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Abstract

The asymptotic behaviour ast goes to infinity of solutionsu(x, t) of the multidimensional parabolic equationut = �u+F(u)

is studied in the “bistable” case. More precisely, we consider the stability of spherically symmetric travelling waves with
to small perturbations. First, we show that such waves are stable against spherically symmetric perturbations, an
perturbations decay like(logt)/t2 as t goes to infinity. Next, we observe that thisstability result cannot hold for arbitrar
(i.e., non-symmetric) perturbations. Indeed, we prove that there exist small perturbations such that the solutionu(x, t) does not
converge to a spherically symmetric profile ast goes to infinity. More precisely, for any directionk ∈ Sn−1, the restriction of
u(x, t) to the ray{x = kr | r � 0} converges to ak-dependent translate of the one-dimensional travelling wave.

Résumé

On étudie le comportement pour les grands temps des solutionsu(x, t) de l’équation paraboliqueut = �u + F(u) dans le
cas “bistable” et dans tout l’espace, en dimension supérieure. Plus précisément, on s’intéresse à la stabilité d’ondes progressive
à symétrie sphérique pour de petites perturbations. Dans un premier temps, on montre que cette famille d’ondes est stable po
des perturbations à symétrie sphérique et que cette perturbation décroît comme(logt)/t2 quandt tend vers l’infini. On montre
ensuite que cette stabilité est mise en défautpour des perturbations quelconques. En effet, on met en évidence des perturbatio
pour lesquelles la solution ne tend pas vers une onde à symétrie sphérique : dans chaque directionk ∈ Sn−1, la restriction de
u(x, t) au rayon{x = kr, r � 0} converge vers un translaté de l’onde progressive unidimensionnelle dépendant dek.
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0. Introduction

We consider the initial value problem for the semilinear parabolic equation{
ut (x, t) = �u(x, t) + F

(
u(x, t)

)
, x ∈ Rn, t > 0,

u(x,0) = u0(x), x ∈ Rn,
(1)

whereu ∈ R andn � 2. Throughout this paper, it is assumed that the nonlinearityF is a continuously differentiabl
function onR satisfying the following assumptions:

(i) F(0) = F(1) = 0;
(ii) F ′(0) < 0, F ′(1) < 0;
(iii) There existsµ ∈ (0,1) such thatF(u) < 0 if u ∈ (0,µ) andF(u) > 0 if u ∈ (µ,1);
(iv)

∫ 1
0 F(u)du > 0.

A typical example is the cubic nonlinearity

F(u) = 2u(1− u)(u − µ) where 0< µ < 1/2. (2)

Eq. (1) is a classical model for spreading and interacting particles, which has been often used in
(population dynamics, propagation of nerves pulses), in physics (shock waves), or in chemistry (chemical reac
flame propagation). Fisher [5] first proposed a genetical context in which the spread of advantageous g
traits in a population was modeled by Eq. (1). At the same time, Kolmogorov, Petrovskii and Piskunov [11]
mathematical treatment of this equation for a slightly different nonlinearity. Later on, Aronson and Weinber
also discussed the genetical background in some details. In their terminology, the nonlinearity satisfying (
is referred to as the “heterozygote inferior” case. In mathematical terms, this is called the “bistable” case a
and (ii),u ≡ 0 and u≡ 1 are both stable steady states.

As far as the initial value problem is concerned, ifu0 is a continuous function fromRn to (0,1) which goes to 0
as|x| goes to infinity, then there exists a unique solutionu(x, t) of Eq. (1) with the same properties asu0 for any
t � 0.

One question of interest for this reaction–diffusion equation is the behaviour, ast goes to infinity, of the solution
u(x, t) of (1). In one space dimension, a prominent role is played by a family of particular solutions of (1),
travelling waves. These are uniformly translating solutions of the form

u(x, t) = w0(x − ct),

wherec ∈ R is the speed of the wave. The profilew0 satisfies the ordinary differential equation:

w′′
0 + cw′

0 + F(w0) = 0, x ∈ R, (3)

together with the boundary conditions at infinity

lim
x→−∞w0(x) = 1 and lim

x→+∞w0(x) = 0. (4)

These waves are characterized by their time independent profile and usually represent the transport of inf
in the above models. They also often describe the long-time behaviour of many solutions.

Since Fisher and KPP, there has been an extensive literature on the subject. In the one dimensiona
case, Kanel [9] proved that there exist a unique speedc > 0 and a unique (up to translations) monotone profilew0,
satisfying (3), (4). Moreover,|w0| (resp.|1 − w0|) decays exponentially fast asx goes to+∞ (resp.−∞). From
now on, we fixw0 by choosingw0(0) = 1/2. For example, ifF is given by (2), one findsc = 1− 2µ ∈ (0,1) and
w0(x) = (1+ ex)−1.
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Afterwards, Sattinger [14] was interested in the local stability of travelling waves. He proved that the
{w0(· − γ ), γ ∈ R} is normally attracting. More precisely, for any initial datau0 of the form

u0(x) = w0(x) + εv0(x),

whereε > 0 is sufficiently small andv0 bounded in a weighted space, Sattinger proved that there exist aC1 function
ρ(ε) and positive constantsK andγ such that the solutionu(x, t) of (1) satisfies∥∥u(x + ct, t) − w0

(
x + ρ(ε)

)∥∥ � K e−γ t , t � 0,

in an appropriate weighted norm. This is the local stability of travelling waves in one dimension. Sattinger’
uses the spectral properties of the linearised operatorL0 = ∂2

y + c∂y +F ′(w0) around the travelling wavew0 in the
c-moving frame. These properties can be summarized as follows:

Let φ0 = ᾱw′
0 andψ0 = ecxφ0 whereᾱ > 0 is chosen so that∫

R

φ0(x)ψ0(x)dx = 1. (5)

Then,φ0 is an eigenfunction ofL0 (associated with the eigenvalue 0), andψ0 is the corresponding eigenfunctio
of the adjoint operatorL∗

0:

φ′′
0 + cφ′

0 + F ′(w0)φ0 = 0,

ψ ′′
0 − cψ ′

0 + F ′(w0)ψ0 = 0.

Moreover, there exists someγ > 0 such that the spectrum ofL0 in L2(R) is included in]−∞,−γ ] ∪ {0},
see [6,14]. Since the eigenvalue 0 is isolated, there exists a projection operatorP onto the null space ofL0. This
operator is given by

Pu = 1

2π i

∫
Γ

R(λ,L0)udλ,

whereR(λ,L0) = (λ−L0)
−1 andΓ is a simple closed curve in the complex plane enclosing the eigenvalue

[14,15]. Define the complementary spectral projectionQ = I −P whereI is the identity operator inL2(R). These
projection operatorsP andQ are also given by

Pu =
(∫

R

u(x)ψ0(x)dx

)
φ0, Qu = (I − P)u,

see for instance [10,14]. The spectral subspace corresponding to the eigenvalue 0 is defined by{u ∈ L2(R) |u =
Pu} and its supplementary by

R= {
u ∈ L2(R) | u = Qu

} = {
u ∈ L2(R) | Pu = 0

}
.

ThenR, equipped with theL2 norm, is a Banach space andL0|R generates an analytic semi-group which satis
‖etL0‖L(R) � c0e−γ t for all t � 0.

On the other hand, Fife and McLeod [4] proved the global stability of travelling waves: they showed,
comparison theorems, that ifu0 satisfies 0� u0 � 1 and lim inf−∞ u0(x) > µ, limsup+∞ u0(x) < µ, then the
solutionu(x, t) of (1) approaches exponentially fast in time a translate of the travelling wave in the supremu
norm. Fife [3] also highlighted other possible types of asymptotic behaviour: ifu0 vanishes at infinity inx and if
the solution converges uniformly to 1 on compact sets, thenu(x, t) behaves as a pair of diverging fronts wher
wave goes off in each direction.

In higher dimensions, Aronson and Weinberger [2], Xin and Levermore [17,12] and Kapitula [10]
interested in planar travelling waves. These are particular solutions of equation (1) of the formu(x, t) = w0(x ·
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k − ct) wherek ∈ Sn−1. Existence of such solutions can be proved as in the one-dimensional case, but the s
analysis is quite different: unlike in the one-dimensional case, the gap in the spectrum of the linearised
around the travelling wave disappears. Instead, there exists continuous spectrum all the way up to zero which
due, intuitively, to the effects of the transverse diffusion. To overcome this difficulty, Kapitula decompos
solutionu(x, t) as

u(x, t) = w0
(
x · k − ct + ρ(x, t)

) + v(x, t),

whereρ(x, t) represents a local shift of the travelling wave andv(x, t) a transverse perturbation inR. The equation
for ρ can be analyzed by the one-dimensional result and Fourier transform, while the transverse perturv

satisfies a semilinear heat equation inRn−1. Therefore, Kapitula proved that the perturbation decays to zero w
rate of O(t−(n−1)/4) in Hk(Rn), k � [(n + 1)/2].

Apart from this particular planar case, Aronson and Weinberger [2] also studied the asymptotic beha
other solutions in higher dimensions. They proved that the stateu ≡ 0 is stable with respect to perturbations wh
are not too large on too large a set, but is unstable with respect to some perturbations with bounded
Moreover, assumingu0 vanishes at infinity inx andu converges to 1 ast goes to infinity, they showed that th
disturbance is propagated with asymptotic speedc.

Finally, Uchiyama [16] and Jones [7] were interested in spherically symmetric solutions. Ifu0 is spherically
symmetric with limsup|x|→+∞ u0(x) < µ, and if the solutionu(x, t) of (1) with initial datau0 converges to 1
uniformly on compact sets ast goes to infinity, they proved that there exists a functiong(t) such that

lim
t→+∞ sup

x∈Rn

∣∣u(x, t) − w0
(|x| − ct + g(t)

)∣∣ = 0. (6)

Jones proved with dynamical systems considerations that limt→+∞ g(t)/t = 0 and Uchiyama precised, usin
energy methods and comparison theorems, that there exists someL ∈ R such that

lim
t→+∞

(
g(t) − n − 1

c
logt

)
= L. (7)

This important result establishes the existence of a family of asymptotic solutions of (1), which we call sph
symmetric travelling waves:W(x, t) = w0(|x| − ct + n−1

c
logt) and its translates in time. It also shows that t

family is asymptotically stable with respect to spherically symmetric perturbations.
We give in the first section of this paper another method,based on Kapitula’s decomposition, which enables

to get more information on how fast the solutionu(x, t) of (1) converges to a travelling wave and on the asympt
behaviour of the functiong(t). To do that, we introduce the following Banach spaces:

Y = H 1(R+)
,

X = {
u: Rn → R | ∃ũ ∈ Y so thatu(x) = ũ

(|x|) for x ∈ Rn
}
,

‖u‖X = ‖ũ‖Y =
( ∞∫

0

∣∣ũ(r)
∣∣2 + ∣∣ũr (r)

∣∣2 dr

)1/2

.

Note thatX is included inH 1(Rn)∩L∞(Rn) and contains spherically symmetric functions. Then, we prove in
first section the following theorem:

Theorem 1. AssumeF is a “bistable” non-linearity. There exist positive constantsR0, δ0, c1, c2, γ0 such that, if
u0 : Rn → R is a spherically symmetric function satisfying∥∥u0(x) − w0

(|x| − R
)∥∥ � δ
X
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for someR � R0 and someδ � δ0, then Eq.(1) has a unique solutionu ∈ C0([0,+∞),X) with initial data u0.
Moreover, there existsρ ∈ C1([0,+∞)) such that∥∥u(x, t) − w0

(|x| − s(t)
)∥∥

X
+ ∣∣ρ′(t)

∣∣ � c1δ e−γ0t + c2
log(R + ct)

(R + ct)2

for all t � 0, where

s(t) = R + ct − n − 1

c
log

(
R + ct

R

)
+ ρ(t). (8)

This first theorem shows that the family of spherically symmetric travelling waves is asymptotically sta
small symmetric perturbations. Indeed, any small perturbation tends to zero with a rate of O(logt/t2). Moreover,
as|ρ′(t)| is bounded by an integrable function of time, the functionρ(t) converges to a constantρ∞ ast goes to
infinity, which corresponds toL in (7) and, with our hypothesis onu0, the convergence (6) satisfies:∣∣∣∣u(x, t) − w0

(
|x| − ct + n − 1

c
logt + L

)∣∣∣∣ � c0
logt

t
.

In a second section, we are interested in non-sphericallysymmetric perturbations of travelling waves in high
dimensions. Based on Uchiyama’swork and a comparison theorem, a corollary on the Lyapunov stability of
travelling waves against general small perturbations is first stated.

The only result so far concerning the long-time behaviour of non-spherically symmetric solutions is
Jones [8]. He considered solutionsu(x, t) whose initial datau0 have compact support, and he also assumed
u(x, t) converges to 1 uniformly on compact sets ast goes to infinity. He then showed that, if followed out
a radial direction at the correct speedc, the solution approaches the one-dimensional travelling wave, at le
shape. Moreover, for anyl ∈ (0,1) and any sufficiently larget > 0, he proved that, for all pointP of the level
surfaceSl(t) = {x ∈ Rn | u(x, t) = l}, the normal toSl(t) at P must intersect the support ofu0. Obviously, this
result implies that the surfaceSl(t) becomes rounder and rounder ast goes to infinity. It is thus natural to expe
spherically symmetric travelling waves to be asymptotically stable against any small non-symmetric perturbatio
However, we prove in Section 2 that this is not the case. In the two-dimensional case, we give an example
spherically symmetric functionu0 close to a spherically symmetric wave such that the solutionu(x, t) of (1) with
initial datau0 never approaches the family of spherically symmetric travelling waves. Indeed, the translate
wave which is approached depends on the radial direction.

Subsequently, we require some more technical assumptions. For convenience, we choose to work inR2 so that
polar coordinates are easier to handle. We assume thatF is in C3(R) and satisfies the condition:F (3)(u) � 0 for
u ∈ [0,1]. In this case, we prove in Appendix C thatφ0 is log-concave, i.e.,(φ′

0/φ0)
′ < 0. Finally, we also assum

that every solution of the ODE,ut = F(u), is bounded uniformly in time. By the maximum principle, this eas
means that for any bounded initial condition, the solutionu(x, t) is uniformly bounded in time. Example (2) forF

satisfies both conditions.
Precisely, we prove in the second section the following theorem:

Theorem 2. AssumeF is a “bistable” nonlinearity satisfying both above conditions. There exist positive cons
R′

0, δ′
0, η, c0 such that ifu0 ∈ H 1(R2) satisfies∥∥u0(x) − w0

(|x| − R
)∥∥

H1(R2)
� δ

for someδ � δ′
0 and someR � R′

0 such thatR1/4δ � η, then Eq.(1) has a unique solutionu ∈ C0(R+,H 1(R2))

with initial datau0. Moreover, there existρ ∈ C0(R+,H 1(0,2π)) andρ∞ ∈ L2(0,2π) such that∥∥u(r, θ, t) − w0
(
r − s(θ, t)

)∥∥
H1(R2)

� c0
1/4 ,
(R + ct)
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s(θ, t) = R + ct − 1

c
log

(
R + ct

R

)
+ ρ(θ, t), (9)

lim
t→+∞

∥∥ρ(θ, t) − ρ∞(θ)
∥∥

L2(0,2π)
= 0,

where(r, θ) ∈ R+ × (0,2π) are the polar coordinates inR2.

