈ [0,1], u(t) = eit�Du0 and(p, q), p > 2, is any Strichartz admissible pair, i.e.

2

p
+ d

q
= d

2
. (2.18)

Proof. Setv(t) = (1− χ)eit�Du0. Thenv satisfies the equation{
(i∂t + �)v = [�D,−χ]u,

v(0) = (1− χ)u0.
(2.19)

Sinceχ = 1 close toΘ, Eq. (2.19) can be regarded in the whole spaceR
d . Hence

v(t) = eit�0(1− χ)u0 +
t∫

0

ei(t−τ )�0[�D,−χ]u(τ)dτ,

where�0 is the free Laplacian onRd and therefore the contribution of(1 − χ)u0 satisfies the usual Strichar
estimate and we have reduced the problem to the study of

w(t) :=
t∫

0

ei(t−τ )�0[�D,−χ]u(τ)dτ. (2.20)

Using Proposition 2.7, we get∥∥[�D,−χ]u∥∥
L2

T H−1/2(Rd)
� ‖u0‖L2(Ω).

Let Λ0ϕ(t, x) := eit�0ϕ(x). We proceed by using the smoothing effect forΛ0. Applying inequality (1.10) in
Corollary 2 and inequality (3.4) in Proposition 2from [1], we have, for every cutoff functionχ0 in Rd ,∥∥(1− �0)

1/4(χ0Λ0ϕ)
∥∥

L2([0,T ]×Rd )
� ‖ϕ‖L2(Rd).

The dual inequality reads∥∥Λ∗
0

(
χ0(1− �0)

1/4ψ
)∥∥

L2(Rd)
� ‖ψ‖L2([0,T ]×Rd ).

Combining with Strichartz estimates onR
d for Λ0, this yields∥∥Λ0Λ

∗
0

(
χ0(1− �0)

1/4ψ
)∥∥

L
p
T Lq(Rd)

� ‖u0‖L2(Ω) (2.21)

Notice that

Λ0Λ
∗
0(f )(t) =

T∫
ei(t−τ )�0f (τ)dτ.
0
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However we are interested in estimatingw(t) defined by (2.20) rather than

Λ0Λ
∗
0

([�D,−χ]u)
.

For this it suffices to use the following result due to Christ and Kiselev [16].

Theorem (M. Christ and A. Kiselev).Consider a bounded operator

T :Lp(R;B1) → Lq(R;B2)

given by a locally integrable kernelK(t, s) with values in bounded operators fromB1 to B2 whereB1 andB2 are
Banach spaces. Suppose thatp < q . Then the operator

T̃ ψ(t) =
∫

s<t

K(t, s)ψ(s)ds

is bounded fromLp(R;B1) to Lq(R;B2) and

‖T̃ ‖Lp(R;B1)→Lq(R;B2) �
(
1− 2−(p−1−q−1)

)−1‖T ‖Lp(R;B1)→Lq(R;B2).

In view of (2.21), we apply Christ–Kiselev’s theorem to

K(t, s) = 1[0,T ](t)1[0,T ](s)ei(t−s)�0χ0(1− �0)
1/4

and we setψ = (1− �0)
−1/4[�D,−χ]u with χ0 = 1 near the support ofχ . This yields, forp > 2,

‖w‖L
p
T Lq(Rd) �

∥∥[�D,−χ]u∥∥
L2

T H−1/2(Rd)
� ‖u0‖L2(Ω).

This completes the proof fors = 0.
The cases = 1 can be treated similarly simply by differentiating the first equation of (2.19), consider

equation on the whole spaceRd . Since we established (2.17) fors = 0 and s = 1 an interpolation argumen
completes the proof of Proposition 2.10.�

Now we state a Strichartz estimate (with loss of derivative) for eit�D .

Proposition 2.11. For everyT > 0 there existsC > 0 such that

‖u‖L
p
T Ws,q (Ω) � C‖u0‖H

s+1/p
D (Ω)

, (2.22)

wheres ∈ [0,1], u(t) = eit�Du0 and(p, q), p > 2, satisfies(2.18).

Remark 2.12. In [9], Strichartz inequalities as (2.22) are proven for the free Schrödinger equation pose
compact Riemannian manifold (without boundary). Although the estimates are the same, the ideas behind
different. In [9], the loss of derivatives (optimal for the endpoint cases on the sphere) came from the fact
were able to prove the usual estimates (without loss) only for small time intervals (depending on the freq
Here the loss (certainly not optimal . . . ) comes from the fact that close to theboundary, we perform simply Sobole
embeddings together with the local smoothing. The gain arising from the smoothing effect tells us that th
spends few time close to the obstacle.

Remark 2.13. In [29] Smith and Sogge prove that the wave equation posed on the exterior of strictly c
obstacle satisfies the same Strichartz estimates as the solution of the wave equation posed onR

d . It is natural to
expect that the techniques of [29] combined with the semi-classical approach of [9] can provide the full set o
Strichartz inequalities, at least locally in time, for the Schrödinger equation posed on the exterior of strictly
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obstacle. Such a result would extend the well-posedness theory of the flat space to the case of the ext
strictly convex obstacle.

Proof of Proposition 2.11. Considerχ ∈ C∞
0 (Rd ) equal to 1 close toΘ and decompose

u(t) = χeit�Du0 + (1− χ)eit�Du0 := v(t) + w(t).

