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Abstract

The paper concerns multiplicity of vector solutions for nonlinear Schrödinger systems, in particular of semi-positive solutions.
New variational techniques are developed to study the existence of this type of solutions. Asymptotic behaviors are examined in
various parameter regimes including both attractive and repulsive cases.

0. Introduction

In this paper, we consider the following nonlinear Schrödinger systems:

−�u + λ1u = μ1u
3 + βuv2 in Ω,

−�v + λ2v = μ2v
3 + βu2v in Ω,

u,v ∈ H 1
0 (Ω).

(∗)

Here Ω is a bounded domain in Rn (n � 3) and λi,μi > 0 for i = 1,2. In this paper, we show the multiple existence of
semi-positive solutions (uk, vk) for (∗). As there may be semi-trivial solutions (which are zero for some components)
we call a solution non-trivial if every component is non-zero. Here we say a non-trivial solution (u, v) is a semi-
positive solution for (∗) if and only if it satisfies u > 0 or v > 0 in Ω .

For positive solutions (which means u > 0 and v > 0 in Ω) of nonlinear Schrödinger systems, there has been ex-
tensive work in recent years (cf. [1–7,11,13,15–22,24,27–30] and their references). In particular, we refer to results of
[13] which partially inspire our work of the current paper. Dancer, Wei and Weth [13] showed that the a priori bounds
of positive solutions and the multiplicity of positive solutions of nonlinear Schrödinger systems are complementary
to each other depending on the parameter regimes. They showed the existence of a priori bounds of positive solutions
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for some nonlinear Schrödinger systems which contain (∗). Applying their result to (∗), when β > −√
μ1μ2, there

exists a constant C = C(β,μ1,μ2,Ω) such that ‖u‖L∞(Ω),‖v‖L∞(Ω) � C for any positive solutions (u, v). On the
other hand, when λ1 = λ2 = μ1 = μ2 = 1 in (∗), they showed the multiple existence of positive solutions of (∗). More
precisely, when β � −1, (∗) has an unbounded sequence of positive solutions (uk)

∞
k=1 such that

‖uk‖L∞(Ω) + ‖vk‖L∞(Ω) → ∞ as k → ∞.

These positive solutions were given by minimax method from making use of a symmetry σ(u, v) = (v,u). That is, the
variational functional Iβ(u, v) associated with (∗) satisfies Iβ(σ (u, v)) = Iβ(u, v) for σ(u, v) = (v,u). This multiplic-
ity result was recovered and generalized to the non-symmetric case of μ1 �= μ2 by using a bifurcation method in [5]
in which an unbounded sequence of positive solutions was established for β � −√

μ1μ2 when the domain is radial.
For nonlinear Schrödinger systems (∗) with λ1 = λ2 = μ1 = μ2 = 1, these results suggest that β = −√

μ1μ2 is
the threshold that divides the existence of a priori bounds of positive solutions and the existence of an unbounded
sequence of positive solutions. In this paper, we consider the existence and multiplicity of semi-positive solution
of (∗). A natural question is to examine the coupling constant β and to find the coupling value that separates the
a priori bounds and infinitely many semi-positive solutions. Our results suggest that β = 0 is the threshold dividing
the existence of a priori bounds of semi-positive solutions and the existence of an unbounded sequence of semi-positive
solutions. This is the main motivation of the current work. We also study the asymptotic properties of semi-positive
solutions when β → 0 and β → ∞, and establish multiplicity results of semi-positive solutions in these regimes.

When β < 0, we get infinite many semi-positive solutions of (∗) by the following theorem.

Theorem 0.1. Let β < 0. Then (∗) has a sequence of solutions (uk, vk) such that

uk > 0, ‖uk‖L∞(Ω) + ‖vk‖L∞(Ω) → ∞ as k → ∞.

Moreover, if β ∈ (−√
μ1μ2,0), then vk must change sign for large k.

When β > 0 is small, we get multiplicity of semi-positive solutions of (∗) as follows.

Theorem 0.2. For given k ∈ N, there exists βk > 0 such that, for any β ∈ (0, βk), we have k semi-positive solutions
(ui, vi) of (∗) with ui > 0 in Ω (i = 1,2, . . . , k).

Roughly speaking, our semi-positive solutions are given by making use of a symmetry σ(u, v) = (u,−v). That
is, it is essential that the variational functional Iβ(u, v) satisfies Iβ(u, v) = Iβ(u,−v). More generally, we develop
an abstract framework in Section 2. We consider the following situation. Let H be a Hilbert space and suppose that
σ : H → H satisfies

σ 2 = idH , (0.1)

σ �= idH . (0.2)

Then, for C1-manifold M ⊂ H which does not contain fix points of σ and C1-functional J : M → R satisfying
J (σ (u)) = J (u) and some conditions, we can prove the multiple existence of the critical values of J . For details,
see Section 2. We point out that generalizations and variants of the genus theory have been established recently in
[9,10,26]. Refs. [9,10] were for existence of multiple vector solutions of some elliptic systems. Ref. [26] was on
existence of multiple sign-changing vector solutions with each component sign-changing for systems like (∗) in the
defocussing case (i.e., μj � 0). In the general perspective we use partial symmetry for variants of the genus theory in
this paper.

Next, we consider the asymptotic behavior of semi-positive solutions as β → 0. To state our result about the
asymptotic behavior, we need the following notations: for J2(v) = (4μ2‖v‖4

L4(Ω)
)−1: Σ2 = {v ∈ H 1

0 (Ω) | ∫
Ω

|∇v|2 +
λ2|u|2 dx = 1} → R, we define symmetric mountain pass values b2

n (n ∈ N ∪ {0}) by

b2
n = inf

γ2∈Γ 2
n

max
θ∈Sn

J2
(
γ2(θ)

)
,

Γ 2
n = {

γ2(θ) ∈ C
(
Sn,Σ2

) ∣∣ γ2(−θ) = −γ2(θ) for all θ ∈ Sn
}
,

where Sn = {θ = (θ1, . . . , θn+1) ∈ Rn+1 | |θ | = 1}. Now, we show the following theorem.
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Theorem 0.3. For given k ∈ N, there exists β ′
k > 0 such that, for any β ∈ (−β ′

k, β
′
k), we have k solutions (ui,β, vi,β)

of (∗) with ui,β > 0 in Ω (i = 1,2, . . . , k) and (ui,β, vi,β) satisfy the following: extracting a subsequence βj → 0, we
have

(ui,βj
, vi,βj

) → (ui,0, vi,0) in H 1
0 (Ω) × H 1

0 (Ω).

