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Abstract

We study the existence of stationary solutions of a class of diffusion equations related to the so-called extended Fisher—
Kolmogorov equation and the Swift-Hohenberg equation. We prove the existence tiftransition kinks and pulses. These
solutions are obtained as local minima of the associated functional. For the Swift-Hohenberg equation, our result partially
proves a numerical conjecture.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Nous étudions I'existence de solutions stationnaires d'une classe d'équations de diffusion incluant I'équation de Fisher—
Kolmogorov généralisée et I'équation de Swift-Hohenberg. Nous démontrons I'existence de solutions hétéroclines et
homoclines a transitions multiples. Ces simos sont des minima locaux de la formthelle associée. Nos résultats couvrent
partiellement une conjecture numérique concernant I’équation de Swift-Hohenberg.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

This paper is concerned with the study of particular stationary solutions of a class of semilinear diffusion
equations of the form
du 0% 92u 3
B ox4
where g is a real parameter. This equation is a model in many physical, chemical or biological systems. When
B > 0, it is related to the so-calldxtended Fisher—Kolmogoraquation which was proposed in 1988 by Dee

—u=0, (1)
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and van Saarloos [5] as an higher-order model equation for physical systems thistasee By a scaling in the
variablex, Eq. (1) can be written as

ou *u  9%u

— — - — —u=0, 2

PRSI R it @
where the positive parameteris related tog by the formulag = 1/,/y. Wheny = 0 in (2), we recognize the
well knownFisher—Kolmogoroequation, sometimes also called thitien—Cahrequation, originally introduced in
1937 [10] as a model for studying biological populations. The term bistable indicates that the Fisher—Kolmogorov
equation and its extended version have two uniform stable stétgs= +1 separated by a third uniform state
u(x) = 0 which is unstable, see [5].

Wheng is negative, Eq. (1) is related to tsvift-Hohenbergquation

au 32 \?
- 1 R —
o Ku+<+ax)u+u =0, 3)
wherex € R. This equation was proposed by Swift and Hohenberg [16] as a model in the study of Rayleigh—Bénard
convection. Wher > 1, this equation can be transformed into

My« 1)3/2[ . ﬂ—+u —uj| 0
at
with 8 = -2/ — 1.

For these model equations, a question of great interest is the existence of phase transitions, i.e. solutions that
spatially connect two uniform states. When looking at time-independent solutions, we are lead to the following
autonomous equation

//// ,314// +u O (4)

Heteroclinic solutions of (4) (or kinks) connectingl and+1 in the phase-space, i.e. solutions that satisfy the
following conditions
lim (u (x), u' (x), u” (x), u’”(x)) =(+1,0,0,0) (5)
x—+o0
are then stationary solutions of (1) connecting the two uniform stateand +1. Of course, we can also consider
heteroclinics fromt-1 to —1.
Nonlinear Schrddinger equations are also related to the model equation (4). When assuming harmonic spatial
dependence, i.e(x, r) = u(r)€** for somek € R, the solutions of the Schrédinger equation
i8v+82v d*v o
—+— v|“v =
ax a2
solve, after scaling, Eq. (4) with = 1/+/k and a question of interest in optic is the existence of pulse propagation.
For Eq. (4), this amounts to study the existence of homoclinic solutions (or pulses), i.e. solutions of (4) with the

property
lim  (u(x),u’(x),u"(x),u”(x)) =(1,0,0,0) (or(—1,0,0,0)). (6)

x—+o0
The study of Eq. (4) for positive values of the parametagoes back at least to Peletier and Troy in [11,12]
where they proved among other things, the existence of kinks fgralD. Wheng € [v/8, cc), van den Berg [18]
proved that the bounded solutions of (4) behave like the bounded solutions of the stationary Fisher—Kolmogorov
equation

—u"+u—u=0.



D. Bonheure / Ann. I. H. Poincaré — AN 21 (2004) 319-340 321

This implies that there exist two kinks (up to translations), one monotone increasing-fioto +1 and its
symmetric, while there are no pulses. Where [0, +/8), the set of kinks and pulses is much more rich. For
this range ofg, kinks and pulses cannot be monotone anymore #s=at/8, both equilibriat-1 bifurcate from
saddle-nodes to saddle-foci. The linearizatio4faround the equilibria then showisat the solutions oscillate
when they are close t&:1 with small derivatives up to the third order. Asbecomes smaller thai8, infinitely
many kinks and pulses appear. Peletier and Troy [12] proved the existence of two infinite sequences of both kinks
and pulses. The two sequences of kinks consist of odd kinks hawirg12zeros and differ in the amplitude of
the oscillations. The pulses are even withZeros. Again, the two sequences can be distinguished according to
the amplitude of the oscillations. Other families of kinks and pulses were shown to exist [8,9]. Basically, these
solutions can be distinguished by the number of jumps fralrto +1 and the oscillations around these equilibria
in between the jumps. The complex structure of these solutions can be quantified by defining homotopy classes,
see [8].

Different methods have been used to deal with Eq. (4). Peletier and Troy introduced in [11,12] a topological
shooting method that can be used to track kinks and pulses as well as periodic solutions. In [14], it is shown that
kinks and periodic solutions can be obtained using variational arguments. For instaghgeQithe functional

+00
NAOE / [%[(u”z) + ,314’2] + %(uz — 1)2} dx (7)

—00

has a minimum in the function spaéé = x + H%(R) wherey is a C* function that satisfieg (x) = —1 for
x < —1and x(x)=1forx > 1. Wheng > /8, this minimizer is the unique heteroclinic connection frer to
+1, while for 8 < /8 it is called the principal heteroclinic as it only has one zero.

The dynamics of EqQ. (4) witl$ < 0 is much less understood than the one of the Extended Fisher—Kolmogorov
equation. Numerical experiments [17] suggest that a large variety of those solutions fognoidsitive still exist
for a certain range of negative valuesffA study of periodic saltions was recently presented in [19]. For kinks
and pulses, the limitation of the shooting method of Peletier and Troy was pointed out in [20] while thgutérm
in the functional7;' is very “bad” for minimization wherg < 0.

However recent applications of variational argumemtse shown to be fruitful. Smets and van den Berg [15]
have used a version of the mountain pass theorem to prove the existence of at least one homoclinic solution at each
equilibria for almost every € (—+/8, 0). In [3], looking for instance at heteroclinic solutions, it is shown that
minimization arguments can still be used fogreater than some negatige which can be characterized by

ﬁozinf{ﬁ <0Jinf.7; >o}

while jﬂ* is unbounded from below beyord. Numerical computations [17] indicate thé is close to—0.9. The
solution found by minimization stikorresponds to the principal kink.

In this paper, we obtain multitransition kinks and pulsesdgr So. By a transition, we mean a passage from
—1to 1 orreversely. Actually, we consider the more general functional

+00
1
F*u) = / I:E(u”z + g(u)u'z) + f(u)i| dx (8)
—00
whose Euler-Lagrange equation is given by
" VA 1 / / /
u"" — g = Sg'wu'® + f'(uw) =0, 9)

Here we assume that the functighis a symmetric double-well potential with bottomssal andg is an even
function which is not necessarily constant. Tihterest of considering a nonconstant functgppran be checked
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in [6]. Functionals of the form (8) were already considered in [2,3,7] with either a double-well or a triple-well
potential f and a functiory that can take either sign.