This second theorem first illustrates Jones’ theorem. Indeed, there exists a class of initial data for which s
converge to a creased profile ast goes to infinity. And, if followed out in a radial direction (i.e., forθ = constant),
the solutions behave asymptotically as a one-dimensional travelling wave whose positions(θ, t) depends on the
radial direction. Precisely, we show thats(θ, t) is given by (9), thatρ(θ, t) converges in theL2(0,2π) norm to a
functionρ∞(θ) and we give an example of initial data for which the solution does not converge to a sphe
symmetric travelling wave, i.e., the corresponding functionρ∞(θ) is not constant. Moreover, we show that the
of all functionsρ∞ that can be constructed in that way, is dense in a ball ofH 1(0,2π). Therefore, there exist a lo
of asymptotic behaviours which look like a creased travelling front which never becomes round.

Finally, this theorem shows that the family of spherically symmetric travelling waves is not asympto
stable for arbitrary perturbations: this means that the higher dimensional casen � 2 is very different from the
one-dimensional casen = 1 where the asymptotical stability of travelling waves has been widely proved.

Let us now make a few technical remarks on the statement of theorem 2. We assume that the initial condit
u0 is close to a travelling wave (δ � δ′

0 small) whose interface{w0 = 1
2} is large enough (R � R′

0 large). The
relationR1/4δ � η should be a technical assumption and we do believe that it can be relaxed by chang
function spaces we use. Actually, we prove in this paper astronger theorem (Theorem 2.5) where this constr
only appears on one part of the perturbation. We also show in this theorem that the perturbation decre
1/(R + ct)1/4. This rate may not be optimal but shows the convergence of the solutions towards travelling
Once more, we prove in Theorem 2.5 a more precise result where the dependance of the initial conditio
convergence rate is emphasized.

Notations. Throughout the paper, we use the following notations:‖ · ‖Z is a norm in the Banach spaceZ, | · | is
the usual norm inR andx is a vector ofRn while (r, θ) are the polar coordinates inR2 wherer � 0, θ ∈ [0,2π).
We also denoteci generic positive constants which may differ from place to place, even in the same ch
inequalities.

1. Radial solutions

The aim of this section is to prove Theorem 1, i.e., the stability of travelling waves against radial perturb
Hence, we only work with spherically symmetric functions and we always use, for convenience, the notationu(r, t)

instead ofũ(r, t) defined in the introduction.
For spherically symmetric solutions, Eq. (1) reduces to the following Cauchy problem:

ut (r, t) = urr(r, t) + n−1
r

ur(r, t) + F(u(r, t)), r > 0, t > 0,

u(r,0) = u0(r), r > 0,

ur |r=0 = 0, t � 0.

The Neumann boundary condition at zero isdue to the regularity of the functionu(x, t), x ∈ Rn. In this section, we
first write a decomposition of the solutionu(r, t) as Kapitula [10] did. Then, we study the new evolution equati
in a moving frame to take advantage of spectral properties of the operatorL0 defined in the introduction.
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We first need to define more precisely a spherically symmetric travelling wave in higher dimension. Si
function

x ∈ Rn �→ W(x, t) = w0

(
|x| − R − ct + n − 1

c
log

(
R + ct

R

))
is not smooth atx = 0, we have to modifyw0 in a functionw called also travelling wave or “modified wave”.

Let χ ∈ C∞(R+) so thatχ(r) ≡ 0 if r � 1 andχ(r) ≡ 1 if r � 2, and define

w(y, r) = 1+ χ(r)
(
w0(y) − 1

)
, (y, r) ∈ R × R+.

Then,w(y, r) is identically equal to 1 ifr � 1 andw(y, r) = w0(y) if r � 2. Note thatr is a positive paramete
which flattens the wave around the origin. Then, for anys ∈ R, r ∈ R+ �→ w(r −s, r) is a function ofY = H 1(R+),
equal to 1 near the origin and decreasing like the wavew0 at infinity. In a similar way,x ∈ Rn �→ w(|x| − s, |x|) is
a spherically symmetric function ofX, equal to 1 near the origin and decreasing like the wavew0 at infinity in all
directions. We also defineψ(y, r) = ᾱχ(r)ψ0(y) whereᾱ has been chosen in (5).

In a neighborhood of the wavew, it will be convenient to use a coordinate system given by(v, s) ∈ Y × R with
perturbations of the wave being given at any time by

u(r) = w(r − s, r) + v(r), r � 0,

wheres is chosen so that
∫ ∞

0 v(r)ψ(r − s, r)dr = 0. We have decomposed the solutionu as a translate of the wav
w and a transversal perturbationv. The following lemma shows that this decomposition is always possible:

Lemma 1.1. There exist positive constantsR1, δ1,K such that for anyR � R1 and anyξ ∈ Y with ‖ξ‖Y � δ1,
threre exists a unique pair(v,ρ) ∈ Y × R such that

(i) ‖v‖Y + |ρ| � K‖ξ‖Y ,

(ii) w(r − R, r) + ξ(r) = w(r − R − ρ, r) + v(r) for all r � 0,

(iii)
∫ ∞

0 v(r)ψ(r − R − ρ, r)dr = 0.

Proof. Define the operatorA : R × Y → R by

A(ρ, ξ) =
∞∫

0

ξ(r)ψ(r − R − ρ, r)dr + ρ

∞∫
0

ψ(r − R − ρ, r)

1∫
0

wy(r − R − ρh, r)dhdr.

SinceA(0,0) = 0 and the derivativeAρ(0,0) = ᾱ2
∫ +∞
−R φ0ψ0(y)χ2(y + R)dy �= 0 for R � R1, by the implicit

function theorem on Banach spaces, there exist a small neighborhoodV = V1 × V2 of (0,0) in R × Y a function
ρ(ξ) :V2 �→ V1 such thatA(ρ(ξ), ξ) = 0 and |ρ| � K‖ξ‖Y for someK > 0. This yields the spatial translation
componentρ. Let v(·) = ξ(·) + w(· − R, ·) − w(· − R − ρ(ξ), ·) a function ofY . Then,‖v‖Y + |ρ| � K‖ξ‖Y for
someK > 0. AsA(ρ(ξ), ξ) = 0, and by Taylor’s theorem,

∫ ∞
0 v(r)ψ(r − R − ρ, r)dr = 0. Then,(v,ρ) satisfies

the lemma if‖ξ‖Y � δ1 whereδ1 > 0 is sufficiently small so thatBY (0, δ1) ⊂ V2. �
Using the result of Lemma 1.1, we can write for anyt � 0 and someR � R1,

u(r, t) = w
(
r − s(t), r

) + v(r, t), r � 0, (10)

s(t) = R + ct − n − 1
log

(
R + ct

)
+ ρ(t),
c R
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∞∫
0

v(r, t)ψ
(
r − s(t), r

)
dr = 0. (11)

By Lemma 1.1, such a decomposition exists if, for allt � 0, the solutionu(r, t) is close to the wave, namely
‖u(r, t) − w(r − s(t), r)‖Y � δ1. This assumption will be validated later by the proof of Theorem 1. We are
going to work with these new variablesv andρ which are more convenient thanu. We first give the equations the
satisfy:

Substitute the decomposition (10) of the solution into Eq. (1) and use equation (3) satisfied byw0 to get the
evolution equation satisfied byv:

vt = vrr + n − 1

r
vr + F ′(w0

(
r − s(t)

))
v

+
(

n − 1

r
− n − 1

R + ct
+ ρ′(t)

)
wy

(
r − s(t), r

) + N + S, r � 0, t > 0,

v(r,0) = v0(r), r � 0,

vr |r=0 = 0, t > 0,

(12)

where

N = F(w + v) − F(w0)χ(r) − F ′(w0)v is the nonlinear term,

S = wrr + 2wry + n − 1

r
wr .

The functionsw,w0,ψ and their derivatives are taken at(r − s(t), r) or (r − s(t)), depending if the wave i
modified or not. Note the Neumann condition at zerovr |r=0 = 0. Indeed, ifu(x) = ũ(|x|), u ∈ C1(R2) is equivalent
to ũ ∈ C1(R+) andũ′(0) = 0. Asu = w+v andw is identically zero near the origin, the regularity ofu is forwarded
to v andvr |r=0 = 0.

Derivating Eq. (11) with respect tot and using Eqs. (8) and (12) satisfied bys andv, we get the evolution
equation satisfied byρ:

ρ′(t)
∞∫

0

(ψwy − vψy)dr =
∞∫

0

[
vΛ − (N + S)ψ

]
dr, t > 0,

ρ(0) = ρ0,

(13)

where

Λ =
(

n − 1

R + ct
− n − 1

r

)
ψy + n − 1

r2 ψ +
(

ψrr + 2ψyr − n − 1

r
ψr

)
+ (

ψyy − cψy + F ′(w0)ψ
)
.

The functionsψ, w, w0 and their derivatives are taken at(r − s(t), r) or (r − s(t)).
We first consider the initial value problem for Eqs. (12), (13):

Lemma 1.2. Fix R > 0. There existδ4 > 0, T > 0 such that for any initial data(v0, ρ0) ∈ Y × R with
‖v0‖Y � δ � δ4 and |ρ0| � 1

2 , the integral equations corresponding to(12), (13)have a unique solution(v,ρ) ∈
C0([0, T ], Y × R). In addition,(v,ρ) ∈ C1((0, T ], Y × R), and Eqs.(12), (13)are satisfied for0 < t � T .

Proof. If ‖v0‖Y � δ andδ � δ4 is sufficiently small, then
∫ ∞

0 ψwy − vψy dr �= 0 andρ′(t) can be expressed eas
as a function ofv andρ. Then, Eqs. (12), (13) can be written as follows:
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rs of

t operator
,
is

1

e

∂t (v, ρ) = L̄(v, ρ) + f (v,ρ, t),

vr |r=0 = 0,

(v, ρ)(0) = (v0, ρ0) ,

where

L̄(v, ρ) = (Lv,0) =
(

∂2
r v + n − 1

r
∂rv,0

)
.

As L̄ generates a semigroup onY × R (see Lemma 1.5 for a detailed proof ) andf ∈ C1(Y × R × R+), the
integral equations corresponding to (12), (13) have a unique solution(v,ρ) ∈ C0([0, T ], Y × R), see for instance
[13]. In addition, this mild solution is classical and(v,ρ) ∈ C1((0, T ], Y × R). �

We now work on the two evolution equations (12), (13) to get information on the asymptotic behaviouv
andρ. Before stating our result, let us explain its content in a heuristic way. Consider first equation (12) forv. The
leading term in the right-hand side is(

n − 1

r
− n − 1

R + ct
+ ρ′(t)

)
wy

(
r − s(t), r

)
,

which decays exponentially in time for any fixedr > 0, but only like(log(R + ct))/(R + ct)2 for r = s(t). On
the other hand, as we shall show in Section 1.2.3, the evolution operator generated by the time-dependen
∂2
r + n−1

r
∂r + F ′(w0(r − s(t))) is exponentially contracting in the space of functionsv satisfying (11). Therefore

we expect the solutionv of (12) to decay like logt/t2 ast goes to infinity. As forρ, we observe that Eq. (13)
close for large times to

ρ′(t) =
∞∫

0

[(
n − 1

R + ct
− n − 1

r

)
ψy + n − 1

r2
ψ

]
v(r, t)dr,

since
∫ ∞

0 ψwy dr is close to
∫

R ψ0φ0 dx = 1. Thus, we also expectρ′(t) to decrease at least like logt/t2 ast goes
to infinity. The following result shows that these heuristic considerations are indeed correct:

Theorem 1.3. There exist positive constantsR2, δ2, c1, c2, γ0 such that, ifR � R2 and(v0, ρ0) ∈ Y × R satisfy
‖v0‖Y � δ2, |ρ0| � 1

2 , then Eqs.(12), (13)have a unique solution(v,ρ) ∈ C0([0,+∞), Y × R) with initial data
(v0, ρ0). In addition,ρ ∈ C1([0,+∞),R) and∥∥v(t)

∥∥
Y

+ ∣∣ρ′(t)
∣∣ � c1‖v0‖Y e−γ0t + c2

log(R + ct)

(R + ct)2 , t � 0.

Theorem 1.3 is a new version of Theorem 1 in the variablesv andρ. We give right now the proof of Theorem
under the assumption that Theorem 1.3 is proved.

Proof of Theorem 1. Let R2, δ2, c1, c2, γ0 be as in Theorem 1.3 andR1, δ1, K be as in Lemma 1.1. Choos
R0 andδ0 so that:

2δ0 � δ1, 2Kδ0 � min

(
δ2,

1

2

)
, R0 � max(R2,R1), c0 e−γ1R0 � δ0,

wherec0 > 0 andγ1 > 0 are chosen so that for anyR � 0,∥∥w0(r − R) − w(r − R, r)
∥∥ � c0 e−γ1R. (14)
Y
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t

n

Let u0 : Rn → R be a spherically symmetric function satisfying∥∥u0(r) − w0(r − R)
∥∥

Y
� δ

for someR � R0 andδ � δ0. Let ξ(r) = u0(r) − w(r − R, r), r � 0. Then,ξ ∈ Y and‖ξ‖Y � δ + c0 e−γ1R �
2δ0 � δ1. Then, by Lemma 1.1, there exists a unique pair(v0, ρ0) ∈ Y × R such that:

(i) ‖v0‖Y + |ρ0| � K‖ξ‖Y ,

(ii) u0(r) = w(r − R, r) + ξ(r) = w(r − R − ρ0, r) + v0(r) for all r � 0,

(iii)
∫ ∞

0 v0(r)ψ(r − R − ρ0, r)dr = 0.

