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Abstract

The asymptotic behaviour agoes to infinity of solutions (x, r) of the multidimensional parabolic equation= Au + F («)
is studied in the “bistable” case. More precisely, we consider the stability of spherically symmetric travelling waves with respect
to small perturbations. First, we show that such waves are stable against spherically symmetric perturbations, and that the
perturbations decay likéogr)/t2 ast goes to infinity. Next, we observe that thigbility result cannot hold for arbitrary
(i.e., non-symmetric) perturbations. Indeed, we prove that there exist small perturbations such that theugelutiaoes not
converge to a spherically symmetric profileragoes to infinity. More precisely, for any directigne 5”1, the restriction of
u(x,t) to the ray{x = kr | r > 0} converges to &-dependent translate of the one-dimensional travelling wave.
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

On étudie le comportement pour les grands temps des solutians) de I'équation parabolique; = Au + F(u) dans le
cas “bistable” et dans tout I'eape, en dimension supérieure. Plodgisément, on s'intéresseaadtabilité d'ondes progressives
a symétrie sphérique pour de petites pertidns. Dans un premier temps, on nremjue cette famille d’ondes est stable pour
des perturbations a symétrie sphérique et que cette perturbation décroit (:hngm)\)etz quand: tend vers l'infini. On montre
ensuite que cette stabilité est mise en défeutr des perturbations quelconques. Enteffie met en évidence des perturbations
pour lesquelles la solution ne tend pas vers une onde & symétrie sphérique : dans chaque/dizesitioh Ia restriction de

u(x, r) au rayon{x = kr, r > 0} converge vers un translaté de I'onde progressive unidimensionnelle dépendant de
© 2004 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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0. Introduction

We consider the initial value problem for the semilinear parabolic equation
{ut(x,t)zAu(x,t)—i—F(u(x,t)), xeRY t>0,
u(x,0) =uo(x), x e R",

whereu € R andn > 2. Throughout this paper, it is assumed that the nonlinea&ris/a continuously differentiable
function onR satisfying the following assumptions:

1)

() F(O)=F(1)=0;

(i) F'(0)<0, F'(1) <0;
(iii) There existsu € (0, 1) such thatF(u) <O if u € (0, u) andF (1) >0 if u € (u, 1);
(iv) [y F(u)du > 0.

A typical example is the cubic nonlinearity
Fu)=2u(l—u)(u—pn) whereO<pu <1/2. (2)

Eqg. (1) is a classical model for spreading and interacting particles, which has been often used in biology
(population dynamics, propagation of mes pulses), in physics (shock waves), or in chemistry (chemical reactions,
flame propagation). Fisher [5] first proposed a genetical context in which the spread of advantageous genetical
traits in a population was modeled by Eq. (1). At the same time, Kolmogorov, Petrovskii and Piskunov [11] gave a
mathematical treatment of this equation for a slightly different nonlinearity. Later on, Aronson and Weinberger [1]
also discussed the genetical background in some details. In their terminology, the nonlinearity satisfying (i) to (iv)
is referred to as the “heterozygote inferior” case. In mathematical terms, this is called the “bistable” case as, by (i)
and (ii),u = 0 and u= 1 are both stable steady states.

As far as the initial value problem is concerneddfis a continuous function fromR” to (0, 1) which goes to 0
as|x| goes to infinity, then there exists a unique solutidn, ¢) of Eq. (1) with the same properties ag for any
t>0.

One question of interest for this reaction—diffusion equation is the behavialugpas to infinity, of the solutions
u(x, t) of (1). In one space dimension, a prominent role is played by a family of particular solutions of (1), called
travelling waves. These are uniformly translating solutions of the form

u(x,t) =wo(x —ct),
wherec € R is the speed of the wave. The profilg satisfies the ordinary differential equation:
wg +cwy+ F(wg) =0, x€R, (3)
together with the boundary conditions at infinity
lim wo(x)=1 and lim wo(x)=0. 4)
X—>—00 xX—>400
These waves are characterized by their time independent profile and usually represent the transport of information
in the above models. They also often describe the long-time behaviour of many solutions.
Since Fisher and KPP, there has been an extensive literature on the subject. In the one dimensional bistable
case, Kanel [9] proved that there exist a unique speed and a unique (up to translations) monotone prafije
satisfying (3), (4). Moreovetwo| (resp.|1 — wo|) decays exponentially fast asgoes to+oo (resp.—oo). From

now on, we fixwg by choosingwp(0) = 1/2. For example, i is given by (2), one finds =1— 2u € (0, 1) and
wo(x) = (1+e9)~ L.
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Afterwards, Sattinger [14] was interested in the local stability of travelling waves. He proved that the family
{wo(- — y), y € R} is normally attracting. More precisely, for any initial daigof the form

uo(x) = wo(x) + gvo(x),

wheres > 0 is sufficiently small andg bounded in a weighted space, Sattinger proved that there @Xistiaction
p(e) and positive constant®§ andy such that the solution(x, ) of (1) satisfies

JuGx +ct,t) —wo(x + p(e))| <Ke ', >0,

in an appropriate weighted norm. This is the local stability of travelling waves in one dimension. Sattinger’s proof
uses the spectral properties of the linearised opefates Bf +cdy + F'(wo) around the travelling wavey in the
c-moving frame. These properties can be summarized as follows:

Let ¢o = awy andyo = € ¢ wherex > 0 is chosen so that

/¢0(X)¢O(X) dr=1. (5)
R

Then,¢o is an eigenfunction of.g (associated with the eigenvalue 0), apglis the corresponding eigenfunction
of the adjoint operatoL:

¢ + cop+ F'(wo)po =0,
Vi — c¥g+ F'(wo)yo=0.

Moreover, there exists some > 0 such that the spectrum d@fy in L2(R) is included in]—oo, —y1U {0},
see [6,14]. Since the eigenvalue 0 is isolated, there exists a projection opramoo the null space afg. This
operator is given by

1
Pu=— | R(A, Lo)udxr,
2
r
whereR(%, Lo) = (A — Lo)~t and[I" is a simple closed curve in the complex plane enclosing the eigenvalue 0, see
[14,15]. Define the complementary spectral projectibe: I — P wherel is the identity operator i.2(R). These
projection operator® andQ are also given by

Pu= </M(X)¢0(X)dx>¢0, Qu= (I — P)u,
R

see for instance [10,14]. The spectral subspace corresponding to the eigenvalue 0 is defined B§R) | u =
Pu} and its supplementary by

R={ueL?R)|u=Qu}={ueL?R)|Pu=0}.

ThenR, equipped with thé.? norm, is a Banach space ahg|z generates an analytic semi-group which satisfies
leLo]lzry < coe™?" forall t > 0.

On the other hand, Fife and McLeod [4] proved the global stability of travelling waves: they showed, using
comparison theorems, thatif satisfies 0< up < 1 and liminf o uo(x) > u, limsup, , uo(x) < w, then the
solutionu(x, t) of (1) approaches exponentially fast in time anstate of the travelling wave in the supremum
norm. Fife [3] also highlighted other possible types of asymptotic behavioug:vainishes at infinity inc and if
the solution converges uniformly to 1 on compact sets, thans) behaves as a pair of diverging fronts where a
wave goes off in each direction.

In higher dimensions, Aronson and Weinberger [2], Xin and Levermore [17,12] and Kapitula [10] were
interested in planar travelling waves. These are particular solutions of equation (1) of thearm= wq(x -



344 V. Roussier / Ann. |. H. Poincaré — AN 21 (2004) 341-379

k — ct) wherek € §"~1. Existence of such solutions can be proved as in the one-dimensional case, but the stability
analysis is quite different: unlike in the one-dimensional case, the gap in the spectrum of the linearised operator
around the travelling wave disappears. Instead, theistsegontinuous spectrum all the way up to zero which is

due, intuitively, to the effects of the transverse diffusion. To overcome this difficulty, Kapitula decomposed the
solutionu(x, t) as

u(x,t)= wo(x -k —ct+ p(x, t)) +v(x, 1),

wherep (x, t) represents a local shift of the travelling wave aiig, 7) a transverse perturbation®. The equation
for p can be analyzed by the one-dimensional result and Fourier transform, while the transverse perturbation
satisfies a semilinear heat equatiofRitr L. Therefore, Kapitula proved that the perturbation decays to zero with a
rate of Q¢ ~"~1/4) in H*(R"), k> [(n + 1)/2].

Apart from this particular planar case, Aronson and Weinberger [2] also studied the asymptotic behaviour of
other solutions in higher dimensions. They proved that the stat@ is stable with respect to perturbations which
are not too large on too large a set, but is unstable with respect to some perturbations with bounded support.
Moreover, assumingg vanishes at infinity inc andu converges to 1 asgoes to infinity, they showed that the
disturbance is propagated with asymptotic speed

Finally, Uchiyama [16] and Jones [7] were interested in spherically symmetric solutiomg idfspherically
symmetric with limsup, _,  uo(x) < p, and if the solutionu(x, 7) of (1) with initial datauo converges to 1
uniformly on compact sets agjoes to infinity, they proved that there exists a funcigdr such that

tﬂrp sup |u(x, ) — wo(lx| — ct + g(1))| =0. (6)

O xeRn

Jones proved with dynamical systems considerations that,lim ¢(z)/r = 0 and Uchiyama precised, using
energy methods and comparison theorems, that there existsIsarResuch that

lim <g(t) - n—_l Iogt) =1L. @)
t— 400 C

This important result establishes the existence of a family of asymptotic solutions of (1), which we call spherically
symmetric travelling waves (x, t) = wo(|x| — ¢t + ”7*1 logr) and its translates in time. It also shows that this
family is asymptotically stable with respect to spherically symmetric perturbations.

We give in the first section of this paper another meth@ded on Kapitula’s decomposition, which enables us
to get more information on how fast the solutiofx, ) of (1) converges to a travelling wave and on the asymptotic
behaviour of the functiog(z). To do that, we introduce the following Banach spaces:

Y = H(R"),
X ={u: R" > R|3i € Y so thatu(x) = ii(|x|) for x e R"},

0 1/2
||u||x=||a||y=(/\a@)\zﬂar(r)fdr) .
0

Note thatX is included inH1(R") N L>(R") and contains spherically symmetric functions. Then, we prove in the
first section the following theorem:

Theorem 1. AssumeF is a “bistable” non-linearity. There exist positive constamts, o, c1, ¢2, yo such that, if
uo:R" — R is a spherically symmetric function satisfying

|0(x) = wo(lx| = R) | <8
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for someR > Ro and someS < 8o, then Eq.(1) has a unique solution € C9([0, +00), X) with initial data uo.
Moreover, there exists € C1([0, +00)) such that

_ 0g(R + ct)
_ _ / < vot = 7
Jue, 1) = wo(lx| = s@)) | x + [0/ )] < c18€77 +¢2 R e
for all r > 0, where
-1 R
s(t):R—i—ct—n . |Og( ;Ct>+p(t). (8)

This first theorem shows that the family of spherically symmetric travelling waves is asymptotically stable for
small symmetric perturbations. Indeed, any small perturbation tends to zero with a rate@f/@). Moreover,
as|p’(¢)| is bounded by an integrable function of time, the functiaqn) converges to a constapg, asr goes to
infinity, which corresponds té in (7) and, with our hypothesis am, the convergence (6) satisfies:

n—1 logt
u(x,t) —wol |x| —ct + ——logr + L <COT.
c

In a second section, we are interested in non-spherisgitymetric perturbations of travelling waves in higher
dimensions. Based on Uchiyamaigrk and a comparison theorem, arallary on the lyapunov stability of
travelling waves against general small perturbations is first stated.