Let us first look at heteroclinic connections of (9). Since we assumeftlaaidg are even, we can restrict our
attention to odd solutions. Indeed, given any functioa H, it is easy to build an odd functiom* € H having
smaller action tham, see [9]. We thus look at the critical points of the functional

+00
Flu)= / B(u”z +gwu'®) + f(u)} dx (10)
0
in the space
E={ulu—1e H*R"Y), u(0)=0}. (11)
If 7 has a minimizer, an easy computation shows thd{0) = 0. Extending them onR by
W) = { —u(—x) ifx<0, (12)
u(x) if x>0

we obtain an odd solution of (9). Also, it is easy to check that conditions (5) are fulfilled.

As we have already mentioned in the case of the model Eq. (4), we expect multitransition solutions when
the equilibriat1 are saddle-foci, i.e. whegs(1)2 < 4" (1). We obtain these solutions as local minima of the
functional 7 in appropriate subsets @&f. Basically, these subsets correspond to classes of functions having the
desired number of transitions. We define for each 0, the subsef, c £ consisting of functions whose odd
extensions ofR make 2 + 1 transitions. More precisely, a functiere £ belongs to the subclagy if there exist
O=xp<x1 <+ <xy <Xxp+1 =00 such that

u(x)(=)"" >0 forxe (xi,xit1),

max u(x)(=1) 7" > 1.
(xis%i+1)

We prove thatF has a local minimum in each of these subspaces in the two following situations.
Theorem 1. Let f and g € C2(R) be even functions such that(1) = 0 and assume that for some> O,
B € [0, +/8k) and allu >0,

f@)>k@—1% and gu)>—B (13)
andg(1)2 < 4f"(1). Assume further that

inf F > —o0,

£

where F: £ — R is defined by(10). Then, for every: € N, F has a local minimizew, in the subspacé,.
Moreover, the odd extension®f onRR is an heteroclinic solution 0f9) having exacth2n + 1 zeros.

Theorem 2. Let f and g € C2(R) be even functions such th#{1) = /(1) = 0 and for some functiog € C(R)
and somé < 1,
gw)>gw), |Gw|<ky/Bfw), YueR, (14)
whereG () := [5‘ Z(s) ds. Assume moreover that1)2 < 4/”(1). Then the conclusion of Theorenholds.
The case of a nonnegative functignwhich is covered either by Theorem 1 and 2, is already contained in [8]

where even more precise results are given. It is proved therein that each&ubaatagain be divided in smaller
classes to obtain more kinks. In a sub&gtthese solutions can be distingbed by the number of oscillations
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around+1 in between the transitions. The solutions that we obtain in Theorems 1 and 2 correspond to those found
in [8] in the particular case of two crossings wittl in each transition.
It is pointed out in [8] that the methods used therein require a nonnegative Lagrangian

1
Lu, Lt/, MN) — E(u//Z +g(u)u/2) + f(u).
In this case, the action
f(u):/L(u,u’,u”)dx

is of course nonnegative along admissible functions. Our results can be seen as a partial extension of the methods of
[8] to Lagrangians that can take either sign. To deal with such Lagrangians, we only require an a priori lower bound
on the action along admissible functions. This condition is explicitly stated in Theorem 1 while it is a consequence
of assumption (14) in Theorem 2. This boundedness assumption on the functional might seem rather artificial.
However, if f andg satisfy the assumptions of Theorem 1, it can be checkedAhatounded from below oé

at least forg > 0 small enough, see Lemma 4 in [3]. Hence, we can state the following proposition.

Proposition 3. Let f € C2(R) be an even function such th#{1) = 0 and for somek > 0, f (1) > k(u — 1)2 for
all u > 0. Then, there exist8( f) € (0, +/8k) such that if8 < B(f),

+00
o [lawe o
0

Moreover, ifg € C2(R) is even, satisfies(u) > —B(f) for u > 0andg(1)? < 4f" (1), the conclusion of Theorein
holds.

It is interesting to notice that a lower bound on the functional implies in fact that the action of any admissible
function is positive, see Section 4 and [3].

For a functionu € &,, we denote byi; the intervals(x;, x;+1) fori =0,...,n where by conventiong = 0
andx,+1 = co. The main idea in the proof of Theorems 1 or 2 is to show the existence of a minimizing sequence
(up)p C &, that has the following properties:

(a) there existd > 0 such thatforall,,, |I;| < foralli =0,...,n -1,
(b) there exist€ > 0 such that for alk,, [u, — 1| 2 < C.

These two properties are closely related as theyagmefrom a loss of compactee when extracting a weak
converging subsequence.

The main tool for obtaining the estimates on the length of the intedyassthe clipping procedure introduced
in [8]. Also, the oscillatory behaviour of minimizers close to the equilibtia(described in Section 2.2) is crucial
in the construction of a minimizing sequence having the above properties.

Equivalent results can be obtained for homoclinic solutions. We show in Section 5 how to adapt the definition of
the classes,, to find even homoclinic connections. Of course sthelasses have to be defined in another functional
space that takes conditions (6) into account.

Sections 2 and 3 are devoted to preliminaries to the proof of Theorem 1. In Section 3, we construct a minimizing
sequence with the properties (a) and (b) mentioned above. The proof of Theorem 1 and a sketch of the proof of
Theorem 2 are given in Section 4.

Finally, it is worth mentioning that a good account on wmoresults about Eq. (4) and related model equations
can be found in the recent book of Peletier and Troy [13].
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2. Auxiliary results

In this section, we prove some preliminary results that are used as main tools in the minimizing process.
2.1. Inequalities

The following inequalities are helpful to get good estimates on functiang, and on the length of the intervals
I;. We first obtain for any function € H?(a, b), a lower estimate on th&2-norm ofu” by comparing: with a

third degree polynomial which coincides (H?(a, b)) with « at both extremities.

Lemma 4. Given an intervalla, 5] C R and a functionu € H%(a, b) such thatu(a) = A, u(b) = B, u'(a) =
A1, u’'(b) = B1, the following inequality holds

b
4 B—A B—-A
/u”zdx>— (Bl—A1)2+3 — — A1 — —B1),
b—a b—a b—a
a

and equality holds if and only if is a third degree polynomial.

Proof. Denote byP the third degree polynomial that coincidesfiff with « at pointsz andb. Writingu = P +w,
we compute

b b b b
/ u"?dx = / P"?%dx + / w"?dx + 2 / P"w" dx. (15)
a a a a

IntegratingP”w” by parts and using the fact thaia) = w(b) = w'(a) = w’'(b) = 0, we see that the last integral
in (15) is actually zero. We thus obtain the inequality

b b

/u"zdx>/P”2dx

a a

and the conclusion now follows by computing the integraP6f. O
The following inequality is essential to obtain a lower boundand a priori estimates for functions .