Here ui,0 is a positive least energy solution of

−�u + λ1u = μ1u
3 in Ω,

u ∈ H 1
0 (Ω). (0.3)

vi,0 is a solution of

−�v + λ2v = μ2v
3 in Ω,

v ∈ H 1
0 (Ω). (0.4)

In particular, vi,0 corresponds to the critical value b2
i which is given by a symmetric mountain pass theorem.

Remark 0.4. The functional J2(v) : Σ2 → R corresponds to (0.4). In fact, for a critical point v0 of J2,
(
√

μ2‖v0‖2
L4(Ω)

)−1v0 is a non-trivial solution of (0.4).

Remark 0.5. The semi-positive solutions (ui,β, vi,β) in Theorem 0.3 may be different from the semi-positive solutions
(ui, vi) in Theorem 0.1 or Theorem 0.2.

Next, we consider the semi-positive solutions for the case β is large. In [18], Liu and Wang showed that, for given
k ∈ N, there exists β ′

k > 0 such that, for any β > β ′
k , (∗) has at least k solutions. In this paper, we get multiplicity of

semi-positive solutions of (∗) as follows.

Theorem 0.6. For given k ∈ N, there exists βk > 0 such that, for any β > βk , (∗) has at least k semi-positive solutions
(ui,β, vi,β) with ui,β > 0 in Ω (i = 1,2, . . . , k).

We study the asymptotic behavior as β → ∞. For the solution (ui,β, vi,β) of Theorem 0.6, (
√

βui,β,
√

βvi,β) is
bounded in H 1

0 (Ω) × H 1
0 (Ω) as β → ∞. (See Section 7.) Thus, extracting a subsequence βj → ∞, we expect that

(
√

βjui,βj
,
√

βjvi,βj
) approaches to a solution of

−�u + λ1u = uv2 in Ω,

−�v + λ2v = u2v in Ω,

u,v ∈ H 1
0 (Ω). (0.5)

Here, we remark that (0.5) does not have semi-trivial solutions. In fact, letting (0, v) be a solution of (0.5), we also
have v = 0 from the second equation of (0.5). For the limiting equation (0.5), we have the following:

Theorem 0.7. Eq. (0.5) has infinitely many semi-positive solutions (uk, vk) such that uk > 0 in Ω and

‖uk‖L∞(Ω) + ‖vk‖L∞(Ω) → ∞ as k → ∞. (0.6)

Moreover, when λ1 = λ2, vk must change sign for large k ∈ N.

Remark 0.8. The solutions (uk, vk) of Theorem 0.7 are characterized by values ek,∞ which are defined as fol-
lows. Let N = {(u, v) ∈ H 1

0 (Ω) × H 1
0 (Ω) | ∫

RN |∇u|2 + |∇v|2 + λ1|u|2 + λ2|v|2 dx = 1, u+v �≡ 0}, J̃∞(u, v) =
(8‖u+v‖2

L2(Ω)
)−1. We define ek,∞ (k ∈ N ∪ {0}) by

ek,∞ = inf
{
c ∈ R

∣∣ γ
([J̃∞ � c]N

)
� k

}
.

Here γ is a genus corresponding to σ(u, v) = (u,−v) which is defined in Section 2.
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Remark 0.9. When λ1 = λ2 = λ > 0, all positive solutions (u, v) of (0.5) must satisfy u = v. In fact, u − v satisfies

−�(u − v) + λ(u − v) = uv(v − u).

Multiplying u − v and integrating over Ω the above equation, we have∫
Ω

∣∣∇(u − v)
∣∣2 + λ(u − v)2 dx = −

∫
Ω

uv(u − v)2 dx.

Thus we have u = v. We also remark that there exist a priori bounds of −�u + λu = u3 in Ω and u = 0 on ∂Ω .
Therefore, when λ1 = λ2 = λ > 0, (0.6) implies that vk is a sign-changing solution for large k ∈ N. When λ1 �= λ2 we
do not know whether vk changes sign.

Now, we get the following theorem about the asymptotic behavior as β → ∞.

Theorem 0.10. For given k ∈ N, let (uk,β, vk,β) be a family of solutions of (∗) which are given in Theorem 0.6. Then
there exist a subsequence βj → ∞ and (uk,∞, vk,∞) ∈ H 1

0 (Ω) × H 1
0 (Ω) such that

(
√

βjuk,βj
,
√

βjvk,βj
) → (uk,∞, vk,∞) in H 1

0 (Ω) × H 1
0 (Ω).

Here (uk,∞, vk,∞) is a solution of (0.5) and corresponds to critical value ek,∞.

We devote the next four sections to the proofs of our theorems. For the case β � 0 or the case β > 0 small, we
reduce the functional Iβ(u, v) to a functional Jβ(u, v) defined on a subset of a torus Σ1 × Σ2 in Section 1. On the
other hand, for the case β > 0 is large, we reduce the functional Ĩβ(u, v) to a functional J̃β(u, v) defined on a subset
of the sphere Σ in Section 6. In Section 2, we give an abstract theory for the multiple existence of the critical values
of C1-functional J : M → R satisfying J (σ (u)) = J (u). We will get most of our multiple existence of semi-positive
solutions by using these abstract results. In Section 3, we will show Theorem 0.1 and Theorem 0.2. In Sections 4–5, we
will prove Theorem 0.3. To show this, we apply the method from [25]. In Sections 6–7, we will show Theorems 0.6,
0.7 and 0.10.

