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Abstract

The system ofN point vortices on a bounded domain is considered under the hypotheshat vortex intensities are
independent and identically distributed random variables with respect to & lsupported on a bounded subsetRoflt is
shown that, in the limitv — +o0, the 1-vortex distribution o2 is a minimizer of the free energy functional (a combination
of entropy and energy functionals) and is associated to (some) solutions of the following non-linear Poisson Equation (called
Mean Field Equation):

-1
—Au(x) = [// g Pru) dyP(dr):| /rlefﬁ”‘(x)P(dr), Vx € 2, M
u(x) =0, Vx €082.
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Résumé

Le systéme deV vortex ponctuels sur un domainf@ borné est considéré sous I'hypothése que les intensités des vortex
sont des variables aléatoires indépendentes et identiguement distribuées selBrdla $vipport inclus dans un borné®eOn
montre que, a la limite quandl — o0, la distribution d’un seul vortex darf@ est un minimiseur de la fonctionnelle d’énergie
libre (qui est une composition de I'entropie et de I'énergie) et qui est associée a (certaines) solutions de I'équation de Poisson
non linéaire (dite de Champ Moyen) (1).
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1. Introduction

Systems ofV-point vortices in a smooth, bounded, connected open domainR? of Lebesgue measute |
have been studied with some success since Onsager [15]. This paper studies such systems assuming the vortex
intensities to be independent and identically distributed random variables with respect t®@ alésvassume that
P is supported on a bounded subseRoffor simplicity we shall consideP supported ori—1, 1]).

We follow the approach of Cagliotti et al. [2] who handled the case in which all vortices have intensity equal
to 1. This situation corresponds to the I@\being the Dirac measure concentrated at 1 and, hence, our results will
generalize some of those in [2].

The first motivation for considering random intensstiis to provide a mathematical explanation to certain
results which are well known to physicists. An example is the work of Joyce and Montgomery [5] on the statistical
mechanics of the so-called neutral systems, which are defined by an equal number of vortices of intensity.1 and
This situation is similar to a particular case in our agmto (also called neutral) in which each vortex has intensity
either 1 or—1 with probabilities }2 in each case.

In Section 2 we introduce the canonical Gibbs meaguYeassociated with the system of vortices and
temperatureV/B. The phase space of the Hamiltonian system is, essentizfiyand thus it has finite measure.

In Section 3 we shall show that the problem is well posed&dn (—8x, 87). For 8 < 0 we mean states of
negative temperatures as predicted by Onsager and considered by Joyce and Montgomery [5,6,12]. The length of
this interval is connected to the support®f

As it happens in all statistical theories, we expect the results should have more physical meaniryg ishen
large. So we letV go to infinity and look for cluster points af.’V)y-1 in the following way: we introduca{(\’

(k € N), the marginal distribution of vortices induced by." . Then we look for weak cluster points (ir?) of M,J(V
asN — +oo with k fixed. Since for each we have a cluster point m‘{(\’, we find sequencegs, = (ui)kren, called
weak cluster points ofu™) v~ 1, Which we characterize by variationagaiments. This is the subject of Section 5.
We remark thap¥ minimizes the free-energy functional” (which is a composition of two terms: entropy and
energy). We define the limit function&l™ for which weak cluster points are minima.

As N increases, we expect vortex positions to become independent of one another. This means the following:
the field created by vortices converges to a mean fieldk thertex distributionsu,’(V “factorize” and, at the limit
N — 400, this distribution behaves like a productiotopies of 1-vortex distributions (this factorization property
is called “propagation of chaos”.)

Our main tool is the Hewitt—Savage theorem [7]. Using this result, we rewrite the limit problem to show that
weak cluster points are averages of product distributionsyj.es [ p®k&(dp), wheret is a probability measure
on the space of 1-vortex distributions. Whgn- 0, & is a Dirac measure and thus we have the propagation of
chaos. On the other hand, for negative temperatures, the propagation depends on severaPfaétarsd(the
geometry of the domain). In any case, we can show that in the supgortehave only 1-vortex distributions that
are minima of a certain functional.

The mean fields are nothing but the Newton potentials associated with minirAa Dihese potentials are
solutions of Eq. (1). This is a semi-linear Poisson equation (with an exponential non-linearity) called Mean Field
Equation (MFE for short). In the neutral case, up to a constant, we find the same as that found in [1,4-6,9-13].
This constant is a nonlocal and nonlinear term of MFE (this makes numerical implementation more difficult).

The MFE is studied in Sections 6, 8, 9 and 10. We introduce another functowhlich acts on the potentials
and for which the MFE is the associated Euler—Lagrange equation. We show existence of minimigeusiiog
the sharp form of Moser-Trundiger inequality [14]. We show tGapreserves the minimizers df, i.e. each
potential associated with a minimizer Bfis a minimizer ofG and conversely. We find a relationship between the
minimal values of these two functionals.