Due to Proposition 2.10, we obtain thatw(t) satisfies the usual Strichartz estimates (without losses) and the
we only need to evaluatev(t). Using Proposition 2.7, we get

‖v‖L2
T H1

D(Ω) � ‖u0‖H
1/2
D (Ω)

. (2.23)

Next we use an energy argument to deduce,

‖v‖L∞
T L2(Ω) � ‖u0‖L2(Ω). (2.24)

Interpolating between (2.23) and (2.24) with weights2
p

and 1− 2
p

respectively gives

‖v‖
L

p
T H

2/p
D (Ω)

� ‖u0‖H
1/p
D (Ω)

.

Since 2
p

+ d
q

= d
2 , using Proposition 2.1 we have thatH

2/p
D (Ω) ⊂ Lq(Ω) and the embedding is continuou

therefore

‖v‖L
p
T Lq(Ω) � ‖u0‖H

1/p
D (Ω)

which completes the proof of Proposition 2.11 whens = 0.
Next we consider the cases = 1. Applying an energy argument, we get

‖v‖
L∞

T H
p/(p−2)
D (Ω)

� ‖u0‖H
p/(p−2)
D (Ω)

. (2.25)

Interpolation between (2.23) and (2.25) with weights2
p

and 1− 2
p

respectively gives

‖v‖
L

p
T H

1+2/p
D (Ω)

� ‖u0‖H
1+1/p
D (Ω)

. (2.26)

Due to Proposition 2.1 the continuous embeddingH
1+2/p
D (Ω) ⊂ W1,q(Ω) holds which together with (2.26) end

the proof fors = 1. The cases ∈ [0,1] can now be treated by interpolation.�
Now we state the main result of this section.

Proposition 2.14. For everyT ∈ ]0,1] there existsC > 0 such that

‖u‖L
p
T Ws,q (Ω) � C‖u0‖Hs

D(Ω), (2.27)

wheres ∈ [0,1], u(t) = eit�Du0 and(p, q), p � 2 satisfies

1

p
+ d

q
= d

2
. (2.28)

Moreover

‖u‖L
p
T Ws,q (Ω) � C‖f ‖L1

T Hs
D(Ω), (2.29)

wheres ∈ [0,1], u(t) = ∫ t

0 ei(t−τ )�Df (τ)dτ and(p, q), p > 2 satisfies(2.28).

Proof. Let χ ∈ C∞
0 (Rd ) such thatχ = 1 close toΘ. The triangle inequality yields,

‖u‖L
p
Ws,q (Ω) � ‖χu‖L

p
Ws,q (Ω) + ∥∥(1− χ)u

∥∥ p s,q

T T LT W (Ω)
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and hence it is sufficient to evaluateeach term in the right-hand side of theabove inequality. Using Proposition 2.
we obtain

‖χu‖
L2

T H
s+1/2
D (Ω)

� ‖u0‖Hs
D(Ω). (2.30)

Next an energy argument yields,

‖χu‖L∞
T Hs

D(Ω) � ‖u0‖Hs
D(Ω). (2.31)

Interpolation between (2.30) and (2.31) with weights2
p

and 1− 2
p

respectively yields,

‖χu‖
L

p
T H

s+1/p
D (Ω)

� ‖u0‖Hs
D(Ω).

Next using the embeddingHs+1/p
D (Ω) ⊂ Ws,q(Ω), s ∈ [0,1], p > 2, where the pair(p, q) satisfies (2.28) (se

Proposition 2.1), we obtain,

‖χu‖L
p
T Ws,q (Ω) � ‖u0‖Hs

D(Ω).

We next bound(1− χ)u. Fix (p, q), p > 2 satisfying (2.28). Letp� be such that2
p� + d

q
= d

2 , i.e.,p� = 2p. Using
Hölder’s inequality in time and Proposition 2.10, we get∥∥(1− χ)u

∥∥
L

p
T Ws,q (Ω)

� T 1/(2p)
∥∥(1− χ)u

∥∥
L

p�

T Ws,q (Ω)
� ‖u0‖Hs

D(Ω).

This completes the proof of (2.27). Estimate (2.29) follows from (2.27) and the Minkowski integral ineq
applied in time variable. �

The next proposition is a consequence of (2.27) and Christ–Kiselev’s theorem.

Proposition 2.15. For everyT ∈ ]0,1] there existsC > 0 such that

‖u‖L
p
T Ws,q (Ω) � C

∥∥(1− �D)s/2f
∥∥

L
p̃
T Lq̃(Ω)

, s ∈ [0,1], (2.32)

whereu(t) = ∫ t

0 ei(t−τ )�Df (τ)dτ , (p, q), p > 2, satisfies(2.28)and(p̃, q̃), p̃ ∈ [1,2[, satisfies

1

p̃
+ d

q̃
= 1+ d

2
, (2.33)

i.e. (p̃/(p̃ − 1), q̃/(q̃ − 1)) satisfies(2.28).

Remark 2.16. Notice that in estimate (2.32) the pairs(p, q) and (p̃, q̃) are not necessarily conjugate Höld
exponents.

Proof of Proposition 2.15. Due to Christ–Kiselev’s theorem, it is sufficient to evaluate

w(t) :=
T∫

0

ei(t−τ )�Df (τ)dτ.