Lemmab5. Letk > 0 andp € [0, +/8k). Then there exists > 0 such that for any: € H2(a, b), we have
b
1 . 2 2| gy > 2 p b
E(u — Bu )+ku /8”””H2(a,b)_ 8+E [uu'l,.
a
Proof. Notice that for any constamt,

b b
/(u” +au)dx = /[u”z — 20u'? + azuz] dx + 20[u'ul’. (16)

We then compute
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b

b
/[%(u”z — ,BM'Z) +ku2i| dx = sf[u"z +u?+ uz] dx
a

a
b

b
2 2
+1_28/|:M//2_:8+28u/2+}<:3+28) M21|dx+|:k—8—('3+28) j|/u2dx

2 1-—2¢ 4\ 1—2¢ 8(1— 2¢)

a

Now, choosings small enough, we have — ¢ — % > 0. Finally, using (16) with @ = 22 we get the
desired estimate. O

Next we recall the continuous imbedding Bt (a, b) in C(a, b). The dependence on the length of the interval
(a, b) is important in our application.

Lemma 6. Let —oo < a < b < +00. There exists a positive constafitsuch that for allu € H(a, b),

1
sup |u(x)| < C(1+ —) el 1. ) (17)
x€(a,b) b—a

Proof. The proof follows from Theorems VII1.7, VIII.5 of [4]. O
2.2. Behaviour of local minimizers close to the equilibria

We now describe the oscillatory nature of the local minimizers close to a saddle focus equilibrium. To fix the
ideas and to simplify the notation, we assume thé a potential for which 0 is a nondegenerate global minimum
andg is such that 0 is a saddle focus equilibrium of the linear equation

u//// _ g(o)ul/ + f//(o)u — 07 (18)

i.e. g(0)2 < 4f”(0). Basically, the following lemma shows that the minimizers of the functional

b
1
Za,p(u) =/[§[(”"2) +g(wu'?] + f(u)] dx

a

onthe se€, , = {ve H?(a,b) | (u(a),u'(a)) = yo and(u(b), u'(b)) = y1} are small (for theC3-norm) whenever

yo andys are small. It then follows that the oscillatory behawi of the solutions of the linearization (18) around

the equilibrium extends to these minimizers. The following lemma is adapted from Theorem 4.1 [8] where it is
assumed that is positive.

Lemma7. Let f andg € C3(R) be such thatf (0) = f/(0) = 0 and assume that for sonte> 0, 8 € [0, +/8k) and
all u e R,
fa) =ku® and gu)>—p.

Then, there exisiy > 0 and S > 1 such thatifb —a > 1, ||yoll < 8o, ly1]l < 80 andu minimizesZ, » on &, p, we
have

lull c3ia,pp < Smax(”)’O”’ ||)’l||) (19)

Moreover, ifg(0)2 < 4f”(0), there existzg > 0 such that ifb —a > 1 andmax(||yoll, [ly1]l) > 0, u changes sign
on every subinterval df:, b] having length larger thanyg.
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Proof. Throughout the proofC is a positive constant that may change from line to line. Let us first prove the
estimate (19). As 0 is a nondegenerate minimunyf gthere exis$1 > 0 andn > 0 such that f'(u)| < 2n|u| and
) < nu for Ju] < 8.

Claim 1. There exists€"1 > 0 andd2 > 0 such that if| yo|| <& <82 and||y1|| <8 < 82, theninfgayh Tap < C182.

Define P(x) as follows
Po(x) ifa<x<a+3,
P(x)=40 ifa+%<x§b—%,
Pi(x) ifb—3<x<b,
where P;, i = 0,1, are the third degree polynomia satisfyingo(a), Py(a)) = yo, (P1(b), P{(b)) = y1 and

(Pola + 3), Pjla+ 3) = (Pub — 3), P{(b — 3)) = (0,0). Observe that there exists©5, < 81 such that if
lyoll <8 < dz2and|y1]l <8 <82, then|| P~ < é81. It then follows from an easy computation that

Inf 7, < Zap(P) < C16%,
a,b
whereCy > 0 essentially depends onand|| gl Lo (—s;,8,)-

Claim 2. There exist€> > 0anddp > 0 such that ifx is a minimizer inf, , with ||yo|| < § < §o and||y1] < 8 < o,
then||ull -3 < C28.

First, notice that the inequality of Lemma 5 implies that, is bounded from below o8, ;. Therefore, the
existence of a minimizer follows by standard arguments. Moreovaer,isf a minimizer,u solves (9) onfa, b]
and satisfies the boundary conditiqm$a), u’(a)) = yo and(u(b), u’ (b)) = y1. Assuming that| yg|| <8 < 8p and
lv1]l <8 < 8o, we now deduce by using the inequality of Lemma 5 that

lull gz < C$
and from Lemma 6, we obtain
lullcr < C6.

Observe that we can choose a consi@nthat does not depend on the length[efb] asb — a > 1. Taking
80 < 81/C, we infer that||u||« < 81 and therefore the differential equation (9) yields the estimate

|2 < C8
with C independent ofa, b]. We now conclude by interpolation that
lu" N2 < C(Iu"" g2+ llu” ]l 12) < C8.

The constant in the interpolation inequality can be taken independenily, 6hasb — a > 1, see [1], so thaf
does not depend da, »]. Now, the bound irc?3 follows from the bound inH* and Lemma 6.
The last statement of the theorem is included in Theor@48]. An alternative proof can be foundin [3].0

We also need the equivalent of Lemma 7 with the settings of Theorem 2.

Lemma 8. Let f andg € C2(R) be such thatf (1) > 0 for all u € R, f(0) = f’(0) = 0 and assume that for some
functiong € C(R) and somé < 1,

gw)>gw), |Gw)|<ky8fw), YueR,
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whereG () := fé‘ 3(s) ds. Assume moreover that0)2 < 4 (0). Then the conclusion of Lemriaolds.

Proof. The proof is similar to that of Lemma 7. Though the potential is not bounded from below by a parabola
everywhere, we have good estimates close to 0. To prove Claim 2, a computation similar to those of Lemma 4 in
[2] shows that fow € &, p,

"2
~

b
1 ~
Zap(u) > E[G(M(b))u/(b) —G(u@)u'(a)] +s/|: 5

+ f(u):| dx

for somes > 0. Using this last inequality, the conclusion follows arguing as in the proof of Lemmai?.
2.3. Clipping

Next, we recall the clipping prodere introduced in [8]. When minirping a functional in a certain space, we
often want to be able to modify locally any function by anattiee which is in the same space, has better properties
and lower action. When dealing with a second order equation and its associated functional, we usually only have
to worry about keeping functions continuous. As our functiohas defined in a translate gf2(R ), things are
more complicated. For example, any mochfion has to keep the functions at le@st The following lemma can
be seen as a tool for performing authorized modification. We refer the reader to [8] for the proof.