We are interested in the uniqueness of solutions for the MFE, as this is directly related to the propagation of
chaos. If uniqueness holds, then we have a unique minimizérarid hencé is a Dirac measure (concentrated
at this point). As we have mentioned before, there is propagation of chaos in a positive temperature state, and this
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is indeed a consequence of the uniqueness of solutions for the MFE, which arises from the strict convexity of the
functionalG.

2. Notation

We introduce some notation which will be used in the sequelfBet.Q x[-1,1]. X = (X1,...,Xn) denotes
an arbitrary point in2N, wherex; = (x;, ;) (x; € 2 andr; € [—1, 1]). All r;'s are random variables identically
distributed with respect to a Borelian probability measBren [—1, 1]. On 2 we consider the product measure
Lebesgue P. By a.e. we mearalmost everywherith respect td_ebesgugeP, or Lebesgue P measures without
precising which one we are considering.

Forall 1<k < N andX € 2V we setX = (x1,...,xy) and defineX; = (51, ..., %) and XV % = (f41,

..., %n) (Xx andXV—* are analogous defined).

For the purpose of integration we set; & dx; P (dr;), dX = dx;. ..dxy,and d{ =dx;...dxy. In an obvious
way we define &, dXV*, dx;, and dxV—*.

The Hamiltonian of theV-point vortex system is given by

N
~ 1
HY(X) =35 rirjV (xi, %),
i#]

whereV is the Green function of the Poisson equatiotinwith homogeneous Dirichtéooundary conditions. For
simplicity, we setH = H?.
As itis classicalV is given by

1
V(xy, x2) = ——10g|xy — xa| +y (x1, x2), (2)
wherey is its regular part, which is bounded from above. We know tha positive and

/V(X1,x2)dX2< C, Vxi1ef2,
2

for some constant (depending on?).
The associated Gibbs measure, with inverse temperaturgs defined by

N Sy — B N (X)
(X)= e w ,
o Z(N.p)
where
Z(N,,B):/ e v ® gx 3)

ON

is the partition function.
Finally C, with or without indices, denotes several positive constants arakehotes the characteristic function
of a setA.
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3. Bounds for the partition function

First of all, we should find the range gffor which ¥ makes sense, i.e. for which the integral in (3) converges.
The following proposition yields this result and ajs@vides some bounds for thergiion function. These bounds
will be useful when we shall eV go to+oo.

Proposition 1.Let 8 € (—8mw, 87). There exisC1 and C> = C2(B) such that
Y <Z(N,B<CY, VN=2

Moreover,C> is uniform on compact subsets©f8r, 87).

Proof. Letus fixe € (0, 87) such thaf{—e«, «] is a compact interval which contaigs By Holder’s inequality and
the boundness gf from above we have

B N 1
N B Y Vi) > Vxixg) N
dx}

N 2
Z(N,B) < / l_[ e =l i#i dx < 1‘[[ / o’ =i i
J i=1

ev =1 ol
r e“ 1 1 1 Nt
< — = _dxVldg<cN / /7dx dx.
/ / [1 |1 — x|/ ! X1 — xpla/AT !
Q2 oN-1 =2 2 Q2

The innermost integral is finite sineg/4r < 2. It follows thatZ(N, g) < CV~1|2| < CY (C2 depends o but
not ong).
The lower bound is a consequence of Jensen’s inequality, the positiityaofd (2). Indeed,

N
Z<N,ﬁ)>|9|Nexp<—2N|’;|NZ/rir,-V(xi,xj>dX>
i#jQN

_471(N -1

>|9|Nexp< T

//V(xl,xz)dxldxz) > 2Ne ¢V > ol
2 2

This completes the proof.O

From now onB will be fixed in (—8m, 87).

4. Existence of weak cluster points for Gibbs measures

The elements of the Gibbs sequeripé’) y-1 are functions defined on different domains. They are points in
different functional spaces. This leads to a problem wloeiking for limits of this sequence. To overcome this
problem we introduce the family of correlation functiaig)1<i<n 0f a functionp € L1(22"), defined by

or(Xy) = / p(X)dXNk,

SNk

In the probability jargon, whep is a probability density om™, or is the marginal density of .
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Now, for eachk € N, (MII{V)N>]< is a sequence on1(22%) and thus we can look for its cluster points. Before
finding L? estimates for these sequences we find point-wise ones. First we have the following lemma.

Lemma 2. There exist€ (depending only o2 but not ong) such that

z( ﬁk><cN kKZ(N,B), Vk>=2, VN >k.

Proof. Itis easy to see that

k+1 C(F ~ >
Z(k +1, %) :/ e—%HA(Xk)f(Xk) dXy, 4)
Ok
where
k
~ —%. rirge1V (i xegn)
f(Xk)Z/e =1 X1
2

By Jensen’s inequality, the positivity &f and (2) we have

f(Xi) = IQIGXD( 21N Z/rzrkJer(xukarl) ka+1)

>|9|exp( lQlNZ/V(x,,ka)dxm) 1o -7 ) 21216,

which, with Eq. (4), yields
Z(k, ﬁ) < CZ<k +1, M)
N N
By induction we finish the proof. O
The next proposition yields point-wise estimates(f@f’)N>k.