Using (2.27), we obtain

‖w‖L
p
T Ws,q (Ω) � ‖F‖Hs

D(Ω), s ∈ [0,1],
whereF = ∫ T

0 e−iτ�Df (τ)dτ . Next the dual of (2.27) gives,

‖F‖Hs
D(Ω) �

∥∥(1− �D)s/2f
∥∥

L
p̃
T Lq̃(Ω)

, s ∈ [0,1],
where(p̃, q̃), p̃ ∈ [1,2[, satisfies (2.33). This completes the proof of Proposition 2.15.�
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3. Proof of Theorem 1

We prove Theorem 1 for positive times. Similar arguments can be performed for negative times. The
boundary value problem (1.1)–(1.2)–(1.3) can bewritten as an integral equation (Duhamel form),

u(t) = eit�Du0 +
t∫

0

ei(t−τ )�DF
(
u(τ)

)
dτ, (3.1)

where the nonlinearityF is as described in the introduction. The assumptions onF and on the potentialV imply
the following pointwise estimates,∣∣F(u)

∣∣ � |u|(1+ |u|α)
, (3.2)∣∣∇F(u)

∣∣ � |∇u|(1+ |u|α)
(3.3)

and moreover by writing

F(u) − F(v) =
1∫

0

F ′(tu + (1− t)v
)
(u − v)dt

we obtain∣∣F(u) − F(v)
∣∣ � |u − v|(1+ |u|α + |v|α)

, (3.4)∣∣∇(
F(u) − F(v)

)∣∣ �
∣∣∇(u − v)

∣∣(1+ |u|α + |v|α) + |u − v|(|∇u| + |∇v|)(1+ |u| + |v|)max{α−1,0}
. (3.5)

We note that assumptions (3.2)–(3.5) on the nonlinear interaction would be sufficient for the local well-pos
analysis.

3.1. Uniqueness

As a first consequence of our linear estimates, we prove the uniqueness. Letu,v with u(0) = v(0) be two
solutions both inC([0, T ];H 1

0 (Ω)). By the Sobolev embeddingu,v ∈ L∞
T L2d/(d−2)(Ω) henceF(u),F (v) are in

the sum ofL∞
T L2d/((d−2)(α+1))(Ω) andL∞

T L2(Ω). The conditionα < 2
d−2 implies that 2d/((d − 2)(1 + α)) is

bigger than 2d/(d+1) which is the end point value for̃q in (2.32). As a consequenceu andv are both inLp
T Lq(Ω)

for any pair(p, q), p > 2, satisfying (2.28). Therefore the uniqueness claim of Theorem 1 will be a consequen
of the next proposition.

Proposition 3.1. Let u and v be two solutions of(1.1)–(1.2)–(1.3)lying in C([0, T ];H 1
0 (Ω)). Then there exis

β ∈ [α, 2
d−2[, p > 2, andθ > 0 such that forT ∈ ]0,1[,

‖u − v‖YT �
∥∥u(0) − v(0)

∥∥
L2(Ω)

+ T θ
(
1+ ‖u‖β

L∞
T H1

0 (Ω)
+ ‖v‖β

L∞
T H1

0 (Ω)

)‖u − v‖YT ,

whereYT = L∞
T L2(Ω) ∩ L

p

T Lq(Ω), 1
p

+ d
q

= d
2 , is equipped with the natural norm.

Proof. Let ψ ∈ C∞
0 (R) be such thatψ(x) = 0 for |x| < 1 and ψ(x)= 1 for |x| > 2. By the splitting

F(u) − F(v) = ψ
(|u|2 + |v|2)(F(u) − F(v)

) + (
1− ψ

(|u|2 + |v|2))(F(u) − F(v)
)

and Propositions 2.14 and 2.15, we infer the bound

‖u − v‖YT �
∥∥u(0) − v(0)

∥∥
L2 + T ‖u − v‖L∞L2 + ∥∥(

1− ψ
(|u|2 + |v|2))(F(u) − F(v)

)∥∥
p̃ q̃ ,
T LT L
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where(p̃, q̃), p̃ ∈ [1,2[, satisfies (2.33). We choosẽp such that1
p̃

= 1
2 + δ, whereδ > 0 is small enough to b

chosen later. We further take the parameterp involved in the statement as1
p

= 1
2 − δ. Next, using the Hölde

inequality and the Sobolev embedding, we get∥∥(
1− ψ

(|u|2 + |v|2))(F(u) − F(v)
)∥∥

L
p̃
T Lq̃ � ‖u − v‖L2

T Lq

(‖u‖β

L
βp1
T Lβq1

+ ‖v‖β

L
βp1
T Lβq1

)
� T 1/2−1/p‖u − v‖L

p
T Lq

(‖u‖β

L∞
T H1

0
+ ‖v‖β

L∞
T H1

0

)
,

where β ∈ [α, 2
d−2[ is to be chosen later and the parametersp1, q1 satisfy the Hölder inequality condition

1
p̃

= 1
2 + 1

p1
and 1

q̃
= 1

q
+ 1

q1
, i.e.,p1 = δ−1 and 1

q1
= 1−2δ

d
. Finally the Sobolev inequality condition 2< βq1 < 2d

d−2
can be written as

2

d
− 4δ

d
< β <

2

d − 2
− 4δ

d − 2
. (3.6)

We can ensure (3.6) by choosingδ small enough andβ close enough to 2
d−2. This completes the proof o

Proposition 3.1. �
3.2. Proof of Theorem 1 in2d

(See also [9, Proposition 3.1].) In this subsection we perform the proof of Theorem 1 ford = 2. We shall only
make use of Proposition 2.11. Consider a plane domainΩ which is the complementary of a compact smooth n
trapping obstacleΘ. Fix a pair(p, q) ∈ R2 such thatp > α and 1

p
+ 1

q
= 1

2 . The aim is to show that for sufficientl
smallT > 0 we can solve (3.1) by a Picard iteration scheme in the space

XT := L∞
T H 1

0 (Ω) ∩ L
p
T W1−1/p,q(Ω),

equipped with the natural norm

‖u‖XT := ‖u‖L∞
T H1

0 (Ω) + ‖u‖L
p
T W1−1/p,q (Ω).