The only result so far concerning the long-time behaviour of non-spherically symmetric solutions is due to
Jones [8]. He considered solutioméx, ) whose initial data:g have compact support, and he also assumed that
u(x,t) converges to 1 uniformly on compact setsragoes to infinity. He then showed that, if followed out in
a radial direction at the correct speedthe solution approaches the one-dimensional travelling wave, at least in
shape. Moreover, for anye (0, 1) and any sufficiently large > 0, he proved that, for all poinP of the level
surfaceS;(t) = {x € R" | u(x, t) =1}, the normal toS;(¢) at P must intersect the support af. Obviously, this
result implies that the surfac®(s) becomes rounder and rounder:agoes to infinity. It is thus natural to expect
spherically symmetric travelling waves to be asymptdlycstable against any small non-symmetric perturbations.
However, we prove in Section 2 that this is not the case. In the two-dimensional case, we give an example of non-
spherically symmetric functiong close to a spherically symmetric wave such that the solutians) of (1) with
initial dataug never approaches the family of spherically symmetric travelling waves. Indeed, the translate of the
wave which is approached depends on the radial direction.

Subsequently, we require some more technical assumptions. For convenience, we choose tRwedkthat
polar coordinates are easier to handle. We assumeftiimin C3(R) and satisfies the conditios® (1) < 0 for
u € [0, 1]. In this case, we prove in Appendix C tha is log-concave, i.e (¢;/¢0)" < 0. Finally, we also assume
that every solution of the ODRy, = F (1), is bounded uniformly in time. By the maximum principle, this easily
means that for any bounded initial condition, the solutidn, 7) is uniformly bounded in time. Example (2) fét
satisfies both conditions.

Precisely, we prove in the second section the following theorem:

Theorem 2. AssumeF is a “bistable” nonlinearity satisfying both above conditions. There exist positive constants
R}, 80, 1, cosuch thatifug € H1(R?) satisfies

HMO()C) - w0(|x| - R) ||H1(R2) < d
for somes < §) and someR > R, such thatRY/4s < 5, then Eq(1) has a unique solution € CO(R*, H1(R?))
with initial dataxo. Moreover, there exist € CO(Rt, H1(0, 27)) and poo € L2(0, 277) such that

o

lutr,6,0) —wo(r — 56, 0) | y1 g2, < (R+ )%
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R+ ct

s(G,t):R+ct—%|Og( )+,o(9,t), (9)

im p©,0) = poo®) ] 20.20) =0
where(r, 0) e Rt x (0, 27) are the polar coordinates iR?.

This second theorem firstillustrates Jones’ theorem. Indeed, there exists a class of initial data for which solutions
converge to a creased profileragoes to infinity. And, if followed out in a radial direction (i.e., fé= constant),
the solutions behave asymptotically as a one-dimensional travelling wave whose po@ltiondepends on the
radial direction. Precisely, we show tha®, r) is given by (9), thap (8, r) converges in th&.2(0, 27r) norm to a
function p (9) and we give an example of initial data for which the solution does not converge to a spherically
symmetric travelling wave, i.e., the corresponding funci(0) is not constant. Moreover, we show that the set
of all functionsps, that can be constructed in that way, is dense in a batt b0, 2rr). Therefore, there exist a lot
of asymptotic behaviours which look like a creddravelling front which never becomes round.

Finally, this theorem shows that the family of spherically symmetric travelling waves is not asymptotically
stable for arbitrary perturbations: this means that the higher dimensionakcaszis very different from the
one-dimensional case= 1 where the asymptotical stability of travelling waves has been widely proved.

Let us now make a few technical remarks on the statgrof theorem 2. We assume that the initial condition
uo is close to a travelling waves (< 6; small) whose interfacéwo = %} is large enoughR > R;, large). The
relation RY/4s < 5 should be a technical assumption and we do believe that it can be relaxed by changing the
function spaces we use. Actually, we prove in this papsirenger theorem (Theorem 2.5) where this constraint
only appears on one part of the perturbation. We also show in this theorem that the perturbation decreases like
1/(R + c)¥/. This rate may not be optimal but shows the convergence of the solutions towards travelling fronts.
Once more, we prove in Theorem 2.5 a more precise result where the dependance of the initial condition on the
convergence rate is emphasized.

Notations. Throughout the paper, we use the following notatighsf 7 is a norm in the Banach spage | - | is

the usual norm ifR andx is a vector ofR" while (, 0) are the polar coordinates R? wherer > 0, 6 € [0, 2r).

We also denote; generic positive constants which may differ from place to place, even in the same chain of
inequalities.

1. Radial solutions

The aim of this section is to prove Theorem 1, i.e., the stability of travelling waves against radial perturbations.
Hence, we only work with spherically symmetric functions and we always use, for convenience, the ngtatipn
instead ofii(r, t) defined in the introduction.

For spherically symmetric solutions, Eg. (1) reduces to the following Cauchy problem:

u(r,t) =up(r,t) + ”Tflu,(r, t)y+ F(u(r,t)), r>0,t>0,
u(r,0) =uo(r), r>0,
ur|r=0:07 t>o'
The Neumann boundary condition at zerdig to the regularity of the functiar(x, ), x € R". In this section, we

first write a decomposition of the solutiotir, t) as Kapitula [10] did. Then, we study the new evolution equations
in a moving frame to take advantage of spectral properties of the opératiafined in the introduction.
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1.1. A coordinate system

We first need to define more precisely a spherically symmetric travelling wave in higher dimension. Since the
function

—1. [R+ct
xeR"+—>W(x,t)=w0(|x|—R—ct+n Iog< JI;C ))
.

is not smooth at = 0, we have to modifywg in a functionw called also travelling wave or “modified wave”.
Let x e C*(RT) sothaty (r) =0if r <1 andy(r) =1if r > 2, and define

w(y,r)=1+xr)(wo(y) —1), (v,r) eRxRF.

Then,w(y, r) is identically equal to 1 if <1 andw(y,r) = wo(y) if r > 2. Note that- is a positive parameter
which flattens the wave around the origin. Then, foramR, r € RT — w(r —s, r) is a function oft = H1(R1),
equal to 1 near the origin and decreasing like the wayat infinity. In a similar wayx € R" — w(|x| — s, |x]) iS
a spherically symmetric function df, equal to 1 near the origin and decreasing like the wayat infinity in all
directions. We also defing (v, r) = a x (r)¥o(y) wherea has been chosen in (5).

In a neighborhood of the wawue, it will be convenient to use a coordinate system giverilgy) € ¥ x R with
perturbations of the wave being given at any time by

u(ry=w —s,r)+v@), r=0,
wheres is chosen so they@,Oo v(r) Y (r —s,r)dr =0. We have decomposed the solutioas a translate of the wave
w and a transversal perturbationThe following lemma shows that this decomposition is always possible:

Lemma 1.1. There exist positive constaniy, §1, K such that for anyR > R; and any§ € Y with ||§]ly < 41,
threre exists a unique paiw, p) € Y x R such that

() lvlly + el < KElly,
(i) wir—R,r)+&r)=wlr —R—p,r)+v@)forallr >0,

(iii) fooo v()Y(r—R—p,r)dr=0.

Proof. Define the operatod:R x Y — R by
o o
A(p,é):/é(r)l//(r—R—,o,r)dr—i—p/l/f(r—R—p,r)/wy(r—R—,oh,r)dhdr.
0 0

Since A(0,0) = 0 and the derivativel, (0,0) = @ [ " povo(y) x2(y + R) dy # O for R > Ry, by the implicit
function theorem on Banach spaces, there exist a small neighbotheody x V- of (0,0) in R x Y a function
p(&): V2 V1 such thatA(p(€),&) =0 and p| < K||&]|ly for someK > 0. This yields the spatial translational
componenp. Letv(:)=&() +w(- — R,-) —w(- — R — p(§), -) afunction ofY. Then,||v|y + |p| < K|&]|y for
somekK > 0. AsA(p(&), &) =0, and by Taylor's theorenfoOo v()Y(r — R — p,r)dr =0. Then,(v, p) satisfies
the lemma if||& |y < 81 wheredy > 0 is sufficiently small so thaBy (0, 51) C V2. O

Using the result of Lemma 1.1, we can write for any 0 and someR > R,

u(r, t)—w(r—s(t) )+v(r ), r=0 (10)

s(t)=R+ct— . (R+Ct>+
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oo

/v(r, t)l/f(r —s(t),r) dr =0. (11)

0

By Lemma 1.1, such a decomposition exists if, forrall 0, the solutionu(r, ¢) is close to the wave, namely if
lu(r,t) —w( — s(t), r)|ly < 381. This assumption will be validated later by the proof of Theorem 1. We are now
going to work with these new variablesandp which are more convenient thanWe first give the equations they
satisfy:

Substitute the decomposition (10) of the solution into Eg. (1) and use equation (3) satisfigdtdyget the
evolution equation satisfied hy

v =V + v+ F'(wo(r —s(0)))v
n—1 n-1
+< PR Rtocl +/0/(t))wy(r_s(f),r)+N+S, r>0,t>0, (12)

v(r,0) =wvo(r), r=0,
Ur|r=O:O: t>07

where

N = F(w+v) — F(wo)x(r) — F'(wg)v is the nonlinear term,

n—1
S =w,, +2wry+ —Wr.
r

The functionsw, wo, ¥ and their derivatives are taken @t— s(t),r) or (r — s(¢)), depending if the wave is
modified or not. Note the Neumann condition at zerp—o = 0. Indeed, ift(x) = ii(|x|), u € CL(R?) is equivalent
toii € CL(RT) andii’(0) = 0. Asu = w+v andw is identically zero near the origin, the regularity.ofs forwarded
to v andv,|,—o=0.

Derivating Eq. (11) with respect toand using Eqgs. (8) and (12) satisfied byndv, we get the evolution
equation satisfied by:

0 /(Ipwy — vy dr = /[UA —(N+Sy]dr, >0, (13)
0 0
0(0) = po,
where

n—1 n-1 n—1 n—1 ,
AZ(R—i—ct_ r )‘ﬁy+ 72 w"'(l//rr"'z‘ﬁyr—T‘ﬁr)+(1//yy—c1//y+F(w0)‘ﬁ)~

The functions), w, wo and their derivatives are taken(@t— s(t), r) or (r — s(z)).
We first consider the initial value problem for Egs. (12), (13):

Lemma 1.2. Fix R > 0. There exists4 > 0, T > 0 such that for any initial data(vg, pg) € ¥ x R with
lvolly <68 <84 and|pg| < % the integral equations corresponding 2), (13)have a unique solutiofw, p) €

%[0, T1, Y x R). In addition, (v, p) € C1((0, T1, Y x R), and Eqs(12), (13)are satisfied fob <1 < T.

Proof. If |Jug|ly <38 ands < 84 is sufficiently small, thelj‘oOo Yw, — vy, dr # 0 andp’(r) can be expressed easily
as a function ob andp. Then, Egs. (12), (13) can be written as follows:
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¥, p) =L, p)+ f(v,p,1),
vrlr=0=0,
(v, ©)(0) = (vo, po)

where
_ ~1
L, p)=(Lv,0) = <a,2v + 120, o).
r

As L generates a semigroup dhx R (see Lemma 1.5 for a detailed proof) ayice C1(Y x R x R*), the
integral equations corresponding to (12), (13) have a unique sol(tign € C°([0, T1, Y x R), see for instance
[13]. In addition, this mild solution is classical aid, p) € C1((0,T1,Y xR). O

We now work on the two evolution equations (12), (13) to get information on the asymptotic behavieurs of
andp. Before stating our result, let us explain its content in a heuristic way. Consider first equation (1.2} figr
leading term in the right-hand side is

n—1 n-1 ,
< - —R+Ct+p(t)>wy(r—s(t),r),

which decays exponentially in time for any fixed- 0, but only like (log(R + ¢1))/(R + ct)? for r = s(r). On
the other hand, as we shall show in Section 1.2.3, the evolution operator generated by the time-dependent operator
8,2 + %Br + F'(wo(r — s(t))) is exponentially contracting in the space of functiersatisfying (11). Therefore,

we expect the solution of (12) to decay like log/r? asr goes to infinity. As forp, we observe that Eq. (13) is
close for large times to

o T(n-1 n-1 n—1 .
p(t)_/[<R+Ct —T>1ﬁy+71//j|v(r,t) r,
0

since[0°° Ywy dr is close tofs Yogodx = 1. Thus, we also expept(r) to decrease at least like logy2 ast goes
to infinity. The following result shows that these heuristic considerations are indeed correct:

Theorem 1.3. There exist positive constanks, 82, c1, ¢2, yo such that, ifR > Ro and (v, po) € Y x R satisfy
lvolly <682, |po| < % then Eqgs(12), (13)have a unique solutiotw, p) € CO([0, +00), Y x R) with initial data
(vo, po). In addition, p € C1([0, +00), R) and

[0g(R + ct)

[v®y + |0/ O] < callvolly €7 + oo

Theorem 1.3 is a new version of Theorem 1 in the variablasdp. We give right now the proof of Theorem 1
under the assumption that Theorem 1.3 is proved.

