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Abstract

We study the existence of stationary solutions of a class of diffusion equations related to the so-called extended
Kolmogorov equation and the Swift–Hohenberg equation. We prove the existence of multitransition kinks and pulses. Th
solutions are obtained as local minima of the associated functional. For the Swift–Hohenberg equation, our result
proves a numerical conjecture.

Résumé

Nous étudions l’existence de solutions stationnaires d’une classe d’équations de diffusion incluant l’équation de
Kolmogorov généralisée et l’équation de Swift–Hohenberg. Nous démontrons l’existence de solutions hétéroc
homoclines à transitions multiples. Ces solutions sont des minima locaux de la fonctionnelle associée. Nos résultats couvr
partiellement une conjecture numérique concernant l’équation de Swift–Hohenberg.
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1. Introduction

This paper is concerned with the study of particular stationary solutions of a class of semilinear di
equations of the form

∂u

∂t
+ ∂4u

∂x4
− β

∂2u

∂x2
+ u3 − u = 0, (1)

whereβ is a real parameter. This equation is a model in many physical, chemical or biological systems
β > 0, it is related to the so-calledExtended Fisher–Kolmogorovequation which was proposed in 1988 by D
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and van Saarloos [5] as an higher-order model equation for physical systems that arebistable. By a scaling in the
variablex, Eq. (1) can be written as

∂u

∂t
+ γ

∂4u

∂x4 − ∂2u

∂x2 + u3 − u = 0, (2)

where the positive parameterγ is related toβ by the formulaβ = 1/
√

γ . Whenγ = 0 in (2), we recognize the
well knownFisher–Kolmogorovequation, sometimes also called theAllen–Cahnequation, originally introduced in
1937 [10] as a model for studying biological populations. The term bistable indicates that the Fisher–Kolm
equation and its extended version have two uniform stable statesu(x) = ±1 separated by a third uniform sta
u(x) = 0 which is unstable, see [5].

Whenβ is negative, Eq. (1) is related to theSwift–Hohenbergequation

∂u

∂t
− κu +

(
1+ ∂2

∂x2

)2

u + u3 = 0, (3)

whereκ ∈ R. This equation was proposed by Swift and Hohenberg [16] as a model in the study of Rayleigh–
convection. Whenκ > 1, this equation can be transformed into

∂u

∂t
+ (κ − 1)3/2

[
∂4u

∂x4
− β

∂2u

∂x2
+ u3 − u

]
= 0

with β = −2/
√

κ − 1.

For these model equations, a question of great interest is the existence of phase transitions, i.e. solu
spatially connect two uniform states. When looking at time-independent solutions, we are lead to the fo
autonomous equation

u′′′′ − βu′′ + u3 − u = 0. (4)

Heteroclinic solutions of (4) (or kinks) connecting−1 and+1 in the phase-space, i.e. solutions that satisfy
following conditions

lim
x→±∞

(
u(x),u′(x), u′′(x), u′′′(x)

) = (±1,0,0,0) (5)

are then stationary solutions of (1) connecting the two uniform states−1 and +1. Of course, we can also consid
heteroclinics from+1 to −1.

Nonlinear Schrödinger equations are also related to the model equation (4). When assuming harmon
dependence, i.e.v(x, t) = u(t)eikx for somek ∈ R, the solutions of the Schrödinger equation

i
∂v

∂x
+ ∂2v

∂t2
− ∂4v

∂t4
+ |v|2v = 0

solve, after scaling, Eq. (4) withβ = 1/
√

k and a question of interest in optic is the existence of pulse propaga
For Eq. (4), this amounts to study the existence of homoclinic solutions (or pulses), i.e. solutions of (4) w
property

lim
x→±∞

(
u(x),u′(x), u′′(x), u′′′(x)

) = (1,0,0,0) (or (−1,0,0,0)). (6)

The study of Eq. (4) for positive values of the parameterβ goes back at least to Peletier and Troy in [11,
where they proved among other things, the existence of kinks for allβ > 0. Whenβ ∈ [√8,∞), van den Berg [18
proved that the bounded solutions of (4) behave like the bounded solutions of the stationary Fisher–Kolm
equation

−u′′ + u3 − u = 0.
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This implies that there exist two kinks (up to translations), one monotone increasing from−1 to +1 and its
symmetric, while there are no pulses. Whenβ ∈ [0,

√
8), the set of kinks and pulses is much more rich.

this range ofβ , kinks and pulses cannot be monotone anymore as atβ = √
8, both equilibria±1 bifurcate from

saddle-nodes to saddle-foci. The linearization of(4) around the equilibria then showsthat the solutions oscillat
when they are close to±1 with small derivatives up to the third order. Asβ becomes smaller than

√
8, infinitely

many kinks and pulses appear. Peletier and Troy [12] proved the existence of two infinite sequences of bo
and pulses. The two sequences of kinks consist of odd kinks having 2n + 1 zeros and differ in the amplitude o
the oscillations. The pulses are even with 2n zeros. Again, the two sequences can be distinguished accord
the amplitude of the oscillations. Other families of kinks and pulses were shown to exist [8,9]. Basically
solutions can be distinguished by the number of jumps from−1 to+1 and the oscillations around these equilib
in between the jumps. The complex structure of these solutions can be quantified by defining homotopy
see [8].

Different methods have been used to deal with Eq. (4). Peletier and Troy introduced in [11,12] a topo
shooting method that can be used to track kinks and pulses as well as periodic solutions. In [14], it is sho
kinks and periodic solutions can be obtained using variational arguments. For instance, ifβ � 0 the functional

J ∗
β (u) =

+∞∫
−∞

[
1

2

[(
u′′2) + βu′2] + 1

4

(
u2 − 1

)2
]

dx (7)

has a minimum in the function spaceH = χ + H 2(R) whereχ is a C∞ function that satisfiesχ(x) = −1 for
x � −1 and χ(x)= 1 for x � 1. Whenβ �

√
8, this minimizer is the unique heteroclinic connection from−1 to

+1, while forβ <
√

8 it is called the principal heteroclinic as it only has one zero.
The dynamics of Eq. (4) withβ < 0 is much less understood than the one of the Extended Fisher–Kolmo

equation. Numerical experiments [17] suggest that a large variety of those solutions found forβ positive still exist
for a certain range of negative values ofβ . A study of periodic solutions was recently presented in [19]. For kin
and pulses, the limitation of the shooting method of Peletier and Troy was pointed out in [20] while the terβu′2
in the functionalJ ∗

β is very “bad” for minimization whenβ < 0.
However recent applications of variational argumentswere shown to be fruitful. Smets and van den Berg [

have used a version of the mountain pass theorem to prove the existence of at least one homoclinic solutio
equilibria for almost everyβ ∈ (−√

8,0). In [3], looking for instance at heteroclinic solutions, it is shown t
minimization arguments can still be used forβ greater than some negativeβ0 which can be characterized by

β0 = inf
{
β < 0 | inf

H
J ∗

β � 0
}

whileJ ∗
β is unbounded from below beyondβ0. Numerical computations [17] indicate thatβ0 is close to−0.9. The

solution found by minimization stillcorresponds to the principal kink.
In this paper, we obtain multitransition kinks and pulses forβ � β0. By a transition, we mean a passage fr

−1 to 1 or reversely. Actually, we consider the more general functional

F∗(u) =
+∞∫

−∞

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx (8)

whose Euler–Lagrange equation is given by

u′′′′ − g(u)u′′ − 1

2
g′(u)u′2 + f ′(u) = 0. (9)

Here we assume that the functionf is a symmetric double-well potential with bottoms at±1 andg is an even
function which is not necessarily constant. Theinterest of considering a nonconstant functiong can be checked
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in [6]. Functionals of the form (8) were already considered in [2,3,7] with either a double-well or a triple
potentialf and a functiong that can take either sign.