Proposition 2.11 gives that the free evolution eit�D is bounded fromH 1
0 (Ω) to XT . Next we define a mapΛ as

follows

(Λf )(t) :=
t∫

0

ei(t−τ )�Df (τ)dτ.

We claim that the mapΛ is bounded fromL1
T H 1

0 (Ω) to XT , i.e., the following estimate holds,

‖Λf ‖XT � ‖f ‖L1
T H1

0 (Ω). (3.7)

Indeed, the boundedness ofΛ from L1
T H 1

0 (Ω) to L∞
T H 1

0 (Ω) follows from an energy argument while th
boundedness fromL1

T H 1
0 (Ω) to L

p
T W1−1/p,q(Ω) results from Proposition 2.11 and the Minkowski integ

inequality. This proves (3.7).
Next we bound the nonlinear termF(u) in the spaceL1

T H 1
0 (Ω). Using (3.2), (3.3) and the embeddin

H 1
0 (Ω) ⊂ L2(α+1)(Ω) (see Proposition 2.1), we obtain∥∥F(u)

∥∥
L1

T H1
0 (Ω)

� ‖u‖L∞
T H1

0 (Ω)

(
T + ‖u‖α

Lα
T L∞(Ω)

) + T ‖u‖α+1
L∞

T H1
0 (Ω)

. (3.8)

Due to the assumptionp > α, a use of Hölder inequality in time yields,

‖u‖α
Lα L∞(Ω) � T θ‖u‖α

p ∞ ,

T LT L (Ω)
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whereθ = 1 − α
p

. Next sinceq > 2 we have that 1− 1
p

> 2
q

and therefore due to the continuous embedd

W1−1/p,q(Ω) ⊂ L∞(Ω) (see Proposition 2.1), we get

‖u‖α
Lα

T L∞(Ω) � T θ‖u‖α

L
p
T W1−1/p,q (Ω)

� T θ‖u‖α
XT

.

Plugging the last estimate into (3.8) we deduce that for everyα there existsθ1 > 0 such that for 0� T � 1,

‖F(u)‖L1
T H1

0 (Ω) � T θ1‖u‖XT

(
1+ ‖u‖α

XT

)
. (3.9)

Similarly to the proof of (3.9), we can show that for everyα there existsθ2 > 0 such that for 0� T � 1,∥∥F(u) − F(v)
∥∥

L1
T H1

0 (Ω)
� T θ2‖u − v‖XT

(
1+ ‖u‖α

XT
+ ‖v‖α

XT

)
. (3.10)

It is now a standard issue to see that (3.9), (3.10) together with (3.7) allow us to solve (3.1) via Picard i
scheme inXT providedT be sufficiently small. This yields the local well-posedness and the Lipschitz pro
of the flow map. For the global well-posedness we first observe that the smallness assumption onT in the local
well-posedness depends only on the size ofH 1

0 (Ω) norm ofu0 and not on its profile. The rigorous derivation of t
conservation laws (1.4a), (1.4b) can be done by a standardapproximation argument (see [13], Section 4). Next
to (1.4a), (1.4b), the assumption onV and Gagliardo–Nirenberg inequality we obtain the control on theH 1

0 (Ω)

norm of the local solutions solution (see [13], Section 6). Therefore we can reiterate the local well-pos
argument and extend the local solution to an arbitrary time interval.

3.3. Proof of Theorem 1 in three space dimensions

ForT > 0, we define a Banach space

XT := L∞
T H 1

0 (Ω) ∩ L3
T W1,18/7(Ω),

equipped with the norm

‖u‖XT := ‖u‖L∞
T H1

0 (Ω) + ‖u‖L3
T W1,18/7(Ω).

The next proposition is a direct consequence of Proposition 2.14.

Proposition 3.2. Define a nonlinear mapΦ as follows,

(
Φ(u)

)
(t) :=

t∫
0

ei(t−τ )�DF
(
u(τ)

)
dτ. (3.11)

Then∥∥Φ(u)
∥∥

XT
�

∥∥F(u)
∥∥

L1
T H1

0 (Ω)
,∥∥Φ(u) − Φ(v)

∥∥
XT

�
∥∥F(u) − F(v)

∥∥
L1

T H1
0 (Ω)

.

The next proposition contains the nonlinear estimate involved in the proof of Theorem 1 in 3d .