Proposition 3. There exist& = C(8) such that
(X < ct e #H°X0 vk >2 VN large enough
Proof. Let No, N € N andr, p, p’ € R be such that
e 7 > 1 with r € (—8r, 87);
e No=min{N e N|N > 2k andN /(N — 2k) <r}andN > Np;
e p=N/(N —2k)andp’ = N/2k.

Itis easy to see that

k
— R HN RN - NX X HGEE)
o _E k N HXj)
me (Xi) = i (Ko / j

Z(N,,B)

N
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By Hoélder’s inequality the last integral is bounded above by

k N

- Yp _t H(%,%)) 1/p
|:/ e%)HNk(XNk)dik} |:/ e Nigl_/=§+1 A d}"('Nki| )

Since|B|p’k/2x N = |B|/4m < 2, by an analogous argument as in the proof of Propositiorelslow that the
second term is bounded above 6§ (C = C(8)). We easily see that the first term is equalzaV — k, Bp(N —
k)/N)¥ P To finish the proof, we shall show that there exiSts- C(8) such that
Z(N =k, pp(N —k)/N)MP
Z(N, B) -
By Lemma 2 there exist§ > 1 such that
Z(N =k, Bp(N =)/ N)P . Z(N, pp)*/?
Z(N, B) S Ziv.p)
Again, by Holder’s inequality, we have
Z(N,Bp)"'? < Z(N, pr)"/"Z(N, ),

Z(N, Bp)t'P
Z(N, B)
wheref € (0, 1) is such that 1p =6/r + (1 — 6) which yields = 2kr/(N (r — 1)).
Sincepr € (—8m, 87), Proposition 1 provide€;, = C1(8) andC» = Co(B) such thatZ (N, pr)?/" < CQ’G/’ <
ckandz(N,p)? <c;M < ¢k o

< Z(N, B Z(N, B,

Finally, we have thd.? estimates:

Corollary 4. Let p € [1, +00). We haveu,’{" e LP(2%) forall k e N and N large enough. Moreover, there exists
C = C(B, p) such that

lulllr <C* VkeN, YN large enough
Hence, ifp > 1, then there exisp; € LP(22%) and a subsequeno(eL,](V’)keN such that;L,](V" — i weakly in
LP(2%).

Proof. From Proposition 3, for alt >> 2 andN large enough, we have

/\uﬁ@)l”dik < CkPZ(k, %)
Ok

But (,BkP/N)N>kI;: is in a compact subset of-8r,87) so, by Proposition 1, there exist§ such that
Z(k, Bkp/N) < C*. It follows that||u || .» < CXC¥/P < Ck for N large enough. O

The set of indicegN;) jen depends ot and p but, by a diagonal process, we can take the same one for all
andp. It holds even forp = 1 sinces2 is of finite measure. In the sequel we shall always pate= (1 )ren as a
weak cluster point ofu™)y-1, that is,

iy = i weakly inL”(2%), Vk eN, Vp e [1, +00).
The sequence of indices will be always notedby) jen.
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5. Looking for cluster points: a variational way

We wish to find the weak cluster points i"V)y-1. We shall see that eagh" is a solution of a variational
problem and thus one can ask if the cluster point§.0f)y-1 are also solutions of some limit problem (wh&n
goes tot+o0). This is the goal of this section.

We setD(FN) = {p e LY(2V) | plogp € L1(£2V)}. For p € D(FV) we define the following functionals:

SV (o) = / p(®)logp(X)dX  (entropy)

_QN
1 ~ ~ o~

ENp) = / HY ®)p(E)dX  (energy)
§N

FN(0)=SN(p) + BEN(p) (free energy)

Remark thats™ is convex andE? is linear thusF?" is convex.
By the inequality

1
srgrlogr+—eey, Vr >0, Vs e R, (5)

applied tor = p ands = HY /N, it follows that EY (p) € R providedp € D(F"). HenceF" is well defined from
D(FN)toR.

Remark 5. Wheneverp is symmetric a simpler expression faf' holds:

N-1 . .. -y~
EY(p)= — / / H (31, X2) p2(¥1, ¥2) d¥1 d¥a.
o0

An important property of entropy is suldiditivity given by the following proposition.

Proposition 6.Let1 < k < N andp € D(F") symmetric such thatp||,» = 1. We have
S (o) + SV (o —1) < SN ().

Proof. Itis clear that

o~ SN—k
Pk(Xk)pN;k(X )) 45,

S5 (o) + SN (on—k) — SV (p) = / p(X) Iog<
p(X)

ON
By Jensen’s inequality the last integral is bounded above by
Iog( f pko?k)pN_ko?N—k>d)?),
OnN
which is null since||p||; 1 = 1. The proposition follows. O

Lemma 7.For all C > 0the set

/ [p(X)logp(X)]"dX < C}

Mc = {p e D(FM)
QN

is weakly compact oh(27).
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Proof. We remark thatM¢ is convex sinceD(FY) andt — [tlogt]tT are convex. By Fatou’s lemma/c is
strongly closed inL1($2") and thus, by convexity, it is weakly closed.