Lemma 9. Leta < 51 < s2 < 53 < s4 < b and letu € H%(a, b) be such thati(x) C [u(a), u(b)] for all x € [a, b],
u is invertible on[sy, s2] and|[s3, s4],
u(sy) =u(ss), u(s2) =u(sa), (u'(s1) —u'(s3))(u'(s2) —u'(s4)) <O.
Then there exist; < a1 < 52 < s3 < b1 < s4 such that the functioi: [a, b — (b1 — a1)] — R defined by
u(x) if x € [a,a1],

ﬁ(x):{ )
u(x +b1—a1) ifxe(ar,b— (b1 —ail

belongs toH2(a, b — (b1 — a1)).

Wheng is nonnegative, it is clear that the clipping procedure decreases the action. Indeed, the Valoe of
each discarded piece is positive. Whetakes negative values as well, this is no longer true. However, we show in
the next lemma that under some assumptions, this stilloeglthe action when the function is of one sign on the
discarded pieces.

Lemma 10. Let f andg € C(R) be even functions such that for soie 0, 8 € [0, +/8k) and allu > 0,
f@) >k—17% and g >-8.

Letu € H?(a, b) be such thati(a) = u(b) andu’(a) = u’(b). Assume moreover thatis of one sign. Then

b
1
/[E(u”z + g(u)u’z) + f(u)i| dx > 0.

Proof. Suppose that is nonnegative ok, b). Then using the inequality of Lemma 5 appliedde- 1, we have

b b
/B(u”z + gu'?) + f(u)i| dx > /E(u”z — Bu'?) + k(u — 1)2] dx > ellu — 1”312@,;))-

a
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If u is nonpositive or(a, b), we obtain

b
1
/[E(u//Z +g(u)u/2) + f(u):| dx > ¢|lu + 1||§-12(a,b)’ O
a

Remark 1. Itis easy to prove that Lemma 10 holds also under the assumptions of Theorem 2. The idea is contained
in [2], Lemma 4.

3. Estimates on minimizing sequences

We recall that: € &, if there exist 0= xg < x1 < -+ < X, < Xy4+1 = 00 such that

ux) (=)t >0 forxe (xi,xit1),

max u(x)(—1)*" > 1.
(X, Xi4+1)

We still denote byr; the intervals(x;, x;+1) fori =0, ..., n. To avoid some confusions, we sometimes use the
notation/; to emphasize that these intervals correspond to the transitions of
We also introduce the notation

Xit+1

1
Fr,w) = f [E(M”%g(u)u’z) +f(u)}dx
Xi
and for a given functioi and a set C R , we denote by:~1(A) the set{x € domh | h(x) € A}.
The aim of this section is to construct a minimizing sequeingg,, that has the following properties:

(a) there existd > 0 such that for all,, |1;"”| < I;
(b) there exist€ > 0 such that for all, |lu, — 1|l z2 < C.

Throughout the section, we assume that

(F1) f andg € C(R) are even functions such that for some 0, 8 € [0, +/8k) and allu >0, f(u) > k(u — 1)2
andg(u) > —B.

First, we obtain a lower bound d@f;, () foralli =0, ..., n.

Lemma 11. Let M > 0 and assume thgf1) holds. There exist& > 0 such that ifu € £, satisfiesF(u) < M,
thenFy, (u) > —K forall i =0,...,n.

Proof. Letu be of function of¢,, such thatF(u) < M. Suppose first that;| < 1/./8 and 0<i <n — 1. We then
compute

1
;2 200112 =2
flu ||L2(1,) < il ||LZ(I,') < B lu ||L2(li)'

It follows that

2 2
(”u/,”LZ(Ii) - 'BHM,HL?(I,-)) P 0.

.7:()>1
Iiu /é
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Suppose now thaf;| > 1/./B (which is of course the case féf) and assume to fix the ideas thais positive
on I;. The case of an interval wheneis negative follows by symmetry. We deduce from Lemma 5 that

Xit+1
1
Fr.(u) > / I:E(u/'z — Bu'?) +k(u — 1)2} dx
Xi
2 :8 /
>ellu =12, =2 e+ 5 |1l (20)

Indeed, we have (x;) = u(x;+1) =0fori =0, ...,n — 1 while remember that, ;1 = co andu(x,+1) = 1.
Combining the estimate (20) with the inequality (17) of Lemma 6 applied with b — a > 1/./8, we obtain

B
Fr(u) > ellu — 1”12L12(1,-) —2C(1++/B) (e + E) lu — 1l g2y, (21)
so that the conclusion easily followso
Observe that as a straightforward consequence of the previous lemma, we obtain for every:fiXed lower
bound onF («) forall u € &,.

From Lemma 11, we now deduce a lower estimate on the length of the intérvals

Lemma 12. Let M > 0 and assume thgE1) holds. Then, there exists> 0 such that ifu € &, satisfiesF(u) < M,
then|l;| > nforalli=0,...,n.

Proof. Letu be a function of,, such thatF (1) < M. Let

77=min(3 3 , 1 )
\ 2(M +nK)' /2B

whereK is given by Lemma 11 and suppose by contradiction thgt< n for some 0<ip <n — 1. Asy <

L

. 2 1 2 2/3'
we infer that||u’||L2(Iio) < gllu”lle(L_o) and
Fig) > 3|2 (22)
lig W) 2 2 W 2oy

We now estimate thé2-norm of «” by help of Lemma 4. To fix the ideas, we suppose again:thiatpositive
on I;,. By definition of£,, we know that for some;, € I, u(x;,) = max, u > 1. TakingA = u(x;y)) =0, B =
u(xi,), A1=u'(xiy), B1 =u'(xi;) =0 and g, = x;, — xi,, we deduce from Lemma 4 that

Xi

0
4 _i _i 2 _i
/M//de > _.<("‘/(xio))2 + 3(_u(x o) _ u/(xio)) u(tx 0)) > 3u (;C °).

Tig io Tio

io
X,‘o

A similar inequality holds for the integral betwegp andx;,+1 so that, taking (22) into account, we obtain
3u (%)

2|Ii0|3 )
Now, asF;, (1) > —K for all otheri’s, we get a contradiction as

3

Fu)z55-nK>M. O

Friyu) =

=



330 D. Bonheure / Ann. I. H. Poincaré — AN 21 (2004) 319-340

The previous lower estimate on the length of the intervalsnplies, for every function: € &, that satisfies
F(u) < M, a uniform upper bound olfu — 1| 2., Or llu + 1|l y2(s,)-

Lemma 13. Let M > 0 and (F1) hold. There existV > 0 such that ifu € &, satisfiesF(u) < M, then for all
i=0,...,n,

Il — 1||H2(1i) <N
on every interval; whereu is positive, while

for thosel; whereu is negative.

Proof. Let u € &, be such thatF(u) < M. We first deduce from Lemma 12 the existencejof 0 such that
|[I;] > nforalli=0,...,n. We can therefore obtain an estimate similar to (21) whés positive on/;. An
estimate concerning th2-norm ofu + 1 holds on intervalg; whereu is negative.