Proposition 3.3. For everyα ∈ ]0,2] there existsθ1(α) > 0 andθ2(α) � 0 such that forT ∈ ]0,1],∥∥F(u)
∥∥

L1
T H1

0 (Ω)
� T θ1(α)‖u‖XT + T θ2(α)‖u‖3

XT
, (3.12)∥∥F(u) − F(v)

∥∥
L1

T H1
0 (Ω)

� ‖u − v‖XT

(
T θ1(α) + T θ2(α)

(
1+ ‖u‖2

XT
+ ‖v‖2

XT

))
, (3.13)

whereθ2(α) = 0 only forα = 2.
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Proof. Using the embeddingH 1
0 (Ω) ⊂ L2(α+1)(Ω), α ∈ ]0,2] (see Proposition 2.1), we obtain∥∥F(u)

∥∥
L1

T L2(Ω)
� ‖u‖L1

T H1
0 (Ω)

(
1+ ‖u‖α

L1
T H1

0 (Ω)

)
� T ‖u‖XT

(
1+ ‖u‖2

XT

)
. (3.14)

Using (3.3) we obtain that∣∣∇F(u)
∣∣ � |∇u|(1+ |u|β)

,

whereα � β � 2. Since

‖∇u‖L1
T L2(Ω) � T ‖u‖XT (3.15)

we need to bound|u|β∇u in L1
T L2(Ω) for a suitableβ (the auxiliary parameterβ will be chosen close enoug

to 2). We now claim that

‖u‖L
p
T W1,q (Ω) � ‖u‖XT ,

1

3p
+ 1

q
= 1

2
, p � 3. (3.16)

Estimate (3.16) follows clearly from the definition ofXT . Next using Hölder inequality we get forβ > 1,∥∥|u|β−1u∇u
∥∥

L1
T L2(Ω)

�
∥∥|u|β−1

∥∥
L3

T L18(Ω)
‖u‖L3

T L18(Ω)‖∇u‖L3
T L18/7(Ω) (3.17)

and moreover using (3.16) and the Sobolev embeddingW1,18/7(Ω) ⊂ L18(Ω) (see Proposition 2.1), we dedu
that ∥∥|u|β−1u∇u

∥∥
L1

T L2(Ω)
� ‖u‖β−1

L
3(β−1)
T L18(β−1)(Ω)

‖u‖2
XT

.

Chooseq such that1
q

− 1
18(β−1)

= 1
3. It is always possible to haveq � 2 by choosingβ close enough to 2. Nex

using Proposition 2.1, we obtain

‖u‖
L

3(β−1)
T L18(β−1)(Ω)

� ‖u‖
L

3(β−1)
T W1,q (Ω)

.

Chose nowp such that 1
3p

+ 1
q

= 1
2. Sinceβ � 2, we have thatq � 18

7 and thereforep � 3. Moreover sinceβ � 2

we have that1
p

� 1
3(β−1)

and an easy computation yields1
3(β−1)

− 1
p

= 2−β
2(β−1)

. Hence we obtain that for 1< β � 2,

‖u‖
L

3(β−1)
T W1,q (Ω)

� T (2−β)/(2(β−1))‖u‖XT

and therefore (see (3.17)),∥∥|u|β∇u
∥∥

L1
T H1

0 (Ω)
� T (2−β)/(2(β−1))‖u‖β+1

XT

which in turn together with (3.14) and (3.15) gives∥∥F(u)
∥∥

L1
T H1

0 (Ω)
� T ‖u‖XT

(
1+ ‖u‖2

XT

) + T (2−β)/(2(β−1))‖u‖β+1
XT

� T θ1(α)‖u‖XT + T θ2(α)‖u‖3
XT

,

whereθ2(α) = min{1,
2−β

2(β−1)
} and

θ1(α) =
{

1, if α = 2,

θ2(α), if α < 2.

This ends the proof of (3.12). The proof of (3.13) is similar by invoking (3.4), (3.5). The only new feature
analysis is the estimate of the quadratic expression|u − v|(|∇u| + |∇v|). Thus we need to bound say(u − v)∇u

in L1 L2(Ω). This can be done by using Hölder inequality, Proposition 2.1 and (3.16) as follows,
T
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∥∥(u − v)∇u
∥∥

L1
T L2(Ω)

� ‖u − v‖
L

3/2
T L9(Ω)

‖∇u‖L3
T L18/7(Ω) � ‖u − v‖

L
3/2
T W1,9/4(Ω)

‖u‖XT

� T 1/2‖u − v‖L6
T W1,9/4(Ω)‖u‖XT � T 1/2‖u − v‖XT ‖u‖XT .

This completes the proof of Proposition 3.3.�
Using Propositions 3.2 and 3.3, we obtain that forα ∈ ]0,2[ there existsθ(α) > 0 such that forT ∈ ]0,1],∥∥Φ(u)

∥∥
XT

� T θ(α)‖u‖XT

(
1+ ‖u‖2

XT

)
(3.18)

and ∥∥Φ(u) − Φ(v)
∥∥

XT
� T θ(α)‖u − v‖XT

(
1+ ‖u‖2

XT
+ ‖v‖2

XT

)
. (3.19)

Since eit�D is an isometry onH 1
0 (Ω) we deduce that forα ∈ ]0,2[ the map(

Ku0(u)
)
(t) := eit�Du0 + (

Φ(u)
)
(t) (3.20)

is a contraction in a suitable ball ofXT , providedT be sufficiently small. Therefore if we consider the seque
{vn}∞n=0, vn ∈ XT such thatv0 = 0, vn+1 = Ku0(vn) thenvn converges inXT to the unique solution inXT of the
integral equation

u(t) = eit�Du0 +
t∫

0

ei(t−τ )�DF
(
u(τ)