We have to show that every sequengg),cny in M¢ has a subsequence weakly convergeriHnﬁN). For
M > 1 andn € N we have

pu(Blogi a¥ < [ [, Flogpn (D] X <.

{on =M} QN

Hence
sup pn(f()dfg%ao asM — +oo.
"o m) %9

The result follows from Dunford—Pettis’s theorema
Here we have our first variational problem:

Theorem 8.We have tha" is the unique solution of
min{F" (p) | p € D(FY), llpll 1 =1}.

Proof. We split the proof into two steps: in the first step we shall show that the problem has a s@lutiad in
the second step we shall prove thiat= 1V .

Stepl: Let p € D(FY) andt > 1 such that8r e (—8x, 87). From inequality (5), applied to = p/t and
s=—ptHN /N, it follows that

1 1 1 s
,0|Og,0+EHN,0>(1——),0|ng+—,ologt——eNtHN. (6)
N t t e
In particular, fort = 1, one has
1
plogp + %HN,0+ —ee‘NHN > 0.

By Fatou’s lemma it follows thaf” is an |.s.c. functional in the strong topologyb*(f?N). Hence, by convexity,
FV is also |.s.c. in the weak topology &f (227). N

Let (0.)nen € D(FN) be a minimizing sequence of the problem. Taking 1 in (6) and integrating o2V we
obtain

v 1 ~ ~ o~ 1 1
C>F (pn) 2 1—; pn(X)logpn(X)dXJr;logt—EZ(N,ﬁt).
ON
Hence,

/ on(X)10gpn(X)dX < C, VneN.

ON
Since the mappinge [0, +o0) — ¢ logt is bounded from below, we have shown that there exists0 such that
(pn)nen is in a setM¢ as in the Lemma 7 and thus it has a subsequence weakly convgrg]a&tmc. Hence,
it € D(FN) and| 1] 1 = 1. By the lower semi-continuity of N in the weak topology of.1(£2"), it follows that
[ is a solution of the problem.

Step2: Formallyu." is the unique solution of the Euler—Lagrange equation associated to the problem and thus

we should havei = V. But if i vanishes on a set of positive measure, then the derivatis’ ofvill have a
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singularity atii. Therefore, a rigorous proof of this result is not so straightforward. To avoid this problem we set,
for§ > 0,

As={Xe2V | aX)>8} and Us={peL®@2")|l¢llr= <8/2}.
We define the following functionals
Js:Us— R and Gs:Us — R,
o> PGt ag). o |10 @eddk
ON
We easily see that both functionals are well defined. Cleaty0 is a minimizer ofJ;s restricted to the constraint
Gs(p) = 0. Now, one can easily (and rigorously) derivate the associated Euler—Lagrange equation to show that

there exist = C(8) such thati = Ce*%HN almost everywhere ims. But A; C Ay whenever’ < §. Hence
the constant does not depend ahand;i is given by the previous expression on the subsef 2V whereji
does not vanish. Fromyi| ;1 = 1 we obtain

_BuN(X) 4T -1
C= e v Xgy | |
A

It is easy to show that
g N =/e*%HN(’7) dX and eF ¥ = / e N D g%,
A QN
SinceFY (1) < FN (u") we should havet = 2V, and thusi = V. O
Remark 9. In the last proof we have shown th&t" is I.s.c. in the weak topology df($2"). Hence, since2” is

of finite measurefF" is |.s.c. in the weak topology df? (2) for all p € [1, +00). The same result holds for¥
(sinceS™ = FN wheng =0).

We define the seb (F*) of all p, = (o )ren € ]_[,fj‘i D(F*) which verifies, for alk € N,

() lowlla=1;
(i) ok is symmetric;
(i) ox(Xi) = [ prr1(Xxt1) dXgy1;
(iv) llokll oo g+, < C* for some constant = C(p.).

For p. € D(F*) we define the functionals
, 1 ~ ~ e~ ) 1
S*(py) = lim — / P (X 10g e (X) dXp = lim =S5 (o),
k—+o00 k k——+o00 k
Ok
* 1 ~ ~ ~ ~ ~ ~
E*(pe) = > / H (X1, X2) p2(X1, X2) d¥1 dX2,
20
F*(p*) = S*(p*) + ,BE*()O*)
For o, € D(F*) we have, again by (5), thd*(p.) € R. The property (iii) implies, by induction, that

ox(Xi) = / on(X)dXN K VkeN, VN > k.

ON—k
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Hence, by Proposition 6, we have ti&t (ox))ren is a sub-additivity sequence and thus the limit defir§ifigxists
but it is possibly infinite. However, by the property (iv), we have the following bounds

1 R N R
%/Pk(xk) log pr (Xx) dX < %/Pk(xk) logC* dX; =logC.
2k QK

We conclude tha§*(ps) € R and thusF* is well defined fromD(F*) to R.
Proposition 10.Let p, € D(F*) andu, be a weak cluster point @¢f." ) y~1. We have the following convergences:

(i) N"LEN(on) — E*(ps) @SN — +00;
(i) N~1SN(py) — S*(ps) asN — +0o0;
(iiy N"YFN(pn)— F*(py) asN — +o0;
(V) N7EENI (M) — E* (i) asj — +0o;
(V) N7EFNi(uNi) — F* (i) as j — +oc;
(Vi) N;ESNi(ulNi) — $* () as j — +00;
(vii) k=18 () < iminf s oo k25K () < iMSUP;_, oo k28K (1) < 8% ().