Let us first look at heteroclinic connections of (9). Since we assume thatf andg are even, we can restrict o
attention to odd solutions. Indeed, given any functionu ∈ H, it is easy to build an odd functionu∗ ∈ H having
smaller action thanu, see [9]. We thus look at the critical points of the functional

F(u) =
+∞∫
0

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx (10)

in the space

E = {
u | u − 1 ∈ H 2(R+), u(0) = 0

}
. (11)

If F has a minimizeru, an easy computation shows thatu′′(0) = 0. Extending thenu on R by

u∗(x) =
{−u(−x) if x < 0,

u(x) if x � 0
(12)

we obtain an odd solution of (9). Also, it is easy to check that conditions (5) are fulfilled.
As we have already mentioned in the case of the model Eq. (4), we expect multitransition solution

the equilibria±1 are saddle-foci, i.e. wheng(1)2 < 4f ′′(1). We obtain these solutions as local minima of
functionalF in appropriate subsets ofE . Basically, these subsets correspond to classes of functions havin
desired number of transitions. We define for eachn � 0, the subsetEn ⊂ E consisting of functions whose od
extensions onR make 2n + 1 transitions. More precisely, a functionu ∈ E belongs to the subclassEn if there exist
0 = x0 < x1 < · · · < xn < xn+1 = ∞ such that

u(x)(−1)i+n > 0 for x ∈ (xi, xi+1),

max
(xi,xi+1)

u(x)(−1)i+n > 1.

We prove thatF has a local minimum in each of these subspaces in the two following situations.

Theorem 1. Let f and g ∈ C2(R) be even functions such thatf (1) = 0 and assume that for somek > 0,
β ∈ [0,

√
8k) and allu � 0,

f (u) � k(u − 1)2 and g(u) � −β (13)

andg(1)2 < 4f ′′(1). Assume further that

inf
E
F > −∞,

whereF :E → R is defined by(10). Then, for everyn ∈ N, F has a local minimizerun in the subspaceEn.
Moreover, the odd extension ofun onR is an heteroclinic solution of(9) having exactly2n + 1 zeros.

Theorem 2. Let f andg ∈ C2(R) be even functions such thatf (1) = f ′(1) = 0 and for some functioñg ∈ C(R)

and somek < 1,

g(u) � g̃(u),
∣∣G̃(u)

∣∣ � k
√

8f (u), ∀u ∈ R, (14)

whereG̃(u) := ∫ u

0 g̃(s)ds. Assume moreover thatg(1)2 < 4f ′′(1). Then the conclusion of Theorem1 holds.

The case of a nonnegative functiong, which is covered either by Theorem 1 and 2, is already contained i
where even more precise results are given. It is proved therein that each subsetEn can again be divided in smalle
classes to obtain more kinks. In a subsetEn, these solutions can be distinguished by the number of oscillation
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around±1 in between the transitions. The solutions that we obtain in Theorems 1 and 2 correspond to thos
in [8] in the particular case of two crossings with±1 in each transition.

It is pointed out in [8] that the methods used therein require a nonnegative Lagrangian

L(u,u′, u′′) = 1

2

(
u′′2 + g(u)u′2) + f (u).

In this case, the action

F(u) =
∫

L(u,u′, u′′)dx

is of course nonnegative along admissible functions. Our results can be seen as a partial extension of the m
[8] to Lagrangians that can take either sign. To deal with such Lagrangians, we only require an a priori lowe
on the action along admissible functions. This condition is explicitly stated in Theorem 1 while it is a conse
of assumption (14) in Theorem 2. This boundedness assumption on the functional might seem rather
However, iff andg satisfy the assumptions of Theorem 1, it can be checked thatF is bounded from below onE
at least forβ > 0 small enough, see Lemma 4 in [3]. Hence, we can state the following proposition.

Proposition 3. Let f ∈ C2(R) be an even function such thatf (1) = 0 and for somek > 0, f (u) � k(u − 1)2 for
all u � 0. Then, there existsβ(f ) ∈ (0,

√
8k) such that ifβ � β(f ),

inf
u∈E

+∞∫
0

[
1

2

(
u′′2 − βu′2) + f (u)

]
dx > −∞.

Moreover, ifg ∈ C2(R) is even, satisfiesg(u) � −β(f ) for u � 0 andg(1)2 < 4f ′′(1), the conclusion of Theorem1
holds.

It is interesting to notice that a lower bound on the functional implies in fact that the action of any adm
function is positive, see Section 4 and [3].

For a functionu ∈ En, we denote byIi the intervals(xi, xi+1) for i = 0, . . . , n where by conventionx0 = 0
andxn+1 = ∞. The main idea in the proof of Theorems 1 or 2 is to show the existence of a minimizing seq
(up)p ⊂ En that has the following properties:

(a) there existsI > 0 such that for allup , |Ii | � I for all i = 0, . . . , n − 1;
(b) there existsC > 0 such that for allup, ‖up − 1‖H2 � C.

These two properties are closely related as they prevent from a loss of compactness when extracting a wea
converging subsequence.

The main tool for obtaining the estimates on the length of the intervalsIi is the clipping procedure introduce
in [8]. Also, the oscillatory behaviour of minimizers close to the equilibria±1 (described in Section 2.2) is cruci
in the construction of a minimizing sequence having the above properties.

Equivalent results can be obtained for homoclinic solutions. We show in Section 5 how to adapt the defin
the classesEn to find even homoclinic connections. Of course, these classes have to be defined in another functi
space that takes conditions (6) into account.

Sections 2 and 3 are devoted to preliminaries to the proof of Theorem 1. In Section 3, we construct a min
sequence with the properties (a) and (b) mentioned above. The proof of Theorem 1 and a sketch of the
Theorem 2 are given in Section 4.

Finally, it is worth mentioning that a good account on known results about Eq. (4) and related model equat
can be found in the recent book of Peletier and Troy [13].
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In this section, we prove some preliminary results that are used as main tools in the minimizing process

2.1. Inequalities

The following inequalities are helpful to get good estimates on functionsu ∈ En and on the length of the interva
Ii . We first obtain for any functionu ∈ H 2(a, b), a lower estimate on theL2-norm ofu′′ by comparingu with a
third degree polynomial which coincides (inH 2(a, b)) with u at both extremities.

Lemma 4. Given an interval[a, b] ⊂ R and a functionu ∈ H 2(a, b) such thatu(a) = A, u(b) = B, u′(a) =
A1, u′(b) = B1, the following inequality holds

b∫
a

u′′2 dx � 4

b − a

[
(B1 − A1)

2 + 3

(
B − A

b − a
− A1

)(
B − A

b − a
− B1

)]
,

and equality holds if and only ifu is a third degree polynomial.

Proof. Denote byP the third degree polynomial that coincides inH 2 with u at pointsa andb. Writing u = P +w,
we compute

b∫
a

u′′2 dx =
b∫

a

P ′′2 dx +
b∫

a

w′′2 dx + 2

b∫
a

P ′′w′′ dx. (15)

IntegratingP ′′w′′ by parts and using the fact thatw(a) = w(b) = w′(a) = w′(b) = 0, we see that the last integr
in (15) is actually zero. We thus obtain the inequality

b∫
a

u′′2 dx �
b∫

a

P ′′2 dx

and the conclusion now follows by computing the integral ofP ′′2. �
The following inequality is essential to obtain a lower bound onF and a priori estimates for functions inEn.

Lemma 5. Let k > 0 andβ ∈ [0,
√

8k). Then there existsε > 0 such that for anyu ∈ H 2(a, b), we have

b∫
a

[
1

2

(
u′′2 − βu′2) + ku2

]
dx � ε‖u‖2

H2(a,b)
−

(
ε + β

2

)
[uu′]ba.

Proof. Notice that for any constantα,

b∫
a

(u′′ + αu)2 dx =
b∫

a

[
u′′2 − 2αu′2 + α2u2]dx + 2α[u′u]ba. (16)

We then compute
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b∫
a

[
1

2

(
u′′2 − βu′2) + ku2

]
dx = ε

b∫
a

[
u′′2 + u′2 + u2]dx

+ 1− 2ε

2

b∫
a

[
u′′2 − β + 2ε

1− 2ε
u′2 + 1

4

(
β + 2ε

1− 2ε

)2

u2
]

dx +
[
k − ε − (β + 2ε)2

8(1− 2ε)

] b∫
a

u2 dx.