Proof of Theorem 1. Let R», 82, c1, ¢2, yo be as in Theorem 1.3 ankh, 81, K be as in Lemma 1.1. Choose
Rop and$g so that:

. 1
250 <81, 2Kdo< m|n<82, §>, Ro > max(Rz, R1), coe "tRo L 8,

wherecg > 0 andy; > 0 are chosen so that for ay> 0,

H wo(r — R) —w(r — R,r) ||Y < coe MK, (14)
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Letup:R" — R be a spherically symmetric function satisfying
[uo(r) —wor — R)||, <8

for someR > Ro ands < 8o. Let £(r) = uo(r) — w(r — R,r), r >0. Theng € Y and||&]ly <8+ coe 1R <
280 < 81. Then, by Lemma 1.1, there exists a unique pait po) € Y x R such that:

(i) llvolly + ool < K lIE]ly,
(i) uor)=w@r —R,r)+EF)=w@ — R — po,r) +vo(r) forallr >0,
(iii) fo° vo(r)¥(r — R — po,r)dr =0.

As R > Ry and (vg, po) € Y x R satisfy |Jvglly < 82 and |pg| < % it follows from Theorem 1.3 that
Egs. (12), (13) have a unique solutign, p) € C9([0, +00), ¥ x R) with initial data (vo, po). In addition,
p € CY([0, +00), R) and
[0g(R + ct)

(R+ct)2’
Letu(x,r) = w(|x| —s@), |x]) + v(|x], 1), x € R", wheres(z) is given by (8). Theny € C%([0, +0c0), X) is the
unique solution of Eq. (1) with initial datag and

le@ ]y + o' ®] <eallvolly €7 +c2 t>0.

Jutx, 1) = wo(lx| —s®) ]y + '@
< Hu(x, 1) — w(|x| —5(1), |x|)||x + ||w(r —s(2), r) - wo(r — s(t)) ||Y + |p/(t)|
[0g(R + ct)
(R+ct)?
_ [0g(R + ct)
< C]_Ka e yof + CZW

Definec] = Kc¢1 andc), so that for any > 0, anyR > 0,

<ctllvolly €7 + 2 +coe 7™

+ ClKCO e_VlR_VOI + co e_Vls(t).

e~ ViR—yot e v1s(t)
K < ch.
(09R + 1)/ R+ 02 logR +ct))/(R+en? S 2

c2 +c1co

Then,

_ log(R + ct)
Juce, ) = wo(lel =) | + 1o/ @)] < chse™ - chmrm
This ends the proof of Theorem 10

1.2. Estimates on the solutionsand p

Let us now prove Theorem 1.3. We begin with a propos close to thigsheorem but local in time. We then
show how Theorem 1.3 follows from this proposition.

Proposition 1.4. There exist positive constanRg, 83, c¢1 ,c¢2, yo such that, ifR > R3, T > 0 and (v, p) €
Cc9([0, T1, Y x R) is any solution 0f(12), (13)satisfying

v, <83 |p(0)] <1 0<e<T,

then
[0g(R + ct)

(Rt )2’ 0<r«T.

[v@ ], + [0’ ®)] < callvolly €77 + 2
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Proof of Theorem 1.3. Let R3, 83, c1, ¢2, yo be as in Proposition 1.4 and choose positive constRatsi2 so
thatR> > R3 and

. (6 e logR 8 1+logR 1
c182<m|n<—3,§>, 82<m|n<§,84), c2 g 2<—3 2w<z

2 R% 2’ c R>

TakeR > R» and(vg, po) € Y x R so that|vg|ly <82, |po| < % By Lemma 1.2, letv, p) € C9([0, T%), Y x R)
be the maximal solution of (12), (13) with initial dateg, po). Define

T =supT €[0,T%) | [v() |, <38sand|p(r)| < 1forany: € [0, T]}.

Sinceds < 83, itis clear thatl" > 0. We claim thal” = T*, which also impliesl’ = T* = 4+o0. Indeed, ifT < T*,
it follows from Proposition 1.4 that fare [0, T,

_ 0g(R + ct) log R2
[l < cxllvolly €7 + e~ et <bs

c182  c21+IlogR2
— <

t
1
/ —
\p(t)]<|p0|+b/\p(s)\ds< >+ ” + o 1,

which contradicts the definition df. ThusT = T* = +oc0. Sinceds < 83, the inequality satisfied bjyv(?)|y +
|p'(¢)] is true for allz > 0 and Theorem 1.3 follows immediately from Proposition 1.4

Let us now prove Proposition 1.4. We are first interested in the behaviewvbich satisfies Eq. (12). The main
idea is to work, as in one dimension, in the moving frame at spégdo get, in Eq. (12), a time independent-
operator instead o&,z + "7*18, + F'(wo(r — s(¢))). Therefore, we need to work on the whole real line which
is invariant by translation. That is why we first extendo R by a functionz which is convenient, i.e., which
decreases exponentially fast in time in tHé norm. Precisely, we already explained in a heuristic way that
decreases exponentially fastragoes to infinity near = 0. Therefore, we first define a functiarequal tov near
the origin and then extendto R by z. We can then use theorems on spectral perturbations of operators, energy
estimates and spectral decomposition to highlight the behavioutirofX. As Eqgs. (12) and (13), satisfied by
andp, are coupled, we need at the end to study the behaviouasfwe explained before.

From now on, we fixR > 0 (large), O< § < 84 (small), and we assume that, p) € C%([0,T],Y x R) is a
solution of (12), (13) satisfying

lvo ]y <5, |p] <1, 0<r<T,

for someT > 0. We call these assumptions (H).

1.2.1. Localisation near =0
Lets e C*(RT), R4 >2 andB > 0 so thatt =1 on[0, R4] andé(r) ~ e P asr goes to infinity. Let

z(r, ) =&(r)v(r, 1) (15)
for all r e RT andt > 0. Then,z is equal tov nearr = 0 and satisfies

z(r,t) = Laz(r, 1) + Ga(r, 1), r=>0,1>0,

Zr|r=O:07 > 07

where
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L1=32 (—+a(r))8 +b(r),
Gi(r,t) = F (wo(r — s(t))) _)g(r)v(r, )+ (S+NE®T)

n—-1 n-1 ,
—i—( p —R+Ct+p(t)>wy(r—s(t),r)§(r),

a(r)=—2£'(r)/&(r),

b(r)=2($/(r)) §'(r) n—1&(r)
£(r) &(r) ro &)

h_ = inf[yﬂToo F'(wo(y)), yﬂmoo F/(wo(y))]

=inf(F'(0), F'(1)).

Note that:_ < 0 and bequals:_ nearr = 0. Therefore, by choice of approprigie a(r) can be chosen small and
b(r) < —bg<O0forallr e RT.

+h_,

Lemma 1.5. Under assumption@H) for any R > R4, L1 generates an analytic semigroup @nand there exist
positive constantsy, c1, ¢2, y2 such that for any € (0, ),

Helenz:(Y) <coe 7,
|G1(0)| y Sci(1+9) e 2R+t 4 (o v v

Proof. We first study the behaviour ¢iG1(z)||y: it is a standard result thatgw ¢g andyo decrease exponentially
fast at infinity. Then, it comes that

[ (F'(wo(r —s(1))) — h-)&(r)v(r, 1)y < cod g v2(Rten)
ISy <co e_VZ(R-i-ct)’
In addition,N = [F(w + v) — F(wo + v)]1 + [F(wo + v) — F(wo) — F'(wo)v] + F(wo)(1— x(r)) and
INIly < coe 2B 4 ¢ol|v)|§ < coe 72 FHD + cosjv]y.

Finally, we want to bound|((n —1)/r — (n — 1)/(R + ct) + p'(t)wy(r — s(®)x(NET)|ly. AS R > Ra,
s(t) > R4 and the particular case= s(¢) explained in a heuristic way does not occut&s) decays exponentially
fast asr goes to infinity. To conclude, we have to explain the boungbf)|. Indeed, by Eq. (13),

0g(R + ct)
(R+cn2 ' (R+c1)? +5”U||Y)’ (16)

‘P’(l)‘ < co((l+5) g ro(R+et) | g

and

< co(1+8) e r2Rren),

n—l n—1
( T RE ,+p<t>)wo(r—s(r>)x(r)s<r>

This ends the proof fofG1|y.
On the other hand, the semi-group generated pgn Y is studied by energy estimates. lebe a solution of

u; = L1u, r>0, t>0,
{ur|r=0:07 t>01
u(r,0) =uo(r), r>0.

Let I1(t) = 3 [5° u?dr and Ix(t) = & [;° u?dr. Then, the derivatives with respectitof 71 and1, satisfy
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o o ,
Ih(t)=-2b+ (n— l)/ s dr—i—/(b— %)Mzdr,
0 0

r

oo 1 o0 2 o0 , oob”
fz(t)z—/ufrdr—n; /(L:—r> dr+/(b+%>ufdr—/?u2dr.
0 0 0 0

Letintroducee > 0, ¢ > 0, I(¢) = I1(t) + el(t), then

i) < /((b— %) —e%” + _21)8>u2dr
0
o , . o0 2
+/(—1+e(b+%))u3dr+ 1 5 1<§—e)/<”7> dr. 17)
0 0

Choosing first « 1, thene >> 1 depending om andg « 1 depending o, we obtain

a ¥ (m—De —
b——|)—e— <—= <0,
( 2) e 5 + 5 <

a/
—1+e<b+5> <—=e <0,

1
-—e< -1
&
whereys = |bo|. It follows thatl (t) < —y21(r) and|ju(r)|ly < co€ "2 ||lug|ly. This proves the lemma.n

We shall use these calculations to get some further information on the behaviour of the semigroup generated by
L1 which are useful in the following sections. Let) = f0°° (ur/r)2dr. Then, according to (17),

%(eml(t)) + ”;21 & a(r) <O0.

Integrating the latter inequality betweenandrs and using Hoélder’s inequality, we obtain the following result for
y defined in the introduction and any, ¢) € (0, T') such thatr < ¢:

t
/ ey (=)
o

In the same way, using convolution inequality * gll .1 gy < Il f Il 1wy ll€ ]l L2(R)» WeE Obtain fory’ < y2,

ﬁ@)

. ds < cg”u(cr) H v g (r2/2(t=0) (18)

L2(R")

=)
AJE—S
o

The next lemma is a corollary of these calculations and will be used in the following to compute assymptotics
of the solutiongv, p).

ﬁ@)
.

ds < cg”u(cr)HY gV t=0o),
L2(R*)

Lemma 1.6. Under assumption@) for any R > Ry, there exist positive constanig c1, ¢z, y3 such that for any
1€(0,7),
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t

/ e (=9 | L (5) ds < collvolly €77 + c1(1+ 8) e 73R+ oo / e 209 u(s)]), s,
2(R+
L2(RT) 9
e y(t=s) Zr R+c \ !
/ —( ) ds < collvolly€ 7 + c1(1+ §) e 3(R+e) +cz5/e’3’ ()], ds,
L2(R*)
0

0

wherez is defined in (15).