)
dτ

which implies the local well-posedness forα < 2. If α = 2, again using Propositions 3.2 and 3.3, we obtain
Ku0 is a contraction on a suitable ball ofXT only if in addition we impose a smallness assumption on‖u0‖H1

0 (Ω).
The global well-posedness can be obtained as explained in the previous section. The Lipschitz continuity of t
flow map on bounded sets ofH 1

0 (Ω) for small time intervals is a consequence of (3.19) while for an arbitrary
the argument should be iterated using the control onH 1

0 (Ω) norm provided by the energy conservation.�
3.4. Higher dimensions

In dimensiond � 4, we deal with the space

X
p

T := L∞
T H 1

0 (Ω) ∩ L
p

T W1,q (Ω),
1

p
+ d

q
= d

2
,

equipped with the natural norm. The parameterp > 2 will be chosen close enough to 2. Unfortunately
dimensionsd � 5 it is not evident that the transformationKu0 defined by (3.20) contracts suitable balls ofX

p

T .
However now we will show thatKu0 maps a suitable ball ofXp

T (of radiusc‖u0‖H1
0 (Ω)) into itself, for somep > 2,

providedT be small enough as far asα < 2
d−2.

Proposition 3.4. For everyα ∈ ]0, 2
d−2[ there existβ � α, θ > 0, p > 2 such that forT ∈ ]0,1],∥∥Ku0(u)

∥∥
X

p
T

� ‖u0‖H1
0 (Ω) + T θ‖u‖X

p
T

(
1+ ‖u‖β

X
p
T

)
. (3.21)

Proof. Let ψ ∈ C∞
0 (R) be such thatψ(x) = 0 for |x| < 1 andψ(x) = 1 for |x| > 2. Split the mapΦ defined

by (3.11) asΦ(u) = Φ1(u) + Φ2(u), where

(
Φ1(u)

)
(t) :=

t∫
ei(t−τ )�D

(
ψ

(∣∣u(τ)
∣∣2)F (

u(τ)
))

dτ.
0



N. Burq et al. / Ann. I. H. Poincaré – AN 21 (2004) 295–318 313

e

mate

utation,

above

he
Using Proposition 2.14, we deduce that for everyα > 0, everyp > 2, we have∥∥Φ2(u)
∥∥

X
p
T

� ‖u‖L1
T H1

0 (Ω) � T ‖u‖X
p
T
.

Hence the issue is to evaluateΦ1(u) in X
p
T for somep > 2 andT ∈ ]0,1]. We first prove that with a proper choic

of β � α, θ > 0, p > 2, (p̃, q̃), p̃ ∈ [1,2[ satisfying (2.33), one has the bound∥∥ψ
(|u|2)F(u)

∥∥
L

p̃
T W1,q̃ (Ω)

� T θ‖u‖X
p
T

(
1+ ‖u‖β

X
p
T

)
. (3.22)

Sinceq̃ � 2, we use the pointwise bound∣∣ψ(|u|2)F(u)
∣∣ � |u|1+2/(d−2).

Therefore due to Proposition 2.1,∥∥ψ
(|u|2)F(u)

∥∥
L

p̃
T Lq̃(Ω)

� T 1/p̃‖u‖d/(d−2)

L∞
T H1

0 (Ω)
� T 1/p̃‖u‖d/(d−2)

X
p
T

.

Next we observe that∣∣∇(
ψ

(|u|2)F(u)
)∣∣ � |u|β |∇u|, β � α,

and we deduce that the main point in the proof of (3.22) is to bound|u|β∇u in L
p̃
T Lq̃(Ω) for someβ ∈ [α, 2

d−2[ and
a suitable choice of(p̃, q̃) satisfying (2.33). Let us first perform the chain of inequalities, involved in the esti
for |u|β∇u,∥∥|u|β∇u

∥∥
L

p̃
T Lq̃(Ω)

�
∥∥|u|β∥∥

L
p1
T Lq1(Ω)

‖∇u‖
L

p2
T Lq2(Ω)

� ‖u‖β

L
βp1
T Lβq1(Ω)

‖u‖X
p
T

� ‖u‖β

L
βp1
T W1,q�

(Ω)
‖u‖X

p
T

� T θ‖u‖β+1
X

p
T

,

whereθ = 1
p1

− β
p� and the following conditions are imposed on the parameters appearing in the above comp

1

p̃
+ d

q̃
= 1+ d

2
, p̃ ∈ [1,2[ (Proposition 2.15 condition),

1

p1
+ 1

p2
= 1

p̃
,

1

q1
+ 1

q2
= 1

q̃
(Hölder inequality condition),

1

p2
+ d

q2
= 1

p�
+ d

q�
= d

2
, p2 > 2, p� > 2 (Proposition 2.14 condition),

1

q�
− 1

βq1
= 1

d
, q� < d (Sobolev embedding condition),

βp1 < p� (small factor condition).

Let us now show that it is indeed possible to make a proper choice of the parameters involved in the
computation. We start by fixing(p2,p

�) as follows,

1

p2
:= 1

2
− δ,

1

p�
:= 1

2
− δ,

whereδ > 0 is a sufficiently small parameter to be fixed later.The other parameters will be chosen following t
scheme,

(p2,p
�) → (q2, q

�) → q1 → q̃ → p̃ → p1.
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control
In order to keep the parameters in the permitted regions, in the first step we should verify thatq� < d , in the third
one that1

q̃
∈ [1

2, d+1
2d

] and in the final step we should verify what is the restriction imposed by the small f
assumptionβp1 < p�.