Now, choosingε small enough, we havek − ε − (β+2ε)2

8(1−2ε)
� 0. Finally, using (16) with 2α = β+2ε

1−2ε
, we get the

desired estimate.�
Next we recall the continuous imbedding ofH 1(a, b) in C(a,b). The dependence on the length of the inter

(a, b) is important in our application.

Lemma 6. Let−∞ � a < b � +∞. There exists a positive constantC such that for allu ∈ H 1(a, b),

sup
x∈(a,b)

∣∣u(x)
∣∣ � C

(
1+ 1

b − a

)
‖u‖H1(a,b). (17)

Proof. The proof follows from Theorems VIII.7, VIII.5 of [4]. �
2.2. Behaviour of local minimizers close to the equilibria

We now describe the oscillatory nature of the local minimizers close to a saddle focus equilibrium. To
ideas and to simplify the notation, we assume thatf is a potential for which 0 is a nondegenerate global minim
andg is such that 0 is a saddle focus equilibrium of the linear equation

u′′′′ − g(0)u′′ + f ′′(0)u = 0, (18)

i.e.g(0)2 < 4f ′′(0). Basically, the following lemma shows that the minimizers of the functional

Ia,b(u) =
b∫

a

[
1

2

[(
u′′2) + g(u)u′2] + f (u)

]
dx

on the setEa,b = {v ∈ H 2(a, b) | (u(a),u′(a)) = y0 and(u(b),u′(b)) = y1} are small (for theC3-norm) whenever
y0 andy1 are small. It then follows that the oscillatory behaviour of the solutions of the linearization (18) arou
the equilibrium extends to these minimizers. The following lemma is adapted from Theorem 4.1 [8] whe
assumed thatg is positive.

Lemma 7. Letf andg ∈ C2(R) be such thatf (0) = f ′(0) = 0 and assume that for somek > 0, β ∈ [0,
√

8k) and
all u ∈ R,

f (u) � ku2 and g(u) � −β.

Then, there existδ0 > 0 andS > 1 such that ifb − a � 1, ‖y0‖ � δ0, ‖y1‖ � δ0 andu minimizesIa,b on Ea,b, we
have

‖u‖C3([a,b]) � S max
(‖y0‖,‖y1‖

)
. (19)

Moreover, ifg(0)2 < 4f ′′(0), there existsτ0 > 0 such that ifb − a � 1 andmax(‖y0‖,‖y1‖) > 0, u changes sign
on every subinterval of[a, b] having length larger thanτ0.
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Proof. Throughout the proof,C is a positive constant that may change from line to line. Let us first prove
estimate (19). As 0 is a nondegenerate minimum off , there existδ1 > 0 andη > 0 such that|f ′(u)| � 2η|u| and
f (u) � ηu2 for |u| � δ1.

Claim 1. There existsC1 > 0 andδ2 > 0 such that if‖y0‖ � δ � δ2 and‖y1‖ � δ � δ2, theninfEa,b
Ia,b � C1δ

2.

DefineP(x) as follows

P(x) =


P0(x) if a � x � a + 1

2,

0 if a + 1
2 < x � b − 1

2,

P1(x) if b − 1
2 < x � b,

where Pi , i = 0,1, are the third degree polynomia satisfying(P0(a),P ′
0(a)) = y0, (P1(b),P ′

1(b)) = y1 and
(P0(a + 1

2),P ′
0(a + 1

2)) = (P1(b − 1
2),P ′

1(b − 1
2)) = (0,0). Observe that there exists 0< δ2 � δ1 such that if

‖y0‖ � δ � δ2 and‖y1‖ � δ � δ2, then‖P‖L∞ � δ1. It then follows from an easy computation that

inf
Ea,b

Ia,b � Ia,b(P ) � C1δ
2,

whereC1 > 0 essentially depends onη and‖g‖L∞(−δ1,δ1).

Claim 2. There existsC2 > 0 andδ0 > 0 such that ifu is a minimizer inEa,b with ‖y0‖ � δ � δ0 and‖y1‖ � δ � δ0,
then‖u‖C3 � C2δ.

First, notice that the inequality of Lemma 5 implies thatIa,b is bounded from below onEa,b. Therefore, the
existence of a minimizer follows by standard arguments. Moreover, ifu is a minimizer,u solves (9) on[a, b]
and satisfies the boundary conditions(u(a),u′(a)) = y0 and(u(b),u′(b)) = y1. Assuming that‖y0‖ � δ � δ0 and
‖y1‖ � δ � δ0, we now deduce by using the inequality of Lemma 5 that

‖u‖H2 � Cδ

and from Lemma 6, we obtain

‖u‖C1 � Cδ.

Observe that we can choose a constantC that does not depend on the length of[a, b] as b − a � 1. Taking
δ0 � δ1/C, we infer that‖u‖∞ � δ1 and therefore the differential equation (9) yields the estimate

‖u′′′′‖L2 � Cδ

with C independent of[a, b]. We now conclude by interpolation that

‖u′′′‖L2 � C
(‖u′′′′‖L2 + ‖u′′‖L2

)
� Cδ.

The constant in the interpolation inequality can be taken independently on[a, b] asb − a � 1, see [1], so thatC
does not depend on[a, b]. Now, the bound inC3 follows from the bound inH 4 and Lemma 6.

The last statement of the theorem is included in Theorem 4.2 in [8]. An alternative proof can be found in [3].�
We also need the equivalent of Lemma 7 with the settings of Theorem 2.

Lemma 8. Let f andg ∈ C2(R) be such thatf (u) � 0 for all u ∈ R, f (0) = f ′(0) = 0 and assume that for som
functiong̃ ∈ C(R) and somek < 1,

g(u) � g̃(u),
∣∣G̃(u)

∣∣ � k
√

8f (u), ∀u ∈ R,
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whereG̃(u) := ∫ u

0 g̃(s)ds. Assume moreover thatg(0)2 < 4f ′′(0). Then the conclusion of Lemma7 holds.

Proof. The proof is similar to that of Lemma 7. Though the potential is not bounded from below by a pa
everywhere, we have good estimates close to 0. To prove Claim 2, a computation similar to those of Lem
[2] shows that foru ∈ Ea,b,

Ia,b(u) � 1

2

[
G̃

(
u(b)

)
u′(b) − G̃

(
u(a)

)
u′(a)

] + s

b∫
a

[
u′′2

2
+ f (u)

]
dx

for somes > 0. Using this last inequality, the conclusion follows arguing as in the proof of Lemma 7.�
2.3. Clipping

Next, we recall the clipping procedure introduced in [8]. When minimizing a functional in a certain space, w
often want to be able to modify locally any function by another one which is in the same space, has better prope
and lower action. When dealing with a second order equation and its associated functional, we usually o
to worry about keeping functions continuous. As our functionalF is defined in a translate ofH 2(R+), things are
more complicated. For example, any modification has to keep the functions at leastC1. The following lemma can
be seen as a tool for performing authorized modification. We refer the reader to [8] for the proof.

Lemma 9. Let a � s1 < s2 � s3 < s4 � b and letu ∈ H 2(a, b) be such thatu(x) ⊂ [u(a),u(b)] for all x ∈ [a, b],
u is invertible on[s1, s2] and[s3, s4],

u(s1) = u(s3), u(s2) = u(s4),
(
u′(s1) − u′(s3)

)(
u′(s2) − u′(s4)

)
� 0.

Then there exists1 � a1 � s2 � s3 � b1 � s4 such that the function̂u : [a, b − (b1 − a1)] → R defined by

û(x) =
{

u(x) if x ∈ [a, a1],
u(x + b1 − a1) if x ∈ (a1, b − (b1 − a1)]

belongs toH 2(a, b − (b1 − a1)).