As R � R2 and (v0, ρ0) ∈ Y × R satisfy ‖v0‖Y � δ2 and |ρ0| � 1
2, it follows from Theorem 1.3 tha

Eqs. (12), (13) have a unique solution(v,ρ) ∈ C0([0,+∞), Y × R) with initial data (v0, ρ0). In addition,
ρ ∈ C1([0,+∞),R) and∥∥v(t)

∥∥
Y

+ ∣∣ρ′(t)
∣∣ � c1‖v0‖Y e−γ0t + c2

log(R + ct)

(R + ct)2 , t � 0.

Let u(x, t) = w(|x| − s(t), |x|) + v(|x|, t), x ∈ Rn, wheres(t) is given by (8). Then,u ∈ C0([0,+∞),X) is the
unique solution of Eq. (1) with initial datau0 and∥∥u(x, t) − w0

(|x| − s(t)
)∥∥

X
+ ∣∣ρ′(t)

∣∣
�

∥∥u(x, t) − w
(|x| − s(t), |x|)∥∥

X
+ ∥∥w

(
r − s(t), r

) − w0
(
r − s(t)

)∥∥
Y

+ ∣∣ρ′(t)
∣∣

� c1‖v0‖Y e−γ0t + c2
log(R + ct)

(R + ct)2 + c0 e−γ1s(t)

� c1Kδ e−γ0t + c2
log(R + ct)

(R + ct)2 + c1Kc0 e−γ1R−γ0t + c0 e−γ1s(t).

Definec′
1 = Kc1 andc′

2 so that for anyt � 0, anyR � 0,

c2 + c1c0K
e−γ1R−γ0t

(log(R + ct))/(R + ct)2
+ c0

e−γ1s(t)

(log(R + ct))/(R + ct)2
� c′

2.

Then,∥∥u(x, t) − w0
(|x| − s(t)

)∥∥
X

+ ∣∣ρ′(t)
∣∣ � c′

1δ e−γ0t + c′
2
log(R + ct)

(R + ct)2 .

This ends the proof of Theorem 1.�
1.2. Estimates on the solutionsv andρ

Let us now prove Theorem 1.3. We begin with a proposition close to thistheorem but local in time. We the
show how Theorem 1.3 follows from this proposition.

Proposition 1.4. There exist positive constantsR3, δ3, c1 , c2, γ0 such that, ifR � R3, T > 0 and (v,ρ) ∈
C0([0, T ], Y × R) is any solution of(12), (13)satisfying∥∥v(t)

∥∥
Y

� δ3,
∣∣ρ(t)

∣∣ � 1, 0 � t � T ,

then ∥∥v(t)
∥∥

Y
+ ∣∣ρ′(t)

∣∣ � c1‖v0‖Y e−γ0t + c2
log(R + ct)

2 , 0 � t � T .

(R + ct)
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Proof of Theorem 1.3. Let R3, δ3, c1, c2, γ0 be as in Proposition 1.4 and choose positive constantsR2, δ2 so
thatR2 � R3 and

c1δ2 < min

(
δ3

2
,
γ0

4

)
, δ2 � min

(
δ3

2
, δ4

)
, c2

logR2

R2
2

<
δ3

2
,

c2

c

1+ logR2

R2
<

1

4
.

TakeR � R2 and(v0, ρ0) ∈ Y × R so that‖v0‖Y � δ2, |ρ0| � 1
2. By Lemma 1.2, let(v,ρ) ∈ C0([0, T ∗), Y × R)

be the maximal solution of (12), (13) with initial data(v0, ρ0). Define

T = sup
{
T̃ ∈ [

0, T ∗) ∣∣ ∥∥v(t)
∥∥

Y
� δ3 and

∣∣ρ(t)
∣∣ � 1 for anyt ∈ [

0, T̃
]}

.

Sinceδ2 < δ3, it is clear thatT > 0. We claim thatT = T ∗, which also impliesT = T ∗ = +∞. Indeed, ifT < T ∗,
it follows from Proposition 1.4 that fort ∈ [0, T ],

∥∥v(t)
∥∥

Y
� c1‖v0‖Y e−γ0t + c2

log(R + ct)

(R + ct)2 � c1δ2 + c2
logR2

R2
2

< δ3,

∣∣ρ(t)
∣∣ � |ρ0| +

t∫
0

∣∣ρ′(s)
∣∣ds � 1

2
+ c1δ2

γ0
+ c2

c

1+ logR2

R2
< 1,

which contradicts the definition ofT . ThusT = T ∗ = +∞. Sinceδ2 < δ3, the inequality satisfied by‖v(t)‖Y +
|ρ′(t)| is true for allt � 0 and Theorem 1.3 follows immediately from Proposition 1.4.�

Let us now prove Proposition 1.4. We are first interested in the behaviour ofv which satisfies Eq. (12). The ma
idea is to work, as in one dimension, in the moving frame at speeds(t) to get, in Eq. (12), a time independen
operator instead of∂2

r + n−1
r

∂r + F ′(w0(r − s(t))). Therefore, we need to work on the whole real line wh
is invariant by translation. That is why we first extendv to R by a functionz which is convenient, i.e., whic
decreases exponentially fast in time in theH 1 norm. Precisely, we already explained in a heuristic way thv
decreases exponentially fast ast goes to infinity nearr = 0. Therefore, we first define a functionz equal tov near
the origin and then extendv to R by z. We can then use theorems on spectral perturbations of operators, e
estimates and spectral decomposition to highlight the behaviour ofv in X. As Eqs. (12) and (13), satisfied byv
andρ, are coupled, we need at the end to study the behaviour ofρ as we explained before.

From now on, we fixR > 0 (large), 0< δ � δ4 (small), and we assume that(v,ρ) ∈ C0([0, T ], Y × R) is a
solution of (12), (13) satisfying∥∥v(t)

∥∥
Y

� δ,
∣∣ρ(t)

∣∣ � 1, 0 � t � T ,

for someT > 0. We call these assumptions (H).

1.2.1. Localisation nearr = 0
Let ξ ∈ C∞(R+), R4 � 2 andβ > 0 so thatξ ≡ 1 on[0,R4] andξ(r) ∼ e−βr asr goes to infinity. Let

z(r, t) = ξ(r)v(r, t) (15)

for all r ∈ R+ andt � 0. Then,z is equal tov nearr = 0 and satisfies

zt (r, t) = L1z(r, t) + G1(r, t), r � 0, t > 0,

zr |r=0 = 0, t > 0,

where
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d

t

ly

y

L1 = ∂2
r +

(
n − 1

r
+ a(r)

)
∂r + b(r),

G1(r, t) = (
F ′(w0

(
r − s(t)

)) − h−
)
ξ(r)v(r, t) + (S + N)ξ(r)

+
(

n − 1

r
− n − 1

R + ct
+ ρ′(t)

)
wy

(
r − s(t), r

)
ξ(r),

a(r) = −2ξ ′(r)/ξ(r),

b(r) = 2

(
ξ ′(r)
ξ(r)

)2

− ξ ′′(r)
ξ(r)

− n − 1

r

ξ ′(r)
ξ(r)

+ h−,

h− = inf
[

lim
y→+∞F ′(w0(y)

)
, lim
y→−∞F ′(w0(y)

)]
= inf

(
F ′(0),F ′(1)

)
.

Note thath− < 0 and bequalsh− nearr = 0. Therefore, by choice of appropriateβ, a(r) can be chosen small an
b(r) � −b0 < 0 for all r ∈ R+.

Lemma 1.5. Under assumptions(H) for anyR � R4, L1 generates an analytic semigroup onY and there exis
positive constantsc0, c1, c2, γ2 such that for anyt ∈ (0, T ),∥∥etL1

∥∥
L(Y )

� c0 e−γ2t ,∥∥G1(t)
∥∥

Y
� c1(1+ δ)e−γ2(R+ct) + c2δ

∥∥v(t)
∥∥

Y
.

Proof. We first study the behaviour of‖G1(t)‖Y : it is a standard result that w0, φ0 andψ0 decrease exponential
fast at infinity. Then, it comes that∥∥(

F ′(w0
(
r − s(t)

)) − h−
)
ξ(r)v(r, t)

∥∥
Y

� c0δ e−γ2(R+ct),

‖S‖Y � c0 e−γ2(R+ct).

In addition,N = [F(w + v) − F(w0 + v)] + [F(w0 + v) − F(w0) − F ′(w0)v] + F(w0)(1− χ(r)) and

‖N‖Y � c0 e−γ2(R+ct) + c0‖v‖2
Y � c0 e−γ2(R+ct) + c0δ‖v‖Y .

Finally, we want to bound‖((n − 1)/r − (n − 1)/(R + ct) + ρ′(t))w′
0(r − s(t))χ(r)ξ(r)‖Y . As R � R4,

s(t) � R4 and the particular caser = s(t) explained in a heuristic way does not occur asξ(r) decays exponentiall
fast asr goes to infinity. To conclude, we have to explain the bound of|ρ′(t)|. Indeed, by Eq. (13),∣∣ρ′(t)

∣∣ � c0

(
(1+ δ)e−γ0(R+ct) + δ

log(R + ct)

(R + ct)2
+ δ

(R + ct)2
+ δ‖v‖Y

)
, (16)

and ∥∥∥∥(
n − 1

r
− n − 1

R + ct
+ ρ′(t)

)
w′

0

(
r − s(t)

)
χ(r)ξ(r)

∥∥∥∥
Y

� c2(1+ δ)e−γ2(R+ct).

This ends the proof for‖G1‖Y .
On the other hand, the semi-group generated byL1 onY is studied by energy estimates. Letu be a solution of

ut = L1u, r > 0, t > 0,

ur |r=0 = 0, t > 0,

u(r,0) = u0(r), r > 0.

Let I1(t) = 1 ∫ ∞
u2 dr andI2(t) = 1 ∫ ∞

u2
r dr. Then, the derivatives with respect tot of I1 andI2 satisfy
2 0 2 0
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rated by

for

ptotics
İ1(t) = −2I2 + (n − 1)

∞∫
0

uur

r
dr +

∞∫
0

(
b − a′

2

)
u2 dr,

İ2(t) = −
∞∫

0

u2
rr dr − n − 1

2

∞∫
0

(
ur

r

)2

dr +
∞∫

0

(
b + a′

2

)
u2

r dr −
∞∫

0

b′′

2
u2 dr.

Let introducee > 0, ε > 0, I (t) = I1(t) + eI2(t), then

İ (t) �
∞∫

0

((
b − a′

2

)
− e

b′′

2
+ (n − 1)ε

2

)
u2 dr

+
∞∫

0

(
−1+ e

(
b + a′

2

))
u2

r dr + n − 1

2

(
1

ε
− e

) ∞∫
0

(
ur

r

)2

dr. (17)

Choosing firstε � 1, thene � 1 depending onε andβ � 1 depending one, we obtain(
b − a′

2

)
− e

b′′

2
+ (n − 1)ε

2
� −γ2

2
< 0,

−1+ e

(
b + a′

2

)
� −γ2

2
e < 0,

1

ε
− e � −1,

whereγ2 = |b0|. It follows thatİ (t) � −γ2I (t) and‖u(t)‖Y � c0 e−γ2t‖u0‖Y . This proves the lemma.�
We shall use these calculations to get some further information on the behaviour of the semigroup gene

L1 which are useful in the following sections. Letα(t) = ∫ ∞
0 (ur/r)2 dr. Then, according to (17),

d

dt

(
eγ2t I (t)

) + n − 1

2
eγ2tα(t) � 0.

Integrating the latter inequality betweenσ andt and using Hölder’s inequality, we obtain the following result
γ defined in the introduction and any(σ, t) ∈ (0, T ) such thatσ � t :

t∫
σ

e−γ (t−s)

∥∥∥∥ur

r
(s)

∥∥∥∥
L2(R+)

ds � c3
∥∥u(σ)

∥∥
Y

e−(γ2/2)(t−σ). (18)

In the same way, using convolution inequality‖f ∗ g‖L1(R) � ‖f ‖L1(R)‖g‖L1(R), we obtain forγ ′ < γ2,

t∫
σ

e−γ (t−s)

√
t − s

∥∥∥∥ur

r
(s)

∥∥∥∥
L2(R+)

ds � c3
∥∥u(σ)

∥∥
Y

e−γ ′(t−σ).

The next lemma is a corollary of these calculations and will be used in the following to compute assym
of the solutions(v,ρ).

Lemma 1.6. Under assumptions(H) for anyR � R4, there exist positive constantsc0, c1, c2, γ3 such that for any
t ∈ (0, T ),
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all that
t∫
0

e−γ (t−s)

∥∥∥∥zr

r
(s)

∥∥∥∥
L2(R+)

ds � c0‖v0‖Y e−γ3t + c1(1+ δ)e−γ3(R+ct) + c2δ

t∫
0

e− γ2
2 (t−s)

∥∥v(s)
∥∥

Y
ds,

t∫
0

e−γ (t−s)

√
t − s

∥∥∥∥zr

r
(s)

∥∥∥∥
L2(R+)

ds � c0‖v0‖Y e−γ3t + c1(1+ δ)e−γ3(R+ct) + c2δ

t∫
0

e−γ ′(t−s)
∥∥v(s)

∥∥
Y

ds,

wherez is defined in (15).

Proof. The proofs of these two inequalities are very similar. Therefore, we only prove the first one. We rec
z(r, s) = esL1z0 + ∫ s

0 e(s−σ)L1G1(r, σ )dσ for anyr � 0, s � 0. Then,

t∫
0

e−γ (t−s)

∥∥∥∥zr

r
(s)

∥∥∥∥
L2(R+)

ds

�
t∫

0

e−γ (t−s)

∥∥∥∥∂r

r
esL1z0

∥∥∥∥
L2(R+)

ds +
t∫

0

e−γ (t−s)

s∫
0

∥∥∥∥∂r

r
e(s−σ)L1G1(r, σ )

∥∥∥∥
L2(R+)

dσ ds.

The first term of the right-hand side is bounded by (18):

t∫
0

e−γ (t−s)

∥∥∥∥∂r

r
esL1z0

∥∥∥∥
L2(R+)

ds � c3 e− γ2
2 t‖z0‖Y .

The second term is bounded by Fubini’s theorem, (18) and Lemma 1.5:

t∫
0

s∫
0

e−γ (t−s)

∥∥∥∥∂r

r
e(s−σ)L1G1(r, σ )

∥∥∥∥
L2(R+)

dσ ds �
t∫

0

c3 e−(γ2/2)(t−σ)
∥∥G1(r, σ )

∥∥
Y

dσ

� c1(1+ δ)e−γ3(R+ct) + c2δ

t∫
0

e−(γ2/2)(t−σ)
∥∥v(σ )

∥∥
Y

dσ.