Proof. (i) follows trivially from symmetry of o, and Remark 5 while (ii) is just the definition 6f. Clearly, (iii)
is consequence of (i) and (ii).

(iv) follows from symmetry ofu™; and from the weak convergen¢évj — u2 in L2(2?) (notice that by
Proposition 1 we havél € L2(22)).

Let us show (v). Lek € N be fixed. For every € N, large enough, we can find two integets andn; such
thatN; = m jk +n; and O< n; < k. By sub-additivity ofS¥ we have

mj ek Ni Lo N 1 NN
— g — S 1)< =8 AN
S ) g S ) < 87 ()
The functiorr € [0, +00) — tlogr is bounded from below and so is the entropy. Hence,
m] k Nj C 1 N: N
— S —— <=8 (u). 7
N, S ) = < ST ) (7)
By adding,BNjTlENf (uNi) to both sides of last inequality and by minimality B («V) it follows that
m] k Nj ,8 N N; C 1 N; N 1 N
—s —ENi(uNi) — = < =—FNi(uN) < =FNi(uy,).

Taking limits asj — +oo, from (i), (iv), weak lower semi-continuity of* (see Remark 9) and sinee;/N; —
1/k it follows that
1, N P S 1 v N "
=S (k) + BE* (1) < liminf — F% (1) <limsup—FY (u™7) < F* ().
k j=+0o Nj j—+oo Nj
Finally, we letk — 400 and we use (ii) to conclude.
(vi) follows from (iv) and (v).
It remains to show (vii). The first inequality is just the lower semi-continuity’af The second one is trivial.
The last one follows from (vi) and by taking limits, gs— +oc0, in (7). O

Theorem 11.Let 11, be a weak cluster point @iV )y~1. We have thaj, is a solution of
min{ F*(ps) | px € D(F)}.
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Proof. For p, € D(F*), by minimality of F¥i (u"7), we haveF™i (u"7) < FNi(py;). So the theorem follows
from Proposition 10 (iii) and (v). O

We recall that the Gibbs measure gives the distribution of vortices on the phase space. So, it is physically
reasonable that the more vortices we have the moiie positions will be independent from one another. So, at
limit N — +o0, we can think that the distribution &f vorticesu; will be induced by a distribution. of one-
vortice, that is,uk()?k) = u(x1)...u(xx). This factorization property is usually called “propagation of chaos”.
This does not always holds. In fagi; is not a product measure but an average of product measures (in this
case we are talking about “partial propagation of chaos”). Partial propagation holds not only for cluster points of
(Hk YNk but for all p,. € D(F*). The property ofo,. which assures this result is the symmetry ofalk.

By P(£2) we denote the space of all Borelian probabilities@rendowed with the weak topology. We denote
O(£2) the set of all Borelian probabilitieson P(£2) which are supported on a bounded seLof(£2).

Theorem 12.The application which maps eache Q(ﬁ) to p. € D(F*) defined by
pr(Xp) = / p(X1)...p(E)v(dp), VkeN,
P(2)
which is equivalent to
/ (X pe(Xi) dX i = / / FXpGEr)...pG) dXg v(dp), Vf e L1 (2, (8)
Ok P(2) 2F
is onto.
Proof. Let p, € D(F*). We can viewp, as the probability om2™ for which py is the marginal density a* (for

all k e N). By the Hewitt-Savage theorem (see Theorem 7.4 of [7]) there exists a unique Borelian probatility
P(£2) such that

/ F(Xoe(Xp) dX i = / /f()?k)p(dil) ...p(dxpv(dp). 9
S P
Taking f(Xx) = g(51) ... g() (g € L1(£2)) and recalling thaf oy || L < C* we find

k
/ [ / g(il)p(dm} v(dp) <C¥liglky, VeeLN2), VkeN.

P2 @

Hence,

<Clgl 1, v-almostallp € P(£2).

/ g(x1)p(dxy)
7]

This means that is supported inside the ball @ () of radiusC centered at the origin. It follows thate Q(£2)
and Eg. (9) becomes (8).0
Using (8) to f = H we obtain

1 - . - e am
E*(ps) = / E(p)v(dp), WhereE(p)=§//H(x1, X2)p(¥1)p(x2) dxg dxz.
P(2) s
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In [16] the author shows that
S*(psx) = / S(p)v(dp), WhefeS(p)=/,0(i1) log p(x1) dxs.
P(2) 2

Hence, setting’ = S + BE, we find

F*(ps) = / F(p)v(dp). (10)
P(2)
The functionalsE, S andF are well defined fronD(F) = D(F1) to R. _
Let uy € D(F*) be a weak cluster point ofiu’V)y-1 and consider the correspondifige Q(£2) given by
Theorem 12, i.eu, andé are related by
i (Xp) = / n(Ey) ... w(EEMu), Yk eN. (11)
P(2)
By using Eq. (10) one can rewrite the claim of Theorem 11 to find4hata solution of

min{ / F(p)v(dp)
P(2)

veQ(.(NZ)}.