Wheng is nonnegative, it is clear that the clipping procedure decreases the action. Indeed, the valueF on
each discarded piece is positive. Wheng takes negative values as well, this is no longer true. However, we sh
the next lemma that under some assumptions, this still reduces the action when the function is of one sign on
discarded pieces.

Lemma 10. Letf andg ∈ C(R) be even functions such that for somek > 0, β ∈ [0,
√

8k) and allu � 0,

f (u) � k(u − 1)2 and g(u) � −β.

Letu ∈ H 2(a, b) be such thatu(a) = u(b) andu′(a) = u′(b). Assume moreover thatu is of one sign. Then

b∫
a

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx � 0.

Proof. Suppose thatu is nonnegative on(a, b). Then using the inequality of Lemma 5 applied tou − 1, we have

b∫ [
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx �

b∫ [
1

2

(
u′′2 − βu′2) + k(u − 1)2

]
dx � ε‖u − 1‖2

H2(a,b)
.

a a
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If u is nonpositive on(a, b), we obtain

b∫
a

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx � ε‖u + 1‖2

H2(a,b)
. �

Remark 1. It is easy to prove that Lemma 10 holds also under the assumptions of Theorem 2. The idea is co
in [2], Lemma 4.

3. Estimates on minimizing sequences

We recall thatu ∈ En if there exist 0= x0 < x1 < · · · < xn < xn+1 = ∞ such that

u(x)(−1)i+n > 0 for x ∈ (xi, xi+1),

max
(xi,xi+1)

u(x)(−1)i+n > 1.

We still denote byIi the intervals(xi, xi+1) for i = 0, . . . , n. To avoid some confusions, we sometimes use
notationIu

i to emphasize that these intervals correspond to the transitions ofu.
We also introduce the notation

FIi (u) :=
xi+1∫
xi

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx

and for a given functionh and a setA ⊂ R , we denote byh−1(A) the set{x ∈ domh | h(x) ∈ A}.
The aim of this section is to construct a minimizing sequence(up)p that has the following properties:

(a) there existsI > 0 such that for allup , |Iup

i | � I ;
(b) there existsC > 0 such that for allup, ‖up − 1‖H2 � C.

Throughout the section, we assume that

(F1) f andg ∈ C(R) are even functions such that for somek > 0, β ∈ [0,
√

8k) and allu � 0, f (u) � k(u − 1)2

andg(u) � −β.

First, we obtain a lower bound onFIi (u) for all i = 0, . . . , n.

Lemma 11. Let M > 0 and assume that(F1) holds. There existsK > 0 such that ifu ∈ En satisfiesF(u) < M,
thenFIi (u) � −K for all i = 0, . . . , n.

Proof. Let u be of function ofEn such thatF(u) < M. Suppose first that|Ii | � 1/
√

β and 0� i � n − 1. We then
compute

‖u′‖2
L2(Ii )

� |Ii |2‖u′′‖2
L2(Ii )

� 1

β
‖u′′‖2

L2(Ii )
.

It follows that

FIi (u) � 1(‖u′′‖2
L2(I )

− β‖u′‖2
L2(I )

)
� 0.
2 i i
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Suppose now that|Ii | > 1/
√

β (which is of course the case forIn) and assume to fix the ideas thatu is positive
on Ii . The case of an interval whereu is negative follows by symmetry. We deduce from Lemma 5 that

FIi (u) �
xi+1∫
xi

[
1

2

(
u′′2 − βu′2) + k(u − 1)2

]
dx

� ε‖u − 1‖2
H2(Ii )

− 2

(
ε + β

2

)
‖u′‖L∞(Ii ). (20)

Indeed, we haveu(xi) = u(xi+1) = 0 for i = 0, . . . , n − 1 while remember thatxn+1 = ∞ andu(xn+1) = 1.
Combining the estimate (20) with the inequality (17) of Lemma 6 applied tou′ with b − a � 1/

√
β, we obtain

FIi (u) � ε‖u − 1‖2
H2(Ii )

− 2C(1+ √
β)

(
ε + β

2

)
‖u − 1‖H2(Ii )

(21)

so that the conclusion easily follows.�
Observe that as a straightforward consequence of the previous lemma, we obtain for every fixedn ∈ N, a lower

bound onF(u) for all u ∈ En.
From Lemma 11, we now deduce a lower estimate on the length of the intervalsIi .

Lemma 12. LetM > 0 and assume that(F1)holds. Then, there existsη > 0 such that ifu ∈ En satisfiesF(u) < M,
then|Ii | � η for all i = 0, . . . , n.

Proof. Let u be a function ofEn such thatF(u) < M. Let

η = min

(
3

√
3

2(M + nK)
,

1√
2β

)
,

whereK is given by Lemma 11 and suppose by contradiction that|Ii0| < η for some 0� i0 � n − 1. Asη � 1√
2β

,

we infer that‖u′‖2
L2(Ii0)

� 1
2β

‖u′′‖2
L2(Ii0)

and

FIi0
(u) � 1

4
‖u′′‖2

L2(Ii0)
. (22)

We now estimate theL2-norm of u′′ by help of Lemma 4. To fix the ideas, we suppose again thatu is positive
on Ii0. By definition ofEn, we know that for somēxi0 ∈ Ii0, u(x̄i0) = maxIi0

u > 1. TakingA = u(xi0) = 0, B =
u(x̄i0), A1 = u′(xi0), B1 = u′(x̄i0) = 0 and τi0 = x̄i0 − xi0, we deduce from Lemma 4 that

x̄i0∫
xi0

u′′2 dx � 4

τi0

((
u′(xi0)

)2 + 3

(
u(x̄i0)

τi0

− u′(xi0)

)
u(x̄i0)

τi0

)
� 3u2(x̄i0)

τ3
i0

.

A similar inequality holds for the integral betweenx̄i0 andxi0+1 so that, taking (22) into account, we obtain

FIi0
(u) � 3u2(x̄i0)

2|Ii0|3
.

Now, asFIi (u) � −K for all otheri ’s, we get a contradiction as

F(u) � 3
3

− nK � M. �

2η
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The previous lower estimate on the length of the intervalsIi implies, for every functionu ∈ En that satisfies
F(u) < M, a uniform upper bound on‖u − 1‖H2(Ii )

or ‖u + 1‖H2(Ii )
.

Lemma 13. Let M > 0 and (F1) hold. There existsN > 0 such that ifu ∈ En satisfiesF(u) < M, then for all
i = 0, . . . , n,

‖u − 1‖H2(Ii )
� N

on every intervalIi whereu is positive, while

‖u + 1‖H2(Ii )
� N

for thoseIi whereu is negative.

Proof. Let u ∈ En be such thatF(u) < M. We first deduce from Lemma 12 the existence ofη > 0 such that
|Ii | � η for all i = 0, . . . , n. We can therefore obtain an estimate similar to (21) whenu is positive onIi . An
estimate concerning theH 2-norm ofu + 1 holds on intervalsIi whereu is negative.

From Lemma 11, we also know that for alli = 0, . . . , n,FIi (u) � −K for some positive constantK independen
of i. It follows that for eachi = 0, . . . , n, we have

FIi (u) � F(u) + nK

and therefore, ifu is positive onIi , we have for some constantC > 0

ε‖u − 1‖2
H2(Ii )

− C‖u − 1‖H2(Ii )
� M + nK

and similarly

ε‖u + 1‖2
H2(Ii )

− C‖u + 1‖H2(Ii )
� M + nK

on the intervalsIi whereu is negative. These two estimates imply the desired a priori bounds.�
The success of the minimization process depends on a control on the length of the intervalsIi to prevent from a

loss of compactness. In fact, even for a functionu ∈ En that satisfiesF(u) < M, we cannot obtain a bound on th
length of the intervalsIu

i because ifu is very close to±1 with small derivatives on a long interval, the action alo
this interval can be arbitrarily small. However, we obtain a control on the length of the transitions of any func
a minimizing sequence by locally modifying it where it is too close to one of the equilibria. The key argume
such modifications are the oscillatory nature of the minimizers close to the equilibria and the clipping proc

Lemma 14. Let f andg ∈ C2(R) be even functions such thatf (1) = 0, g2(1) < 4f ′′(1) and assume that(F1)
holds. LetM > 0 and u ∈ En be such thatF(u) < M. Then there existsI > 0 and v ∈ En such that for all
i = 0, . . . , n − 1, |Iv

i | � I andF(v) � F(u).