1. The functional setting for the case β ��� 0 or the case β > 0 small

To prove the existence of semi-positive solutions (u, v) with u > 0, we seek critical points of the following func-
tional

Iβ(u, v) = 1

2

(|||u|||2λ1
+ |||v|||2λ2

) − 1

4

(
μ1‖u+‖4

4 + μ2‖v‖4
4

) − β

2
‖u+v‖2

2 : H 1
0 (Ω) × H 1

0 (Ω) → R.

Here we use notations u+ = max{u,0}, u− = min{u,0} and

|||u|||2λ =
∫
Ω

|∇u|2 + λu2 dx, ‖u‖p
p =

∫
Ω

|u|p dx.

For a critical point (u, v) of Iβ(u, v), the positivity of u comes from the following proposition.

Proposition 1.1. Let (u, v) be a critical point of Iβ(u, v) with u �= 0. Then we have u > 0 in Ω .

Proof. Let (u, v) be a critical point of Iβ(u, v). Then ∇Iβ(u, v)(u−,0) = |||u−|||2λ1
= 0. Thus we have u+ ≡ u � 0.

Now, for β � 0, u satisfies

−�u + (
λ1 − βv2)u = μ1u

3 � 0.

For β > 0, u satisfies

−�u + λ1u = (
μ1u

2 + βv2)u � 0.

Since the maximum principle works for u in both cases, we have u > 0 in Ω . �
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We set Σi = {u ∈ H 1
0 (Ω) | |||u|||λi

= 1} for i = 1,2. We remark that there exists C1 > 0 such that

‖u‖4, ‖v‖4 < C1 for all (u, v) ∈ Σ1 × Σ2. (1.1)

To seek non-trivial critical points of Iβ(u, v), sometimes one may reduce Iβ(u, v) to a functional defined on a
Nehari manifold with co-dimension 2. In this paper, we reduce Iβ(u, v) to a functional defined on an open subset
of torus Σ1 × Σ2. Since we also consider a perturbation problem for β (Theorem 0.3), it is easy to treat a domain
which does not depend on β . This is the main reason to reduce the functional to one on the torus but not on a Nehari
manifold.

1.1. The reduction to a functional on a torus

When β ∈ R, we set

Nβ =

⎧⎪⎨
⎪⎩(u, v) ∈ Σ1 × Σ2

∣∣∣∣∣∣∣
g1(u, v) := μ1μ2‖u+‖4

4‖v‖4
4 − β2‖u+v‖4

2 > 0,

g2(u, v) := μ1‖u+‖4
4 − β‖u+v‖2

2 > 0,

g3(u, v) := μ2‖v‖4
4 − β‖u+v‖2

2 > 0

⎫⎪⎬
⎪⎭ .

From the Hölder inequality, we see that

Nβ =
⎧⎨
⎩

{(u, v) ∈ Σ1 × Σ2 | g1(u, v) > 0}, β ∈ (−∞,−√
μ1μ2 ],

{(u, v) ∈ Σ1 × Σ2 | u+ �≡ 0}, β ∈ (−√
μ1μ2,0],

{(u, v) ∈ Σ1 × Σ2 | g2(u, v) > 0, g3(u, v) > 0}, β ∈ (0,∞).

We remark that, for all β ∈ R, (u, v) ∈ Nβ implies g1(u, v) > 0 and u+ �≡ 0. We can define a functional Jβ(u, v)

on Nβ by the following proposition.

Proposition 1.2. For any (u, v) ∈ Nβ , a function

(s, t) �→ Iβ(su, tv) : R2+ → R

has a unique maximum point (sβ(u, v), tβ(u, v)). Moreover, setting

Jβ(u, v) = sup
s,t>0

Iβ(su, tv),

we have

Jβ(u, v) = 1

4

(
sβ(u, v)2 + tβ(u, v)2) (1.2)

= 1

4

(
μ1sβ(u, v)4‖u+‖4

4 + μ2tβ(u, v)4‖v‖4
4 + 2βsβ(u, v)2tβ(u, v)2‖u+v‖2

2

)
(1.3)

= 1

4
· μ1‖u+‖4

4 + μ2‖v‖4
4 − 2β‖u+v‖2

2

μ1μ2‖u+‖4
4‖v‖4

4 − β2‖u+v‖4
2

(1.4)

and

(i) sβ(u, v), tβ(u, v) : N → R+ are C1-functions.
(ii) Jβ(u, v) : Nβ → R is a C1-function.

(iii) If (u, v) ∈ Nβ is a critical point of Jβ(u, v), then (sβ(u, v)u, tβ(u, v)v) is a non-trivial critical point of Iβ(u, v).
(iv) Jβ(u, v) satisfies (PS)-condition.

Proof. For any (u, v) ∈ Nβ , we set

f (s, t) = Iβ(su, tv) : R2+ → R.

Differentiating f (s, t), we have
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∂f

∂s
(s, t) = s − s3μ1‖u+‖4

4 − st2β‖u+v‖2
2,

∂f

∂t
(s, t) = t − t3μ2‖v‖4

4 − s2tβ‖u+v‖2
2.

Thus critical points (s, t) of f (s, t) satisfy[
μ1‖u+‖4

4, β‖u+v‖2
2

β‖u+v‖2
2, μ2‖v‖4

4

][
s2

t2

]
=

[
1
1

]
.

Here, noting μ1μ2‖u+‖4
4‖v‖4

4 − β2‖u+v‖4
2 > 0, we have[

s2

t2

]
= 1

μ1μ2‖u+‖4
4‖v‖4

4 − β2‖u+v‖4
2

[
μ2‖v‖4

4, −β‖u+v‖2
2

−β‖uv‖2
2, μ1‖u+‖4

4

][
1
1

]

= 1

μ1μ2‖u+‖4
4‖v‖4

4 − β2‖u+v‖4
2

[
μ2‖v‖4

4 − β‖u+v‖2
2

μ1‖u+‖4
4 − β‖u+v‖2

2

]
. (1.5)

Since (u, v) ∈ Nβ , f (s, t) has a unique critical point (s0, t0) = (sβ(u, v), tβ(u, v)). Next, to show (s0, t0) is a maximum
point, we calculate the second derivatives of f (s, t).