This ends the proof of Lemma 1.6.�
Corollary 1.7. Under assumptions(H) for anyR � R4, the behaviour ofz is a result of Lemma1.5. Indeed, there
exist positive constantsc1, c2, c3 such that for anyt ∈ (0, T ),

∥∥z(t)
∥∥

Y
� c1‖v0‖Y e−γ2t + c2(1+ δ)e−γ2(R+ct) + c3δ

t∫
0

e−γ2(t−s)
∥∥v(s)

∥∥
Y

ds.

1.2.2. Extension to the real line
As we said before, we need to work on the whole real line and therefore to extendv for r < 0. Let

z̃(r, t) =
{

z(−r, t) if r < 0,

v(r, t) if r � 0.

Then,z̃ is smooth inR and satisfies for anyr ∈ R,
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bspace
l

z̃t (r, t) = z̃rr (r, t) + n − 1

r
z̃r (r, t) + F ′(w0

(
r − s(t)

))
z̃(r, t)

+
(

n − 1

r
− n − 1

R + ct
+ ρ′(t)

)
w′

0

(
r − s(t)

)
χ(r) + Ñ + G2(r, t), (19)

where

Ñ =
{

N if r � 0,

Nξ(|r|) if r < 0,

G2(r, t) =



S if r � 0,

azr + (b − h−)z + Sξ
(|r|) + (

F ′(w0
(|r| − s(t)

)) − F ′(w0
(
r − s(t)

)))
z
(|r|, t)

+
(

n − 1

|r| − n − 1

R + ct
+ ρ′(t)

)
w′

0

(|r| − s(t)
)
χ

(|r|)ξ(|r|)
−

(
n − 1

r
− n − 1

R + ct
+ ρ′(t)

)
w′

0

(
r − s(t)

)
χ(r)ξ(r) if r � 0.

Using Lemma 1.5 and Corollary 1.7, we have the following lemma:

Lemma 1.8. Under assumptions(H) with R � R4, there exist positive constantsc1, c2, c3 such that for
any t ∈ (0, T ),

∥∥G2(t)
∥∥

L2(R)
� c1‖v0‖Y e−γ2t + c2(1+ δ)e−γ2(R+ct) + c3δ

t∫
0

e−γ2(t−s)
∥∥v(s)

∥∥
Y

ds.

1.2.3. Moving frame
In order to take advantage of spectral properties of the time independent operatorL0, it is convenient to work in

the moving frame with speeds(t). So letz̄(r − s(t), t) = z̃(r, t) andG3(r − s(t), t) = G2(r, t). Then,z̄ satisfies an
equation similar to (19). Asη(t) = ∫

R z̄(y, t)ψ0(y)dy = ∫
R z̃(r, t)ψ0(r − s(t))dr is nonzero in general,z̄ does not

belong toR. We recall thatR has been defined in the introduction as the supplementary of the spectral su
corresponding to the eigenvalue 0 of the operatorL0 in L2(R). As L0 = ∂2

y + c∂y +F ′(w0) has interesting spectra
properties inR, it is convenient to use the following spectral decomposition:

z̄(y, t) = η(t)φ0(y) + r(y, t), wherer ∈ R. (20)

Note that thisr ∈ R is different from ther ∈ R+ used so far. Before going on, notice thatη(t) decreases
exponentially fast in time:|η(t)| � c0 e−γ4(R+ct) for γ4 > 0, and let introduce a few notations. Letζ ∈ C∞

0 (R),
positive, even, which satisfiesζ ≡ 1 on[−R4,R4] andζ ≡ 0 on [−R4 − 1,R4 + 1]c.

We decompose the nonlinear terms as follows:Ñ = N1 + N2 where

N1 = F(w + r) − F(w0)χ
(
y + s(t)

) − F ′(w0)r and N2 = Ñ − N1.

Then,

‖N1‖L2 � c0‖r‖2
Y + c0 e−γ2(R+ct),

‖N2‖L2 � c0
∣∣η(t)

∣∣. (21)

Substitute the decomposition (20) into Eq. (19) to get:

rt (y, t) = L2r(y, t) + Q(G4)(y, t), t � 0, y ∈ R,∫
r(y, t)ψ0(y)dy = 0, t > 0,
R
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where

L2 = ∂2
y + c∂y + F ′(w0) + Q

(
N1 + (1− ζ )G5

)
G5 =

(
n − 1

y + s(t)
− n − 1

R + ct
+ ρ′(t)

)
ry(y, t)

G4 = G3(y, t) + N2 + ζG5(y, t) +
(

n − 1

y + s(t)
− n − 1

R + ct
+ ρ′(t)

)(
η(t)φ′

0(y) + ξ
(
y + s(t)

)
φ0(y)

)
.

(22)

We recall thatQ is a projector ontoR defined in the introduction.

Lemma 1.9. There exist positive constantsR5, δ5 such that under assumptions(H) with R � R5 andδ � δ5, L2
generates a family of evolution operatorsA(t, s) onR which satisfies∥∥A(t, s)

∥∥
L(R)

� c0 e−γ (t−s), 0 � s � t .

Proof. LetL0 = ∂2
y +c∂y +F ′(w0) defined onR. Thenσ(L0|R) ⊂]−∞;−γ ], γ > 0 and L0 generates an analyt

semi-group onR which satisfies‖etL0‖L(R) � c0 e−γ t andR1/2 ≡ D(L
1/2
0 ) = H 1(R), see for instance [13]. Let

B : R+ −→ L
(
H 1(R),L2(R)

)
,

t �−→ B(t) :H 1(R) → L2(R)

r �→ Q
(
N1 + (1− ζ )G5

)
.

We want to prove thatB is a small perturbation of the operatorL0 which does not affect its exponential decrea
As ‖B(t)‖L(H1,L2) � c0((n − 1)/R + δ), Appendix A ends the proof, namely there exist someR5 � 1 and some
δ5 > 0 so that for allR � R5 andδ � δ5, L2 generates a family of evolution operatorsA(t, s) onR which satisfies
Lemma 1.9 for a slightly differentγ . �
Lemma 1.10. Under hypothesis(H) with R � R4, there exist positive constantsci, i = 0, . . . ,5, andγ5 such that
for any t ∈ (0, T ),∥∥Q(G4)(t)

∥∥
L2(R)

� c0‖v0‖Y e−γ5t + c1(1+ δ)e−γ5(R+ct) + c3
log(R + ct)

(R + ct)2

+ c2δ

t∫
0

e−γ2(t−s)
∥∥v(s)

∥∥
Y

ds + c4
∣∣ρ′(t)

∣∣ + c5

∥∥∥∥zr

r
(t)

∥∥∥∥
L2(R+)

.

Proof. As G4 is given by (22), the first two terms have already been studied in Lemma 1.8 and (21):∥∥Q(G3)(t)
∥∥

L2(R)
�

∥∥G2(t)
∥∥

L2(R+)

� c1‖v0‖Y e−γ2t + c2(1+ δ)e−γ2(R+ct) + c3δ

t∫
0

e−γ2(t−s)
∥∥v(s)

∥∥
Y

ds,

∥∥Q(N2)(t)
∥∥

L2 � c0
∣∣η(t)

∣∣ � c0 e−γ4(R+ct).

The last terms will be cut into four parts with the cut-offζ . As(
n − 1 − n − 1 + ρ′(t)

)
ξ
(
y + s(t)

)
φ0(y)ζ

(
y + s(t)

) = 0

y + s(t) R + ct
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r any
by definition ofξ andζ , we obtain∥∥∥∥(
n − 1

y + s(t)
− n − 1

R + ct
+ ρ′(t)

)
ξ
(
y + s(t)

)
φ0(y)

∥∥∥∥
L2

� c0
log(R + ct)

(R + ct)2
+ c1

∣∣ρ′(t)
∣∣.

In the same way, we get∥∥∥∥(
n − 1

y + s(t)
− n − 1

R + ct
+ ρ′(t)

)
η(t)φ′

0(y)
(
1− ζ

(
y + s(t)

))∥∥∥∥
L2

� c2(1+ δ)e−γ4(R+ct).

Finally, we join the last two terms:∥∥∥∥ζG5 +
(

n − 1

y + s(t)
− n − 1

R + ct
+ ρ′(t)

)
η(t)φ′

0(y)ζ
(
y + s(t)

)∥∥∥∥
L2(R)

�
∥∥∥∥(

n − 1

r
− n − 1

R + ct
+ ρ′(t)

)
ζ(r)z̃r (r, t)

∥∥∥∥
L2(R)

� c2

∥∥∥∥zr(r, t)

r

∥∥∥∥
L2(R+)

+
(

n − 1

R
+ c0δ + c1

)∥∥z(r, t)
∥∥

Y

asz̃ = z = v on [0,R4]. By Corollary 1.7, we conclude that:∥∥∥∥ζG5 +
(

n − 1

y + s(t)
− n − 1

R + ct
+ ρ′(t)

)
η(t)φ′

0(y)ζ
(
y + s(t)

)∥∥∥∥
L2(R)

� c0‖v0‖Y e−γ2t + c1(1+ δ)e−γ2(R+ct) + c2

∥∥∥∥zr (r, t)

r

∥∥∥∥
L2(R+)

+ c3δ

t∫
0

e−γ2(t−s)
∥∥v(s)

∥∥
Y

ds.

Defineγ5 = inf{γ2, γ4}. This ends the proof. �
Corollary 1.11. Under assumptions(H) with R � max(R4,R5) and δ � δ5, there exist positive constantsci ,
i = 1, . . . ,4 andγ7, γ ′ such that for anyt ∈ (0, T ),

∥∥r(t)
∥∥

H1(R)
� c1‖r0‖H1(R) e−γ7t + c2(1+ δ)e−γ7(R+ct) + c3

log(R + ct)

(R + ct)2 + c4

t∫
0

e−γ ′(t−s)

√
(t − s)

∣∣ρ′(s)
∣∣ds.

Proof. We first want to bound theL2 norm of r. As a consequence of Lemmas 1.9, 1.10 and 1.6, we get fo
t ∈ (0, T ),

∥∥r(t)
∥∥

L2(R)
� c1‖r0‖H1(R) e−γ6t + c2(1+ δ)e−γ6(R+ct) + c3

log(R + ct)

(R + ct)2

+ c4

t∫
0

e−γ (t−s)
∣∣ρ′(s)

∣∣ds + c5δ

t∫
0

e−γ6(t−s)
∥∥r(s)

∥∥
H1(R)

ds. (23)

In order to bound theH 1 norm of r, we recall thatrt = L2r + Q(G4) andL2 = L0 + B(t). According to
Lemma 1.9, operatorB(t) is a small perturbation ofL0. Then, the Banach spaceR1/2 can be defined byD(A1/2)

as well asD(L
1/2

), and the graph norms are equivalent. Thus,‖∂xA(t, s)‖L(R) � c0e−γ (t−s)/
√

t−s . In addition,
0
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r(y, t) = A(t,0)r0(y) + ∫ t

0 A(t, s)Q(G4)(y, s)ds. Derivating this last expression with respect toy and bounding
theL2 norm, we get:

∥∥∂yr(t)
∥∥

L2(R)
� c0‖r0‖H1(R) e−γ t +

t∫
0

e−γ (t−s)

√
t − s

∥∥Q(G4)(s)
∥∥

L2 ds.

Finally, by (23) and Lemmas 1.10 and 1.6, we get∥∥r(t)
∥∥

H1(R)
� c1‖r0‖H1(R) e−γ6t + c2(1+ δ)e−γ6(R+ct) + c3

log(R + ct)

(R + ct)2

+ c4

t∫
0

e−γ (t−s)

√
t − s

∣∣ρ′(s)
∣∣ds + c5

t∫
0

e−γ (t−s)

√
t − s

∥∥r(s)
∥∥

H1 ds.

Indeed, by Fubini’s theorem and one integration by parts,
t∫

0

e−γ (t−s)

√
t − s

s∫
0

e−γ2(s−σ)
∥∥v(σ )

∥∥
Y

dσ ds � c0

t∫
0

e−γ ′(t−s)
∥∥v(s)

∥∥
Y

ds.

Gronwall’s lemma ends the proof.�
Corollary 1.12. Under the same assumptions(H) with R � max(R4,R5) andδ � δ5, there exist positive constan
ci , i = 1, . . . ,3, such that for anyt ∈ (0, T ),

∥∥v(t)
∥∥

Y
� c1‖v0‖Y e−γ8t + c2(1+ δ)e−γ8(R+ct) + c3

log(R + ct)

(R + ct)2
+

t∫
0

e−γ (t−s)

√
(t − s)

∣∣ρ′(s)
∣∣ds.

1.2.4. Conclusion

Proof of Proposition 1.4. TakeR3 = max{R4,R5} andδ3 = inf{δ4, δ5}. Let T > 0, δ � δ3 andR � R3. Consider
(v,ρ) ∈ C0([0, T ], Y × R) any solution of (12, 13) satisfying

‖v‖Y � δ,
∣∣ρ(t)

∣∣ � 1, 0� t � T .

Then, assumptions (H) are valid and by inequality (16), Corollary 1.12 and Gronwall’s lemma, there exist p
constantsc1, c2, γ0 such that∥∥v(t)

∥∥
Y

+ ∣∣ρ′(t)
∣∣ � c1‖v0‖Y e−γ0t + c2

log(R + ct)

(R + ct)2 , 0 � t � T .

This ends the proof of Proposition 1.4.�

2. Nonradial solutions

In this section, we deal with nonradial solutions of Eq. (1). We prove, in this case, that travelling wav
Lyapunov stable but not necessarily asymptotically stable for general (i.e., nonnecessarily spherically sym
perturbations. In the first part of this section, we explain how the Lyapunov stability follows from Uchiyama’s
proposition and the maximum principle. In the secondpart, we prove Theorem 2. To this end, we introdu
some energy functionals which enable us to rule out the asymptotic stability of travelling waves against a
small perturbations. In particular, we give an example inR2 of an initial datau0 close to a travelling wave whic
converges to a nonradial profile ast goes to infinity.
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2.1. Lyapunov stability

In the first section, we proved in Theorem 1.3 the local stability of travelling waves inX, i.e., among radia
perturbations. Note that Uchiyama [16] proved a similar result in theL∞ norm in her Lemma 4.5 without an
information on the decay rate of the perturbation. Using comparison theorem, we show easily the Lyap
stability of travelling waves against arbitrary small perturbations.

Proposition 2.1. For any ε > 0, there exist positive constantsR0, δ such that ifu0 : Rn → R is a spherically
symmetric function satisfying∥∥u0(x) − w0

(|x| − R
)∥∥

L∞(Rn)
� δ

for someR � R0, then Eq.(1) has a unique solutionu ∈ C0(R+,L∞(Rn)) with initial datau0 and for all t ∈ R+,∥∥u(x, t) − w0
(|x| − s̄(t)

)∥∥
L∞(Rn)

� ε

wheres̄(t) = R + ct − n−1
c

log(c(R + ct)/R).