Proof. The proofs of these two inequalities are very similar. Therefore, we only prove the first one. We recall that
z(r,s) =elizg+ [§ €5~ G(r,0) do foranyr >0, s > 0. Then,

t
/ oy (=)
, L2(R+)

t t s
B L Ly
L2(Rt)
0 0 0

The first term of the right-hand side is bounded by (18):

t
/e—y(r—s) 4
0

o (s) ds

r

0
- e(S*fT)Llcl(r’ o)
r

&e‘Ll

r

do ds.

L2(RT)

_n
e'lizg ds <cze” 27 zo]ly.

r L2(RT)

The second term is bounded by Fubini’'s theorem, (18) and Lemma 1.5:

t s
//e—y(r—s> Or
00

13
Lel=IG (1, 0) do ds < /C3 e 220D |Gy(r, 0) |, do
r L2(RT)

t

<c1(1+8) e BRFeD 4 o / g (r2/2—0) || v(o) || y do.
0
This ends the proof of Lemma 1.6 0

Corollary 1.7. Under assumptionfH) for any R > R4, the behaviour of is a result of Lemma.5. Indeed, there
exist positive constantg, c2, c¢3 such that for any € (0, T),

13
lz®]l, < cillvolly €72 + ca(1+ 8) e 72 R+ 4 638/ e 2079 y(s)] , ds.
0
1.2.2. Extension to the real line
As we said before, we need to work on the whole real line and therefore to exfend < 0. Let

z(=r,t) ifr<0,
v(r, 1) if r >0.
Then,z is smooth inR and satisfies for any € R,

Z(V,t) = {
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. - n—1_ , .
G ) =)+ —— D+ F (wo(r —s(1)))z(r. 1)
-1 -1 ~
+ <n - ;+Ct + p’(t))w{,(r —5(0)x(r) + N + Ga(r, 1), (19)
where
~ [N if r>0,
N { Ne(r) ifr <0,
S ifr>=0,
azy+ (b —h_)z+ S&(Irl) + (F'(wo(Ir| —s(0)) — F'(wo(r —s®)))z(Ir], 1)
n—1 n—1 , ,
Galr 0= +< T T Rratf (t>)wo(|r|—s<r>)x(|r|)s(|r|)
-1 -1 ,
- <n P ;+ or + p/(t))wé(r — s(t))x(r)é(r) if r <O.

Using Lemma 1.5 and Corollary 1.7, we have the following lemma:

Lemma 1.8. Under assumptiongH) with R > R4, there exist positive constants, ¢, c¢3 such that for
anyr € (0, 7),
t
G2 2, < callvolly €7 + ca(1+ 8) €772+ 4¢3 / e 207 [y (s) |, ds.
0
1.2.3. Moving frame
In order to take advantage of spectradperties of the time independent operategr it is convenient to work in
the moving frame with speedr). So letz(r — s(¢), 1) = Z(r, t) andG3(r — s(t), 1) = G2(r, t). Then,z satisfies an
equation similar to (19). As(¢) = fR Z(y, Hyo(y)dy = fR Z(r, )Yo(r — s(¢)) dr is nonzero in generaf,does not
belong toR. We recall thatR has been defined in the introduction as the supplementary of the spectral subspace
corresponding to the eigenvalue 0 of the operéipin L2(R). As Lo = ayz +cdy, + F'(wo) has interesting spectral
properties inR, it is convenient to use the following spectral decomposition:

2, ) =nt)po(y) +r(y,t), wherer e R. (20)

Note that thisr € R is different from ther € R* used so far. Before going on, notice that) decreases
exponentially fast in timefn(r)| < coe 74 ®+<) for y4 > 0, and let introduce a few notations. Lt C(R),
positive, even, which satisfigs= 1 on[— R4, R4] and¢ =0 on [—R4 — 1, Rq + 1]°.

We decompose the nonlinear terms as folloNs= N1+ N> where

Ni=Fw+r)— Fwo)x(y+s@) — F'(wo)r and Np=N — Ny.
Then,
IN1l 2 < collr 1§ + coe™ 7R+,
IN2ll 2 < co|n ()]
Substitute the decomposition (20) into Eq. (19) to get:
re(y, 1) =Lor(y,t) + Q(Ga)(y,1), 120, yeR,

/r(y, Dyo(y)dy=0, >0,
R

(21)
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where
Lo =02+ cdy + F'(wo) + Q(N1+ (1 — {)Gs)
Ge — n—1 n—1 ,
5_<y+s(t)_R+ct+'0(t))ry(y’t) (22)

n—1 n—

1
G4=G3(y,1) + N2+ Gs(y, 1) + ( + ,O/(t))(n(t)tﬁé(y) +&(y +50)) o).

y+s(t) R+ct
We recall thatQ is a projector ont&R defined in the introduction.

Lemma 1.9. There exist positive constanks, §s such that under assumptiofid) with R > Rs and§ < 8s, L
generates a family of evolution operatotst, s) onR which satisfies

|AG )] por) < coE”™, 0<s <t

Proof. LetLg= 8)2,+c8y + F'(wo) defined oriR. Theno (Loir) C ]—o0; —y], ¥ > 0 and Ip generates an analytic

semi-group orR which satisfieg €%0|| £ (z) < coe™" andRY2 = D(Lé/z) = HY(R), see for instance [13]. Let

B:R* — L(HY(R), L%(R)),
t — B(1): HY(R) —> L2(R)
r—> Q(N1+ (1—1¢)Gs).

We want to prove thaB is a small perturbation of the operatbg which does not affect its exponential decrease.
As Bl zcu1.r2) < co((n — 1)/ R + 8), Appendix A ends the proof, namely there exist soRse> 1 and some

35 > 0 so that for allR > Rs ands < 85, Lz generates a family of evolution operaterg, s) onR which satisfies
Lemma 1.9 for a slightly different. 0O

Lemma 1.10. Under hypothesigH) with R > R4, there exist positive constanis i =0, ..., 5, andys such that
foranyr € (0, T),

log(R + ct)

. —yst X —5(R+ct) \
|QG®)] 2 < collvolly €75 + 11 +5)e e o2

(1)
;

'
+ 28 / g r2t—s) H v(s) || y Os + C4‘,O/(l)‘ +c5 .
) L2(RH)

Proof. As G4 is given by (22), the first two terms have already been studied in Lemma 1.8 and (21):

10G® | o) < G20 2R
t
< ctllvolly €72 + ca(14 8) &2 RTD 4¢3 / e 20 u(s)]|, ds,
0
[OWN2)(®)]|,2 < co|n(®)] < coe 74 R+,

The last terms will be cut into four parts with the cut-offAs

n—1 n—1 , _
<y+s(t) ~REa +p(t)>$(y+S(t))¢o(y)§(y+s(t))—O
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by definition ofé and¢, we obtain

l0g(R + ct)
SCO—F—5

2 P (Rten?

n—1 n—1 /t t
<y+s(t) “Rya TP )>§(y+5( ))¢o(y)

+e1lo' ).

In the same way, we get

n—1 n—1 , ) .
<y+s(t) TRia P (t)>’7(t)¢o(y)( —¢(y+s0))

< co(1+ 8) e vaRte),
L2

Finally, we join the last two terms:

n—1 n—1 , ,
HCG5+< +p (t)>n(t)¢o(y)§(y+3(t))

y+s(t) N R+Ct LZ(R)
<ﬁ<”_1 nol VOH)N(ﬂ
X - r)zr\r,
r R + ct P . LZ(R)
r(r,t -1
o A +<”— +c05+cl>}|z(r,t)}|y
r L2(Rt) R
asz =z =v on|[0, R4]. By Corollary 1.7, we conclude that:
Ha7+<”_l nol wﬁ O (v + ()
— S

Zr(r7 t)
r

< COHUO”y e*)/zt + Cl(l+ 6) ef)’Z(R*FCI) + 2

t
+035/67V2(t75) ||v(s)||yds.
L2(R*) o

Defineys = inf{y2, ya}. This ends the proof. O

Corollary 1.11. Under assumptiongH) with R > max(R4, Rs) and § < Js, there exist positive constants,
i=1,...,4andyy, y' suchthatforany € (0, T),

t ’
log(R + ct) N g v (=9
o9k +e)  [ET

R+c)2 ) Ji=s
0

Ir@®] gagy < ctliroll iy €77 + ca(1+8) €777 R g |0’ (s)] ds.

Proof. We first want to bound th&2 norm of . As a consequence of Lemmas 1.9, 1.10 and 1.6, we get for any
te(0,7),

_ _ [0g(R + ct)
H"(f) H L2(R) < Cl||”0||H1(R) e +cp(l49)e ve(Rtet) 4 C3W
t t
+ C4/ e_y(’_s)‘,o/(s)‘ ds + cs58 / g 76(i=9) Hr(s)HHl(R) ds. (23)

0 0

In order to bound the4! norm of r, we recall that; = Lor + Q(G4) and Ly = Lo + B(t). According to
Lemma 1.9, operataB(¢) is a small perturbation afo. Then, the Banach spa@'/2 can be defined by (A1/2)
as well asD(Lé/z), and the graph norms are equivalent. Thig,A (2, 5)|l £(r) < coe™?“=/¥I=5_In addition,
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r(y,t) =A@, O)ro(y) + fé A(t,s)Q(G4)(y, s) ds. Derivating this last expression with respectytand bounding
the L2 norm, we get:

t
—y (1—s)
|ayr @] L2g, < collroll g1 gy €77 + / etﬁ 1Q(Ga)(s)| 2 ds.
0

Finally, by (23) and Lemmas 1.10 and 1.6, we get
0g(R + ct)

et —y6(R+ct)
[ ] gagy < calirollgagy €7 + c2(1+8) €75 4 g (R +c1)?

iGN . b e v (i—s) .
+ca m ‘IO (S)| S+C5/ m ”r(s)HH1 S
0

Indeed, by Fubini’'s theorem and one integration by parts,
t

y(— ,
/ c & 726-9) | y(0), do s < co / &7 o), .
0

Gronwall S Iemma ends the proof.O

Corollary 1.12. Under the same assumptioft$) with R > max(Rs, Rs) ands < s, there exist positive constants
¢i, i=1,...,3,suchthatforany e (0, T),

[v@® |y < cillvolly €78 + ca(148) e 18R 4¢3

l0g(R + ct) g (t=s)
LEEN ETR

1.2.4. Conclusion

Proof of Proposition 1.4. Take R3 = maxX{ R4, Rs} anddz =inf{d4, d5}. LetT > 0, § < §3 andR > R3. Consider
(v, p) €CO([0, T1, Y x R) any solution of (12, 13) satisfying

lvly <8, |p(| <1, 0<r<T.

Then, assumptions (H) are valid and by inequality (16), Corollary 1.12 and Gronwall’s lemma, there exist positive
constants, ¢z, yo such that

[0g(R + ct)

Rye2 °SIST

lo@], + o' 0] < callvolly €7 + ca

This ends the proof of Proposition 1.40

2. Nonradial solutions

In this section, we deal with nonradial solutions of Eq. (1). We prove, in this case, that travelling waves are
Lyapunov stable but not necessarily asymptotically stable for general (i.e., nonnecessarily spherically symmetric)
perturbations. In the first part of this section, welkin how the Lyapunov stdlty follows from Uchiyama’s
proposition and the maximum principle. In the secqradt, we prove Theorem 2. To this end, we introduce
some energy functionals which enable us to rule out the asymptotic stability of travelling waves against arbitrary
small perturbations. In particular, we give an exampl&#of an initial datau close to a travelling wave which
converges to a nonradial profile agoes to infinity.
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2.1. Lyapunw stability

In the first section, we proved in Theorem 1.3 the local stability of travelling waves ire., among radial
perturbations. Note that Uchiyama [16] proved a similar result inftPffenorm in her Lemma 4.5 without any
information on the decay rate of thesgpurbation. Using comparison theorem, we show easily the Lyapunov
stability of travelling waves against arbitrary small perturbations.