∂2f

∂s2
(s, t) = 1 − 3s2μ1‖u+‖4

4 − t2β‖u+v‖2
2 = 1

s

∂f

∂s
(s, t) − 2s2μ1‖u+‖4

4,

∂2f

∂t∂s
(s, t) = −2stβ‖u+v‖2

2,

∂2f

∂t2
(s, t) = 1 − 3t2μ2‖v‖4

4 − s2β‖u+v‖2
2 = 1

t

∂f

∂t
(s, t) − 2t2μ2‖v‖4

4.

Therefore, we have

A = ∂2f

∂s2
(s0, t0) = −2s2

0μ1‖u+‖4
4,

B = ∂2f

∂t∂s
(s0, t0) = −2βs0t0‖u+v‖2

2.

C = ∂2f

∂t2
(s0, t0) = −2t2

0 μ2‖v‖4
4.

Since A < 0 and AC − B2 = 4s2
0 t2

0 (μ1μ2‖u+‖4
4‖v‖4

4 − β2‖u+v‖4
2) > 0, (s0, t0) is a maximum point of f (s, t). Thus,

by direct calculations, we get (1.2)–(1.4).
Next we show (i). To show (i), we use the implicit function theorem. We consider the following function:

F(s, t, u, v) =
[

F(s, t, u, v)

G(s, t, u, v)

]
=

[ ∂f
∂s

(s, t)
∂f
∂t

(s, t)

]
: R2+ × Nβ → R2.

Now, for any (u, v) ∈ Nβ , we have

F(s0, t0, u, v) = 0,[ ∂F
∂s

(s0, t0, u, v) ∂F
∂t

(s0, t0, u, v)

∂G
∂s

(s0, t0, u, v) ∂F
∂t

(s0, t0, u, v)

]
=

[
A B

B C

]
.

Thus from the implicit function theorem, we can easily see the C1-property of (s0, t0) = (sβ(u, v), tβ(u, v)).
We show (ii). Noting

Jβ(u, v) = Iβ

(
sβ(u, v)u, tβ(u, v)v

)
,

we can easily find that Jβ(u, v) is a C1-function. Moreover we have
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∇uJβ(u, v)ϕ = ∇uIβ

(
sβ(u, v)u, tβ(u, v)v

)(∇usβ(u, v)ϕu + sβ(u, v)ϕ
)

+ ∇vIβ

(
sβ(u, v)u, tβ(u, v)v

)∇utβ(u, v)ϕv

= ∇uIβ

(
sβ(u, v)u, tβ(u, v)v

)
sβ(u, v)ϕ, (1.6)

∇vJβ(u, v)ψ = ∇vIβ

(
sβ(u, v)u, tβ(u, v)v

)
tβ(u, v)ψ. (1.7)

Thus, if (u, v) ∈ Nβ is a critical point of Jβ(u, v), then (sβ(u, v)u, tβ(u, v)v) is a non-trivial critical point of Iβ(u, v)

and we get (iii).
Finally, we show (iv). If (un, vn) ∈ Nβ is a (PS)-sequence for Jβ , then Jβ(un, vn) are bounded and this means

the boundedness of (sβ(un, vn), tβ(un, vn)) from (1.2). Thus from (1.6)–(1.7), (sβ(un, vn)un, tβ(un, vn)vn) is also a
(PS)-sequence for Iβ . Since Iβ(u, v) satisfies (PS)-condition, Jβ(u, v) also satisfies (PS)-condition. �

From (1.2), for all β ∈ R, it is obvious that Jβ(u, v) is bounded from below. Moreover, we have the following
proposition.

Proposition 1.3. When β < 0, we have

lim inf
(u,v)∈Nβ,dist{(u,v),∂Nβ }→0

Jβ(u, v) = ∞. (1.8)

Proof. For any sequence ((un, vn))
∞
n=1 ⊂ Nβ with g1(un, vn) → 0 (n → ∞), we need to show Jβ(un, vn) → ∞

(n → ∞). Since |||un|||λ1 = |||vn|||λ2 = 1, for some u0, v0 ∈ H 1
0 (Ω), we may assume

un → u0, vn → v0 strongly in L4(Ω).

Here if g2(u0, v0) + g3(u0, v0) > 0, then it is obvious that (1.8) holds. Thus we assume g2(u0, v0) + g3(u0, v0) = 0.
Since β < 0, we have u0 = v0 = 0 and we find ‖un‖4

4 → 0, ‖vn‖4
4 → 0 as n → ∞. Since Jβ(u, v) is written by (1.4),

we get (1.8). �
Remark 1.4. From Proposition 1.3, when β < 0, the behavior of Jβ(u, v) in the neighborhood of ∂Nβ does not disturb
deformation arguments. When β > 0, it is complicated by the behavior of Jβ(u, v) in the neighborhood of ∂Nβ and
we cannot expect the property like (1.8). But for β > 0 small, Jβ(u, v) satisfies the property like (1.8) on a proper
subset Mδ ⊂ Nβ . (See Proposition 1.9.)

1.2. The case β > 0 small

For δ > 0, we set

Mδ = {
(u, v) ∈ Σ1 × Σ2

∣∣ μ1‖u+‖4
4 > δ, μ2‖v‖4

4 > δ
}
.

We remark that Mδ �= ∅ if δ < 1
4b0

where b0 is given by

b0 = min
{
b1

0, b
2
0

}
> 0, b1

0 = inf
u∈Σ1

1

4μ1‖u‖4
4

> 0, b2
0 = inf

v∈Σ2

1

4μ2‖v‖4
4

> 0. (1.9)

Here bi
0 (i = 1,2) is a least energy level of (1.15) and (1.17) respectively. (See Remark 1.8.) We also remark that Mδ

is independent of β .

Lemma 1.5. For any given δ ∈ (0, 1
4b0

), there exists βδ ∈ (0,
√

μ1μ2 ) such that

Mδ ⊂ Nβ for all β ∈ (−√
μ1μ2, βδ).