Proof. See Uchiyama [16], Lemma 4.5.�
Corollary 2.2. For anyε > 0, there exist positive constantsR0, δ such that ifu0 : Rn → R satisfies∥∥u0(x) − w0

(|x| − R
)∥∥

L∞(Rn)
� δ

for someR � R0, then Eq.(1) has a unique solutionu ∈ C0(R+,L∞(Rn)) with initial datau0 and for all t ∈ R+,∥∥u(x, t) − w0
(|x| − s̄(t)

)∥∥
L∞(Rn)

� ε,

wheres̄(t) = R + ct − n−1
c

log(R+ct
R

).

Proof. Let u(x, t), u1(x, t), u2(x, t) be the solutions of Eq. (1) with initial datau0,w0(|x|−R)−δ, w0(|x|−R)+
δ respectively. Then, combining the maximum principle and Proposition 2.1, we haveu1(x, t) � u(x, t) � u2(x, t)

on Rn × R+ and‖u(x, t) − w0(|x| − s̄(t))‖L∞(Rn) � ε. This ends the proof. �
2.2. Energy estimates

In order to prove Theorem 2 about nonradial profiles, we need to control the perturbation of the wave
particular the shape of the interface. We proceed as in the first section: we decompose the solutionu(x, t) as a
translate of the wave and a transversal perturbation. Weuse the same notations as in Section 1. As is explaine
the introduction, we restrict ourselves for convenience in the two-dimensional case, and we use polar coo
(r, θ) ∈ R+ × [0,2π) in R2. Define the open setΩ = R+∗ × (0,2π) and the measure dν = r dr dθ . We need to
introduce some Banach spaces adapted to these new variables:

W =
{
v(r, θ) ∈ H 1

loc(Ω) | v, vr ,
vθ

r
∈ L2(Ω,dν) andv(r,0) = v(r,2π) in L2

loc

(
R+, dr

)}
,

Z = {
ρ(θ) ∈ H 1(0,2π) | ρ(0) = ρ(2π)

}
.

We also define the associated norms:

‖v‖W =
(∫ (

v2 + v2
r + v2

θ

r2

)
dν

)1/2
Ω
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‖ρ‖Z =
( 2π∫

0

(
ρ2 + ρ2

θ

)
dθ

)1/2

= ‖ρ‖H1(0,2π).

The spaceW does not seem to be very suitable to our problem as the measure dν induces a linear grow in time o
the norm due to the expansion of the front. However, it is convenient for energy estimates as we shall se
In those spaces, the coordinate system developed in the first section is still valid. More precisely, we h
following lemma:

Lemma 2.3. There exist positive constantsR′
1, δ′

1, K ′ such that for anyR � R′
1 and anyξ ∈ W with ‖ξ‖W � δ′

1,
there exists a unique pair(v,ρ) ∈ W × Z with

(i) ‖v‖W + ‖ρ‖Z � K ′‖ξ‖W ,

(ii) w(r − R, r) + ξ(r, θ) = w(r − R − ρ(θ), r) + v(r, θ) for all (r, θ) ∈ �Ω,

(iii)
∫ ∞

0 v(r, θ)ψ(r − R − ρ(θ), r)dr = 0 for anyθ ∈ [0,2π).

Proof. The proof is very similar to the one of Lemma 1.1 and we may omit it.�
Using Lemma 2.3, assuming the solutionu(x, t) is close to a travelling wave, we have for anyt � 0, θ ∈ [0,2π),

and someR � 0,

u(r, θ, t) = w
(
r − s(θ, t), r

) + v(r, θ, t), r � 0, (24)

s(θ, t) = R + ct − 1

c
log

(
R + ct

R

)
+ ρ(θ, t),

∞∫
0

v(r, θ, t)ψ
(
r − s(θ, t), r

)
dr = 0. (25)

Note that according to Jones [8], the solutionu(r, θ, t) is close to a travelling wave in every radial directi
of R2. Therefore, in (25),v is transversal toψ(r − s(θ, t), r) for all θ ∈ [0,2π).

Then, we get two new evolution equations. The one satisfied byv is obtained by equations (1) and (24):

vt (r, θ, t) = �v(r, θ, t) + F ′(w(
r − s(θ, t), r

))
v(r, θ, t) + N + S

+ wy

(
r − s(θ, t), r

)
ρt (θ, t) − 1

r2
∂θ

(
wy(r − s

(
θ, t

)
, r

)
ρθ (θ, t)

)
,

v(r, θ,0) = v0(r, θ),

(26)

where

� = ∂2
r + 1

r
∂r + 1

r2∂2
θ ,

N = F(w + v) − F(w) − F ′(w)v,

S =
(

1

r
− 1

R + ct

)
wy +

(
wrr + 2wry + 1

r
wr

)
+ wyy + cwy + F(w).

Differentiating Eq. (25) with respect tot and integrating by parts, we get as in the first section, the equation sa
by ρ:

ρt (θ, t)λ(∞, θ, t) = −
∞∫

0

g(r, θ, t)dr,

ρ(θ,0) = ρ (θ),

(27)
0
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:

where

λ(r, θ, t) =
r∫

0

(
ψ

(
z − s(θ, t), z

)
wy − ψyv

)
dz,

g(z, θ, t) = g1(z, θ, t) + g2(z, θ, t),

g1(z, θ, t) = vΛ + ψ
(
z − s(θ, t), z

)
(N + S),

g2(z, θ, t) = − 1

z2
ψ∂θ (wyρθ ) + 1

z2
ψvθθ ,

Λ(z, θ, t) =
(

1

R + ct
− 1

z

)
ψy + 1

z2ψ +
(

ψrr + 2ψry − 1

z
ψr

)
+ (

ψyy − cψy + F ′(w)ψ
)
.

As in the first section, we consider the initial value problem for Eqs. (26), (27).

Lemma 2.4. There existR0 > 0, ε0 > 0 and T > 0 such that, for anyR � R0 and for all initial data
(v0, ρ0) ∈ W × Z with ‖v0‖W � ε0 and ‖ρ0‖Z � ε0, the integral equations corresponding to(26), (27)have a
unique solution(v,ρ) ∈ C0([0, T ],W × Z). In addition,(v,ρ) ∈ C1((0, T ],W) × C1((0, T ],Z), and equations
(26), (27)are satisfied for0 < t � T .

Proof. Define ε = δ′
1 and let δ be as in Corollary 2.2. Choose 0< ε0 � δ(1 + c0 e−γ1R0)−1 for some fixed

R0 > 0 large enough. Let(v0, ρ0) ∈ W × Z such that‖v0‖W � ε0 and‖ρ0‖Z � ε0. Finally, defineu0(r, θ) =
w(r − R − ρ0(θ), r) + v0(r, θ). Then,u0 ∈ H 1(R2) and it is a standard result that there exists a unique solu
u(x, t) ∈ C0([0, T ],H 1(R2)) ∩ C1((0, T ],H 1(R2)) to Eq. (1) with initial datau0. According to Corollary 2.2
u(x, t) stay close to a travelling wave in theL∞-norm for allt > 0. By energy estimates, we show in Sections 2
and 2.2.2 that this is also the case in theH 1 norm. Thus, Lemma 2.3 is still valid and there exists a unique
(v,ρ) ∈ W × Z such that (24), (9), (25) hold and(v,ρ) satisfy Eqs. (26), (27). �

These two equations are very similar to those found in the first section. We choose here to deal with
estimates. We study the behaviour of‖v(t)‖W and‖ρ(t)‖Z under the assumption that the initial data are small.
have the following theorem:

Theorem 2.5. There exist positive constantsR1, ε1, n such that if(v0, ρ0) ∈ W × Z satisfy

R1/2‖v0‖2
W + ‖ρ0‖2

Z � ε

for someR � R1 and someε � ε1, then Eqs.(26), (27)have a unique solution(v,ρ) ∈ C0([0,+∞),W × Z) with
initial data (v0, ρ0), and

(R + ct)1/2
∥∥v(t)

∥∥2
W

+ ∥∥ρ(t)
∥∥2

Z
� n

(
ε + 1

R

)
for all t � 0.

These estimates will be useful to prove Theorem 2. We now give the proof of the first part of Theorem 2

Proof of Theorem 2. Let R′
1, δ′

1, K ′ be as in Lemma 2.4,R1, ε1, n as in Theorem 2.5 andc0, γ1 as in (14).
ChooseR′

0, δ′
0 andη such that:

R′
0 � max

(
R1;R′

1

)
, η =

√
ε1

2
√

2K ′

δ′
0 + c0 e−γ1R

′
0 � min

(
δ′

1;2η
)
,

(
R′

0

)1/4
c0 e−γ1R

′
0 � η.
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,

the
Let nowu0 ∈ H 1(R2) such that‖u0(x) − w0(|x| − R)‖H1(R2) � δ for someδ � δ′
0, R � R′

0 andR1/4δ � η.

Let ξ(r, θ) = u0(r, θ) − w(r − R, r). Then, by (14),‖ξ‖W � δ + c0 e−γ1R � δ′
1 andR � R′

1. Thus, by Lemma 2.3
there exists a unique pair(v0, ρ0) ∈ W × Z such that

(i) ‖v0‖W + ‖ρ0‖Z � K ′‖ξ‖W ,

(ii) w(r − R, r) + ξ(r, θ) = w(r − R − ρ0(θ), r) + v0(r, θ) for all (r, θ) ∈ �Ω,

(iii)
∫ ∞

0 v0(r, θ)ψ(r − R − ρ0(θ), r)dr = 0 for any θ∈ [0,2π).

Then, with the above conditions onR andε,

R1/2‖v0‖2
W + ‖ρ0‖2

Z � ε1, R � R1.

Then, by Theorem 2.5, Eqs. (26), (27) have a unique solution(v,ρ) in C0([0,+∞),W × Z) and

(R + ct)1/2
∥∥v(t)

∥∥2
W

+ ∥∥ρ(t)
∥∥2

Z
� n

(
ε + 1

R

)
for all t � 0.

Let u(r, θ, t) = w(r − s(θ, t), r) + v(r, θ, t) wheres(θ, t) is given by (9). Then, by (14),u is a solution of (1)
satisfying∥∥u(r, θ, t) − w0

(
r − s(θ, t)

)∥∥
W

� c0

(R + ct)1/4 .

This ends the proof of the first part of Theorem 2.�
We now prove Theorem 2.5. Therefore, we introduce a few functionals linked with the norms ofv andρ in W

andZ respectively.

2.2.1. Definition of primitive and functionals
If T > 0 and(v,ρ) ∈ C1((0, T ],W × Z) is any solution of (26), (27), we first introduce functionals for

functionsv andρ:

E1(t) = 1

2

∥∥v(t)
∥∥2

L2(R2)
= 1

2

2π∫
0

∞∫
0

v2(r, θ, t)r dr dθ = 1

2

∫
Ω

v2 dν,

E2(t) = 1

2

∥∥∇v(t)
∥∥2

L2(R2)
= 1

2

∫
Ω

(
v2
r + v2

θ

r2

)
dν,

E3(t) = 1

2

∥∥�v(t)
∥∥2

L2(R2)
= 1

2

∫
Ω

(
vrr + vr

r
+ vθθ

r2

)2

dν,

E4(t) = 1

2

∥∥ρ(t)
∥∥2

L2(0,2π)
= 1

2

2π∫
0

ρ2(θ, t)dθ,

E5(t) = 1

2

∥∥ρθ (t)
∥∥2

L2(0,2π)
= 1

2

2π∫
0

ρ2
θ (θ, t)dθ,

E6(t) = 1

2

∥∥ρθθ (t)
∥∥2

L2(0,2π)
= 1

2

2π∫
ρ2

θθ (θ, t)dθ.
0



V. Roussier / Ann. I. H. Poincaré – AN 21 (2004) 341–379 363

r
ted
It will be useful to consider also the weighted primitiveV of v:

V (r, θ, t) =
r∫

0

v(z, θ, t)ψ
(
z − s(θ, t), z

)
dz = −

∞∫
r

v(z, θ, t)ψ
(
z − s(θ, t), z

)
dz.

Note thatV (0, θ, t) = V (∞, θ, t) = 0 asv is a transversal perturbation for anyθ ∈ (0,2π), see (25). Unde
the above assumptions onv and ρ, V ∈ C1((0, T ],W) and it satisfies an evolution equation easily compu
by integrations by parts from (26), (27):

Vt = Vrr − ω1(r, θ, t)Vr + G5(r, θ, t), (28)

where

ω1(r, θ, t) = 2
ψ ′

0(r − s(θ, t))

ψ0(r − s(θ, t))
+ 2

χ ′(r)
χ(r)

− 1

r
,

G5(r, θ, t) =
(

1− λ(r, θ, t)

λ(∞, θ, t)

) r∫
0

g(z, θ, t)dz − λ(r, θ, t)

λ(∞, θ, t)

∞∫
r

g(z, θ, t)dz.

We also consider the last functionalE0 for V :

E0(t) = 1

2

∥∥V (t)
∥∥2

L2(R2)
= 1

2

∫
Ω

V 2(r, θ, t)dν.

Note that there exist two positive constantsl1 andl2 such that for anyt ∈ (0, T ) (see Appendix B),

l1E1(t) � E0(t) � l2E1(t). (29)

We first give the equations satisfied by these functionals and then find the inequalities involvingE0 to E6 which
are useful for the next calculations.

Lemma 2.6. If T > 0 and (v,ρ) ∈ C1((0, T ],W × Z) is any solution of(26), (27), thenEi ∈ C1((0, T ]) for
i = 0, . . . ,6. E0 satisfies the equation:

Ė0(t) = −
∫
Ω

V 2
r dν +

∫
Ω

(
ψ ′

0(r − s(θ, t))

ψ0(r − s(θ, t))

)′
V 2 dν

+
∫
Ω

ω2(r, θ, t)V 2 dr dθ +
∫
Ω

V (r, θ, t)G5(r, θ, t)dν, (30)

whereω2(r, θ, t) = ψ ′
0(r − s(θ, t))/ψ0(r − s(θ, t)) + χ ′(r)/χ(r) + (χ ′(r)/χ(r))′r.