Proof. Let δ0 > 0, τ0 > 0 and S >1 be given by Lemma 7 and takeε > 0 such thatε � δ0/S. Let u ∈ En be a
function that satisfiesF(u) < M. To keep the ideas as clear as possible, we only focus on one intervalIu

i for some
0 � i � n − 1 and we assume thatu is positive onIu

i .
Step1. We replaceu by a functionw whoseith bump takes at most two times each of the values1 − ε and

1+ ε. By definition of the classEn, there exists̄xi ∈ Ii such that maxIi u = u(x̄i) > 1. We first locally replaceu at
the left of x̄i by a functionǔ ∈ En such thatǔ−1

|(xi ,x̄i )
([1 − ε,1+ ε]) is an interval andF(ǔ) � F(u). The idea is to

use the clipping procedure to discard the possible oscillations ofu|(xi ,x̄i )
around 1− ε and 1+ ε. As we modify a

positive function, we infer from Lemma 10 that the clipping process decreases the action. Suppose thatu crosses
1− ε more that one time. We then define
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ξ2 = min
{
x ∈ [xi, x̄i) | u′(x) = 0 andu(x) � 1− ε

}
,

ξ4 = max
{
x ∈ [ξ2, x̄i] | u(x) = u(ξ2)

}
,

ξ3 = max
{
x ∈ [ξ2, ξ4] | u′(x) = 0

}
and

ξ1 = max
{
x ∈ [xi, ξ2] | u(x) = u(ξ3)

}
.

It is obvious thatu is invertible on[ξ3, ξ4] but it could happen thatu has critical points in the interval[ξ1, ξ2]. If
this is the case, we define

ξ̃2 = min
{
x ∈ [ξ1, ξ2] | u′(x) = 0

}
and denote bỹξ4 the point of the interval[ξ3, ξ4] whereu takes the valueu(ξ̃2). As u is now invertible on both
intervals[ξ1, ξ̃2] and [ξ3, ξ̃4], we are able to apply the clipping procedure of Lemma 9. We therefore can
s1 ∈ [ξ1, ξ̃2] ands2 ∈ [ξ3, ξ̃4] such thatu(s1) = u(s2), u′(s1) = u′(s2). It follows that the function̂u defined by

û(x) =
{

u(x) if x ∈ [0, s1],
u(x + s2 − s1) if x ∈ (s1,+∞)

satisfiesF(û) � F(u) and since[ξ2, ξ3] is contained in[s1, s2], the restriction of̂u to [xi, x̄i − (s2 − s1)] takes the
value 1− ε only once at the left of̄xi − (s2 − s1).

Repeating the same arguments to discard the possible oscillations around 1+ ε at the left ofx̄i , we obtain the
desired functioňu. Now, as the same modifications can be done at the right ofx̄i the conclusion follows.

Step2. Control on the time thatw spends above1 − ε. In this step, we modifyw if this time is too long. Let
θ1, θ4 be the zeros ofw|Iw

i
− (1 − ε) respectively at the left and at the right of the global maximum ofw|Iw

i
. If

maxIw
i

w > 1+ ε, we also define[θ2, θ3] as the interval wherew is above 1+ ε. Next, we set

a1 = inf
{
x � θ1 | ∣∣u(x) − 1

∣∣ � ε and
∣∣u′(x)

∣∣ � ε
}

and

a2 = sup
{
x � θ4 | ∣∣u(x) − 1

∣∣ � ε and
∣∣u′(x)

∣∣ � ε
}
.

Notice thata1 anda2 need not exist. If they exist, there are three possible cases:

(i) θ1 � a1 � a2 � θ2 � θ3 < θ4;
(ii) θ1 � a1 � θ2 � θ3 � a2 � θ4;
(iii) θ1 < θ2 � θ3 � a1 � a2 � θ4.

Claim 1. If case(i) holds, we havea1 − θ1 � 2, θ2 − a2 � 2 andθ4 − θ3 � 2. In case(ii) , we havea1 − θ1 � 2 and
θ4 − a2 � 2 while in case(iii) , we haveθ2 − θ1 � 2, a1 − θ3 � 2 andθ4 − a2 � 2.

Indeed, in case (i), on each of the intervals[θ1, a1], [a2, θ2] and[θ3, θ4], the variation ofw is smaller than 2ε
and|w′| � ε. This implies that these intervals have length at most 2. Similar observations can be made in th
cases.

Claim 2. There exists a positive constantC1 such that in the case whereθ2 andθ3 are defined,θ3 − θ2 � C1.

Indeed, as in the previous lemmas, we have the estimate

FIi (w) � F(w) + nK < M + nK,
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whereK > 0 is given by Lemma 11. From Lemma 13, we know that

‖w − 1‖H2(Ii )
� N

for some positiveN independent ofIi . We therefore deduce an a priori bound for theL2-norm ofw′ onIi , leading
to the estimate

FIi (w) � −L + k

∫
Ii

(w − 1)2 dx

for some positive constantL. Now the bound forθ3 − θ2 follows from the inequality

M + L + nK � k

θ3∫
θ2

(w − 1)2 dx � k(θ3 − θ2)ε
2.

Claim 3. If a2 − a1 � max(1,8τ0), the functionw can be replaced by another function̂w ∈ En so that the
interval [θ1, θ4] is clipped out to an interval of length smaller than6 + C1 + max(1,8τ0). Furthermore, we have
F(ŵ) � F(w).

First, we observe that there exists a functionw̄ which minimizesF in

E+
1,2 = {

u ∈ E | u = w onR \ [a1, a2] andu > 0 on [a1, a2]
}
.

In E+
1,2, we consider functions that are positive between[a1, a2]. The reason is that we must conserve the ri

number of zeros to keep the modified function inEn. Notice that asf (u) � k(u − 1)2 for u � 0, the analysis o
Lemma 7 can be applied around the equilibrium+1. Sincew andw′ are sufficiently small at the pointsa1 and
a2, it is easily seen that a minimizer inE+

1,2 exists. Moreover, it satisfies the differential equation (9) on[a1, a2]
together with the boundary conditions


w(a1) = w(a1), 
w′(a1) = w′(a1), 
w(a2) = w(a2), 
w′(a2) = w′(a2)

and we infer from Lemma 7 that

‖
w − 1‖C3([a1,a2]) � Sε � δ0. (23)

Define

a′
1 = max

{
x � a1 | ∣∣
w(x) − 1

∣∣ = δ0
}

and

a′
2 = min

{
x � a2 | ∣∣
w(x) − 1

∣∣ = δ0
}
.

Taking (23) into account, we then have|
w(x) − 1| � δ0 for all x ∈ [a′
1, a

′
2]. The definitions ofa′

1 anda′
2 imply that


w(a′
1) = 1− δ0 andw̄(a′

2) = 1+ δ0 or 
w(a′
1) = 1+ δ0 andw̄(a′

2) = 1− δ0 or 
w(a′
1) = 1− δ0 andw̄(a′

2) = 1− δ0
(of course, we cannot have
w(a′

1) = w̄(a′
2) = 1+ δ0).

In the case where
w(a′
1) = 1− δ0 andw̄(a′

2) = 1+ δ0, following the ideas of Step 1, we define

ξ2 = min
{
x ∈ [a′

1, a
′
2] | 
w′(x) = 0 and
w(x) � 1

}
,

ξ4 = max
{
x ∈ [a′

1, a
′
2] | 
w(x) = 
w(ξ2)

}
,

ξ3 = max
{
x ∈ [a′

1, a
′
2] | 
w′(x) = 0

}
and take

ξ1 = max
{
x ∈ [a′

1, ξ2] | 
w(x) = 
w(ξ3)
}
.
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Observe that Lemma 7 ensures the existence ofξ2 and moreoverξ2 ∈ [a′
1, a1 + 2τ0]. Also, ξ3 ∈ [a2 − 2τ0, a

′
2].