Proof. When β ∈ (−√
μ1μ2,0), Mδ ⊂ Nβ is obvious. For δ ∈ (0, 1

4b0
), we choose βδ > 0 satisfying δ > βδC

4
1 . Here

C1 is a constant given in (1.1). Then it holds

μ1‖u+‖4
4 > δ > βδC

4
1 � β‖u+v‖2

2 for all (u, v) ∈ Mδ, β ∈ [0, βδ).

By a similar way, we have μ2‖v‖4 > β‖u+v‖2. Thus we get Mδ ⊂ Nβ for all β ∈ (−√
μ1μ2, βδ). �
4 2



8 Y. Sato, Z.-Q. Wang / Ann. I. H. Poincaré – AN 30 (2013) 1–22
From Lemma 1.5, Jβ(u, v) is defined on Mδ .

Lemma 1.6. For any given δ ∈ (0, 1
4b0

), there exists a constant Cδ > 0 which does not depend on β such that

sβ(u, v) � Cδ, tβ(u, v) � Cδ for all (u, v) ∈ Mδ, β ∈ (−βδ,βδ). (1.10)

Here βδ was given in Lemma 1.5. Moreover it holds

(
sβ(u, v), tβ(u, v)

) →
(

1√
μ1‖u+‖2

4

,
1√

μ2‖v‖2
4

)
uniformly for (u, v) ∈ Mδ as β → 0. (1.11)

Proof. Suppose (u, v) ∈ Mδ , β ∈ (−βδ,βδ). Since sβ(u, v) was written by (1.5), we have

sβ(u, v)2 = μ2‖v‖4
4 − β‖u+v‖2

2

μ1μ2‖u+‖4
4‖v‖4

4 − β2‖u+v‖2
2

�
(μ2 + βδ)C

4
1

(μ1μ2 − β2
δ ) δ2

μ1μ2

.

Here C1 is a constant given in (1.1) and we have used the fact that μ1‖u+‖4
4,μ2‖v‖4

4 � δ for all (u, v) ∈ Mδ . And we
also have

sβ(u, v)2 → 1

μ1‖u+‖4
4

uniformly for (u, v) ∈ Mδ as β → 0.

Since tβ(u, v) also was similarly written by (1.5), we obtain (1.10) and (1.11). �
Proposition 1.7. For any given δ ∈ (0, 1

4b0
), there exists a constant cδ(β) with cδ(β) → 0 (as β → 0) such that

Jβ(u, v) satisfies∣∣Jβ(u, v) − J1(u) − J2(v)
∣∣ � cδ(β) for all (u, v) ∈ Mδ, β ∈ (−βδ,βδ), (1.12)∣∣∣∣∣∣∇uJβ(u, v) − ∇J1(u)

∣∣∣∣∣∣
λ1∗ � cδ(β) for all (u, v) ∈ Mδ, β ∈ (−βδ,βδ), (1.13)∣∣∣∣∣∣∇vJβ(u, v) − ∇J2(v)

∣∣∣∣∣∣
λ2∗ � cδ(β) for all (u, v) ∈ Mδ, β ∈ (−βδ,βδ), (1.14)

where, for i = 1,2, Ji(u) = 1
4μi‖u‖4

4
, TuΣi = {v ∈ H 1

0 (Ω) | 〈u,v〉λi
= 0} and

∣∣∣∣∣∣∇Ji(u)
∣∣∣∣∣∣

λi∗ = sup
v∈TuΣi, |||v|||λi

=1

∣∣∇Ji(u)v
∣∣.

Remark 1.8. For any u ∈ Σ1 with u+ �= 0, a function s �→ I1(su) = s2

2 − s4

4 μ1‖u+‖4
4 has a maximum value at a

unique maximum point s = 1√
μ1‖u+‖2

4
and we can write as follows

J1(u) = sup
s>0

I1(su) = 1

4μ1‖u+‖4
4

, (1.15)

∇J1(u)ϕ = − 1

μ1‖u+‖8
4

∫
Ω

u3+ϕ dx for all ϕ ∈ TuΣ1. (1.16)

By a similar way, for any u ∈ Σ2, a function t �→ I2(tu) = t2

2 − t4

4 μ2‖v‖4
4 has a unique maximum point and we have

J2(u) = sup
t>0

I2(tv) = 1

4μ2‖v‖4
4

, (1.17)

∇J2(v)ψ = − 1

μ2‖v‖8
4

∫
Ω

v3ψ dx for all ψ ∈ TvΣ2. (1.18)
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Proof of Proposition 1.7. From (1.4), (1.15) and (1.17), we can directly calculate Jβ(u, v)−J1(u)−J2(v) as follows:

Jβ(u, v) − J1(u) − J2(v) = 1

4
· β‖u+v‖2

2

μ1μ2‖u+‖4
4‖v‖4

4 − β2‖u+v‖4
2

(
β‖u+v‖2

2

μ1‖u+‖4
4

+ β‖u+v‖2
2

μ2‖v‖4
4

− 2

)
.

For (u, v) ∈ Mδ , β ∈ (−βδ,βδ), we have

∣∣Jβ(u, v) − J1(u) − J2(v)
∣∣ �

C4
1 |β|

4(μ1μ2 − β2) δ2

μ1μ2

(
C4

1 |β|
δ

+ C4
1 |β|
δ

+ 2

)
. (1.19)

Here C1 is a constant given in (1.1) and we have used the fact that μ1‖u+‖4
4,μ2‖v‖4

4 � δ for all (u, v) ∈ Mδ .
From (1.19), we get (1.12). Next we calculate ∇uJβ(u, v)ϕ − ∇J1(u)ϕ for any ϕ ∈ TuΣ1. From (1.6),

∇uJβ(u, v)ϕ = −sβ(u, v)4μ1

∫
Ω

u3+ϕ dx − βsβ(u, v)2tβ(u, v)2
∫
Ω

u+v2ϕ dx.

Combining (1.16), we have∣∣∇uJβ(u, v)ϕ − ∇J1(u)ϕ
∣∣ �

∣∣∣∣sβ(u, v)4 − 1

μ2
1‖u+‖8

4

∣∣∣∣μ1

∫
Ω

u3+|ϕ|dx + |β|sβ(u, v)2tβ(u, v)2
∫
Ω

u+v2|ϕ|dx

�
∣∣∣∣sβ(u, v)4 − 1

μ2
1‖u+‖8

4

∣∣∣∣μ1C
4
1 |||ϕ|||λ1 + |β|C4

δ C4
1 |||ϕ|||λ1 .