Proposition 2.1. For any ¢ > 0, there exist positive constank, § such that ifug: R" — R is a spherically
symmetric function satisfying

HMO(X) - w0(|x| - R) ||L°°(R”) < d
for someR > Ro, then Eq(1) has a unique solution € CO(R*, L°°(R")) with initial dataug and for all € R,
Hu(-xv t) - w0(|x| - E(t)) || L>®(R™) g &

wheres (1) = R + ct — =210g(c(R + ct)/R).
Proof. See Uchiyama [16], Lemma 4.50

Corollary 2.2. For anye > 0, there exist positive constangy, § such that ifug: R"” — R satisfies
o) — wo(lx| = R) | Loogrn S8

for someR > Rp, then Eq(1) has a unique solution € CO(R*, L°°(R™)) with initial dataug and for allr € RT,
Jux, 1) — wo(lx| — 5()) ||Loo(Rn) <&,

wheres (1) = R + ct — =2 log(2£<L).

Proof. Letu(x,t),u1(x, ), uz(x, t) be the solutions of Eq. (1) with initial dat&, wo(Jx| — R) — &, wo(]x|— R)+

3 respectively. Then, combining the maxim principle and Proposition 2.1, we havg(x, 1) <u(x,t) <ua(x,t)
onR" x Rt and||u(x, t) — wo(|x| — 5(#))|| >R < €. This ends the proof. O

2.2. Energy estimates

In order to prove Theorem 2 about nonradial profiles, we need to control the perturbation of the wave and in
particular the shape of the interface. We proceed as in the first section: we decompose the sotutioas a
translate of the wave and a transversal perturbationu$®ehe same notations as in Section 1. As is explained in
the introduction, we restrict ourselves for convenience in the two-dimensional case, and we use polar coordinates
(r,0) e Rt x [0, 27) in R2. Define the open se2 = R™ x (0, 27) and the measurevd= r dr d9. We need to
introduce some Banach spaces adapted to these new variables:

W= {v(r, 0) € HL.(2) | v, vr, — € L%(82, dv) andu(r, 0) = v(r, 27 in L (R™, dr)},
r

Z={p®) € H'(0,21) | p(0) = p(27)}.

We also define the associated norms:

02 1/2
lvllw = </(u2+v3+ —2) dv)
r
2
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27

172
lollz = (/(P2+092) d9) = lloll g1(0,27)-

0

The spacéV does not seem to be very suitable to our problem as the measimdutes a linear grow in time of

the norm due to the expansion of the front. However, it is convenient for energy estimates as we shall see below.
In those spaces, the coordinate system developed in the first section is still valid. More precisely, we have the
following lemma:

Lemma 2.3. There exist positive constanky, 87, K’ such that for anyR > R} and anyt € W with [|§[lw < 87,
there exists a unique paiw, p) € W x Z with

(W) vliw +llellz < K'NElw, B
(i) wr—R,r)+EFr)=wir—R—p@®),r)+v(r0)forall (r,0) € £2,
(i) [~ v(r.0)y(r — R— p(0),r)dr =0foranyé €0, 2).

Proof. The proofis very similar to the one of Lemma 1.1 and we may omiti.

Using Lemma 2.3, assuming the solutiox, ¢) is close to a travelling wave, we have for any 0, 6 € [0, 2r),
and someR > 0,

u(r,@,t):w(r—s(9,t),r)+v(r,9,t), r >0, (24)
1 R+ ct
S(@,t):R+ct——|Og( )+p(9,t),
c R
/U(r,@,t)lﬁ(r—s(@,t),r)dr:O. (25)
0

Note that according toahes [8], the solutiom(r, 0, 7) is close to a travelling wave in every radial direction
of R2. Therefore, in (25)y is transversal ta/ (- — s (6, 1), r) for all 6 € [0, 277).
Then, we get two new evolution equations. The one satisfiedibybtained by equations (1) and (24):

v (r,0,1)=Av(r,0,1) + F’(w(r —500,1), r))v(r, 0,t) + N+ S

1
1wy (r =50, ,7) 00, 1) = S (wy(r = 5(0,1),7) 00 (0, 1)), (26)
v(r, 6,0) =vo(r,6),
where

2 1 1 2
A=ar+;3r+r—239,

N=Fw+v)— Fw)— F'(w)v,
1 1

1
5= (7 = e o+ (e 2o 2 ) s vy P

Differentiating Eq. (25) with respect taand integrating by parts, we get as in the first section, the equation satisfied
by p:
o0
pt(@, t))"(oos 97 t) = - / g(rs 97 t) dr,
0

(27)
p(0,0) = po(8),



V. Roussier / Ann. |. H. Poincaré — AN 21 (2004) 341-379 361

where

r

Ar,0,1) = /(W(z —s5(0,1), z)wy — wyv) dz,
0
8(z,0,1)=g1(z,0,1) + g2(z, 0, 1),

81(z.0,0) =vA+v(z—s0,1),2)(N+9),
1 1
82(z,0,1) = ==Y dg(wypg) + — Y vee,
z z

Ao =(— ! ! 2 ! F’
(Z, J)—(R_’_Ct_z)l/fy“l‘?w‘f‘(l/frr‘f‘ l/fry_zwr)‘f‘(l/fyy_cwy‘i‘ (u))l//)

As in the first section, we consider the initial value problem for Egs. (26), (27).

Lemma 2.4. There existRg > 0, g9 > 0 and T > 0 such that, for anyR > Rg and for all initial data

(vo, po) € W x Z with |Jlugllw < g0 and ||pollz < €0, the integral equations corresponding (86), (27)have a
unique solution(v, p) € C°([0, T], W x Z). In addition, (v, p) € C1((0, T], W) x C1((0, T1, Z), and equations
(26), (27)are satisfied fobD <t < T.

Proof. Define s = §; and leté be as in Corollary 2.2. Choose ©¢o < §(1 + coe 72R0)~1 for some fixed

Ro > 0 large enough. Letvo, po) € W x Z such that|vollw < €0 and | pollz < eo. Finally, defineug(r, 0) =

w(r — R — po(9),r) + vo(r, 6). Then,ug € H(R?) and it is a standard result that there exists a unique solution
u(x, 1) € CO(0, T1, HX(R?) N c1((0, T1, HY(R?)) to Eq. (1) with initial dataug. According to Corollary 2.2,
u(x,t) stay close to a travelling wave in ti€°-norm for allz > 0. By energy estimates, we show in Sections 2.2.1
and 2.2.2 that this is also the case in #é& norm. Thus, Lemma 2.3 is still valid and there exists a unique pair
(v, p) € W x Z such that (24), (9), (25) hold an, p) satisfy Egs. (26), (27). O

These two equations are very similar to those found in the first section. We choose here to deal with energy
estimates. We study the behaviouljofz) |w and| o (¢)||z under the assumption that the initial data are small. We
have the following theorem:

Theorem 2.5. There exist positive constanks, 1, n such that if(vo, pg) € W x Z satisfy
RY?|lvollfy + llpoll <&
for someR > R; and some < ¢1, then Eqs(26), (27)have a unique solutiotv, p) € C°([0, +00), W x Z) with
initial data (vo, po), and
2 2 1
(R+e)?|vm |5, + o] < n<8 + E)
forall ¢ > 0.

These estimates will be useful to prove Theorem 2. We now give the proof of the first part of Theorem 2:

Proof of Theorem 2. Let R}, &7, K’ be as in Lemma 2.4R;, e1, n as in Theorem 2.5 aneh, y1 as in (14).
Choosery), &, andn such that:

p= Yok
22K’
8o+ co g 11ko < min(a’l; 277), (R6)1/4c0 e 71Ro <n.

Ry = max(R1; RY),
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Let nowug € HX(R?) such thatjuo(x) — wo(lx| — R)|| y1rz) < 8 for somes < 85, R > R{ and RY45 < n.
Let&(r, 0) = uo(r,0) —w(r — R, r). Then, by (14)J|E|lw <8+ coe 1R < 87 andR > R}. Thus, by Lemma 2.3,
there exists a unique paivg, po) € W x Z such that

(D) llvollw + llpollz < K'lI&llw» _
(i) wr—R,r)+E@,0)=wi — R— po®),r)+ vo(r,0) forall (r,0) € £2,
(i) fo° vo(r, )Y (r — R — po(8),r) dr =0 for any 0€ [0, 2r).
Then, with the above conditions dhande,
RY2|lvoll3, + llpolls <e1. R >R

Then, by Theorem 2.5, Egs. (26), (27) have a unique soltiop) in C°([0, +00), W x Z) and
1/2 2 2 1
R+ e [v)]? + o0 < n<8 + E) forall > 0.

Let u(r,0,t) = w(r —s(0,1),r) +v(r,0,t) wheres(@,t) is given by (9). Then, by (14) is a solution of (1)
satisfying

o
This ends the proof of the first part of Theorem 21

Hu(r, 0,1t) — wo(r —s5(0, f)) ”W <

We now prove Theorem 2.5. Therefore, wa@atuce a few functionals linked with the normswéndp in W
andZ respectively.

2.2.1. Definition of primitive and functionals
If 7 >0 and(v, p) € CL((0, T], W x Z) is any solution of (26), (27), we first introduce functionals for the
functionsv andp:

1 17T 1
2
Ex() = 5[ v ey = 5 f / V2.0, 0rdrds =2 / v2dv,
00 2
1
2

1 2 2 Y%
Ea(t) = 5[ Vo) 2e) = <Ur + p) dv,

2
1 2 1 v Voo 2
B30 = 31800 Lz = 5 [ (o4 2+ 25 ) v
2

2

E4(t) = %Hp(r) 1220020, = % / p?(6,1) 08,
0271

Es(r) = %Hpe(t) 122020y = % / p3(6.1)d6,
’ 21

Eg(1) = %Hpee(t)ﬂiz(o,zn) = %/pgg(é?, r)do.

0
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It will be useful to consider also the weighted primitiVeof v:

r (e.¢]

V(r0,1) = / v(z,0,0%(z—s(0,1),2)dz = —/ v(z, 0,09 (z—s(0,1),2) dz.
0 r
Note thatV(0,6,t) = V(c0,6,t) = 0 asv is a transversal perturbation for afye (0, 2r), see (25). Under
the above assumptions anand p, V € C1((0, T], W) and it satisfies an evolution equation easily computed
by integrations by parts from (26), (27):

Vl = Vrr _wl(r597t)vr +G5(r,9,t), (28)
where

_ Vo(r —s(6,1)) x'(r) _1.
B N AT

r

o0
A(r,0,1) Ar,0,1)
[ ={1-— 0.t)dg — ———— 0.1)dz.
s 0.1) < A(oo,e,r))/g(z’ &= o0, ) S&HDE
0 r

We also consider the last functiongy for V:

1 1
Eo(t) = EH\/(r)HfZ(RZ) = E/vz(r,e,z) dv.
2

Note that there exist two positive constaiteindl, such that for any € (0, T') (see Appendix B),
I1E1(t) < Eo(t) <I2E1(t). (29)

We first give the equations satisfied by these functionals and then find the inequalities indijvimdzs which
are useful for the next calculations.