Thus we obtain easily the following theorem.
Theorem 13.The functionalF' is £-almost all constant osuppt and equal to its minimum value. In other words,
&-almost allu € suppg is a solution of

min{ F(p) | p € P(2) NL™(£2)}.
We finish this section precising what happengihas a unique minimizer.

Proposition 14.1f 11 is the unique minimizer af onP(£2) NL>®($2), then(ul ) y~« converges strongly i (2%)
to u®k, for all k € N and for all p € [1, +00).

Proof. Let k € N and p € [1, +00). Take a weak cluster point, of (u")y-1 and& such that (11) holds. By
Theorem 13 is the unique point in the support éf i.e. § is a Dirac measure supported;at Consequently,
ik (X) = (¥ ... n (%) and

1, 1 - S ) -
%S (Mk)=%/Mk(XkHOng(Xk)ka=/M(X1) logu(xy) dxy = S(u).
QK 2
We know also that
S* () = / S(p)E(dp) = S(w).
P($2)

From Proposition 10 (vii) we obtaiﬁk(u,]cv") — Sk(up). Sinceuy € L®(2%), u,iv-" — g in LP(2%) for all
p € [1,4+00) andr — tlogt is a strictly convex function, we conclude thaf’f — i strongly in L? (2%). We
have shown that every weak cluster point{af')y-1 is a strong one and unique. The result follows]



C. Neri/ Ann. 1. H. Poincaré — AN 21 (2004) 381-399 393
6. The mean field equation

The Theorem 13 can be interpreted in the following way. For each weak clustengoirit(.”)y-1 we find
a measuré € Q(£2). In this process, the minimality of *(u.) is carried to§ in the sense that in the support of
£ we should have only minimizers @f. Thus to each weak cluster point i) -1 corresponds an “average”
(with respect ta&) of minimizers of F. This means that it is important to find these minimizers. We shall see in the
present section that such minimizers associated to some solutions of a PDE.

We recall that the potential gf € L>®(£2) is the functionv € C1(£2) N Co(2) given by

v(x1) =/r2V(X1, x2)p(X2) dxXz, Vxie 2.

2
Consequentlyy is (in the distribution sense) a solution of the problem

—Av(xy) = / rip(¥1) P(dr1), Vxie 2,

(-1.1]
v(xy) =0, Vx1€982.

We have another relation between a minimizerfofand its potential which is, formally, the Euler—Lagrange
equation forF. With this new relation, by a boot-strap argument, we are able to show the regularity of minimizers
of F and theirs potentials.

Proposition 15.Let u be a minimizer of on P(2) N L®(2) andu its potential. Then we have

-1
w(F) = |:/e—ﬁr2u()€2) di2j| g Briuxy) (12)

Proof. We have a technical difficulty similar to the one found in the proof of Theorem 8 sinpépri, © can
vanish on a set of positive measure. We proceed as in the second step of that proof to obtain

w(xy) = Ce Pty ona,

andu = 0 almost everywhere on%= 2 \ 4, whereA = (i1 € £ | u(¥1) > 0} andC = [ [, e #7202 dip] 1,
To finish the proof, we shall show, by contradiction, that |AG| = 0. If not, fors > 0 small and; € £2, we
set

_M+51AC
P= 1 sa

We easily see that that € P(£2) N L™®(£2). By simple (but tedious) computations we find a constant 0,
independent o8, such that

F(p) < F(u) +C8(1+logs).

Thus, choosing small enough, we havE(p) < F(r). Which contradicts the minimality of (). O
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As we have announced before, by a boot-strap argument, we find one of our main results:

Theorem 16.For £-almost ally € supp its potentialu is in C*°(£2) and satisfies the following equatigoalled
Mean Field Equation, or MFE for short

—Au(xy) = [ / g Prau(x2) d)?zj| / rie Pl pidry),  Vag e 2,

7] (-11]
u(x1) =0, Vx1 €052.

-1

(13)

7. Two examples

Before studying solutions of MFE, let us give two examples to see how the equation looks like.
First we consider the case in whi¢his the Dirac measure supported at 1, which means that all vortices have
certainly intensity 1. Let be as in Theorem 16. We calculate both integrals in (13) to conclude gwtisfies

-1
—Au(x1) = [/ g Pulx2) dx21| e Py e,
(14)

Q
u(x1) =0, Vx1 €052.

This case was studied in [2,3,8].
Now we takeP as the half sum of the Dirac measures supportedlaand 1, that is, each vortex has intensity
—1 or 1, with probability ¥2 in each case. As before, we show that i§ as in Theorem 16, then it verifies

1
—Au(x1) = —|: / Ch(ﬁu(xz)) dx21| Sh(,Bu(xl)), Vx1 € $2,

J (a5)
u(x1) =0, Vx1 € 052.