Taking into account Proposition 2.14 condition, we define,

1

q2
:= d − 1

2d
+ δ

d
,

1

q�
:= d − 1

2d
+ δ

d
.

Note thatq� ∈ ]2, d[ and taking into account Sobolev embedding restriction, we set,

1

q1
:= β(d − 3)

2d
+ δβ

d
.

Next taking into account Hölder inequality condition, we define

1

q̃
:= β(d − 3) + d − 1

2d
+ δ(β + 1)

d
.

An easy computation shows that by choosingδ small enough andβ sufficiently close to 2
d−2, we can have

1

q̃
∈

[
1

2
,
d + 1

2d

[
. (3.23)

Next Proposition 2.15 condition permits us to definẽp and due to (3.23) we havẽp ∈ [1,2[. Finally taking into
account the first Hölder inequality condition, we set

1

p1
:= 1− β(d − 3)

2
− δβ.

It is now easy to verify that the small factor conditionβp1 < p� is equivalent toβ < 2
d−2 which ends the proo

of (3.22). Using Proposition 2.15, forp > 2, p < p�,∥∥Φ1(u)
∥∥

X
p
T

�
∥∥(1− �D)1/2(ψ(|u|2)F(u)

)∥∥
L

p̃
T Lq̃(Ω)

,

where(p̃, q̃), p̃ ∈ [1,2[, satisfies (2.33). Using (3.22) together with (2.1) and an approximation argumen
obtain that there existsC > 0 such that for everyu ∈ X

p

T ,∥∥(1− �D)1/2(ψ(|u|2)F(u)
)∥∥

L
p̃
T Lq̃(Ω)

� CT θ‖u‖X
p
T

(
1+ ‖u‖β

X
p
T

)
, (3.24)

where(p̃, q̃, p,β, θ) are the same as in (3.22). This completes the proof of Proposition 3.4.�
Due to Propositions 2.15 and 3.4, we deduce that ifα < 2

d−2 andu0 ∈ H 1
0 (Ω) then the mapKu0 sends a suitabl

ball in X
p
T into itself, providedT 
 1 andp close enough to 2. Finally, using Proposition 3.1 we obtain thatKu0

is a contraction on this ball in the weaker topologyL∞
T L2(Ω) ∩ L

p�

T Lq�
(Ω), wherep� is the exponentp involved

in Proposition 3.1 and(p�, q�) satisfies (2.28). This completes the proof of the existence claim of Theorem 1�
Remark 3.5. Various continuous dependence with respect to the initial data results can be obtained by u
bounds on‖Ku0‖XT . Unfortunately these considerations do not give Lipschitz bounds inH 1

0 (Ω) for the flow map.

3.5. Lipschitz bound in four space dimensions

In this sectiond = 4. The argument, we present is inspired by the work of Keraani (see [20]) and is
similar to the consideration in [10, Appendix 1]. In order to carry out this argument one essentially needs to



N. Burq et al. / Ann. I. H. Poincaré – AN 21 (2004) 295–318 315

ich

o
,

r

that for
quadratic nonlinearities in the analysis performed in the previous section. LetB be a bounded convex set inH 1
0 (Ω).

Fix T > 0. In the previous section, we established the existence of a well-defined flow map

Φ :u0 ∈ B �→ u ∈ C
([−T ,T ],H 1

0 (Ω)
)
.

Our aim is to show that the differential ofΦ is bounded in the natural functional framework, a fact wh
clearly implies the Lipschitz property. Fixu0 ∈ B and letΦ(u0) = u. Then for everyv0 ∈ H 1

0 (Ω), we have that
Φ ′

u0
(v0) := v satisfies the equation

(i∂t + �)v = ∂F

∂u
v + ∂F

∂ū
v̄

with v|t=0 = v0. For 0< δ 
 1, we define the space

Y δ
T := L

2/(1−2δ)
T W1,8/(3+2δ)(Ω) ∩ L3

T W1,12/5(Ω)

equipped with the natural norm. IfI ⊂ R is an interval, we can define the spaceY δ
I in a natural manner. Similarly t

the previous section, we introduce the spaceX
p
T and moreover by takingp close enough to 2 andδ small enough

one gets the bound

‖v‖X
p
T1

� ‖v0‖H1
0 (Ω) + (

T1 + ‖u‖Y δ
T1

)‖v‖X
p
T1

,

whereT1 ∈ [0, T ]. As a consequence there exists a positive constantA such that ifT1 + ‖u‖Y δ
T1

� A, then

‖v‖X
p
T1

� C‖v0‖H1
0 (Ω) for someC > 0 and in particular

‖v‖L∞
T1

H1
0 (Ω) � C‖v0‖H1

0 (Ω). (3.25)

Next we split[−T ,T ] into N intervalsI1, . . . , IN such that

|Ik| + ‖u‖Y δ
Ik

� A.

A simple geometric observation shows that we can always realize the above slicing withN satisfying

N � T + ‖u‖Y δ
T
.

Note that the above bound forN depends only onT andu but not onv0. Iterating estimate (3.25), we finally infe

‖v‖L∞
T H1

0 (Ω) � CN‖v0‖H1
0 (Ω)

which completes the proof of the Lipschitz bound ford = 4.