Lemma 2.6. If T > 0 and (v, p) € CL1((0, T], W x Z) is any solution of(26), (27) thenE; € C1((0, T]) for
i=0,...,6. Eg satisfies the equation:

. _ 2 wé(r—s(é’,t)) ' 2
o= [vie+ [ =G ) Vi
2 2
+/w2(r,9,t)V2drd9+/V(r,@,t)Gs(r,Q,t)dv, (30)
2 2

wherewy(r, 0, 1) = Yo (r —s(0, 1) /Yo(r —s(@, 1) + x"(r)/x () + (X' (r)/ x (1))'r.
Moreover, the functiong, E2, E4 and Es satisfy

. 1
E]_(t):—2E2+/F/(w)v2dv+/v(wyp;—r—za(-)(w);pe)“l‘N—i-S) dv,

‘ 2 2 1 (31)

Eo(t) =—2E3— / Av<F/(w)v + wypr — ﬁ89(wy)09) + N+ S) dv,
2

E (t)——/p—g&drde-i—/p—pgwdrde

=T 12500, 0, 1) 72 A(00, 6, 1)

2
PPo Mg (00) P 1
+/7¢wy 22(00) drdo — / 7(81-1- ﬁwvee)drd& (32)

A(00, 0, 1)
2 2
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2 2
E'5(t)=_/"ﬁ7‘/’wy drd9+/ pests Vit g, gy

r2 A(00,0,1) r2 M00,0,1)
+/ﬂ gl—i—iwvgg drdo. (33)
A(00,0,1) r2
Q

Proof. Obviously, Eo(r) = fg V'V, dv. Eq. (28) and integrations by parts yield to the desired expressioBdor

The derivatives with respect toof £1 and E» are more easily computed by analogy with the heat equati®? in

with usual coordinates € R? instead of polar coordinates. As far as the functionalsfare concerned: and

Es are computed by a few integrations by parts. Note that all the functions dependéhgrer2: periodic. The
expressions of4 and E5 have been put in that way to highlight the first terms. Indeed, as we shall see below,
[0 (02/r®) (Ywy /(c0)) dr do behaves essentially lik&s()/(R + ct)? and [, (02, /r?) (Yrw, /A(c0)) dr b like
Es(t)/(R + c1)2. These quantities are going to play an important role in the next energy estimates. Finally, we do
not mind aboutE; and Eg as we are only interested in thi&! norms ofv andp. O

2.2.2. Bounds on the functionals and proof of Theo?en
Proposition 2.7. There exist positive constar®s, o, k, co, d, eg ande;; for (4, j) € {0, .. ., 6}2 such thatif7’ > 0
and (v, p) € C%([0, T, W x Z) is any solution 0f(26), (27)satisfying for allr € [0, T,
2 2
vy + o7 <e
for someR > R, and some < &2, then the following inequalities hald
Es o

6
+ 9
VR+ct (R+ct)?2  (R+c1)?

Eo(t) < — / Y202 dv 4 eo1E1 + e02E2 +
2

E1(t) < —2E2 + / F'(w)v?dv + e11E1 4 e12E2 + e13E3

2
Eg co

Es n €6 n
€15 5
(R+ct)2  JR+ct (R+ct)2  (R+ct)

Eo(t) < —2E3+ (e21+ (dk)?)E1 + ep2E2 + (e23+ 1) E3
€6 Eg co

+

Es
S Ry JRtci (Rten? T (Rtc)® (34)
Ea(t) < —di + e41E1+ eq2E2 + e43E3 + e45 Es + e Ee + <0
(R +ct)? (R + ct)? (R+c¢H)?2  (R+cH)?’
Es(t) < —di + e51E1 + espEo + es3E3 + (656 + ﬂ) __Ee
(R + ct)? 4) (R +ct)?
co 2 2
+ m + E(R +ct)(E1+ E»)

and
sup(F'(wo(x)) — kg (x)) < —2.

xeR
Moreover, constants;; can be chosen as small as we want by choogintarge enough and, small enough.

We prove right now how Theorem 2.5 follows from Proposition 2.7.
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Proof of Theorem 2.5. Let Ry, €2, k, co, d, eg ande;; be as in Proposition 2. R, ¢g be as in Lemma 2.4 and
1, Iz asin (29). Chooser >0, R1 >0, £1 >0, [ =1/a > 0 such that

. 1
R1>max(1, Ro, Rz, a?, ac), e1<min(ed, £2), ]‘?/1; <eo, m@?<,
1

wherea = max(1+ klp, m) andb = min(1+ ki1, m). We also request that for aly > R1, and any O< ¢ < €1, the
following inequalities hold for any > 0:

keo + e11+ m(e21 + (dk)?) + ea1 + es1 < 1,
—2+ kegp+ e12+ mezp+ eq2+ e52 < —1,

m
—2m + e13+m(e23+ 1) + eaz+ e53 < 5 (35)
—d + e15+meos+ es5< 0,
eg €6 eg d d
—d+k + +m +ess+eset — < —.
VR+ct R+ct VR +ct 4 X7 2

This is possible by first choosing > 0, thene; small enough andk; large enough. Tak® >
(vo, po) € W x Z satisfying

1/2 2 2
RY2)woll?, + llpoll% < e.

By Lemma 2.4, let(v, p) € C9%([0, T*), W x Z) be the maximal solution of (26), (27) with initial datao, o).
Define, for some: € N*,

R1, ¢ < &1 and

1
T = p{Te ‘(R+ct)l/2||v(t)HW+||,0(t)||Z<n(8+R)

and/(R +es)UA(s)ds < 2( 1) foro<r < 7}
0

where
U@F)=kEo+ E1+mE> and b(E1+ E) <U(t) <a(E1r+ E»).

We also give some conditions anwe assume that

a 2(k+1+m)eg 4
—(1 2 — | <n-1,
b+< - (1++v2)+ >(a+db2> n (36)
2(k+1+m)ee 4 \/E
1 2 — — -1 7
< (1++v2)+ )( +db2)+2b+ o <n—1, (37)
a 81 | 2an 2an (2(k + 1+ m)ege1 2c <1 (38)
1 [ d ch/z
1
n(sl + —) < &y, (39)
Ry

whereé, = ae1 + ¢/(cR1) + 4/(db?)(e1 + 1/R1) andé is definied by (40), (43) and (44). This is possible by first
choosingr large enough such that the first two inequalities are valid and fisalgmall enough andk; large
enough such that the last two inequalities hold.

By continuity of v and p, it is clear thatT > 0. We claim thatT = T*, which also impliesT = T* = +oc0.
Then, the inequalities satisfied byandp are true for all > 0 and Theorem 2.5 follows immediately. Indeed, if
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T < T*, it follows from Proposition 2.and inequality (39) that fare [0, T], inequalities (34) are satisfied. To get
a contradiction on the definition @f, we must judiciously bound the expressidis+ ct)Y/2|v(r) ||%,V + ||,0(t)||%

and [y (R + cs)U2(s) ds. Therefore, define
E()=kEo+ E1+mE2+ E4+ Es=U(t) + E4 + Es.
Using (34) and (36), there exists> 0 such that
dEg(1) ¢
2(R+ct)2  (R+ct)?
Integrating this inequality between 0 and T', we get

EW) < —E1— Ep— %E3([) - + g(R +ct)(E1+ E2)2. (40)

t

! 1
dE
E(I)+/(E1+Ez)(s)ds+/%E3(s)ds+/2(T6(2)2 s
0 0

t

<5(0)+/ R+ ds+/§(R+cs)(E1+E2)2(s)ds <é&, (41)
0

whereé = ae + /(cR) + 4/(db? (¢ + 1/ R). Moreover, we also get from inequalities (34) that
U@) < —E1(t) — E2(0) + f (1) < —IU@) + f (), (42)

where

£y = (k+14+m)es Ee(2) (e15+ meos) Es(t) co

JR+ct (R4+ct)? + (R 4+ ct)? + (R 4+ ct)?’
ThenU(r) <UO) e + [5 &7~ f(5) ds. Finally,

t
ag i & —[(t—s)
WVR e+ / b, € ds.

To evaluate this last integral, we cut it into two parts and use inequality (41) and the faEsthat n(s +1/R) <
£2.

E1(t) + E2(1) <

t/2
(s _ 2k +1+m)ege  cot
[(t—s) 1t/2
e ds<e - 7+,
/ f(s)ds ( = +2R2)
0
t
—I(t—s) eG(k+1+m)/ Es(s) c0
e ds <
/ fs)ds VR +ct/2 (R+cs)2 l(R—I—ct/Z)2
t/2

2(k + 1+m)e58 co

S dJR+ci)2 + I(R+ct/2)?
Finally, using (36), (37), (41) and the above inequalities, there exist® such that

(R + e)Y2(Ex + E2) (1) + Ea(t) + Es(1)
ag 2k +1+m)egé c V2 (2(k + 1+ m)egé ¢ .
<—+ — +é
b db 2bR%2 " b d IR3/2

<(n—1)<8+%>. (43)
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We now want to evaluate the integg%I(R + ¢s)U?(s) ds. Therefore, define
G(1) = (R + c)U(1).

Then, using (42) an®1 > ac,

dg 1\ [ (k+1+m)egEp(t) co
ag—lg-i-Zan(e—l—E)( R+ )2 +(R+ct)3/2).

By Gronwall's lemma, we get a bound ¢hand by integrating between 0 and

t t s
a?e? 1 (k + 1+ m)esEs(7) o
ds < —— +2a = —l(5=7) dr ds.
/g(s) s ; —+ n(8+R>//e ( Rt 1) + (R+cr)3/2> T ds
0 00

Finally, by Fubini’s theorem, (41) and (38), there exists 0 such that

| 2,2 < -
/(R+cs)uz(s)ds<a8 +@<s+i)(2(k+l+m)eeg+ 2 )<<s+i>. (44)
0

/ l R d cRY/? R

Then, by (43) and (44), we get for any 1 and anyR > Rj,

1
(R+c)Y?(E1+ E2) + E4+ Es < (n— 1) (s + E)’

t
1
/(R + es)U?ds < (8 + E)
0

forall 0< 7 < T. This contradicts the definition @f and concludes the proof.0

2.2.3. Proofof Proposition2.7

The proof of Proposition 2.7 is technical and we nee@éw intermediate lemmas to prove inequalities (34).
We only use a few fundamental ideasadehy—Schwartz’ inequality, Jensen’s inequality, Schur’s lemma and the
fact thatyo(r — R — ct) and¢o(r — R — ct) are localized around= R + ct. We encourage the reader to refer to
Appendix B where we explain in detail the way those fundamental ideas are used in the following lemmas. For the
whole Section 2.2.3, we calH) the following assumptions:

Fix e, R, T positive constants.

Let (v, p) € CO([0, T], W x Z) be any solution of (26), (27) satisfying

v + [p@]5 <e. rel0.TI. (45)

In the following six lemmas, we prove that inequalities (34) follow from Egs. (30)—(3%)p-to Eg and
inequality (45).

Lemma 2.8. Under assumption@), there exist positive constanks, =2, cg such that for any € (0, 7] and any
R > Ry, e < g2,

Eé/z + E§/4Eé/4 +A+B
(R+ct)2  (R+ct)? ’

ol 22(0,20) < CO(

where
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_(_Es \"[_E1 | B+ EDVES*  (E1E)Yt | (ErEs)Y?
"\ (R +ct)? (R +ct)? (R + c1)5/4 R+ ct (R + c1)3/2
1/2 1/4 -1/2 . 1/4
N E; N Ee I E, “Eg
(R +c1)3/2 (R + ct)? R+ct’
2E7/ E1+ E> 1

:(R+ct)5/2 JRtc | (Rten?