We are now able to apply the clipping procedure, defining, if needed,ξ̃2 and ξ̃4 in the same way as in step
Consequently, we can discard the restriction of
w to some interval[s2, s3] containing[ξ2, ξ3] and join the two
remaining pieces to define a new functionv ∈ E by

v(x) =
{ 
w(x) if x ∈ [0, s2],


w(x + s3 − s2) if x ∈ (s2,+∞).

Letting θ∗
4 = θ4 − (s3 − s2), we have

θ∗
4 − θ1 � (a1 − θ1) + 4τ0 + (θ4 − a2).

Observe that asw(a′
2) = 
w(a′

2) = 1 + δ0, we had before clipping, maxIw
i

w > 1 + ε anda2 � θ2. This implies,
using Claim 1, that

θ4 − a2 = (θ4 − θ3) + (θ3 − θ2) + (θ2 − a2) � 4+ (θ3 − θ2)

so that we deduce from Claim 2 that

θ∗
4 − θ1 � 6+ 4τ0 + C1.

The second case is treated in the same way.
If 
w(a′

1) = 
w(a′
2) = 1 − δ0, we proceed in two steps. Letq ∈ [a′

1, a
′
2] be such that maxx∈[a′

1,a
′
2] 
w(x) = 
w(q).

Using Lemma 7, we know that
w(q) > 1 and we can apply the arguments used in the first case to each
intervals[a′

1, q] and[q, a′
2]. Here, denoting byθ∗∗

4 the point into whichθ4 is transformed, we have after clipping

θ∗∗
4 − θ1 � (a1 − θ1) + 8τ0 + (θ4 − a2)

and since we obviously hada1 � θ2 � θ3 � a2 before the clipping, we deduce from Claim 1 that

θ∗∗
4 − θ1 � 4+ 8τ0.

In any case, we have built a new functionv that satisfies the claim.
Conclusion.After the successive modifications of the previous steps, we obtain a functionv ∈ En that has the

following properties. Still denoting byxj , j = 0, . . . , n, the zeros ofv, we havev|(xi ,xi+1)
−1([1 − ε,1 + ε]) =

[ωi1,ωi2] ∪ [ωi3,ωi4] with possiblyωi2 = ωi3 if maxI v
i
v � 1+ ε and

ωi4 − ωi1 � 6+ C1 + max(1,8τ0).

Now, it follows from the arguments of Claim 2 in step 2 thatωi1 − xi � C1 andxi+1 − ωi4 � C1. Hence,

|Iv
i | � 6+ 3C1 + max(1,8τ0),

which proves that we can chooseI = 6+ 3C1 + max(1,8τ0). �
As a direct consequence of the preceding lemma, we deduce that the right endpoint of the intervalIn−1 does

not go to infinity along a minimizing sequence. This fact is of course essential for the construction of a mini
sequence that satisfies (a) and (b). The following proposition summarizes in some sense all the previous lemm

Proposition 15. Let f andg ∈ C2(R) be such thatf (1) = 0, g2(1) < 4f ′′(1) and assume that(F1) holds. Then,
for eachn ∈ N, there existsI > 0, C > 0 and a minimizing sequence(up)p ⊂ En such that for allp ∈ N,∣∣Iup

i

∣∣ � I for all i = 0, . . . , n − 1 (24)

and

‖up − 1‖H2 � C. (25)
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Proof. Let n ∈ N be fixed. From Lemma 11, we know that

c = inf
En

F � −(n + 1)K

for some positive constantK. Let (up)p ⊂ En be a minimizing sequence. We can assume without loss of gene
that for allp ∈ N,

F(up) < c + 1.

Therefore, all the previous lemmas, withM = c + 1, apply to the functionsup. It follows from Lemma 14 that we
can choose the sequence(up)p in such a way that (24) holds.

To prove (25), we first observe thatxn, the right endpoint ofIn−1, is such thatxn � nI. On the other hand, w
also know from Lemma 12 and 13 that there existη > 0 and N >0 such thatI

up

i � η for all i = 0, . . . , n and all
p ∈ N, and

‖up − 1‖
H2(I

up

i )
� N

on any intervalI
up

i whereup is positive, while

‖up + 1‖
H2(I

up

i )
� N

on thoseI
up

i whereup is negative. Now, using the inequality (17) and the fact thatI
up

i � η, we deduce the existenc
of a positive constantR such that

‖up‖∞ � R. (26)

Denoting byJ+, respectivelyJ−, the set of indexesi ∈ (0, . . . , n) corresponding to intervalsI
up

i whereup is
positive, respectively negative, we have

‖up − 1‖2
H2 =

∞∫
0

[
u′′

p
2 + u′2

p + (up − 1)2]dx

=
∑
i∈J+

∫
I

up

i

[
u′′

p
2 + u′2

p + (up − 1)2]dx +
∑
i∈J−

∫
I

up

i

[
u′′

p
2 + u′2

p + (up + 1)2 − 4up

]
dx

� (n + 1)N − 4
∑
i∈J−

∫
I

up
i

up.

Taking (24) and (26) into account, we finally get

‖up − 1‖2
H2 � (n + 1)N + 4mRI,

wherem is the number of indexes inJ−. �

4. Existence of the local minimizers

We have now almost all the ingredients to prove Theorem 1. To complete the minimizing process in
classEn, we choose a minimizing sequence(up)p ⊂ En that has the properties described in Proposition 15. F
the a priori bound on‖up − 1‖H2, we deduce that up to a subsequence,up converges (in a way which is mad
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precise below) to some functionu ∈ E . To prove thatu ∈ En, we requireF to be lower bounded inE . Observe tha
this last assumption was not used until now and actually, we do not know whether it is necessary or not.

Lemma 16. Assume that(F1) holds. Letu ∈ H 2(a, b) be such thatu(a) = u(b) = 0. Assume moreover tha
infE F > −∞. Then

Fa,b(u) =
b∫

a

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx � 0.

Proof. Let v ∈ E be such thatv′(0) = u′(b). Suppose thatFa,b(u) = −c < 0 and let n ∈ N be such tha
F(v) − (2n + 1)c < infE F . Let us setT = b − a. Then definingu∗ ∈ E by

u∗(x) =


u(a + x) if x ∈ [0, T ),

−u(a + 2iT − x) if x ∈ [(2i − 1)T ,2iT ), i = 1, . . . , n,

u(a + x − 2iT ) if x ∈ [2iT , (2i + 1)T ), i = 1, . . . , n,

v(x − (2n + 1)T ) if x � (2n + 1)T ,

we obtain a contradiction as

F(u∗) = (2n + 1)Fa,b(u) +F(v) < inf
E
F . �

Proof of Theorem 1. Let (up)p ⊂ En be a minimizing sequence that has the properties stated in Proposition
Step1. The sequence(up)p converges inC1

loc to some functionu ∈ E that satisfiesF(u) � infEn
F . From the a

priori bound on‖up − 1‖H2, we deduce that up to a subsequence,

up − 1
H2

⇀ u − 1 and up

C1
loc−→ u

for some functionu ∈ E .
Let J1 = [0, nI ] andJ2 = (nI,+∞) whereI is given in Proposition 15. We then write

F(up) =FJ1(up) +FJ2(up)

=
∫
J1

[
1

2

(
u′′

p
2 + g(up)u′2

p

) + f (up)

]
dx +

∫
J2

[
1

2

(
u′′

p
2 + g(up)u′2

p

) + f (up)

]
dx.