From Lemma 11, we also knowthatforak=0, ..., n, Fj,(u) > —K for some positive constadt independent
of i. It follows that for each =0, ..., n, we have

Fr,(w) < F(u)+nkK
and therefore, if: is positive on/;, we have for some consta@it> 0

2
1”[_]2(1 )
and similarly

ellu+ 1012, = Cllu+ Ll g2,y <M +nK

on the intervald; whereu is negative. These two estimates imply the desired a priori bourtds.

The success of the minimization process defseon a control on the length of the intervgl$o prevent from a
loss of compactness. In fact, even for a functioa &, that satisfiesF(u) < M, we cannot obtain a bound on the
length of the intervald because if: is very close tat:1 with small derivatives on a long interval, the action along
this interval can be arbitrarily small. However, we obtain a control on the length of the transitions of any function of
a minimizing sequence by locally modifying it where it is too close to one of the equilibria. The key arguments for
such modifications are the oscillatory nature of the minimizers close to the equilibria and the clipping procedure.

Lemma 14. Let f andg € C%(R) be even functions such th#i1) = 0, g%(1) < 4f”(1) and assume thafF1)
holds. LetM > 0 and u € &, be such thatF(u) < M. Then there exist$§ > 0 and v € &, such that for all
i=0,....,n=1|I'| <IandF(v) < F(u).

Proof. Let 8o > 0, 70 > 0 and S >1 be given by Lemma 7 and take> 0 such that < §o/S. Letu € &, be a
function that satisfie§ (1) < M. To keep the ideas as clear as possible, we only focus on one int¢rfaalsome
0<i <n—1andwe assume thatis positive on/;".

Stepl. We replace: by a functionw whoseith bump takes at most two times each of the valuess and
1+ ¢. By definition of the clasg),, there exists'c, € I; such that maxu = u(x;) > 1. We first locally replace at
the left of x; by a functioniz € £, such thalu o ([1 e, 14+ ¢]) is aninterval andr (i) < F(u). The ideais to

use the clipping procedure to discard the possmle oscillationg oﬁ) around 1- ¢ and 1+ ¢. As we modify a
positive function, we infer from Lemma 10 that the clipping process decreases the action. Supposedbsts
1 — & more that one time. We then define
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& =min{x € [x;, X) | u'(x) =0 andu(x) > 1 — ¢},
£4=max{x € [&2, %;] | u(x) =u(&2)},
g3 =max{x € [£2,&4] | u'(x) =0}

and

g1=maxx € [x;, &2] | u(x) =u(&3)}.
It is obvious that: is invertible on[&s, £&4] but it could happen that has critical points in the intervaky, &2]. If
this is the case, we define

2 =min{x € [£1, £&2] | u'(x) =0}

and denote b)§4 the point of the intervalés, 4] whereu takes the valua(&>). As u is now invertible on both
intervals[é1, £5] and [&3, 54] we are able to apply the clipping procedure of Lemma 9. We therefore can find
s1 € [£1, &] andso € [£3, £4] such that(s1) = u(s2), u’(s1) = u’(s2). It follows that the functioni defined by
. {u(x) if x €[0, s1],
ulx)= .
u(x +s2—s1) if x € (s1, +00)
satisfiesF (1) < F(u) and sincgéo, £3] is contained irs1, s2], the restriction ofi to [x;, X; — (s2 — s1)] takes the
value 1— ¢ only once at the left af; — (s2 — s1).
Repeating the same arguments to discard the possible oscillations argundtlthe left ofx;, we obtain the
desired functioni. Now, as the same modifications can be done at the rightthfe conclusion follows.
Step2. Control on the time thatv spends abové — ¢. In this step, we modifyw if this time is too long. Let
01, 04 be the zeros ofu“w (1 — ¢) respectively at the left and at the right of the global mammunwgi If

maxw w > 1+e,we also defingd,, 63] as the interval where is above L+ ¢. Next, we set
ar=inf{x > 61| [u(x) — 1| <e and|u’(x)| < &}
and
az=sup{x <04 |u(x) — 1| <eand|u’'(x)| <&}
Notice thata; andaz need not exist. If they exist, there are three possible cases:
(i) 61 <a1<az<62<63<0by;

(i) 01<a1 <2< 03 ax< by
(i) 01 <2< O03< a1 <az <.

Claim 1. If case(i) holds, we have; — 61 < 2,02 —az < 2andfs — 63 < 2. In case(ii), we haver; — 61 < 2 and
04 — az < 2 while in casg(iii) , we havedy — 61 < 2, a1 — 03 < 2andfg —az < 2.

Indeed, in case (i), on each of the intervls, a1], [a2, 62] and[63, 64], the variation ofw is smaller than 2
and|w’| > ¢. This implies that these intervals have length at most 2. Similar observations can be made in the other
cases.

Claim 2. There exists a positive constafit such that in the case whefe and 63 are definedds — 62> < C1.

Indeed, as in the previous lemmas, we have the estimate

Frrw) < F(w)+nK <M +nk,
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whereK > 0 is given by Lemma 11. From Lemma 13, we know that
lw— 1l g2y <N
for some positiveV independent of;. We therefore deduce an a priori bound for ftfenorm ofw’ on I;, leading
to the estimate
Fr,(w) > —L +k/(w —1)%dx
Ii
for some positive constatit. Now the bound foBs — 6> follows from the inequality
03
M +L+nkK >k/(w— 1)2dx > k(63 — 62)e>.
02
Claim 3. If a2 — a1 > max(1, 81p), the functionw can be replaced by another functiah € &, so that the
interval [61, 64] is clipped out to an interval of length smaller thént+ C1 + max(1, 8zp). Furthermore, we have
F@) < F(w).
First, we observe that there exists a functiomvhich minimizesF in
81:2: {u €& |lu=wonR\ [a1,az] andu > 0 on [a1, az]}.
In é’fz, we consider functions that are positive betwéen a2]. The reason is that we must conserve the right

number of zeros to keep the modified functionfin Notice that asf (1) > k(u — 1)2 for u > 0, the analysis of
Lemma 7 can be applied around the equilibritih. Sincew andw’ are sufficiently small at the pointg and
az, it is easily seen that a minimizer 'ﬁ?{fz exists. Moreover, it satisfies the differential equation (9)@i az]
together with the boundary conditions

w(a1) =w(ay), w(a1)=w'(a1), wW(a2)=w(a), w'(az)=w'(a2)
and we infer from Lemma 7 that
W — 1 c3(1ay.a00) < S€ < o0 (23)
Define
ay=max{x <a1| |wx) — 1| = 8o}
and
a,=min{x >az | |E(x) - 1| =do}.
Taking (23) into account, we then hajig(x) — 1| < 8o for all x € [ay, a5]. The definitions ofz; anda’, imply that
w(a}) =1— 8o andw(ay) =14 8o or w(ay) = 1+ o andw(ay) = 1 — g or w(aj) =1 — 8o andw(ay) =1 — o
(of course, we cannot havé(a;) = w(ay) = 1+ 5o).
In the case wher@(a}) = 1 — 5o andw(a,) = 1 + 5o, following the ideas of Step 1, we define
& =min{x € [a}, a5] | W' (x) =0 andw(x) > 1},
£4=max{x € [a}, a5] | w(x) = w(&2)},
gz =max{x € [a}, a5] | W' (x) = 0}
and take

s1=max{x € [ag, &1 | W(x) = W(5a)}.
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Observe that Lemma 7 ensures the existencg @nd moreovek; € [ay, a1 + 210]. Also, & € [az2 — 210, a5].