Proof. p is a solution of Eq. (27) and we want to bound thé norm of p;. Therefore, we need to bound
A(00, 0, 1) from below and fé’o g(r,6,1)dr| from above. Using Jensen’s ana@hy—Schwartz’ inequalities and
the Sobolev's embedding1(R?) < L4(R?), we first have

0 2
/ Yyvdr
0
27

21 00 0
g//|v21//y|drd9+//|2vue%,|drde+
00 00

172 (E1+ E2) .
5 R+cn2) S P

o]

sup

< sup | |yyv?dr (Jensen)
9e(0.27)

0€e(0,2
( )0

(0.¢]
/ |v2p9 1//yy| drdo
0

Ey 1/2
< E1E)Y?+ E
CO<R+ +( 2)7C+

as for any functionf such that/” £ (6)d6 = 0, supl f| < J&" | fal do.
As a(00,0,1) = [o° Yywy dr — [5° Yyvdr and f;° Yw, dr = 1 — O(e™R+<D), we have

1—co(e¥?+ e ®) < (o0, 6,0
for any6 € (0, 27) and anyr > 0. Then, for convenient, and R, (oo, 6, 1)1 < 2 for any6 € (0,27), t > 0,

R > Ry ande < .
Moreover, using Schur’s lemma (see Appendix B), we have

o0
Yw coEl/2
poo | o ye dr \7R 5
J 20060 | b RECD
and
o0
5 / o <— ool 20m 19 02 o o5 kg
X S~ . 90 LOC X, . . 9
o | 725(c0.6.1) Loz | (RACH? L?(0.2m) @20 = "Rt en?

as ||,o9||LOO(o 2n) < (EsEg)Y/4. To bound the norm off;°(¥ves/(rA(00))) dr, we introduce the difference
1/r2 —1/(R + c1)*:

o0 oo

/ Yuge /( ) Vg &+ 1 flﬁvee &
r2x(00, 0, t) (R+ct)2 12 ) a(c0) (R+cH)2 ] r(oo)
0 0

0
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The first term is bounded in the2(0, 27) norm byEl/z/(R + ct)®/2. For the second one, we writ* yrvgg dr
with derivatives ofp andv by derivating twice identity (11) with respect &o

o o0 o o
/1//1)99 dr:pgg/l//yvdr—pQZ/I//yyvdr+2p9/1ﬁyv9 dr.
0 0 0 0

Finally, by Jensen’s and Cauchy—Schwartzinalities, Schur’'s lemma anté Sobolev’'s embedding 1 (R?) —
L*(R?), we get

o0 2w 00 /2
/1/fv99 dr <co(//p991/fyv drd@)
0 L2(0,27)
2w 00 1/2
+co<//p91ﬁ”v drd9> +co<//,091ﬁ)v9drd9)
00 1/2 27 oo 1/2
<C0||/099||L2(0,2n) /I/fyvzdr +CO||)00||L00(0271)<// I/fyyd‘/)
L°°(0,27)
® 2
—l—collpellLoc(ozn)(//—g )
0 0
1/2
1/2 1/4 1/4(E1+ E2)
<c E + (E1E +E -
0 <R+ (F1F2) (R+ ct)1/
E1Es5Eg\Y?
+co< 1o 6) +Co(E5E6)l/4\/R+ctE%/2.
R+ ct
Then,
o0
/ LR < coA.
r2h(00,6,1) | ,
0 L (0,27‘[)

The last termfé’o vA+y (N +S)dris bounded by Jensen’s inequality, Schur’s lemma (see Appendix B) and the
Sobolev’s embedding/}(R?) < L*(R?). Then,|| [¢° vA + ¥ (N + S) dr| ;2(0.27) < coB. Notice that asi*(R?)
is not an algebra, we need some more assumptions to bound the ndrm/d assumed in the introduction that
every solution ofu; = F(u) is uniformly bounded in time. Therefore, is bounded and Taylor's theorem and
Sobolev’s embedding enable us to bolid| 2 gz, This concludes the proof of Lemma 2.80

Lemma 2.9. Under assumption@), there exist positive constantg Ry, e2 such that for any € [0, 7] and any
R >Rz, e < e,

Eo(t) < /wzv dv+c0<

+El/zB+C),

where
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Ez Es \Y*((E1E)Y2EY*  (EoE)Y2ES"
C= +
R+ct <(R+ct)2) < VR +ct R+ ct )

Es \Y?((EoEs)Y? (E1Es5)Y?\  (EzEs)Y/?
(R +c1)? R +ct R +ct R+ct

Consequently, there exist positive constagis ep2, es such that

e Es n co
VRF¥ct (R+ct)?2  (R+ct)?

Eo(t) < — / Y202 dv + e01E1 4 e02E2 +
2
whereeg; andegy can be chosen small with appropriak andes.

Proof. We know thatV, = yv; by Appendix C, we havey/vo) = (¢p/¢0) < 0 and there exists some constant
co > 0 such thatwy| < co. Then, by Eq. (30), the only difficulty ig comes from/, VGsdv. If r < R +ct, the
main term inGs is fO’ gdz andifr > R+ ct, fr"o g dz. We bound separately the term wigh and the one witly».

The term withg1 is bounded b)El/zB as in Lemma 2.8. The term wit$p is bounded after one integration by
parts ing, Cauchy—Schwartz’ and Jensen’s inequalitie€byndeed, ifr « R + ct, as

Vo =/(1/fv0 — poYyv) dz,
0

R+-ct 2 r R+-ct 2 r 2
1
r
0O 0 0 0 O
R+ct2m , r r 1 1 R+ct 2
+ / /(/Wvgdz></1//v9<—2——z)dz>dv+ / /pg(/l//}vdz></1//—d)
r Z
0O 0 0 0
R+ct 2 r R+ct 2 r
+ / /p9v</¢ygdz>du— / /pgv( %Z'g)ydz)du
0O 0 0 0O 0
R+ct 2 R+ct 2

//pg(/ )(O/’Wdz)dv_// (/w ydz)(/wdz)dv

Notice that the first term is negative and can be omitted. The following terms can be treated as described before.
Inequality (34) forEy is easily computed from this result using inequalities suches (a? + b2)/2. Then,

1 JE JE
€01=c0 + +
R+ct JR+ct R+H+ct

602=Co< ! + Ve «/—)

R+ct JR¥ct
ol )

We easily notice thatp; andegz can be chosen very small with appropri®&gandes.
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Lemma 2.10. Under assumptionfH), there exist positive constants, R», 2 such that for any € (0, 7] and
anyR > Ry, e < e,

E1(1) < —2E2 + / F'(w)v?dv + co(Ey/*D + (E1 + E2)%¥?),
2
where
3/4
5

DZ\/R+Ct||p[||L2+

1 Es \Y? E E /4 1

+ + ==
4/R+ct((R+ct)2> R+ct<(R+ct)2) (R +ct)3/2
Consequently, there exist positive constants e12, e13, e15 andeg such that

E1(t) < —2E2+ / F'(w)v?dv + e11E1 + e12E2 + e13E3
2
Es 6 Es €0
e1s5 5 T+ 5T+ 3
(R+ct)?  JR+ct (R+ct)?2  (R+ct)
5 can be chosen small with appropria andes.

+

where{e1;} ;-1

ey

Proof. From Eq. (31), we boungi1(r) term by term{|vp; wyll L 2(r2) Is bounded with Cauchy—Swafartz’ inequality
by «/R +ct | p: ||L2(0,27r)Ei_/2' The three other terms are bounded as explained in Appendix B:

v

1/2 .1/2
E°F
ﬁp% Wy 6 L

<c0o——575,
2wy (Rt ety
1/2 .3/4 ~1/4

Ey " Eg Eg

Lcop———————+,
LZ(RZ) €0 (R+Ct)3/2

v oo
ﬁpe Wyy

1/2
N+S <col (E1+ E2)¥? ©1
HU( + )HLz(Rz) <co| (E1+ E2) +W .

This last inequality is also ohined by Sobolev's embeddirfg'(R?) < L3(R?). We then get inequality (34) for
E1 using inequalities such a® < (a2 +52)/2. O

Lemma 2.11. Under assumptionfH), there exist positive constants, d, Rz, €2 andk > 1 such that for any
t€(0, T]andR > Ry, s < g2,

E(t) < —2E3+ coEq *((dk) Ey/* + E1 + Ez + D).

Consequently, there exist positive constaats e22, €23, e25 andeg such that
Ep(t) < —2E3+ (e21+ (dk)?)E1 + e22E2 + (e23+ 1) E3
Esg n €6 Es " co
(R+ct)2  J/R¥ct (R+cH)2  (R+ct)¥
5 can be chosen small with appropria ande;.

+ e25

wherefez;}j=1,...,
Proof. The proof of this lemma is very similar to the last one and we may leave it out. Notice k@e enough
can be chosen so that up(wp) — kwg) < —2. Then, supF’(wo)| < dk. Once more, inequality (34) foE>
follows for R > Ry ande < &2. O
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Lemma 2.12. Under assumption@), there exist positive constants, d, Rz, g2 such that for any € (0, T] and
anyR > Ro, ¢ < &g,

3/4 1/4
. E E E
E4(t)§—d75+coEi/2( 5 ( 6 ) +A+B+G),
C

(R +ct)? (R +ct)32\ (R + ct)?
where
1/4 1/4 1/4
E E E
5 6 1/2 1/2 ,1/4 6 1/2
= EZ'“+ E°E — ++VR4ctES”).
(R+ct)3/2<(R+ct)2> ( 5 175 <(R+ct)2) 2 )

Consequently, there exist positive constanis es2, eq3, es4s andesg such that

Es co

) Es
Ea(t) < — ,
40 Rt TRy T (Rten?

Es
d———— +eq1E1+earEr +es3E3+ e
(Rt o2 Teabrteaka+easEs+ess

where{es;}j—1,... .6 can be chosen small with appropriai ande;.

Proof. From Eq. (32), we bound term by term. The only difficulty which has not been seen yet in the previous
lemmas is the terny which can be bounded by

/ PPy Ag(00)

r—zlﬁwy )\’2(00) drdo

2

with Cauchy—Schwartz’s inequality.
Let us recall thake = [~ po (Vyyv — Yywy — Ywy,) — Yyve dr. Then,

1/2
E 1/2 1/2
1261l L2027y < Co(llﬂe o0 ﬁ +ES?+VRTctEy

and the inequality pg || .~ < (E5Eg)Y/* ends the proof. O

Lemma 2.13. Under assumptionéH), there exist positive constants, Rz, 2 such that for any € (0, 7] and
anyR > Ry, ¢ < &g,

172 Ee

Eg
d— %
(R +ct)?

Consequently, there exist positive constasgis es2, es3 andesg such that

Es(t) < —di +es51E1 + e52E2 + es3E3 + (ese + i) _Fe
(R +ct)? 4 ) (R+ct)?

co 2 2

+ m + E(R +ct)(E1+ E2)°,

where{es;} ;=1 .6 can be chosen small with appropriai andes.

Proof. Once more, the proof is very similar to the previares, using Cauchy—Schwartz’ inequality. However,
we may detail how we get, from the first result, inequality (34)Egr Using inequalities such a$ < (a2 + b2)/2,

the only difficulties come from the terntéé/z((El + E2)/~/R +ct) andEé/z/(R + c1)? which appear irEé/zB:
foranyd > 0,
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EY? 2 d Eg
6
< + o )
(R+ct)2 “d(R+ct)2 8 (R+ct)?

12
El/2<E1+E2><< Eg ) R ot (Er 4 E
¢ \VR+c (R +ct)? (VR +cr(Er+ E2)

d Es
<=—2
8 (R +ct)?

This ends the proof of inequalities (34)O

2
+ E(R +ct)(E1+ E2)2.

These six lemmas end the proof of Proposition 2.7 aswlck of Theorem 2.5. Equipped with these energy
estimates, we are able to prove the end of Theorem 2.

2.3. Example and density of nonradial profiles
In this paragraph, the end of Theorem 2 is proved thanks to Theorem 2.5.

Lemma 2.14. Under the assumptions of Theoréhd, there exists a functiops, € L2(0, 27) such thatp(-, 1)
converges in thé.2(0, 27) norm tops ast goes to infinity.
Proof. By Lemma 2.8 and Theorem 2.5, we get

H o ” <e E1+ E> n E3 n 1 Es n 1
Pitlizoon SO\ g ad "Rt T JRFa R+ (R+c32)
Then, by inequality (41),

t
1o
0/||pr(S)||deS<co< j;).