This case is called neutral and it was treated in [1,4—6,9-13].

8. The mean field equation: preliminary results

The Theorem 16 show us that it is important to study the mean field equation in details. We shall follow the
standard technique of introducing a functioafor which the Euler-Lagrange equation is MFE, and look for its
minimizers. Two questions come up:

(i) MFE can have non-physical solutions, i.e. solutions who are not potentials of minimizers of
(i) MFE can have (physical) solutions whaeanot minimizers (bubnly critical points) ofG. Since we are
interested only in minimizers we can loose some solutions. Simil@ripay have non-physical minimizers.

We shall see that the second problem nevisea since each potential of a minimizer Bfis a minimizer of
G and conversely. Similarly, for positive temperatyriée first problem does not arise. However, we shall see an
example in which MFE has non-physical solutions.

Wheng = 0 the problem is trivial, since it is linear (moreover it has no physical interest). The problem changes
with respect to the sign ¢8. In this section we make some considerations for both cases which will be studied
separately in the next two sections.
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The functionalG is defined by

1 1 i
G =5Vl + 5 Iog( / e Fravey) dxl).

2

This functional is well defined frormlol(sz) to R, by next lemma which, is a consequence of Trundiger—-Moser’s
inequality in its sharp form [14]. We easily see that critical point§;adre solutions of MFE.

Lemma 17.There exists a constant such that

2
/e‘ﬁ””(“) di1 < Cexp ’3—||W||22 , VBER, Vve H}(R).
J 167 L

Proof. Letg e Randv e H(}(.Q) be nonzero. By Young's inequality we have

1/2 21yy2
—,31’1U(xl) < |'3| ”Vll}HZLZ ) (8m)“v(x1) < Bl ”L2 v(x1) '
8m)Y IVoll 2 167 Vol
Hence,
2 2
e ) Cex ﬁ—nwniz) exp(4n il )
167 IVoll,2

By integrating on2 and applying Trundiger—Mosearinequality yields the result.o
As a general result on minimizers 6fwe have the following.

Theorem 18.Let 8 # 0. If there exists a bounded minimizing sequenceipthen the problem
min{G(v) | v € Hy($2)}

has a solution.

Proof. Let (u,)nen C H1(£2) be a bounded minimizing sequence &rUp to a subsequence, we can suppose

up, —u  weakly in H}(£2),
U, —>u a.e.ons.
Since (||Vuy || 2)nen is bounded, by Trudinger—Moser inequality there exist O such that(e"“»%),,eN is
bounded inL1(£2). B
Let us show that @14 (x) _ =11 in 11(2). Notice that we have already point-wise convergence. By

Egoroff’s theorem, for alk > 0, there exists a set C 2 of measure at mostsuch that, converges uniformly
tou on$2\ A. Thus, forn € N large enough, we have

f e prim (D) _ g rint)| diy < |2]e + f e Friun G gz, 4 f e Brunte) gz,

Q A A

It remains to show that the last two terms go to Gcas 0. But this is a simple consequence of the bounds of
(&) eny in L(£2). Hence

1 1
- Iog( /e—ﬁrlun(xi) d)?]_) N |Og< /e—ﬁrlu(xl) d)zl).
B J B J

2

2
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From which, together with the weak lower semi-continuity of the norm, we obtain
G(u) < liminf G(u,) =inf{G(v) | v € H3(2)}.
n—-+00

Consequentlyy is a minimizer ofG. O

9. Mean field equation: positive temperatures states

In this section we suppoge> 0. It is easy to show that the functior@lis strictly convex, so it has at most one
minimizer. To obtain the existence of a minimizer, by Theorem 18 it is enough to show that there exists a bounded
minimizing sequence.

Proposition 19.Every minimizing sequence f6ris bounded.

Proof. Let (u,)nen € H(}(.Q) be a minimizing sequence fa@t. By Jensen’s, Holder's and Poincaré’s inequalities
we obtain

f g Primt) 4y > 2| exp(—lf%| f Jiy (1) dxl)
O 2

&
B BC1
>|~Q|eXP|:—W||un||L2 > |£2| ex —WHVWHLZ ,

whereC1 is the constant given by the Poincaré inequality. Therefore

G(un) — E”VMn”LZ + E |og( / e Briun(x1) d_xl) 2 E“VM,,HLZ — W”VM”HLZ + E |Og|.Q|
2
The result follows. O
By stricty convexity, the minimizer o is unique and it is also the unique solution of MFE. Hence, it is the
potential of the unique minimizer of. By uniqueness, none of the problems reported on Section 8 arises. We
remark that in positive temperature states we have always chaos propagation.
10. Mean field equation: negative temperatures states
In this section we assumg < 0.
Proposition 20.There exist€ such that
1
Gv) > 3 logC Vg e[—8r,0), Yve HY(£2).
Moreover, if8 = —8r and P({—1,1}) =0 or if 8 > —8x, then every minimizing sequence is bounded.