We are now able to apply the clipping procedure, defining, if neegledndé, in the same way as in step 1.
Consequently, we can discard the restrictioruofo some intervalsz, s3] containing[&», £&3] and join the two
remaining pieces to define a new functior £ by

{w(x) if x € [0, s2],
v(x) =1 _ .
w(x +s3—s52) if x € (52, +00).
Letting 0} = 04 — (s3 — s2), we have

Oy — 601 < (a1 — 601) + 410+ (02 — a2).

Observe that as (a5) = w(a,) = 1+ 8o, we had before clipping, maxw > 1+ ¢ andaz < 6. This implies,
using Claim 1, that

04 —ap= (04— 03) + (03— 62) + (02 —a2) <4+ (03— 02)
so that we deduce from Claim 2 that
09;{ —01<6+419+ C1.

The second case is treated in the same way.

If w(a}) =w(as) =1— 8o, we proceed in two steps. Lete [a, a5] be such that Ma% (4! a)] wx) =w(q).
Using Lemma 7, we know thab(g) > 1 and we can apply the arguments used in the first case to each of the
intervals[a;, ¢] and[q, a5]. Here, denoting by;™* the point into whichv, is transformed, we have after clipping,

0" — 01 < (a1 — 61) + 810 + (04 — a2)
and since we obviously had < 6> < 63 < az before the clipping, we deduce from Claim 1 that
9;{* — 61 <4+ 8rp.

In any case, we have built a new functiotthat satisfies the claim.

Conclusion After the successive modifications of the previous steps, we obtain a functidf that has the
following properties. Still denoting by;, j =0,...,n, the zeros ofy, we havev|y, »,,p) 21— e, 1+ ¢]) =
[wiy, Wi, 1 U [wis, wi,] With possiblyw;, = w;; if max;» v < 1+¢and

w;, — wi; < 6+ C1+ max(l, 8rp).
Now, it follows from the arguments of Claim 2 in step 2 thgf — x; < C1 andx;+1 — w;, < C1. Hence,
|I'| <6+ 3C1+ max(l, 81p),
which proves that we can chooge= 6 + 3C1 + maxl, 8tp). O
As a direct consequence of the preceding lemnmagdeduce that the right endpoint of the interfjal; does

not go to infinity along a minimizing sequence. This fact is of course essential for the construction of a minimizing
sequence that satisfies (a) and (b). The following pritipossummarizes in some sense all the previous lemmas.

Proposition 15. Let f andg € C2(R) be such thatf (1) = 0, g?(1) < 41" (1) and assume thgF1) holds. Then,
for eachn € N, there existd > 0, C > 0 and a minimizing sequence,), C &, such that for allp e N,

|| <1 foralli=0,...,n—1 (24)
and

llup — 1l g2 < C. (25)
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Proof. Letn € N be fixed. From Lemma 11, we know that

c= i‘rg1f.7-' >—-m+1DK
for some positive constaiit. Let (u,), C £, be a minimizing sequence. We can assume without loss of generality
that for allp € N,

Fup) <c+1

Therefore, all the previous lemmas, with= ¢ + 1, apply to the functions,. It follows from Lemma 14 that we
can choose the sequengs,) , in such a way that (24) holds.

To prove (25), we first observe that, the right endpoint of,,_1, is such that, < rl. On the other hand, we
also know from Lemma 12 and 13 that there exist 0 and N >0 such tha’rll."” >nforalli=0,...,nandall
peN,and

||Mp - 1||H2([”P) < N
on any interval;” whereu,, is positive, while
”Mp + 1||H2(1u17) < N

on thosell."p whereu , is negative. Now, using the inequality (17) and the fact lﬁét) n, we deduce the existence
of a positive constank such that

luplloo < R. (26)

Denoting byJ*, respectively/ ~, the set of indexes e (0, ..., n) corresponding to intervalg“” whereu, is
positive, respectively negative, we have

e ¢]

||up—1||§,2=/[ "2 12 4 Gy — 1) de

_ Z/ //2+u/2+(up_l) dr + Z/ //2 p2+(up+]_)2_4up]dx

ieJt up ieJ™
I

<m+DHN-4>"
iE]_If/p

Taking (24) and (26) into account, we finally get
lup — 1122 < (n+ 1N +4mRI,

wherem is the number of indexesin—. 0O

4. Existence of thelocal minimizers

We have now almost all the ingredients to prove Theorem 1. To complete the minimizing process in a given
class&,, we choose a minimizing sequeng@s,), C &, that has the properties described in Proposition 15. From
the a priori bound orjlu, — 1|| 52, we deduce that up to a subsequenggconverges (in a way which is made
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precise below) to some functione £. To prove thau € &, we requireF to be lower bounded if. Observe that
this last assumption was not used until now and actually, we do not know whether it is necessary or not.

Lemma 16. Assume tha{F1) holds. Letu € H?(a, b) be such thau(a) = u(b) = 0. Assume moreover that
infe 7 > —oo. Then

b
Fap) = / [%(u”z +gwu'?) + f(u)} dr > 0.

Proof. Let v € £ be such that’(0) = u/(b). Suppose thatF, ,(u) = —c < 0 and letn € N be such that
F@) — (2n+ e < infe F. Letus sefl = b — a. Then defining:* € £ by

u(a + x) if xe[0,T),
—u(a+2iT —x) ifxe[(2—-1T,2iT), i=1,...,n,
u@a-+x—2T) ifxel2iT,2i+1T), i=1,...,n,
vix —2n+1DT) ifx>@n+ 1T,

we obtain a contradiction as

Fw*)=@n+ D F, W)+ F(v) < irgf F. O

u*(x) =

Proof of Theorem 1. Let («,), C & be a minimizing sequence that has the properties stated in Proposition 15.
Stepl. The sequence:,), converges irC&JC to some functiom € £ that satisfiesF (1) < infg, 7. From the a
priori bound onlju, — 1|l 52, we deduce that up to a subsequence,

H? ct
up—1l—wu—-1 and up—°°>u

for some function: € £.
Let J1 =[0,nlI] andJ; = (nl, +00) wherel is given in Proposition 15. We then write

]:(”p) =-7:J1(”p) +~7:Jz(”p)
1 1
=/[§(u;;2+g(u,,)u;,2) +f(up)j|dx—i—/[é(ugz—i-g(up)u/pz)+f(up)j| dr.

J1 J2

Observe first that

Fy(u) <liminf F, (up). (27)
p—00
On J2, we know that:, is positive. We therefore write

1 2 2
.7:12(1417):E/(M;;Z_ﬁu;,z‘i‘%(up—1)2)dx+/wu/p2dx+/<f(up)_%(up_1)2) dx

Jo J2 J2

_l " ﬁ 1 de / I I
_E[/<up+§(up— )) — Bu,(nDup(n ):|

J2

2
+/Wu;zdx+/(f(up)—%(up—l)z)dx.