We obtain (1.13) from the above inequality and Lemma 1.6. (1.14) also holds from a similar calculation. �
For small β > 0, the following proposition plays a role similar to Proposition 1.3.

Proposition 1.9. For any β ∈ (−βδ,βδ), we have

sup
(u,v)∈Mδ

Jβ(u, v) � 1

2δ
+ cδ(β), (1.20)

inf
(u,v)∈∂Mδ

Jβ(u, v) � 1

4δ
+ b0 − cδ(β). (1.21)

Here b0 was given in (1.9).

Proof. From Proposition 1.7, for (u, v) ∈ Mδ , β ∈ (−βδ,βδ), we have

J1(u) + J2(v) − cδ(β) � Jβ(u, v) � J1(u) + J2(v) + cδ(β).

We remark that

inf
u∈Σ1,u+�≡0

J1(u) � b1
0 � b0, inf

v∈Σ2
J2(v) � b2

0 � b0.

Here (u, v) ∈ ∂Mδ implies J1(u) = 1
4δ

or J2(v) = 1
4δ

and (u, v) ∈ Mδ implies J1(u) � 1
4δ

or J2(v) � 1
4δ

. Therefore
we get (1.20) and (1.21). �
2. The multiplicity of critical values for σ -invariant functionals

In this section, we construct abstract theories to get the multiple existence of critical points of functionals having
symmetry J (σ (u)) = J (u) where u is in a Hilbert space and σ satisfies (0.1)–(0.2). To do so, we construct a genus
type index for the symmetry σ . In [23] or [13], the authors constructed the genus type index for σ(−u) = u in the
scaler case or σ(u, v) = (v,u) in the vector case respectively.

In this section, let H be a Hilbert space and σ : H → H be a bounded linear operator satisfying (0.1)–(0.2). Setting
H0 = {u ∈ H | σ(u) = u}, H0 is a subspace composed of fixed points of σ . Here H0 �= H from (0.2). We also set
H1 = H⊥

0 �= {0}. For any u ∈ H , we uniquely write u = u0 +u1, (u0, u1) ∈ H0 ⊕H1. Then, from (0.1)–(0.2), we have

σ(u0 + u1) = u0 − u1 for all u = u0 + u1 ∈ H0 + H1.
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For this σ : H → H , we define a genus as follows:

Definition 2.1. For any σ -invariant closed set A ⊂ H \H0, γ (A) is the least integer n such that there exists a function
g ∈ C(A,Rn \ {0}) with

g
(
σ(u)

) = −g(u) for all u ∈ A. (2.1)

If there is no such g, we define γ (A) = ∞. We also define γ (∅) = 0.
Here, when g satisfies (2.1), we say g is a σ -odd function. When J ∈ C(A,R) satisfies

J
(
σ(u)

) = J (u) for all u ∈ A,

we say J is a σ -invariant functional or a σ -even functional. When h ∈ C(A,H) satisfies

h
(
σ(u)

) = σ
(
h(u)

)
for all u ∈ A,

we say h is σ -equivariant.

The following theorem is the main theorem in this section:

Theorem 2.2. Let M ⊂ H \ H0 be a σ -invariant C1-manifold and J : M → R be a σ -even C1-functional satisfying
(PS)-condition. Moreover, we assume that

inf
u∈M

J(u) > −∞, (2.2)

lim inf
u∈M,dist{u,∂M}→0

J (u) = ∞, (2.3)

and, for any k ∈ N, there exists ψ ∈ C(Sk,M) with ψ(−x) = σ(ψ(x)). Then J has an unbounded nondecreasing
sequence of critical values (ck)

∞
k=1. Here ck is defined by

ck = inf
{
c ∈ R

∣∣ γ
([J � c]M

)
� k

}
,

[J � c]M = {
u ∈ M

∣∣ J (u) � c
}
. (2.4)

Firstly we state the properties of our genus. These are similar to the properties of the genus type index constructed
in [23] or [13].

Lemma 2.3. Let A,B ⊂ H \ H0 be σ -invariant closed sets. Then we have:

(i) If A ⊂ B , then γ (A) � γ (B).
(ii) γ (A ∪ B) � γ (A) + γ (B).

(iii) If h ∈ C(A,H \ H0) satisfies h(σ(u)) = σ(h(u)), then γ (A) � γ (h(A)).
(iv) γ (A \ B) � γ (A) − γ (B).
(v) If γ (A) > 1, then A is an infinite set.

(vi) If A is a compact set, then γ (A) < ∞. Moreover there exists σ -invariant neighborhood of N of A in M such
that γ (A) = γ (N).

(vii) If ψ ∈ C(Sn,H \ H0) satisfies ψ(−u) = σ(ψ(u)), then γ (ψ(Sn)) � n + 1.

Proof. First of all, we show (iii). If γ (h(A)) = ∞, (iii) is trivial. Supposing γ (h(A)) = m < ∞, there exists
σ -odd function g ∈ C(h(A),Rm \ {0}). Then (g ◦ h) ∈ C(A,Rm \ {0}) satisfies (g ◦ h)(σ (u)) = g(σ (h(u))) =
−(g ◦ h)(u). Thus we have γ (A) � m = γ (h(A)) and (iii) holds. We get (i), taking an inclusion map idA ∈ C(A,B)

in (iii). Next, we show (v). When A is a finite set, A is written by A = {u1, . . . , uk, σ (u1), . . . , σ (uk)} where
u1, . . . , uk, σ (u1), . . . , σ (uk) are different from each other. Then we have g ∈ C(A,R \ {0}) such that g(xi) = 1,
g(σ (xi)) = −1 for i = 1, . . . , k. Thus we find γ (A) = 1. This implies (v).
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Next, we show (ii). Supposing γ (A) = n < ∞, γ (B) = m < ∞, there exist σ -odd functions g ∈ C(A,Rn \ {0})
and h ∈ C(B,Rm \ {0}). By the extension theorem of Tietze, we have ĝ, ĥ ∈ C(H,H) such that ĝ(u) = g(u) for all
u ∈ A and ĥ(u) = h(u) for all u ∈ B . Here, set

g̃(u) = ĝ(u) − ĝ(σ (u))

2
, h̃(u) = ĥ(u) − ĥ(σ (u))

2
.