4. Proof of Theorem 2

The proof of Theorem 2 has the flavor of the considerations of the previous section. We first prove
u0 ∈ L2(Ω), the mapKu0 defined by (3.20) is a contraction in a suitable set of the space

X
p
T := L∞

T L2(Ω) ∩ L
p
T Lq(Ω),

1

p
+ d

q
= d

2
,

providedT 
 1 and a suitable choice ofp > 2. Indeed that follows from the next statement.

Proposition 4.1. For everyα ∈ ]0, 2
d
[ there existsβ ∈ [α, 2

d
[ andp > 2 such that forT ∈ ]0,1],∥∥Ku0(u)

∥∥
X

p
T

� ‖u0‖L2(Ω) + T 1−βd/2‖u‖X
p
T

(
1+ ‖u‖β

X
p
T

)
, (4.1)∥∥Ku0(u) − Ku0(v)

∥∥
X

p � T 1−βd/2‖u − v‖X
p

(
1+ ‖u‖β

p + ‖v‖β
p

)
. (4.2)
T T XT XT
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now
Proof. We shall only prove (4.2) since (4.1) follows from (4.2) withv = 0 combined with Proposition 2.14 wit
s = 0. Letψ be the cut-off function used in the proof of Proposition 3.4. We write

F(u) − F(v) = ψ
(|u|2 + |v|2)(F(u) − F(v)

) + (
1− ψ

(|u|2 + |v|2))(F(u) − F(v)
)
,

and we use Proposition 2.14 withs = 0 and (3.4). We obtain∥∥Φ(u) − Φ(v)
∥∥

X
p
T

� T ‖u − v‖L∞
T L2(Ω) + ∥∥(u − v)

(|u|β + |v|β)∥∥
L

p̃
T Lq̃(Ω)

,

where the transformationΦ is defined in Proposition 3.2,β ∈ [α, 2
d
[ and the pair(p̃, q̃), p̃ ∈ [1,2[, satisfies (2.33)

Next, using Hölder inequality, we obtain∥∥(u − v)
(|u|β + |v|β)∥∥

L
p̃
T Lq̃(Ω)

� ‖u − v‖
L

p1
T Lq1(Ω)

(‖u‖β

L
βp2
T Lβq2(Ω)

+ ‖v‖β

L
βp2
T Lβq2(Ω)

)
,

where
1

p1
+ 1

p2
= 1

p̃
,

1

q1
+ 1

q2
= 1

q̃
,

1

p1
+ d

q1
= d

2
. (4.3)

Let p� be such that

1

p�
+ d

βq2
= d

2
. (4.4)

Let us choose the parameters(p1,p2, q1, q2, p̃, q̃, p�) satisfying (2.33), (4.3), (4.4) as follows,

1

p1
= 1

p�
= 1

2
− δ,

1

q1
= d − 1

2d
+ δ

d
,

1

q2
= β(d − 1)

2d
+ βδ

d
,

1

q̃
= (β + 1)(d − 1)

2d
+ (β + 1)δ

d
,

1

p̃
= 3

2
− β(d − 1)

2
− (β + 1)δ,

1

p2
= 1− β(d − 1)

2
− βδ.

We choose the free parametersδ andβ as follows. Sinced � 2 we takeδ positive but small enough andβ close
to 2/d in order to ensure that̃p ∈ [1,2[. Thus, we finally get

‖u − v‖
L

p1
T Lq1(Ω)

� ‖u − v‖XT

and

‖u‖β

L
βp2
T Lβq2(Ω)

+ ‖v‖β

L
βp2
T Lβq2(Ω)

� T 1−βd/2(‖u‖β

L
p�

T Lβq2(Ω)
+ ‖v‖β

L
p�

T Lβq2(Ω)

)
� T 1−βd/2(‖u‖β

XT
+ ‖v‖β

XT

)
.

This completes the proof of Proposition 4.1.�
We now turn to the uniqueness issue. Let firstα < 1

d
. Assume thatu andv are two solutions both inL∞

T L2(Ω).
ThenF(u) andF(v) are in the sum ofL∞

T L2/(1+α)(Ω) andL∞
T L2(Ω). Sinceα < 1

d
implies 2

1+α
> 2d

d+1, we can
apply Propositions 2.14 and 2.15 to deduce thatu,v ∈ X

p
T , p > 2. The uniqueness in the considered case

follows from (4.2). Let nowα � 1
d

. Assume thatu andv are two solutions both inL∞
T L2(Ω) ∩ L

p
T Lq(Ω) with

2 < p < 2(α+1)
αd−1 . ThenF(u) andF(v) belong to the sum ofLp/(1+α)

T Lq/(1+α)(Ω) andL∞
T L2(Ω). Let q̃ := q

1+α
. It

follows from the condition onp that q̃ > 2d
d+1. Moreover ifp̃ is such that1

p̃
+ d

q̃
= d

2 + 1 thenp̃ <
p

1+α
since

1+ α + d(1+ α) = (1+ α)d
<

d + 1 = 1 + d
.

p q 2 2 p̃ q̃
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Therefore by Propositions 2.14 and 2.15, we obtain thatu andv are both inXp
T , p > 2, and the uniqueness in th

considered case follows as above from (4.2). This completes the proof of Theorem 2.�
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