Moreover, the functionsE1,E2,E4 andE5 satisfy:

Ė1(t) = −2E2 +
∫
Ω

F ′(w)v2 dν +
∫
Ω

v

(
wyρt − 1

r2
∂θ (wyρθ ) + N + S

)
dν,

Ė2(t) = −2E3 −
∫
Ω

�v

(
F ′(w)v + wyρt − 1

r2∂θ (wyρθ ) + N + S

)
dν,

(31)

Ė4(t) = −
∫
Ω

ρ2
θ

r2

ψwy

λ(∞, θ, t)
dr dθ +

∫
Ω

ρρ2
θ

r2

ψywy

λ(∞, θ, t)
dr dθ

+
∫

ρρθ

r2 ψwy

λθ (∞)

λ2(∞)
dr dθ −

∫
ρ

λ(∞, θ, t)

(
g1 + 1

r2ψvθθ

)
dr dθ, (32)
Ω Ω
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r
n

elow,

we do
Ė5(t) = −
∫
Ω

ρ2
θθ

r2

ψwy

λ(∞, θ, t)
dr dθ +

∫
Ω

ρθθρ
2
θ

r2

ψwyy

λ(∞, θ, t)
dr dθ

+
∫
Ω

ρθθ

λ(∞, θ, t)

(
g1 + 1

r2ψvθθ

)
dr dθ. (33)

Proof. Obviously,Ė0(t) = ∫
Ω

V Vt dν. Eq. (28) and integrations by parts yield to the desired expression foĖ0.
The derivatives with respect tot of E1 andE2 are more easily computed by analogy with the heat equation iR2

with usual coordinatesx ∈ R2 instead of polar coordinates. As far as the functionals forρ are concerned,̇E4 and
Ė5 are computed by a few integrations by parts. Note that all the functions depending onθ are 2π periodic. The
expressions ofĖ4 andĖ5 have been put in that way to highlight the first terms. Indeed, as we shall see b∫
Ω(ρ2

θ /r2)(ψwy/λ(∞))dr dθ behaves essentially likeE5(t)/(R + ct)2 and
∫
Ω(ρ2

θθ /r
2)(ψwy/λ(∞))dr dθ like

E6(t)/(R + ct)2. These quantities are going to play an important role in the next energy estimates. Finally,
not mind aboutĖ3 andĖ6 as we are only interested in theH 1 norms ofv andρ. �
2.2.2. Bounds on the functionals and proof of Theorem2.5
Proposition 2.7. There exist positive constantsR2, ε2, k, c0, d , e6 andeij for (i, j) ∈ {0, . . . ,6}2 such that ifT > 0
and(v,ρ) ∈ C0([0, T ],W × Z) is any solution of(26), (27)satisfying for allt ∈ [0, T ],∥∥v(t)

∥∥2
W

+ ∥∥ρ(t)
∥∥2

Z
� ε

for someR � R2 and someε � ε2, then the following inequalities hold:

Ė0(t) � −
∫
Ω

ψ2v2 dν + e01E1 + e02E2 + e6√
R + ct

E6

(R + ct)2 + c0

(R + ct)2 ,

Ė1(t) � −2E2 +
∫
Ω

F ′(w)v2 dν + e11E1 + e12E2 + e13E3

+ e15
E5

(R + ct)2
+ e6√

R + ct

E6

(R + ct)2
+ c0

(R + ct)3
,

Ė2(t) � −2E3 + (e21 + (dk)2)E1 + e22E2 + (e23 + 1)E3

+ e25
E5

(R + ct)2 + e6√
R + ct

E6

(R + ct)2 + c0

(R + ct)3 , (34)

Ė4(t) � −d
E5

(R + ct)2
+ e41E1 + e42E2 + e43E3 + e45

E5

(R + ct)2
+ e46

E6

(R + ct)2
+ c0

(R + ct)2
,

Ė5(t) � −d
E6

(R + ct)2 + e51E1 + e52E2 + e53E3 +
(

e56 + d

4

)
E6

(R + ct)2

+ c0

(R + ct)2
+ 2

d
(R + ct)(E1 + E2)

2

and

sup
x∈R

(
F ′(w0(x)

) − kψ2
0(x)

)
� −2.

Moreover, constantseij can be chosen as small as we want by choosingR2 large enough andε2 small enough.

We prove right now how Theorem 2.5 follows from Proposition 2.7.
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d

rst

, if
Proof of Theorem 2.5. Let R2, ε2, k, c0, d, e6 andeij be as in Proposition 2.7,R0, ε0 be as in Lemma 2.4 an
l1, l2 as in (29). Choosem > 0, R1 > 0, ε1 > 0, l = 1/a > 0 such that

R1 � max
(
1,R0,R2, a

2, ac
)
, ε1 � min

(
ε2

0, ε2
)
,

√
ε1

R
1/4
1

� ε0, m(dk)2 � 1

2
,

wherea = max(1+ kl2,m) andb = min(1+ kl1,m). We also request that for anyR � R1, and any 0< ε � ε1, the
following inequalities hold for anyt � 0:

ke01 + e11 + m(e21 + (dk)2) + e41 + e51 � 1,

−2+ ke02 + e12 + me22 + e42 + e52 � −1,

−2m + e13 + m(e23 + 1) + e43 + e53 � −m

2
, (35)

−d + e15 + me25 + e45 � 0,

−d + k
e6√

R + ct
+ e6√

R + ct
+ m

e6√
R + ct

+ e46 + e56 + d

4
� −d

2
.

This is possible by first choosingm > 0, thenε1 small enough andR1 large enough. TakeR � R1, ε � ε1 and
(v0, ρ0) ∈ W × Z satisfying

R1/2‖v0‖2
W + ‖ρ0‖2

Z � ε.

By Lemma 2.4, let(v,ρ) ∈ C0([0, T ∗),W × Z) be the maximal solution of (26), (27) with initial data(v0, ρ0).
Define, for somen ∈ N∗,

T = sup

{
T̃ ∈ [

0, T ∗) ∣∣∣ (R + ct)1/2
∥∥v(t)

∥∥2
W

+ ∥∥ρ(t)
∥∥2

Z
� n

(
ε + 1

R

)

and

t∫
0

(R + cs)U2(s)ds � 2

(
ε + 1

R

)
for 0 � t � T̃

}
,

where

U(t) = kE0 + E1 + mE2 and b(E1 + E2) � U(t) � a(E1 + E2).

We also give some conditions onn: we assume that

a

b
+

(
2(k + 1+ m)e6

db

(
1+ √

2
) + 1

)(
a + 4

db2

)
� n − 1, (36)(

2(k + 1+ m)e6

db

(
1+ √

2
) + 1

)(
c̄

c
+ 4

db2

)
+ c̄

2b
+ c̄

√
2

bl
� n − 1, (37)

a2ε1

l
+ 2an

l

(
2(k + 1+ m)e6ε̃1

d
+ 2c̄

cR
1/2
1

)
� 1, (38)

n

(
ε1 + 1

R1

)
� ε2, (39)

whereε̃1 = aε1 + c̄/(cR1) + 4/(db2)(ε1 + 1/R1) andc̄ is definied by (40), (43) and (44). This is possible by fi
choosingn large enough such that the first two inequalities are valid and finallyε1 small enough andR1 large
enough such that the last two inequalities hold.

By continuity of v andρ, it is clear thatT > 0. We claim thatT = T ∗, which also impliesT = T ∗ = +∞.
Then, the inequalities satisfied byv andρ are true for allt � 0 and Theorem 2.5 follows immediately. Indeed
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et
T < T ∗, it follows from Proposition 2.7and inequality (39) that fort ∈ [0, T ], inequalities (34) are satisfied. To g
a contradiction on the definition ofT , we must judiciously bound the expressions(R + ct)1/2‖v(t)‖2

W + ‖ρ(t)‖2
Z

and
∫ t

0(R + cs)U2(s)ds. Therefore, define

E(t) = kE0 + E1 + mE2 + E4 + E5 = U(t) + E4 + E5.

Using (34) and (36), there existsc̄ > 0 such that

Ė(t) � −E1 − E2 − m

2
E3(t) − dE6(t)

2(R + ct)2
+ c̄

(R + ct)2
+ 2

d
(R + ct)(E1 + E2)

2. (40)

Integrating this inequality between 0 andt � T , we get

E(t) +
t∫

0

(E1 + E2)(s)ds +
t∫

0

m

2
E3(s)ds +

t∫
0

dE6(s)

2(R + cs)2 ds

� E(0) +
t∫

0

c̄

(R + cs)2
ds +

t∫
0

2

d
(R + cs)(E1 + E2)

2(s)ds � ε̃, (41)

whereε̃ = aε + c̄/(cR) + 4/(db2)(ε + 1/R). Moreover, we also get from inequalities (34) that

U̇(t) � −E1(t) − E2(t) + f (t) � −lU(t) + f (t), (42)

where

f (t) = (k + 1+ m)e6√
R + ct

E6(t)

(R + ct)2 + (e15 + me25)E5(t)

(R + ct)2 + c0

(R + ct)2 .

Then,U(t) � U(0)e−lt + ∫ t

0 e−l(t−s)f (s)ds. Finally,

E1(t) + E2(t) � aε

b
√

R
e−lt +

t∫
0

f (s)

b
e−l(t−s) ds.

To evaluate this last integral, we cut it into two parts and use inequality (41) and the fact thatE5(t) � n(ε +1/R) �
ε2:

t/2∫
0

e−l(t−s)f (s)ds � e−lt/2
(

2(k + 1+ m)e6ε̃

d
√

R
+ c0t

2R2

)
,

t∫
t/2

e−l(t−s)f (s)ds � e6(k + 1+ m)√
R + ct/2

t∫
t/2

E6(s)

(R + cs)2 ds + c0

l(R + ct/2)2

� 2(k + 1+ m)e6ε̃

d
√

R + ct/2
+ c0

l(R + ct/2)2
.

Finally, using (36), (37), (41) and the above inequalities, there existsc̄ > 0 such that

(R + ct)1/2(E1 + E2)(t) + E4(t) + E5(t)

� aε

b
+ 2(k + 1+ m)e6ε̃

db
+ c̄

2bR3/2
+

√
2

b

(
2(k + 1+ m)e6ε̃

d
+ c̄

lR3/2

)
+ ε̃

� (n − 1)

(
ε + 1

)
. (43)
R
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4).
d the
to
For the
We now want to evaluate the integral
∫ t

0(R + cs)U2(s)ds. Therefore, define

G(t) = (R + ct)U2(t).

Then, using (42) andR1 � ac,

dG
dt

� −lG + 2an

(
ε + 1

R

)(
(k + 1+ m)e6E6(t)

(R + ct)2 + c0

(R + ct)3/2

)
.

By Gronwall’s lemma, we get a bound onG and by integrating between 0 andt ,

t∫
0

G(s)ds � a2ε2

l
+ 2an

(
ε + 1

R

) t∫
0

s∫
0

e−l(s−τ )

(
(k + 1+ m)e6E6(τ )

(R + cτ)2 + c0

(R + cτ)3/2

)
dτ ds.

Finally, by Fubini’s theorem, (41) and (38), there existsc̄ > 0 such that

t∫
0

(R + cs)U2(s)ds � a2ε2

l
+ 2an

l

(
ε + 1

R

)(
2(k + 1+ m)e6ε̃

d
+ 2c̄

cR1/2

)
�

(
ε + 1

R

)
. (44)

Then, by (43) and (44), we get for anyε � ε1 and anyR � R1,

(R + ct)1/2(E1 + E2) + E4 + E5 � (n − 1)

(
ε + 1

R

)
,

t∫
0

(R + cs)U2 ds �
(

ε + 1

R

)
for all 0� t � T . This contradicts the definition ofT and concludes the proof.�
2.2.3. Proofof Proposition2.7

The proof of Proposition 2.7 is technical and we need a few intermediate lemmas to prove inequalities (3
We only use a few fundamental ideas: Cauchy–Schwartz’ inequality, Jensen’s inequality, Schur’s lemma an
fact thatψ0(r − R − ct) andφ0(r − R − ct) are localized aroundr = R + ct . We encourage the reader to refer
Appendix B where we explain in detail the way those fundamental ideas are used in the following lemmas.
whole Section 2.2.3, we call(H) the following assumptions:

Fix ε, R, T positive constants.
Let (v,ρ) ∈ C0([0, T ],W × Z) be any solution of (26), (27) satisfying∥∥v(t)

∥∥2
W

+ ∥∥ρ(t)
∥∥2

Z
� ε, t ∈ [0, T ]. (45)

In the following six lemmas, we prove that inequalities (34) follow from Eqs. (30)–(33) –Ė0 to Ė6 and
inequality (45).

Lemma 2.8. Under assumptions(H), there exist positive constantsR2, ε2, c0 such that for anyt ∈ (0, T ] and any
R � R2, ε � ε2,

‖ρt‖L2(0,2π) � c0

(
E

1/2
6

(R + ct)2
+ E

3/4
5 E

1/4
6

(R + ct)2
+ A + B

)
,

where
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d
d

e

A =
(

E6

(R + ct)2

)1/2[
E1

(R + ct)2
+ (E1 + E2)

1/2E
1/4
5

(R + ct)5/4
+ (E1E2)

1/4

R + ct
+ (E1E5)

1/2

(R + ct)3/2

]

+ E
1/2
3

(R + ct)3/2
+

(
E6

(R + ct)2

)1/4E
1/2
2 E

1/4
5

R + ct
,

B = 2E
1/2
1

(R + ct)5/2
+ E1 + E2√

R + ct
+ 1

(R + ct)2
.