Then g̃ and h̃ are σ -odd and also an extension of g and h respectively. Since f = (g̃|A∪B, h̃|A∪B) ∈ C(A∪B,Rn+m \
{0}) also σ -odd, we get γ (A ∪ B) � n + m = γ (A) + γ (B). (iv) easily follows from (i) and (ii).

Next, we show (vi). For any u ∈ A, we set Tu = Bdu/2(u) ∪ Bdu/2(σ (u)) where du = dist{u,H0} > 0. Then
we have γ (Tu) = 1. Since A is compact and {Tu | u ∈ A} are open covering of A, for finite u1, . . . , uk ∈ A,
we have A ⊂ ⋃k

i=1 Tui
. From (ii), we get γ (A) � k. Next, we show later part of (vi). We remark that letting

Nδ(A) be δ-neighborhood of A in M , Nδ(A) is σ -invariant and Nδ(A) ⊂ H \ H0 for small δ > 0. Supposing
γ (A) = n, there exists a σ -odd function g ∈ C(A,Rn \ {0}). By a similar way to show (iii), we have σ -odd
function g̃ ∈ C(Nδ(A),Rn \ {0}). Thus we get γ (Nδ(A)) � n = γ (A). On the other hand, A ⊂ Nδ(A) implies
γ (Nδ(A)) � γ (A). Thus we get γ (Nδ(A)) = γ (A).

Finally we show (vii). By a contradiction, we assume γ (ψ(Sn)) � n. Then there exists a σ -odd function g ∈
C(ψ(Sn)),Rn \ {0}). Here g ◦ ψ ∈ C(Sn,Rn \ {0}) is an odd function but this contradicts the Borsuk–Ulam theorem.
Thus we obtain (vii). �
Proposition 2.4. Let M ⊂ H \H0 be a σ -invariant C1-manifold and J : M → R be a σ -even C1-functional satisfying
(PS)-condition. Moreover, we assume that

lim inf
u∈M,dist{u,∂M}→0

J (u) = d � ∞. (2.5)

Then, for any c < d and δ > 0, there exist ε > 0 and η : [0,1] × [J � c + ε]M → [J � c + ε]M such that

η(0, u) = u for all u ∈ [J � ck + ε]M, (2.6)

η(1, u) ∈ [J � ck − ε]M for all u ∈ [J � ck + ε]M \ Nδ(Kc), (2.7)

η
(
1, σ (u)

) = σ
(
η(1, u)

)
for all u ∈ [J � ck + ε]M. (2.8)

Here Kc = {u ∈ M | J (u) = c, J ′(u) = 0} and Nδ(Kc) is δ-neighborhood of Kc in M .

Proof. For any u ∈ M , we uniquely write u = u0 +u1 ∈ H0 +H1 and J (σ (u)) is also uniquely written as J (σ (u)) =
J (u0 − u1). Since J : M → R is σ -even, we also have

J (u0 − u1) = J (u0 + u1) for all u = u0 + u1 ∈ H0 + H1.

Therefore, noting ∇u = ∇u0 + ∇u1 , we obtain

∇J
(
σ(u)

)
ϕ = σ

(∇J (u)
)
ϕ = ∇J (u)σ (ϕ). (2.9)

Constructing a deformation flow η : [0,1] × [J � c + ε]M → [J � c + ε]M by a standard way, it is obvious that η

satisfies (2.6)–(2.7). In addition, (2.8) holds from (2.9). �
Proof of Theorem 2.2. Firstly we show (i). By a contradiction, we suppose that ck is not a critical point. From the
definition of ck , for any ε > 0, we have γ ([J � ck + ε]M) � k. Applying Proposition 2.4 for c = ck and Kck

= ∅,
there exist ε > 0 and η : [0,1] × [J � ck + ε]M → [J � ck + ε]M such that

η(0, u) = u for all u ∈ [J � ck + ε]M, (2.10)

η(1, u) ∈ [J � ck − ε]M for all u ∈ [J � ck + ε]M, (2.11)

η
(
1, σ (u)

) = σ
(
η(1, u)

)
for all u ∈ [J � ck + ε]M. (2.12)

From (2.12) and (iii) of Lemma 2.3, we have

γ
([J � ck + ε]M

)
� γ

(
η
(
1, [J � ck + ε]M

))
. (2.13)
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From (2.11) and (i) of Lemma 2.3, we have

γ
(
η
(
1, [J � ck + ε]M

))
� γ

([J � ck − ε]M
)
. (2.14)

Combining (2.13)–(2.14), we get γ ([J � ck − ε]M) � γ ([J � ck + ε]M) � k and this contradicts the definition of ck .
Thus ck is a critical point. (ii) is obvious from the definition of ck . Next we show (iii). By a contradiction, we suppose
that ck → c < ∞ as k → ∞. Since J satisfies (PS)-condition, Kc = {u ∈ M | J (u) = c, J ′(u) = 0} is a compact set.
Thus, from (vi) of Lemma 2.3, there exists a σ -invariant neighborhood of Nδ(Kc) such that γ (Kc) = γ (Nδ(Kc)) =
q < ∞. Applying Proposition 2.4 for c = c and Kc , there exist ε > 0 and η : [0,1] × [J � c + ε]M → [J � c + ε]M
such that

η(0, u) = u for all u ∈ [J � c + ε0]M, (2.15)

η(1, u) ∈ [J � c − ε]M for all u ∈ [J � c + ε]M \ Nδ(Kc), (2.16)

η
(
1, σ (u)

) = σ
(
η(1, u)

)
for all u ∈ [J � c + ε]M. (2.17)

Since ck → c < ∞ as k → ∞, there exists k0 such that

c − ε

2
< ck � c for all k � k0.