Jo J2
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In the last equality, the first integral is convex and Fatou’s Lemma is applicable to the last two so that taking also
(27) into account, we deduce thatu) < infg, F.

We denote the extremities of the intervé{l’éﬁ by xi”, i =0,...,n.ltis clear by uniform convergencethatupto a
subsequence, foral=1, ..., n, xl.” convergesto someg < J1. Remember that by convention, we $§t= x0=0
andx,fJrl = xp+1 = 0. We call /; the intervals(x;, x;+1), i =0, ..., n. We also deduce from the convergence in
Cc1(Jy) and the convergence 'ﬁfﬁ)c(Jz) that

u(x)(=1)*" >0 forxe (x;,xit1),

max u(x)(=1) " >1.
(i Xi41)
Step2. Elimination of the zeros of afterx,. If u has zeros after,,, we first modify it to keep only one of those
zeros. So, suppose thavanishes at least two times aftgr. We then define

ay= min{x > X, | u(x) = O} and az = max{x > xp | u(x) :0}.

Observe that as € £, ay is well defined. Since(a1) = u(a2) = u'(a1) = u’(a2) = 0 by convergence in‘&)c, the
interval[ai, az] can be clipped out and the resulting function has only one zeroxgftéloreover the functiom
is nonnegative on the clipped interval so that this modification decreases the action.

Assume now that vanishes at some poigt> x,. We then have’(§) = 0. Now asu(x,) = u(£), there exists
at least one critical point betweenx,, and¢ such that«(y) > 0. Here, we have two possibilities, eithecan be
taken in such a way that(y) < 1 or [0, 1] does not contain any critical value of, ,,.

Suppose first that we can finde (x,,, §) such that O< u(y) <1 andu’(y) =0.Asu €&,

xli_)moo(u(x), u'(x)) =(1,0).

Hence, we infer from Lemma 7 thaix) oscillates around 1 far large enough. Therefore, we can clip out an
interval containingy, £] in such a way that the function obtained after clipping does not vanishxafter

In the second case, we can finde (x,, &) such thatu(y) > 1 and if x € (x,, &) satisfiesu’(x) = 0, then
u(x) > 1. We now define € £ by

—u(x+x1) ifO<x<E—xy,
u(x + x1) if x >&—x1.

v(x):{

Observe that since mif_., ¢—x;jv(x) < —1 andv is negative in(x, — x1, £ — x1), v has the right number of
transitions. Alsoy does not vanish aftef — x1. On the other hand, becauséxg) = u(x1), we deduce from
Lemma 16 that

X1

/[%(u”z + g(u)u’z) + f(u)i| dx >0

X0
so thatF(v) < F(u).

Step3. Elimination of the zeros of in the bumpsWe still denote by G= xp < x1 < - -+ < x,, the extremities
of the intervals/” (actually, these are the interval$ which have been possibly translated in step 2). Suppose that
there existg € v™1(0) so thatt # x; foranyi =0, ..., n. Henceg lies in the interior of an interval;. To fix the
ideas, we assume thats nonnegative therein and denotingfythe maximum ofv over this interval we assume
that¢ is at the left ofx;. Next, define&g&1 = min{x € I; | v(x) = 0} and&2 = maxX{x € [&1, x;] | v(x) = 0}. Itis easily
seen that an interval containifg, £2] can be clipped out so that the zeros can be deleted.

Step4. Elimination of the tangencies witlz1. The last condition that we have to check to be sure that,
is that max¢;, [v(x)| > 1 foralli =0, ..., n. Assume that this condition fails to be true in one of the interyals
In this interval, we thus have max;, [v(x)| = 1. Lett € I; be such thafv(r)| = 1 andv’(r) = 0. To fix the ideas,
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assume that(z) = 1, the second case being treated in the saie Ws the action of the function 1 is zero, we
can modifyv without increasing its action by stretching the pairtb an interval of arbitrary length and gluing the
function 1 to both extremities, see [8]. Now, we takg (respectively,) at the left (respectively at the right) of

in such a way that & max—1.2 || (v(a;) — 1, v'(a;))| < 8o and stretchr to an interval of lengthg. We still callv
the function obtained after gluing 1 atandt + o. It follows from Lemma 7 that the minimizers of

az+10

%(u”2 +gu’?) + f(u)} dx

ayg
on the set of functions € H?(a1, 1o + a») that satisfyu(a1) = v(a1), u'(a1) = v/(a1), u(az + 10) = v(az) and
u' (a2 + 10) = v/ (a) oscillate around 1. If we replaaelocally by a minimizer, we obtain a new functian such
that max¢y, |w(x)| > 1 andF(w) < F(v).

Conclusion.It follows from the previous steps that we can construck &, such thatF(w) < F(u).
Consequently, we havé(w) = ming, . Now, observe that for alh € H2(R') such thati(0) = 0, for ¢
sufficiently small,F(w) < F(w + th). Indeed, assume that there exists a sequénge tending to 0 such that
F(w) > F(w + t,h). If wisinthe interior of the clas§,, this is obviously a contradiction. In the case wheres
on the boundary of, i.e. if for some points;, w(x;) = w’(x;) = 0, then even for small,w + A can have more
than one zero close to the's so that it does not belong necessarily¥io However forr small enoughw + th has
the right number of transitions and the oscillations close to the pejiman be erased using the clipping procedure.
Therefore, fom large enough, modifying + 1,/ close to thex;’s if necessary, we obtain a functiondh whose
action is strictly smaller thast (w). This contradicts the definition af.

We now deduce that is a critical point of 7. Using standard arguments, we can show thattisfies Eq. (9)
on [0, o) and it follows also from an easy computation thét(0) = 0. Hence, the odd extensiarn® of w is a
solution of (9). From the differential equation (9), we now infer that 1 € H4(R*) so thatw* satisfies (5) and
w* is an heteroclinic solution of (9). O

Remark 2. Using the conservation of the Hamiltonian

Hu)=u"u — }u”z — %g(u)u’2 + f(u) (28)

2
along solutions of (9), it is easily proved that each minimizgers actually in the interior of,,, i.e. each crossing
with zero is transverse.

We now turn to the proof of Theorem 2. Since many of the arguments are similar, we only sketch it.