Observe first that

FJ1(u) � lim inf
p→∞ FJ1(up). (27)

OnJ2, we know thatup is positive. We therefore write

FJ2(up) = 1

2

∫
J2

(
u′′

p
2 − βu′2

p + β2

4
(up − 1)2

)
dx +

∫
J2

g(up) + β

2
u′2

p dx +
∫
J2

(
f (up) − β2

8
(up − 1)2

)
dx

= 1

2

[∫
J2

(
u′′

p + β

2
(up − 1)

)2

dx − βu′
p(nI)up(nI)

]

+
∫

g(up) + β

2
u′2

p dx +
∫ (

f (up) − β2

8
(up − 1)2

)
dx.
J2 J2
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In the last equality, the first integral is convex and Fatou’s Lemma is applicable to the last two so that taki
(27) into account, we deduce thatF(u) � infEn

F .
We denote the extremities of the intervalsI

up

i by x
p
i , i = 0, . . . , n. It is clear by uniform convergence that up to

subsequence, for alli = 1, . . . , n, xp

i converges to somexi ∈ J1. Remember that by convention, we setx
p

0 = x0 = 0
andx

p

n+1 = xn+1 = ∞. We callIi the intervals(xi, xi+1), i = 0, . . . , n. We also deduce from the convergence
C1(J1) and the convergence inC1

loc(J2) that

u(x)(−1)i+n � 0 for x ∈ (xi, xi+1),

max
(xi,xi+1)

u(x)(−1)i+n � 1.

Step2. Elimination of the zeros ofu afterxn. If u has zeros afterxn, we first modify it to keep only one of thos
zeros. So, suppose thatu vanishes at least two times afterxn. We then define

a1 = min
{
x > xn | u(x) = 0

}
and a2 = max

{
x > xn | u(x) = 0

}
.

Observe that asu ∈ E , a2 is well defined. Sinceu(a1) = u(a2) = u′(a1) = u′(a2) = 0 by convergence inC1
loc, the

interval[a1, a2] can be clipped out and the resulting function has only one zero afterxn. Moreover the functionu
is nonnegative on the clipped interval so that this modification decreases the action.

Assume now thatu vanishes at some pointξ > xn. We then haveu′(ξ) = 0. Now asu(xn) = u(ξ), there exists
at least one critical pointy betweenxn andξ such thatu(y) > 0. Here, we have two possibilities, eithery can be
taken in such a way thatu(y) � 1 or [0,1] does not contain any critical value ofu|[xn,ξ] .

Suppose first that we can findy ∈ (xn, ξ) such that 0< u(y) � 1 andu′(y) = 0. Asu ∈ E ,

lim
x→∞

(
u(x),u′(x)

) = (1,0).

Hence, we infer from Lemma 7 thatu(x) oscillates around 1 forx large enough. Therefore, we can clip out
interval containing[y, ξ ] in such a way that the function obtained after clipping does not vanish afterxn.

In the second case, we can findy ∈ (xn, ξ) such thatu(y) > 1 and if x ∈ (xn, ξ) satisfiesu′(x) = 0, then
u(x) > 1. We now definev ∈ E by

v(x) =
{−u(x + x1) if 0 � x � ξ − x1,

u(x + x1) if x > ξ − x1.

Observe that since min[xn−x1,ξ−x1] v(x) < −1 andv is negative in(xn − x1, ξ − x1), v has the right number o
transitions. Also,v does not vanish afterξ − x1. On the other hand, becauseu(x0) = u(x1), we deduce from
Lemma 16 that

x1∫
x0

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx � 0

so thatF(v) � F(u).
Step3. Elimination of the zeros ofv in the bumps.We still denote by 0= x0 < x1 < · · · < xn, the extremities

of the intervalsIv
i (actually, these are the intervalsIu

i which have been possibly translated in step 2). Suppose
there existsξ ∈ v−1(0) so thatξ �= xi for anyi = 0, . . . , n. Hence,ξ lies in the interior of an intervalIi . To fix the
ideas, we assume thatv is nonnegative therein and denoting byx̄i the maximum ofv over this interval we assum
thatξ is at the left ofx̄i . Next, defineξ1 = min{x ∈ Ii | v(x) = 0} andξ2 = max{x ∈ [ξ1, x̄i] | v(x) = 0}. It is easily
seen that an interval containing[ξ1, ξ2] can be clipped out so that the zeros can be deleted.

Step4. Elimination of the tangencies with±1. The last condition that we have to check to be sure thatv ∈ En

is that maxx∈Ii |v(x)| > 1 for all i = 0, . . . , n. Assume that this condition fails to be true in one of the intervalsIi .
In this interval, we thus have maxx∈Ii |v(x)| = 1. Letτ ∈ Ii be such that|v(τ )| = 1 andv′(τ ) = 0. To fix the ideas
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assume thatv(τ ) = 1, the second case being treated in the same way. As the action of the function 1 is zero, w
can modifyv without increasing its action by stretching the pointτ to an interval of arbitrary length and gluing th
function 1 to both extremities, see [8]. Now, we takea1, (respectivelya2) at the left (respectively at the right) ofτ

in such a way that 0< maxi=1,2 ‖(v(ai) − 1, v′(ai))‖ � δ0 and stretchτ to an interval of lengthτ0. We still callv
the function obtained after gluing 1 atτ andτ + τ0. It follows from Lemma 7 that the minimizers of

a2+τ0∫
a1

[
1

2

(
u′′2 + g(u)u′2) + f (u)

]
dx

on the set of functionsu ∈ H 2(a1, τ0 + a2) that satisfyu(a1) = v(a1), u′(a1) = v′(a1), u(a2 + τ0) = v(a2) and
u′(a2 + τ0) = v′(a2) oscillate around 1. If we replacev locally by a minimizer, we obtain a new functionw such
that maxx∈Ii |w(x)| > 1 andF(w) � F(v).

Conclusion.It follows from the previous steps that we can constructw ∈ En such thatF(w) � F(u).
Consequently, we haveF(w) = minEn

F . Now, observe that for allh ∈ H 2(R+) such thath(0) = 0, for t

sufficiently small,F(w) � F(w + th). Indeed, assume that there exists a sequence(tn)n tending to 0 such tha
F(w) >F(w + tnh). If w is in the interior of the classEn, this is obviously a contradiction. In the case wherew is
on the boundary ofEn i.e. if for some pointsxi , w(xi) = w′(xi) = 0, then even fort small,w + th can have more
than one zero close to thexi ’s so that it does not belong necessarily toEn. However fort small enough,w + th has
the right number of transitions and the oscillations close to the pointsxi can be erased using the clipping procedu
Therefore, forn large enough, modifyingw + tnh close to thexi ’s if necessary, we obtain a function inEn whose
action is strictly smaller thanF(w). This contradicts the definition ofw.

We now deduce thatw is a critical point ofF . Using standard arguments, we can show thatw satisfies Eq. (9)
on [0,∞) and it follows also from an easy computation thatw′′(0) = 0. Hence, the odd extensionw∗ of w is a
solution of (9). From the differential equation (9), we now infer thatw − 1 ∈ H 4(R+) so thatw∗ satisfies (5) and
w∗ is an heteroclinic solution of (9).�
Remark 2. Using the conservation of the Hamiltonian

H(u) = u′′′u′ − 1

2
u′′2 − 1

2
g(u)u′2 + f (u) (28)

along solutions of (9), it is easily proved that each minimizerun is actually in the interior ofEn, i.e. each crossin
with zero is transverse.

We now turn to the proof of Theorem 2. Since many of the arguments are similar, we only sketch it.