Proof. ρ is a solution of Eq. (27) and we want to bound theL2 norm of ρt . Therefore, we need to boun
λ(∞, θ, t) from below and| ∫ ∞

0 g(r, θ, t)dr| from above. Using Jensen’s and Cauchy–Schwartz’ inequalities an
the Sobolev’s embeddingH 1(R2) ↪→ L4(R2), we first have

sup
θ∈(0,2π)

∣∣∣∣∣
∞∫

0

ψyv dr

∣∣∣∣∣
2

� sup
θ∈(0,2π)

∞∫
0

∣∣ψyv2
∣∣dr (Jensen)

�
2π∫
0

∞∫
0

∣∣v2ψy

∣∣dr dθ +
2π∫
0

∞∫
0

|2vvθψy |dr dθ +
2π∫
0

∞∫
0

∣∣v2ρθψyy

∣∣dr dθ

� c0

(
E1

R + ct
+ (E1E2)

1/2 + E
1/2
5

(E1 + E2)

(R + ct)1/2

)
� c0ε

as for any functionf such that
∫ 2π

0 f (θ)dθ = 0, sup|f | � ∫ 2π

0 |fθ |dθ .
As λ(∞, θ, t) = ∫ ∞

0 ψwy dr − ∫ ∞
0 ψyv dr and

∫ ∞
0 ψwy dr = 1− O(e−(R+ct)), we have

1− c0
(
ε1/2 + e−R

)
� λ(∞, θ, t)

for anyθ ∈ (0,2π) and anyt > 0. Then, for convenientε2 andR2, λ(∞, θ, t)−1 � 2 for anyθ ∈ (0,2π), t > 0,

R � R2 andε � ε2.
Moreover, using Schur’s lemma (see Appendix B), we have∥∥∥∥∥ρθθ

∞∫
0

ψwy

r2λ(∞, θ, t)
dr

∥∥∥∥∥
L2(0,2π)

�
c0E

1/2
6

(R + ct)2

and ∥∥∥∥∥ρ2
θ

∞∫
0

ψwyy

r2λ(∞, θ, t)
dr

∥∥∥∥∥
L2(0,2π)

� c0

(R + ct)2
‖ρθ‖L2(0,2π)‖ρθ‖L∞(0,2π) �

c0E
3/4
5 E

1/4
6

(R + ct)2

as ‖ρθ‖L∞(0,2π) � (E5E6)
1/4. To bound the norm of

∫ ∞
0 (ψvθθ /(r2λ(∞)))dr, we introduce the differenc

1/r2 − 1/(R + ct)2:

∞∫
ψvθθ

r2λ(∞, θ, t)
dr =

∞∫ (
1

(R + ct)2 − 1

r2

)
ψvθθ

λ(∞)
dr + 1

(R + ct)2

∞∫
ψvθθ

λ(∞)
dr.
0 0 0
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d the

at
nd
The first term is bounded in theL2(0,2π) norm byE
1/2
3 /(R + ct)3/2. For the second one, we write

∫ ∞
0 ψvθθ dr

with derivatives ofρ andv by derivating twice identity (11) with respect toθ :

∞∫
0

ψvθθ dr = ρθθ

∞∫
0

ψyv dr − ρ2
θ

∞∫
0

ψyyv dr + 2ρθ

∞∫
0

ψyvθ dr.

Finally, by Jensen’s and Cauchy–Schwartz’ inequalities, Schur’s lemma and the Sobolev’s embeddingH 1(R2) ↪→
L4(R2), we get∥∥∥∥∥

∞∫
0

ψvθθ dr

∥∥∥∥∥
L2(0,2π)

� c0

( 2π∫
0

∞∫
0

ρ2
θθψyv2 dr dθ

)1/2

+ c0

( 2π∫
0

∞∫
0

ρ4
θ ψyyv2 dr dθ

)1/2

+ c0

( 2π∫
0

∞∫
0

ρ2
θ ψyv2

θ dr dθ

)1/2

� c0‖ρθθ‖L2(0,2π)

∥∥∥∥∥
∞∫

0

ψyv2 dr

∥∥∥∥∥
1/2

L∞(0,2π)

+ c0‖ρθ‖2
L∞(0,2π)

( 2π∫
0

∞∫
0

v2

r
ψyy dν

)1/2

+ c0‖ρθ‖L∞(0,2π)

( 2π∫
0

∞∫
0

v2
θ

r2 ψyr dν

)1/2

� c0E
1/2
6

(
E1

R + ct
+ (E1E2)

1/4 + E
1/4
5

(E1 + E2)
1/2

(R + ct)1/4

)
+ c0

(
E1E5E6

R + ct

)1/2

+ c0(E5E6)
1/4

√
R + ctE

1/2
2 .

Then,∥∥∥∥∥
∞∫

0

ψvθθ

r2λ(∞, θ, t)
dr

∥∥∥∥∥
L2(0,2π)

� c0A.

The last term
∫ ∞

0 vΛ+ψ(N +S)dr is bounded by Jensen’s inequality, Schur’s lemma (see Appendix B) an
Sobolev’s embeddingH 1(R2) ↪→ L4(R2). Then,‖ ∫ ∞

0 vΛ + ψ(N + S)dr‖L2(0,2π) � c0B. Notice that asH 1(R2)

is not an algebra, we need some more assumptions to bound the norm ofN . We assumed in the introduction th
every solution ofut = F(u) is uniformly bounded in time. Therefore,v is bounded and Taylor’s theorem a
Sobolev’s embedding enable us to bound‖N‖L2(R2). This concludes the proof of Lemma 2.8.�
Lemma 2.9. Under assumptions(H), there exist positive constantsc0, R2, ε2 such that for anyt ∈ [0, T ] and any
R � R2, ε � ε2,

Ė0(t) � −
∫
Ω

ψ2v2 dν + c0

(
E1

R + ct
+ E

1/2
0 B + C

)
,

where
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y

before.
C = E2

R + ct
+

(
E6

(R + ct)2

)1/4( (E1E2)
1/2E

1/4
5√

R + ct
+ (E0E2)

1/2E
1/4
5√

R + ct

)
+

(
E6

(R + ct)2

)1/2(
(E0E5)

1/2

R + ct
+ (E1E5)

1/2

R + ct

)
+ (E2E5)

1/2

R + ct
.

Consequently, there exist positive constantse01, e02, e6 such that

Ė0(t) � −
∫
Ω

ψ2v2 dν + e01E1 + e02E2 + e6√
R + ct

E6

(R + ct)2
+ c0

(R + ct)2
,

wheree01 ande02 can be chosen small with appropriateR2 andε2.

Proof. We know thatVr = ψv; by Appendix C, we have(ψ ′
0/ψ0)

′ = (φ′
0/φ0)

′ < 0 and there exists some consta
c0 > 0 such that|ω2| < c0. Then, by Eq. (30), the only difficulty iṅE0 comes from

∫
Ω

V G5 dν. If r � R + ct , the
main term inG5 is

∫ r

0 g dz and if r � R + ct,
∫ ∞
r g dz. We bound separately the term withg1 and the one withg2.

The term withg1 is bounded byE1/2
0 B as in Lemma 2.8. The term withg2 is bounded after one integration b

parts inθ , Cauchy–Schwartz’ and Jensen’s inequalities byC. Indeed, ifr � R + ct , as

Vθ =
r∫

0

(ψvθ − ρθψyv)dz,

R+ct∫
0

2π∫
0

V (r, θ, t)

r∫
0

g2(z, θ, t)dzdν = −
R+ct∫
0

2π∫
0

1

r2

( r∫
0

ψvθdz

)2

dν

+
R+ct∫
0

2π∫
0

( r∫
0

ψvθ dz

)( r∫
0

ψvθ

(
1

r2
− 1

z2

)
dz

)
dν +

R+ct∫
0

2π∫
0

ρθ

( r∫
0

ψyv dz

)( r∫
0

ψ
vθ

z2
dz

)
dν

+
R+ct∫
0

2π∫
0

ρθV

( r∫
0

ψy
vθ

z2
dz

)
dν −

R+ct∫
0

2π∫
0

ρ2
θ V

( r∫
0

ψywy

z2
dz

)
dν

+
R+ct∫
0

2π∫
0

ρθ

( r∫
0

ψwy

z2
dz

)( r∫
0

ψvθ dz

)
dν −

R+ct∫
0

2π∫
0

ρ2
θ

( r∫
0

ψwy

z2
dz

)(∫
ψyv dz

)
dν.

Notice that the first term is negative and can be omitted. The following terms can be treated as described
Inequality (34) forĖ0 is easily computed from this result using inequalities such asab � (a2 + b2)/2. Then,

e01 = c0

(
1

R + ct
+

√
ε√

R + ct
+

√
ε

R + ct

)
,

e02 = c0

(
1

R + ct
+

√
ε√

R + ct
+ √

ε

)
,

e6 = c0

( √
ε√

R + ct
+ √

ε

)
.

We easily notice thate01 ande02 can be chosen very small with appropriateR2 andε2.
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Lemma 2.10. Under assumptions(H), there exist positive constantsc0, R2, ε2 such that for anyt ∈ (0, T ] and
anyR � R2, ε � ε2,

Ė1(t) � −2E2 +
∫
Ω

F ′(w)v2 dν + c0
(
E

1/2
1 D + (E1 + E2)

3/2),
where

D = √
R + ct ‖ρt‖L2 + 1√

R + ct

(
E6

(R + ct)2

)1/2

+ E
3/4
5

R + ct

(
E6

(R + ct)2

)1/4

+ 1

(R + ct)3/2 .

Consequently, there exist positive constantse11, e12, e13, e15 ande6 such that

Ė1(t) � −2E2 +
∫
Ω

F ′(w)v2 dν + e11E1 + e12E2 + e13E3

+ e15
E5

(R + ct)2
+ e6√

R + ct

E6

(R + ct)2
+ c0

(R + ct)3
,

where{e1j }j=1,...,5 can be chosen small with appropriateR2 andε2.

Proof. From Eq. (31), we bounḋE1(t) term by term:‖vρtwy‖L2(R2) is bounded with Cauchy–Schwartz’ inequality

by
√

R + ct ‖ρt‖L2(0,2π)E
1/2
1 . The three other terms are bounded as explained in Appendix B:∥∥∥∥ v

r2ρθθwy

∥∥∥∥
L2(R2)

� c0
E

1/2
6 E

1/2
1

(R + ct)3/2 ,

∥∥∥∥ v

r2ρ2
θ wyy

∥∥∥∥
L2(R2)

� c0
E

1/2
1 E

3/4
5 E

1/4
6

(R + ct)3/2 ,

∥∥v(N + S)
∥∥

L2(R2)
� c0

(
(E1 + E2)

3/2 + E
1/2
1

(R + ct)3/2

)
.

This last inequality is also obtained by Sobolev’s embeddingH 1(R2) ↪→ L3(R2). We then get inequality (34) fo
Ė1 using inequalities such asab � (a2 + b2)/2. �
Lemma 2.11. Under assumptions(H), there exist positive constantsc0, d, R2, ε2 and k > 1 such that for any
t ∈ (0, T ] andR � R2, ε � ε2,

Ė2(t) � −2E3 + c0E
1/2
3

(
(dk)E

1/2
1 + E1 + E2 + D

)
.

Consequently, there exist positive constantse21, e22, e23, e25 ande6 such that

Ė2(t) � −2E3 + (
e21 + (dk)2)E1 + e22E2 + (e23 + 1)E3

+ e25
E5

(R + ct)2 + e6√
R + ct

E6

(R + ct)2 + c0

(R + ct)3 ,

where{e2j }j=1,...,5 can be chosen small with appropriateR2 andε2.

Proof. The proof of this lemma is very similar to the last one and we may leave it out. Notice thatk large enough
can be chosen so that sup(F ′(w0) − kψ2

0) � −2. Then, sup|F ′(w0)| � dk. Once more, inequality (34) foṙE2
follows for R � R2 andε � ε2. �
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er,
Lemma 2.12. Under assumptions(H), there exist positive constantsc0, d, R2, ε2 such that for anyt ∈ (0, T ] and
anyR � R2, ε � ε2,

Ė4(t) � −d
E5

(R + ct)2
+ c0E

1/2
4

(
E

3/4
5

(R + ct)3/2

(
E6

(R + ct)2

)1/4

+ A + B + G

)
,

where

G = E
1/4
5

(R + ct)3/2

(
E6

(R + ct)2

)1/4(
E

1/2
5 + E

1/2
1 E

1/4
5

(
E6

(R + ct)2

)1/4

+ √
R + ctE

1/2
2

)
.

Consequently, there exist positive constantse41, e42, e43, e45 ande46 such that

Ė4(t) � −d
E5

(R + ct)2
+ e41E1 + e42E2 + e43E3 + e45

E5

(R + ct)2
+ e46

E6

(R + ct)2
+ c0

(R + ct)2
,

where{e4j }j=1,...,6 can be chosen small with appropriateR2 andε2.

Proof. From Eq. (32), we bounḋE4 term by term. The only difficulty which has not been seen yet in the prev
lemmas is the termG which can be bounded by∫

Ω

ρρθ

r2
ψwy

λθ (∞)

λ2(∞)
dr dθ

with Cauchy–Schwartz’s inequality.
Let us recall thatλθ = ∫ ∞

0 ρθ (ψyyv − ψywy − ψwyy) − ψyvθ dr. Then,

‖λθ‖L2(0,2π) � c0

(
‖ρθ‖L∞

E
1/2
1√

R + ct
+ E

1/2
5 + √

R + ctE
1/2
2

)
and the inequality‖ρθ‖L∞ � (E5E6)

1/4 ends the proof. �
Lemma 2.13. Under assumptions(H), there exist positive constantsc0, R2, ε2 such that for anyt ∈ (0, T ] and
anyR � R2, ε � ε2,

Ė5(t) � −d
E6

(R + ct)2 + c0

(
E

1/2
5

E6

(R + ct)2 + E
1/2
6 (A + B)

)
.

Consequently, there exist positive constantse51, e52, e53 ande56 such that

Ė5(t) � −d
E6

(R + ct)2 + e51E1 + e52E2 + e53E3 +
(

e56 + d

4

)
E6

(R + ct)2

+ c0

(R + ct)2 + 2

d
(R + ct)(E1 + E2)

2,

where{e5j }j=1,...,6 can be chosen small with appropriateR2 andε2.

Proof. Once more, the proof is very similar to the previousones, using Cauchy–Schwartz’ inequality. Howev
we may detail how we get, from the first result, inequality (34) forĖ5. Using inequalities such asab � (a2 + b2)/2,
the only difficulties come from the termsE1/2

6 ((E1 + E2)/
√

R + ct ) andE
1/2
6 /(R + ct)2 which appear inE1/2

6 B:
for anyd > 0,
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.5.

t

E
1/2
6

(R + ct)2
� 2

d(R + ct)2
+ d

8

E6

(R + ct)2
,

E
1/2
6

(
E1 + E2√

R + ct

)
�

(
E6

(R + ct)2

)1/2(√
R + ct (E1 + E2)

)
� d

8

E6

(R + ct)2 + 2

d
(R + ct)(E1 + E2)

2.

This ends the proof of inequalities (34).�
These six lemmas end the proof of Proposition 2.7 and hence of Theorem 2.5. Equipped with these ene

estimates, we are able to prove the end of Theorem 2.

2.3. Example and density of nonradial profiles

In this paragraph, the end of Theorem 2 is proved thanks to Theorem 2.5.

Lemma 2.14. Under the assumptions of Theorem2.5, there exists a functionρ∞ ∈ L2(0,2π) such thatρ(· , t)
converges in theL2(0,2π) norm toρ∞ as t goes to infinity.

Proof. By Lemma 2.8 and Theorem 2.5, we get∥∥ρt (t)
∥∥

L2(0,2π)
� c0

(
E1 + E2√

R + ct
+ E3

R + ct
+ 1√

R + ct

E6

(R + ct)2
+ 1

(R + ct)3/2

)
.

Then, by inequality (41),

t∫
0

∥∥ρt (s)
∥∥

L2 ds � c0

(
1+ ε̃√

R

)
.