Proof. Let g € [—8m,0) andv € Hol(.Q). Lemma 17 yields a consta@tsuch that

Iog< / g Arivixy) d)zl) <logC +
2

BIVvIZ,
16w
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Therefore

G()>11+ﬂ |V ||2+1Io C>1I0C
V) 2 =< -— v — =z — .
2 87T L2 ,3 g ,3 g

This proves the first claim and also that every minimizing sequence is bounded pr@videdds. There only
remains to prove that, if = —87, P({—1,1}) =0 and(uy)nen C Hol(.(z) iS a minimizing sequence @, then
(tn)nen is bounded inH2 (£2).
We remark that
1 - 1
Glun) + |og(/e8nr1L¢;z(x1) dx1> = §||vun||iz,
2
So we only have to show that there exi€tsuch that

/eSﬂrlun(Xl) di1 <C, VneN.

2
We proceed by contradiction suppaogithat the above sequence goestso with n. Hence

/ Dl dyy — 400 asn — +oo. (16)
2
Setting f (¢) = ﬁ_1,1] ed"1! p(dry) we easily show that
f@) <4 p([—-1,—r1U[r, 1) ¥, vre(0,1).
But €7l dominates &71’l whenr < 1 and | — +o0. Thus, there exists a constaft= C(r) such that
f@) <C+2P([-1,—-r1U[r, 1) Vi eR.
Consequently,

3 [5 e8mraun(x1) gy _ C
én = [ BTGl dyy [ B0l diy

Taking the limitsn — 400 andr — 1, by (16) and the hypothesis dhwe conclude that,, — 0 asn — +o0.
Without any loose, we supposg < 1 for alln € N. Finally we have

+ 2P([—1, —r]Ufr, 1]).

1 1 . 1 1
Guy) = §||Vun||iz ~ 8 Iog< /e&frlun(xl) dxl) > §||V|un|||i2 - & Iog(s,, /eSnlun(xl)\ dxl)
2

1
8
which is a contradiction sincg,,),cn iS @ minimizing sequence.

1
> logC — 8—Iogen — 400 asn— +oo,
T

As a consequence of last proposition and Theorem 18 we have the existence of minimizers of

Before stating the main result of this section, which says that the second problem stated in the begining of
Section 8 does not arise, we prove the following lemma.
Lemma2l.Letu € L®(2) andu be its potential. We have

1 2
E(w) =511 Vulz.
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Moreover, ifu andu verify (12) then

S =~ Iog( / e fraut dxl) ~BIVulf, and F(u)=—BGu).
2

Proof. Sinceu is the potential ofx we have

2

/|VM(X1)|2dX1=/rlu(fl)u(m) dxs,
2

and thus, by definition of potential,

SIVullz=3 rir2V (x1, x2) u(x1) p(x2) diy dio = E(u).
o0
Using (12) we obtain

-1
S(u) = f p(FD) Iog([ / e franta) dfz} e—ﬁ”“m))dxl
2 2

=- Iog( / e Pt dxl) —B / rup(Fou(xy) dig.
7] Q

Again, sinceu is the potential ofu, we have that the last term above is equal—t;@||Vu||iz. The last equality,

namelyF () = —BG(u), follows from the definition ofG and the equations fat andS just proved.

Theorem 22.Let . be a minimizer of” andu its potential. Them is a minimizer ofG. On the other hand, if is
a minimizer ofG, thenv € C*°(£2) N Co(£2) and p defined by

-1
p(F1) = [/e—ﬁrzv()rz) d)Z2:| @ Briv(xy) (17)

is a minimizer off.

Proof. By Proposition 15 and Lemma 21 we hakéu) = —B8G (u).
Sinceuw is a critical point ofG, by elliptic regularity it is a smooth solution of MFE, i.e.

-1
—Av(xy) = [ / e—ﬁrzv(xz) di2j| / " e_ﬁrlv(xl)P(drl).
2 [-1.1]

Therefore, by (17)y is the potential ofp. Again by Lemma 21 and (17) we ha¥&p) = — G (v).
But F(u) < F(p) and G(v) < G(u), hence, since8 < 0, we haveF(p) = F(u) and G(u) = G(v). The
conclusion follows. O

Now we give an example of a “non-physical” solution. We start by an easy remark: MFE has the trivial null
solution if, and only if,P has null average, i.e.

/ r1P(dry) =0.

(-1.1]
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It represents a uniform distribution of vortices gn

Now consider the neutral case on the square [0, 1] x [0, 1]. It is straightforward that in this case MFE has
the trivial null solution. Let us shall show that it is not a physical one. TaleeHol(Q) an eigenvector of- A
associated to its first eigenvalde and such thafv|| ;2 = 1. Itis a classical fact thah|th||i2 = A1 = 272, We take
a second order Taylor expansion@frv) in a neighborhood of = 0 and, by straightforward computations, we
obtain

1?22+ B)
2
Hence, choosing € (—8r, —272) andr small enough, we havé(rv) < G (0) and thus 0 is not a minimizer @f.

2
G(tv) = G(0) +tG'(O)v + %(G”(O)v, v)+0(t?) = G(0) + +0(t?).
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