Proof of Theorem 2. First, observe that assumption (14) implies tdt) > 0 for all u € £. This follows from
the inequality

® u//Z
f(u))s/[7+f(u)i|dx
0

wheres > 0 which is valid for allu € £ and proved in [2].
Let (up), C & be a minimizing sequence fdr. The inequalities

"2
u
Fri(up) =s / [% + f(u;»} dx (29)
I;
then follow arguing as in Lemma 4 of [2]. Consequently, the equivalent of Lemma 11 Kn4tt0) and Lemma 12
hold. Next, we deduce as in Lemma 6 of [2] a priori boundg@p| oo and||u’p llo- Then, using the inequality (29),
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these a priori bounds and the clipping procedure, the conclusion of Lemma 14 follows (possibly for a modification
of the minimizing sequence). Therefore, the statement of Lemma 13, ...,n — 1 holds. To obtain an a
priori bound inZ,, we first observe that for some> 0,k > 0 andg < [0, +/8k),

fw) =>kw—-12% and gw)>-p forlu—1<a. (30)

Then arguing as in Proposition 2 of [2] and using the bound;dori =0, ...,n — 1, we prove the existence of
T > 0 such that for alk ,, there existw, € £, that satisfies

‘vp(x) —1| <a forallx>T

andF(v,) < F(up). We then deduce an a priori bound fn, — Ul g2 (x, . 00) using the bounds on, andv}, on
[x., T] and arguing as in the proof of Theorem 1@ oo).

We thus obtain a minimizing sequengs,), C &, that has the properties of Proposition 15. Now the end of
the proof follows the same lines as the proof of Theorem 1. Just observe that denotirigebyweak limit ofv,,
the inequalityF (v) < lim,_~ F(v,) follows by working separately on the intervdl8, 7] and (7', co) using
also (30). O

As we mentioned in the introduction, the hypothesig iff> —oo of Theorem 1 implies that igfF > 0, see
Corollary 7 in [3]. Actually, we can even prove that infF > 0 and consequently the multitransition kinks all
have a strictly positive action. Observe also that as agsttfrward consequence of a repeated use of the clipping
procedure, the minimum, of F in &, has exactly one critical point in each intervalfor i =0,...,n — 1. On
the other hand, in the taik, oscillates around 1, so that there exists a sequgpce < N, such thai/(&,,) =0,
u”(E2m) <0, u” (E2mt1) = 0, u(€2m) > u(€2m12) andu(E2,+1) < u(E2m+3)-

Let us come back to the stationary Swift-Hohenberg equation (4). Taking the funckidr= sin(wx) with
»* = 3/8 and computing

2n/w

1, ’ 1 (3+“/6,3)7T
[ (G 0%+ 302 -7 on = 22",
0

it is easy to deduce that the functiod : £ — R defined by

400
Tpu) = / [%[(u”z) + ,314’2] + %(uz - 1)2i| dx
0

is unbounded from below whenever< —./3/2. In [3], it is proved that inf 73 = —oo for g < fo where
ﬂozinf{ﬁ<0|ir£1fjﬁ>0}. (31)

For 8 > Bo, we obtain a family of kinks:}; having 2n+ 1 zeros orR.

Proposition 17. Let Sg be given by31). Then, for allg > o, for all n € N, Jg has a local minimun,, € &,
whose odd extension is a solution(@) having exactly?n + 1 zeros. Moreove(/g (1,) < Jg(un+1) forall n € N.

Proof. The existence of the minimizers, € &, follows directly from Theorem 1 and the definition g§. For all
n € N, we denote by the odd extension af, onR. We now prove that/g(u,) < Jg(un+1) foralln e N. Letxy
be the first zero ofi,, 1 in (0, c0). Then, the functiow,, = u,+1(- + x1) belongs tas,. It follows from Lemma 16
that the action ofi,, 1 on the intervalxo, x1] is nonnegative. Therefot&s (u,) < Jg(vn) < Jp(uny1). Suppose
that Jg (u,) = Jp(un+1). Thenwv, is a minimizer of 73 in &, and thus its odd extensiorj is an heteroclinic
solution of (4). Observe that; (- + x1) also solves (4) oR. As uy (- + x1) = v, On R*, we obtain a
contradiction with the uniqueness of the solution of the Cauchy problem.
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5. Homoclinic connections

Homoclinics to£1 belong respectively to the functional spades+ H2(R). We focus only on homoclinics
to +1. When minimizing the functionaf defined by (8), it is natural to search even homaoclinic solutions. Indeed,
suppose that — 1 € H2(R), then there exists an even functiohthat satisfies* — 1 € H2(R) andF (u*) < F(u).
Observe that ifc is a critical point ofu, writing J1 = (—o0, x] andJ2 = (x, +00), the action ofs is smaller on/y
or on J,. Assuming that: has a lower action oty we defineu* € 1+ H2(R) by

*_{u(x) if x € Jq,
|u@r—x) ifxe .

Now F(u*) = 2F 5, (u) < Fy(u) + Fp,(u) = F(u).
By translation invariance, we can also restrict ourselves to even solutions with respect to zero. We therefore
define the functional space

E={ueC'®")|u—1eH3R"Y), u'(0)=0)}. (32)

Itis easily seen that if € £ is a critical point of the functionaF, thenu””(0) = 0. It follows that the even extension
of u onR is a solution of (9) which is at leagt*. Also, it is not difficult to verify that the condition (6) is satisfied.

As before, we assume that (F1) holds afds bounded from below 08. Actually, in a saddle-foci situation,
this again implies thaf is nonnegative o8’

It is obvious that looking at minimizers of in & leads to the trivial solutiom = 1. Moreover 1 is the only
function having zero action i is bounded from below. To get nontrivial solutions, we minimfZen subclasses
5,1 c & that do not contain the function 1. We define for each O the subseEn C £ conS|st|ng of functions
whose even extensions d make 2 transitions. Precisely, we assume that S,, if ue &, and there exist
O0=xp<x1<--+ <Xy <Xxp+1 =00 such that

u@x)(-1)'" >0 forxe (x;,xit1),

max u(x)(—1)*" > 1.
(X, Xi4+1)

Adapting the arguments of the previous sections, we are able to provg tihes a local minimum in each of these
subspaces in the two following situations.

Theorem 18. Let f andg € C?(R) satisfy(F1)andg(1)? < 4" (1). Assume further thdhfz 7 > —oco. ThenF
has a local minimizefi, in each subspacg,. Moreover, the even extensionigfon R is an homoclinic solution
of (9)to +1, having exactly 2n zeros.

Theorem 19. Let f andg € C2(R) be even functions such th#tl) = f/(1) = 0 and for some functiog € C(R)
and somé < 1,

gw)>gw), |Gw)|<ky8fw), VuceR,
whereﬁ(u) = fé‘ Z(s)ds. Assume moreover that1)2 < 4”(1). Then the conclusion of Theorel8 holds.
The proofs are basically identical to those of Theorems 1 and 2. Just observe that in order to adapt the second step

of Theorem 1, we need the equivalent of Lemma 16 for functioas? %(a, b) that satisfyu’(a) = u’(b) = 0. Al~so,
some arguments are slightly different, taking into accountith@ = 0 instead of(0) = O for functionsu € £.
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Observe that under the assumptions of Theorems 18 and X9Finf —oo if and only if infz 7 > —oo.
Therefore, we obtain homoclinic solutions for the Swift-Hohenberg equation for the same raggasoin
Proposition 17.

Proposition 20. Let g be as in Propositiod7. Then, for allg > o, for all » € N, Jg has a local minimuni,, € &
whose even extension is a solution(4f homoclinic to+1 having exactlyn zeros. Moreove/g (it,) < Jp(itn+1)
forall n e N.
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