As this bound is independent oft,
∫ ∞

0 ‖ρt (s)‖L2(0,2π) ds is convergent and there exists a functionρ∞ ∈ L2(0,2π)

such that

∥∥ρ∞ − ρ(· , t)∥∥
L2(0,2π)

�
∞∫
t

∥∥ρt (s)
∥∥

L2(0,2π)
ds

converges to zero ast goes to infinity. This completes the proof.�
Lemma 2.15. There exist positive constantsR and ε such that ifũ0(r, θ) = w(r − R − √

ε/(2π)sinθ, r), the
solutionu(r, θ, t) of Eq.(1) with initial datau0 converges to a non radial profile.

Proof. TakeR1 andε1 as in Theorem 2.5 andR � R1, ε � ε1. Thenu0 satisfies the assumptions of Theorem 2
Indeed,u0 = w(r − R − ρ0, r) + v0 where ρ0(θ) = √

ε/(2π)sinθ , v0 = 0 and R1/2‖v0‖2
W + ‖ρ0‖2

Z = ε.
Sincev0 = 0, notice thatR and ε can be chosen independently. Therefore, chooseR sufficiently large so tha√

ε/2 > c1(1+ ε̃)/
√

R. Let ũ(r, θ, t) = w(r − s(θ, t), r) + v(r, θ, t) be the solution of Eq. (1) with initial datau0
wheres(θ, t) is defined by (9). Then, by Lemma 2.14,

∫ t

0 ‖ρt‖L2(0,2π) ds � c0(1+ ε̃)
√

R. Finally,∥∥∥∥ρ(θ, t) −
√

ε

2π
sinθ

∥∥∥∥
2

� c0

(
1+ ε̃√

)

L (0,2π) R
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4,
for anyt � 0. If there exists somet > 0 such thatρ(θ, t) = ρ is independent ofθ , then∥∥∥∥ρ −
√

ε

2π
sinθ

∥∥∥∥
L2(0,2π)

=
√

2πρ2 + ε

2
> c1

(
1+ ε̃√

R

)
.

This contradicts the latter inequality. Therefore, for anyt � 0, ρ(θ, t) is not constant.
Moreover, as Theorem 2.5 is satisfied,‖v‖W converges to zero ast goes to infinity andu(r, θ, t) converges to a

nonradial profile ast goes to infinity. �
This ends the proof of Theorem 2. We give a few more information by introducing two new spaces as follow

S1 = {
u0 ∈ H 1(R2) | for someR � max

(
R1,R

′
1

)
, ũ0(r, θ) − w(r − R, r) ≡

ξ(r, θ) satisfies Lemma 2.3 and(v0, ρ0) ∈ W × Z satisfy Theorem 2.5
}
.

Moreover, there exists, for any functionu0 ∈ S1, a unique functionρ∞ ∈ L2(0,2π) satisfying Lemma 2.14. W
call S2 the set of all these functionsρ∞ ∈ L2(0,2π) satisfying the above properties foru0 ∈ S1.

Lemma 2.16. S2 is a subset ofL2(0,2π) which contains some non constant functions andS2 is dense in the bal
B(0,min(δ′

1,
√

ε1 )) of Z.

Proof. For anyρ∞ ∈ S2, we know thatρ∞ ∈ L2(0,2π). Moreover, there exists, by Lemma 2.15, someu0 ∈ S1
such thatρ∞ ∈ S2 is not constant.

Take nowρ ∈ B(0,min(δ′
1,

√
ε1 )) and R � max(R1,R

′
1). Define ũ0 ∈ H 1(R2) by u0(r, θ) = w(r − R −

ρ(θ), r). Then,‖u0 −w(r −R, r)‖W � ‖ρ‖Z � δ′
1, and by Lemma 2.3, there exists a unique pair(v0, ρ0) ∈ W ×Z

satisfying

ũ0(r, θ) = w
(
r − R − ρ0(θ), r

) + v0(r, θ),

〈v0,ψ〉 = 0,

‖v0‖W + ‖ρ0‖Z � K ′ min
(
δ′

1,
√

ε1
)
.

As a consequence,ρ0 ≡ ρ andv0 ≡ 0 and

R1/2‖v0‖2
W + ‖ρ0‖2

Z = ‖ρ‖2
Z � ε1.

Notice that asv0 = 0, this last inequality is still valid for arbitrary largeR. Finally by Theorem 2.5 and Lemma 2.1
there exist(v,ρ,ρ∞) ∈ C(R+,W × Z) × L2(0,2π) such that

(R + ct)1/2‖v‖2
W + ‖ρ‖2

Z � n

(
ε1 + 1

R

)
lim

t→+∞
∥∥ρ(· , t) − ρ∞

∥∥
L2(0,2π)

= 0,

‖ρ0 − ρ∞‖L2(0,2π) � c1√
R

.

As R can be chosen as large as we need it, the last inequality shows thatS2 is dense inBZ(0,min(δ′
1,

√
ε1 )). �

Appendix A. Perturbation theorem for evolution operators

Theorem A.1. LetA be a sectorial operator on a Banach spaceX such thatRe(σ (A)) � a > 0 andα ∈ [0,1). We
setXα ≡ D(Aα). Letβ > 0, M > 0 so that∥∥e−tA

∥∥
L(X)

� M e−βt and
∥∥e−tAx

∥∥
Xα � M

α
e−βt‖x‖X
t
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for all t > 0 andx ∈ X. SupposeB : [t0;+∞) →L(Xα,X) is locally Hölder continuous with∥∥B(t)
∥∥
L(Xα,X)

� γ

for all t � t0 � 0 and someγ > 0. LetT (t, τ ), t0 � τ � t, be the family of evolution operators so that the uniq
solution of

dx

dt
+ Ax = B(t)x, t � τ,

x(τ ) = x0,
(46)

is x(t; τ, x0) = T (t, τ )x0, t0 � τ � t . Then, there existsγ0 > 0 such that for anyγ ∈ (0, γ0), there existsδ ∈ (0, β)

such that for anyt0 � s � t ,∥∥T (t, s)
∥∥
L(X)

� M1 e−δ(t−s). (47)

Proof. Givenx0 ∈ X, t0 � τ � T andδ ∈ (0, β), we shall solve (46) in the Banach space

V = {
x ∈ C0([τ, T ],X) ∩ C0((τ, T ],Xα

) | ‖x‖V < ∞}
,

where

‖x‖V = sup
τ�t�T

eδ(t−τ )
∥∥x(t)

∥∥
X

+ sup
τ<t�T

(t − τ )α eδ(t−τ )
∥∥x(t)

∥∥
Xα .

First, givenx ∈ V , we define the functionF from V to V by

F(x)(t) = e−A(t−τ )x0 +
t∫

τ

e−A(t−s)B(s)x(s)ds.

For r > 0, letγ0 > 0 andR > 0 be chosen so that

c(T ) = sup
τ�t�T

t∫
τ

ds

(t − s)α(s − τ )α
, R = 4Mr,

C1 = Mγ0 e(δ−β)(T−τ )(T − τ )αc(T ) � 1

4
, C2 = Mγ0 e−δ(T −τ ) (T − τ )1−α

1− α
� 1

4
.

Then, for anyx0 ∈ X with ‖x0‖X � r, F maps the ballBV (0,R) of V into itself and has a unique fixed point
the ballBV (0,R). Using Gronwall’s lemma, it is then straightforward to show that this fixed point is actuall
unique solution of (46) in the spaceV . Finally, since‖x‖V � 2M‖x0‖X + (C1 + C2)‖x‖V , the solutionx(t) is
defined for allt > 0 and the bound (47) holds withM1 = 4M. �

Appendix B. A few lemmas

B.1. Schur’s lemma

Lemma B.1. LetP be an operator ofL2(R2) defined in polar coordinates by

Pu(r, θ) =
∞∫

0

u(z, θ)K(z, r, θ)dz, u ∈ L2(R2)
so that
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c1 = sup
z�0, θ∈[0,2π)

∞∫
0

∣∣K(z, r, θ)
∣∣√ r

z
dr < ∞,

c2 = sup
r�0, θ∈[0,2π)

∞∫
0

∣∣K(z, r, θ)
∣∣√ r

z
dz < ∞.

Then,P is continuous onL2(R2) and for anyu ∈ L2(R2),

‖Pu‖L2(R2) � √
c1c2 ‖u‖L2(R2).

Proof. We fix θ ∈ [0,2π). Then, by Hölder’s inequality and Fubini’s theorem,

∞∫
0

[ ∞∫
0

K(z, r, θ)u(z, θ)dz

]2

r dr �
∞∫

0

( ∞∫
0

K
dz√

z

)( ∞∫
0

Ku2√zdz

)
r dr

� c2

∞∫
0

u2(z)z

∞∫
0

K

√
r

z
dr dz � c1c2

∞∫
0

u2(z, θ)zdz.

Integrating inθ ∈ (0,2π) the above inequality, we get the continuity ofP . �
Throughout the proof of Lemma 2.7, we use Schur’s lemma in the following way, most of the time w

mentioning it. For instance, the following inequality

2π∫
0

R+ct∫
0

( r∫
0

ψvθ dz

)2

r dr dθ � c0(R + ct)2

2π∫
0

∞∫
0

v2
θ

r2 r dr dθ

is proved by Schur’s lemma by writing

K(z, r, θ, t) = Iz�r�(R+ct)ψ
(
z − s(θ, t), z

)
z and u(z, θ, t) = vθ

z
.

Then,ci(t) � c0(R + ct) for i = 1,2. This concludes the proof of the above inequality.

B.2. Jensen’s inequality

Proposition B.2. Let φ be a convex function andν a probability measure on a measurable setA. Then, for any
f ∈ L1(A,dν),

φ

(∫
A

f dν

)
�

∫
A

φ(f )dν.

Corollary B.3.

2π∫
0

( ∞∫
0

v(r, θ, t)ψ
(
r − s(θ, t), r

)
dr

)2

dθ � c0

2π∫
0

∞∫
0

v2ψ
(
r − s(θ, t), r

)
dr dθ.
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Proof. For anyθ ∈ (0,2π) and anyt > 0, let dν = α̃ψ(r − s(θ, t), r)dr whereα̃ is chosen so that
∫

R α̃ψ(r −
s(θ, t), r)dr = 1. Then,ν is a probability measure for any fixedt and θ , andφ(x) = x2 is convex inR2. By
Jensen’s inequality,

2π∫
0

( ∞∫
0

v(r, θ, t)ψ
(
r − s(θ, t), r

)
dr

)2

dθ �
2π∫
0

∞∫
0

1

α̃
v2ψ

(
r − s(θ, t), r

)
dr dθ.

As α̃−1 can be bounded independently ofθ andt , this ends the proof. �

Appendix C. Log-concave functions

Proposition B.1. LetF ∈ C3(R) be a function satisfying the following conditions:

F(0) = F(1) = 0, F ′(0) = α < 0, F ′(1) = β < 0,

∃µ ∈ (0,1) so thatF(u) > 0 for u ∈ (µ,1), F (u) < 0 for u ∈ (0,µ),

1∫
0

F(u)du > 0, F (3)(u) � 0 for all u ∈ [0,1].

Let c > 0 andw0 ∈ C2(R) be a monotone solution of the ODE

w′′
0 + cw′

0 + F(w0) = 0, x ∈ R, (48)

with the boundary conditions at infinity

lim
x→−∞w0(x) = 1 and lim

x→+∞w0(x) = 0.

Defineφ0 = w′
0 < 0. Then,φ0 is log-concave:

−
(

φ′
0

φ0

)′
> 0.

Proof. As −φ′
0/φ0 = −w′′

0/w′
0 = c + F(w0)/w

′
0 ≡ c + g, it is sufficient to prove thatg is increasing onR, i.e.,

thath ≡ g′ is positive. We first study the behaviour ofg andh as|x| goes to infinity. It is a standard result thatw0
(resp. 1− w0) decreases exponentially fast to zero asx goes to+∞ (resp.−∞). Let us begin with the behaviou
of w0 at−∞:

w0(x) = 1− eλx + Ae2λx + o
(
e2λx

)
,

whereλ > 0. Then,

w′
0(x) = −λeλx + 2λAe2λx + o

(
e2λx

)
,

w′′
0(x) = −λ2 eλx + 4λ2Ae2λx + o

(
e2λx

)
,

and by Taylor’s theorem,

F(w0(x)) = F ′(1)
(
w0(x) − 1

) + 1

2
F ′′(1)

(
w0(x) − 1

)2 + o
(
e2λx

)
= β

(−eλx + Ae2λx
) + 1

F ′′(1)e2λx + o
(
e2λx

)
.

2
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As w0 is a solution of (48), the first order of the expansion says thatλ is the positive root of

λ2 + cλ + β = 0.

The second order gives

A
(
4λ2 + 2cλ + β

) + 1

2
F ′′(1) = 0,

i.e.,A(3λ2 + cλ) + 1
2F ′′(1) = 0. Notice that the above assumptions onF forcesF ′′(1) to be negative. Therefore

A > 0. Finally,

g = −w′′
0

w′
0

− c = −(c + λ) + 2Aλeλx + o
(
e2λx

)
andh ∼ 2Aλ2 eλx asx goes to−∞. We can then conclude from this study thath is positive forx < 0 sufficiently
large.

A similar study in+∞ with w0(x) = eµx − B e2µx + o(e2µx) whereµ is the negative root ofµ2 + cµ+ α = 0,
gives that−B(2µ2−α)+ 1

2F ′′(0) = 0 which implies thatB > 0. Finally, asg(x) = −(c+µ)+2Bµeµx +o(e2µx),

h(x) ∼ 2Bµ2 eµx whenx → +∞
andh is positive forx > 0 sufficiently large.

Suppose now that there exists somex0 ∈ R such thath(x0) � 0 and define

x1 = inf
{
x ∈ R | h(x) � 0

}
, x2 = sup

{
x ∈ R | h(x) � 0

}
.

Then,h′(x1) � 0 and h′(x2) � 0. Ash = cg + g2 + F ′(w0), we get

h′ = c(1+ 2g)h + F ′′(w0)w
′
0. (49)

Then,F ′′(w0(x1)) � 0 andF ′′(w0(x2)) � 0. Asx1 � x2 andF ′′(w0) is increasing, we conclude that

F ′′(w0(x)
) = 0 for all x ∈ [x1, x2].

Then,F ′′(w0(x)) � 0 for all x � x2 and by (49),{
h′(x) � c

(
1+ 2g(x)

)
h(x), x ∈ [x2,+∞),

h(x2) = 0.

Finally, by the maximum principle,h(x) � 0 for all x � x2 which contradicts the definition ofx2. Therefore,h is
positive onR andg is increasing. This concludes the proof.�
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