As this bound is independent of f0°° ll o1 ()1l L2(0,2,r) ds IS convergent and there exists a functjeg € L2(0, 27)
such that

o0

loso = 2Dl 2020 < [ 1966) 12050,
t

converges to zero agyoes to infinity. This completes the proof

Lemma 2.15. There exist positive constant and ¢ such that ifig(r,0) = w(r — R — /¢/(2m)sind, r), the
solutionu(r, 6, t) of Eq.(1) with initial datauo converges to a non radial profile.

Proof. Take R andes as in Theorem 2.5 anll > Rj, ¢ < e1. Thenug satisfies the assumptions of Theorem 2.5.
Indeed,ug = w(r — R — po,r) + vo wWhere pp(0) = /¢/(2)sing, vo = 0 and Rl/2||v0||%V + ||po||% = ¢.
Sincevg = 0, notice thatR ande can be chosen independently. Therefore, cha®sifficiently large so that
VEI2>c1(1+8)/VR. Letii(r,6,1) = w(r — s(0,1),r) + v(r, 0, ) be the solution of Eq. (1) with initial data
wheres (0, t) is defined by (9). Then, by Lemma 2.1}6,||pt I L2(0,27) ds < co(1+ &) VR. Finally,

” ©,1) / ¢ sing < (1+§>
p b - A \CO
2r L2(0,27) VR
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for anyt > 0. If there exists some> 0 such thap (9, 1) = p is independent of, then

‘,o [ £ sing /2np2+£>c <—1+§)
— R = — 1 .
2 12(0,27) 2 VR

This contradicts the latter inequality. Therefore, for any0, p (0, r) is not constant.
Moreover, as Theorem 2.5 is satisfi¢id]| converges to zero agyoes to infinity and:(r, 6, t) convergesto a
nonradial profile as goes to infinity. O

This ends the proof of Theorem 2. We give a few maifeimation by introducing two new spaces as follows:
S1=|uo € H'(R?) | for someR > max(Ry, R}), iio(r,0) — w(r — R, r) =
£(r, 0) satisfies Lemma 2.3 an(@o, po) € W x Z satisfy Theorem 2.5

Moreover, there exists, for any functia € S1, a unique functiorps, € L2(0, 277) satisfying Lemma 2.14. We
call S> the set of all these functions, € L2(0, 27) satisfying the above properties fag € Sy.

Lemma 2.16. Sy is a subset 0f.2(0, 2) which contains some non constant functions &ads dense in the ball
B(0, min(8, \/e1)) of Z.

Proof. For anyps € Sz, we know thatos, € L2(0, 27). Moreover, there exists, by Lemma 2.15, somes Sy
such thatp € S» is not constant.
Take nowp € B(0, min(87, /e1)) and R > max(Ry, R}). Defineiig € HY(R?) by uo(r,0) = w(ir — R —
0(©),r). Then,|lup—w(r — R, r)|lw < |lpllz <87, and by Lemma 2.3, there exists a unique pair oo) € W x Z
satisfying
iio(r,0) = w(r — R — po(6),r) + vo(r,6),
(vo, ¥) =0,
lvollw + Il eollz < K’ min(8y, /21).

As a consequencep = p andvg = 0 and
RY?|lvoll%y + llooll = llplZ < 1

Notice that asp = 0, this last inequality is still valid for arbitrary large. Finally by Theorem 2.5 and Lemma 2.14,
there exist(v, p, pso) € C(RT, W x Z) x L2(0, 27r) such that

1
R+ enY2uliZ, + 1015 < n(el+ E)
t_'iTOOHp(' o1) = Poo ||L2(0,27r) =0,
C1

oo — Poo||L2(0,2n) < ﬁ

As R can be chosen as large as we need it, the last inequality showSptisadense inBz (0, min(sy, \/1)). O

Appendix A. Perturbation theorem for evolution operators

Theorem A.1. Let A be a sectorial operator on a Banach spaXesuch thatRe(o (A4)) > a > 0 anda € [0, 1). We
setX* = D(A%). LetB > 0, M > 0so that

M
e <Me and e x|y, < 2o e Ixlx
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forall t > 0andx € X. SupposeB : [1o; +00) — L(X%, X) is locally H6lder continuous with
|B®] coxex) SY

forall r > tp > 0and somey > 0. LetT(¢, t), 10 < T < ¢, be the family of evolution operators so that the unique
solution of

& B >
a+ x=B@t)x, t>r, (46)
x(7) =xo,

is x(t; T, x0) = T (¢, T)x0, to < T < . Then, there existgy > 0 such that for any € (0, yp), there exists € (0, 8)
such that for anyp <s <1,

|7 )| oy < M7, (47)

Proof. Givenxo € X, 70 <t < T ands € (0, ), we shall solve (46) in the Banach space

V={xeCr,T1, X)NC(z, T1, X*) | lIx|lv < oo},
where

Ixllv=sup € |x@®)|,+ sup ¢t —)* " |x(1)] y-

<1< t<t<T
First, givenx € V, we define the functio# from V to V by
t
F(x)(t)=e 40" Dxo + / e A=) B(s)x(s) ds.
T

Forr > 0, letyg > 0 andR > 0 be chosen so that

t
c(T)= sup /L R =4Mr,
i< @ —89)%(s — 1)

1-a
C1= My P T=0(T _ 1)%(T) < }’ Co = Myo .2 i < 1
4 1-—« 4
Then, for anyxg € X with ||xg|lx <r, F maps the balBy (0, R) of V into itself and has a unique fixed point in
the ball By (0, R). Using Gronwall’s lemma, it is then straightforward to show that this fixed point is actually the
unique solution of (46) in the spadé. Finally, since|lx|y < 2M||xollx + (C1 4+ C2)|Ix]|lv, the solutionx(z) is
defined for allr > 0 and the bound (47) holds witf; =4M. O

Appendix B. A few lemmas
B.1. Schur'slemma

Lemma B.1. Let P be an operator of.2(R?) defined in polar coordinates by
o
Pu(r,0) = / u(z,0)K (z,r,0)dz,  ueL*R?
0
so that
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o
-
1= sup /|K(z,r,9)|\/jdr<oo,
220, 6€[0,2r) 9 z

o
-
o= sup /‘K(z,r,@)‘\/jdz<oo.
r>0, 96[0,27‘[)0 <

Then, P is continuous or.2(R?) and for anyu € L2(R?),
||PM||L2(R2) < Jcewe ||u||L2(R2).
Proof. We fix 0 € [0, 27). Then, by Holder’s inequality and Fubini’s theorem,

0o 00 2 00, 0o oo
/[/K(z,r,@)u(z,@)dz:| rdré/(/Kﬁ)(/Kuzﬁdz)rdr
M7

0 0 0

0
00 00 00
ng/MZ(Z)Z/K\/Zdr dz gclczfuz(z,e)zdz_
Z
0 0

0
Integrating ind € (0, 2) the above inequality, we get the continuity®f O

Throughout the proof of Lemma 2.7, we use Schur’s lemma in the following way, most of the time without
mentioning it. For instance, the following inequality

2w R+ct , r 2 2w o0 5

/ / (/wvgdz> rdrd@éco(R+ct)2//U—grdrd9
r

0 O 0 00

is proved by Schur’s lemma by writing
v
K(Zaryeat)Z]Izgrg(R—i-ct)l/f(Z_s(eat),Z)Z and M(Z7Qat)=?9‘

Then,c; (t) < co(R + ct) fori =1, 2. This concludes the proof of the above inequality.
B.2. Jensen’s inequality

Proposition B.2. Let ¢ be a convex function and a probability measure on a measurable getThen, for any
feLY(A,dv),

¢</fdv)</¢(f)dv.
A A

Corollary B.3.
2w , o0 2 2w o0
/(/v(r,@,t)l/f(r—s(é?,t),r) dr) d@gco//vzw(r—s(@,t),r)drd@.
0 0 00
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Proof. For anyé < (0,2x) and anyr > 0, let v = ay (r — s(0, t), r)dr wherea is chosen so thafR&w(r -
s(6,1),r)dr = 1. Then,v is a probability measure for any fixedand 6, and¢ (x) = x2 is convex inR2. By
Jensen’s inequality,

27 , o0 2 27 o0
/(/v(r,@,t)l//(r—s(e,t),r) dr) deg//é,ﬂw(r—s(e,t),r)drde.
0 0 00

As a1 can be bounded independentlyroéndt, this ends the proof. O

Appendix C. Log-concave functions

Proposition B.1. Let F € C3(R) be a function satisfying the following conditions

FO=F1)=0, F(0O=a<0 F1)=8<D0,

du € (0,1) sothatF(u) > 0foru € (u,1), Fu)<O0forue,uw),
1

/F(u) du>0, F®@u)<0 foralluel0,1].

0
Letc > 0 andwg € C2(R) be a monotone solution of the ODE

wg +cwy+ F(wg) =0, x€R, (48)
with the boundary conditions at infinity

im wo(x)=1 and Ilim wo(x)=0.
X—>—00 xX—>+00

Definego = wg, < 0. Then,¢o is log-concave

/ /
—(@> > 0.
%o
Proof. As —¢(/¢o = —wg/wy = ¢ + F(wo)/wy = ¢ + g, it is sufficient to prove thag is increasing o, i.e.,
thath = g’ is positive. We first study the behaviour gfand’ as|x| goes to infinity. It is a standard result thag

(resp. 1— wp) decreases exponentially fast to zerocragoes to+oo (resp.—oo). Let us begin with the behaviour
of wg at —oo:

wo(x) =1 — € + A& + o(e?),
wherel > 0. Then,

wp(x) = —1 € + 21 A € + o(e?),

wy(x) = =22 + 2A 2 + o(e?),

and by Taylor’s theorem,

1
F(wo(x)) = F'()(wo(x) = 1) + S F"(D)(wo(x) — 1)° + o)

= (" + AP + %F”(l) e + o(e?).
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As wo is a solution of (48), the first order of the expansion saysxhatthe positive root of
A2+ ch+p=0.

The second order gives
1
A(42+2c0+ B) + SF'W=0,

i.e., ABA2+ch) + %F”(l) = 0. Notice that the above assumptions BriorcesF” (1) to be negative. Therefore,
A > 0. Finally,
w//
g= —w—9 —c=—(c+A) +24re + o(e?)
0

andh ~ 2AA% €+ asx goes to—oo. We can then conclude from this study thais positive forx < 0 sufficiently
large.

A similar study in4+oo with wo(x) = €+ — B €?“* 4 o(e?**) wherey is the negative root gfi2 + cju +a =0,
gives that- B(2u? — ) + %F”(O) = 0 which implies thaB > 0. Finally, asg(x) = —(c+ ) + 2B €** +0(e?¥),

h(x) ~2Bu? e whenx — +oo

andh is positive forx > 0 sufficiently large.
Suppose now that there exists somes R such that:(xg) < 0 and define

x1=inf{x e R| h(x) <0}, x2=sup{x e R | h(x) <0}.
Then,#'(x1) <0 and #(x2) > 0. Ash = cg + g% + F'(wo), we get
B = c(142g)h + F" (wo)wy. (49)
Then, F”(wo(x1)) > 0 andF” (wp(x2)) < 0. Asx1 < x2 and F”(wp) is increasing, we conclude that
F"(wo(x)) =0 forallx € [x1, x2].
Then, F”(wp(x)) > 0 for all x > x2 and by (49),

{ B (x) <c(1+28(x))h(x), x € [x2,400),
h(x2) =0.

Finally, by the maximum principlé;(x) < 0 for all x > x» which contradicts the definition of,. Thereforep is
positive onR andg is increasing. This concludes the proofa
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