Proof of Theorem 2. First, observe that assumption (14) implies thatF(u) � 0 for all u ∈ E . This follows from
the inequality

F(u) � s

∞∫
0

[
u′′2

2
+ f (u)

]
dx

wheres > 0 which is valid for allu ∈ E and proved in [2].
Let (up)p ⊂ En be a minimizing sequence forF . The inequalities

FIi (up) � s

∫
Ii

[
u′′

p
2

2
+ f (up)

]
dx (29)

then follow arguing as in Lemma 4 of [2]. Consequently, the equivalent of Lemma 11 (withK = 0) and Lemma 12
hold. Next, we deduce as in Lemma 6 of [2] a priori bounds on‖up‖∞ and‖u′

p‖∞. Then, using the inequality (29
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these a priori bounds and the clipping procedure, the conclusion of Lemma 14 follows (possibly for a modi
of the minimizing sequence). Therefore, the statement of Lemma 13 fori = 0, . . . , n − 1 holds. To obtain an a
priori bound inIn, we first observe that for somea > 0, k > 0 andβ ∈ [0,

√
8k),

f (u) � k(u − 1)2 and g(u) � −β for |u − 1| � a. (30)

Then arguing as in Proposition 2 of [2] and using the bound onIi for i = 0, . . . , n − 1, we prove the existence o
T > 0 such that for allup , there existsvp ∈ En that satisfies∣∣vp(x) − 1

∣∣ � a for all x � T

andF(vp) � F(up). We then deduce an a priori bound on‖vp − 1‖H2(xn,∞) using the bounds onvp andv′
p on

[xn,T ] and arguing as in the proof of Theorem 1 on(T ,∞).
We thus obtain a minimizing sequence(vp)p ⊂ En that has the properties of Proposition 15. Now the en

the proof follows the same lines as the proof of Theorem 1. Just observe that denoting byv the weak limit ofvp ,
the inequalityF(v) � limp→∞F(vp) follows by working separately on the intervals[0, T ] and (T ,∞) using
also (30). �

As we mentioned in the introduction, the hypothesis infE F > −∞ of Theorem 1 implies that infE F � 0, see
Corollary 7 in [3]. Actually, we can even prove that infE F > 0 and consequently the multitransition kinks
have a strictly positive action. Observe also that as a straightforward consequence of a repeated use of the clip
procedure, the minimumun of F in En has exactly one critical point in each intervalIi for i = 0, . . . , n − 1. On
the other hand, in the tail,un oscillates around 1, so that there exists a sequenceξm, m ∈ N, such thatu′(ξm) = 0,
u′′(ξ2m) � 0, u′′(ξ2m+1) � 0, u(ξ2m) > u(ξ2m+2) andu(ξ2m+1) < u(ξ2m+3).

Let us come back to the stationary Swift–Hohenberg equation (4). Taking the functionu(x) = sin(ωx) with
ω4 = 3/8 and computing

2π/ω∫
0

[
1

2

(
u′′2 + βu′2) + 1

4

(
u2 − 1

)2
]

dx = (3+ √
6β)π

61/44
,

it is easy to deduce that the functionalJβ :E → R defined by

Jβ(u) =
+∞∫
0

[
1

2

[(
u′′2) + βu′2] + 1

4

(
u2 − 1

)2
]

dx

is unbounded from below wheneverβ < −√
3/2. In [3], it is proved that infE Jβ = −∞ for β < β0 where

β0 = inf
{
β < 0 | inf

E
Jβ � 0

}
. (31)

Forβ � β0, we obtain a family of kinksu∗
n having 2n+ 1 zeros onR.

Proposition 17. Let β0 be given by(31). Then, for allβ � β0, for all n ∈ N, Jβ has a local minimumun ∈ En

whose odd extension is a solution of(4) having exactly2n+ 1 zeros. Moreover,Jβ(un) < Jβ(un+1) for all n ∈ N.

Proof. The existence of the minimizersun ∈ En follows directly from Theorem 1 and the definition ofβ0. For all
n ∈ N, we denote byu∗

n the odd extension ofun onR. We now prove thatJβ(un) < Jβ(un+1) for all n ∈ N. Let x1
be the first zero ofun+1 in (0,∞). Then, the functionvn = un+1(· + x1) belongs toEn. It follows from Lemma 16
that the action ofun+1 on the interval[x0, x1] is nonnegative. ThereforeJβ(un) � Jβ(vn) � Jβ(un+1). Suppose
thatJβ(un) = Jβ(un+1). Thenvn is a minimizer ofJβ in En and thus its odd extensionv∗

n is an heteroclinic
solution of (4). Observe thatu∗

n+1(· + x1) also solves (4) onR. As u∗
n+1(· + x1) = v∗

n on R
+, we obtain a

contradiction with the uniqueness of the solution of the Cauchy problem.�
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5. Homoclinic connections

Homoclinics to±1 belong respectively to the functional spaces±1 + H 2(R). We focus only on homoclinic
to +1. When minimizing the functionalF defined by (8), it is natural to search even homoclinic solutions. Ind
suppose thatu−1∈ H 2(R), then there exists an even functionu∗ that satisfiesu∗ −1∈ H 2(R) andF(u∗) � F(u).
Observe that if̄x is a critical point ofu, writing J1 = (−∞, x̄] andJ2 = (x̄,+∞), the action ofu is smaller onJ1

or onJ2. Assuming thatu has a lower action onJ1, we defineu∗ ∈ 1+ H 2(R) by

u∗ =
{

u(x) if x ∈ J1,

u(2x̄ − x) if x ∈ J2.

Now F(u∗) = 2FJ1(u) � FJ1(u) +FJ2(u) =F(u).

By translation invariance, we can also restrict ourselves to even solutions with respect to zero. We th
define the functional space

Ẽ = {
u ∈ C1(R+) | u − 1 ∈ H 2(R+), u′(0) = 0

}
. (32)

It is easily seen that ifu ∈ Ẽ is a critical point of the functionalF , thenu′′′(0) = 0. It follows that the even extensio
of u onR is a solution of (9) which is at leastC4. Also, it is not difficult to verify that the condition (6) is satisfie

As before, we assume that (F1) holds andF is bounded from below oñE . Actually, in a saddle-foci situation
this again implies thatF is nonnegative oñE .

It is obvious that looking at minimizers ofF in Ẽ leads to the trivial solutionu = 1. Moreover 1 is the only
function having zero action ifF is bounded from below. To get nontrivial solutions, we minimizeF in subclasses
Ẽn ⊂ Ẽ that do not contain the function 1. We define for eachn � 0 the subset̃En ⊂ Ẽ consisting of functions
whose even extensions onR, make 2n transitions. Precisely, we assume thatu ∈ Ẽn if u ∈ Ẽ , and there exis
0 = x0 < x1 < · · · < xn < xn+1 = ∞ such that

u(x)(−1)i+n > 0 for x ∈ (xi, xi+1),

max
(xi,xi+1)

u(x)(−1)i+n > 1.

Adapting the arguments of the previous sections, we are able to prove thatF has a local minimum in each of the
subspaces in the two following situations.

Theorem 18. Let f andg ∈ C2(R) satisfy(F1) andg(1)2 < 4f ′′(1). Assume further thatinfẼ F > −∞. ThenF
has a local minimizer̃un in each subspacẽEn. Moreover, the even extension ofũn on R is an homoclinic solution
of (9) to +1, having exactly 2n zeros.

Theorem 19. Letf andg ∈ C2(R) be even functions such thatf (1) = f ′(1) = 0 and for some functioñg ∈ C(R)

and somek < 1,

g(u) � g̃(u),
∣∣G̃(u)

∣∣ � k
√

8f (u), ∀u ∈ R,

whereG̃(u) := ∫ u

0 g̃(s)ds. Assume moreover thatg(1)2 < 4f ′′(1). Then the conclusion of Theorem18holds.

The proofs are basically identical to those of Theorems 1 and 2. Just observe that in order to adapt the se
of Theorem 1, we need the equivalent of Lemma 16 for functionsu ∈ H 2(a, b) that satisfyu′(a) = u′(b) = 0. Also,
some arguments are slightly different, taking into account thatu′(0) = 0 instead ofu(0) = 0 for functionsu ∈ Ẽ .
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Observe that under the assumptions of Theorems 18 and 19, infE F > −∞ if and only if infẼ F > −∞.
Therefore, we obtain homoclinic solutions for the Swift–Hohenberg equation for the same range ofβ as in
Proposition 17.

Proposition 20. Letβ0 be as in Proposition17. Then, for allβ � β0, for all n ∈ N,Jβ has a local minimum̃un ∈ Ẽn

whose even extension is a solution of(4) homoclinic to+1 having exactly2n zeros. Moreover,Jβ(ũn) < Jβ(ũn+1)

for all n ∈ N.
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