From the definition ck0+q , we have γ ([J � ck0+q + ε]M) � k0 + q . Then, using (i), (iii) and (iv) of Lemma 2.3, we
have

γ

([
J � ck0 − ε

2

]
M

)
� γ

([J � c − ε]M
)

� γ
(
η
(
1, [J � ck0+q + ε]M \ Nδ(Kc)

))
� γ

(
η
(
1, [J � ck0+q + ε]M

) − γ
(
Nδ(Kc)

))
� (k0 + q) − q = k0.

This is a contradiction to the definition of ck0 . Thus we see that ck → ∞ as k → ∞. �
By a similar way to Theorem 2.2, we get the following theorem.

Theorem 2.5. Let M ⊂ H \ H0 be a σ -invariant C1-manifold and J : M → R be a σ -even C1-functional satisfying
(PS)-condition. Moreover, we assume that

inf
u∈M

J(u) > −∞, (2.18)

lim inf
u∈M,dist{u,∂M}→0

J (u) = d < ∞, (2.19)

and, for some k ∈ N, there exists ψ ∈ C(Sk,M) with ψ(−x) = σ(ψ(x)) such that supx∈Sk J (ψ(x)) < d . Then J (u)

has at least k critical points.

Proof. We define ci (1 � i � k) as (2.4). Then we see that c1 � c2 � · · · � ck (< d) are critical values of J (u).
Moreover, if ci = ci+1 = · · · = ci+q holds, then γ (Kci

) � q + 1. This is shown by a similar way to show ck → ∞
in the proof of Lemma 2.3. From (v) of Lemma 2.3, γ (Kci

) � q + 1 � 2 implies Kci
is an infinite set. Thus we get

Theorem 2.5. �
3. Proofs of Theorem 0.1 and Theorem 0.2

In this section, we will give the proofs of Theorem 0.1 and Theorem 0.2 by using abstract theories for σ(u, v) =
(u,−v) : H 1

0 (Ω) × H 1
0 (Ω) → H 1

0 (Ω) × H 1
0 (Ω). To apply our abstract theory, we need the following lemma.

Lemma 3.1. Suppose β < 0. For any k ∈ N, there exists ψ ∈ C(Sk,Nβ) such that ψ(−v) = σ(ψ(v)).
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Proof. We choose non-empty open sets Ω1,Ω2 ⊂ Ω with Ω1 ∩ Ω2 = ∅. We also choose u0 ∈ H 1
0 (Ω1) such that

|||u0|||λ1 = 1 and u0+ �≡ 0. Let Wk be a k-dimensional subspace of H 1
0 (Ω2). Then it is obvious that μ1μ2‖u0+‖4

4‖v‖4
4 −

β2‖u0+v‖4
2 > 0 for all v ∈ Sk := {v ∈ Wk | |||v|||λ2 = 1}. Thus, setting ψ(v) = (u0, v), ψ(v) satisfies ψ(v) ∈ Nβ for

all v ∈ Sk and ψ(−v) = (u0,−v) = σ(ψ(v)). �
Here, we give the proof of Theorem 0.1.

Proof of Theorem 0.1. Suppose β < 0. We apply Theorem 2.2 for H = H 1
0 (Ω) × H 1

0 (Ω), σ(u, v) = (u,−v), M =
Nβ , J (u) = Jβ(u, v). Firstly, we will check that the assumptions of Theorem 2.2 hold. From Proposition 1.3, we have

lim inf
(u,v)∈Nβ,dist{(u,v),∂Nβ }→0

Jβ(u, v) = ∞.

Moreover, from Lemma 3.1, for any k ∈ N, there exists ψ ∈ C(Sk,Nβ) such that ψ(−u) = σ(ψ(u)). Therefore the
assumptions of Theorem 2.2 hold and Jβ has a sequence of critical values (ck)

∞
k=1 such that ck → ∞ as k → ∞.

Let (uk, vk) be a critical point of Jβ corresponding to ck and we set (Uk,Vk) = (sβ(uk, vk)uk, tβ(uk, vk)vk). Then,
from (iii) of Proposition 1.2, (Uk,Vk) is a non-trivial critical point of Iβ . From Proposition 1.1, we see Uk > 0 in Ω .
Moreover, from (1.3) and β < 0, we find(

μ1‖Uk‖4∞ + μ2‖Vk‖4∞
)|Ω| � μ1‖Uk‖4

4 + μ2‖Vk‖4
4 � 4ck → ∞ (k → ∞).

Thus we get ‖Uk‖∞ + ‖Vk‖∞ → ∞. On the other hand, when β > −√
μ1μ2, there exists a priori bound of positive

solution of (∗) by a result of [13]. Thus, when β ∈ (−√
μ1μ2,0), Vk must change sign for large k. Now, the proof of

Theorem 0.1 is complete. �
Next, we show Theorem 0.2. To prove Theorem 0.2, we need the following lemma.

Lemma 3.2. For any given k ∈ N, there exist δk > 0, βk > 0 and ψ ∈ C(Sk,Mδk
) with ψ(−v) = σ(ψ(v)) such that

sup
v∈Sk

Jβ

(
ψ(v)

)
� d = inf

(u,v)∈∂Mδk

Jβ(u, v) for all β ∈ (−βk,βk). (3.1)

Proof. Let Wk be k-dimensional subspace of H 1
0 (Ω) such that

W1 ⊂ W2 ⊂ · · · ⊂ Wk ⊂ Wk+1 ⊂ · · · .
For any given k ∈ N, we choose small δk > 0 satisfying

μ2‖v‖4
4 > 4δk for all v ∈ Sk := {

v ∈ Wk

∣∣ |||v|||λ2 = 1
}
.

We remark that δk also satisfies 4δk ∈ (0, 1
4b0

). For this δk > 0, from Proposition 1.9 and Proposition 1.7, there exists
βk = βδk

> 0 such that, for all β ∈ (−βk,βk), we have

sup
(u,v)∈M4δk

Jβ(u, v) � 1

8δk

+ cδk
(β),

inf
(u,v)∈∂Mδk

Jβ(u, v) � 1

4δk

+ b0 − cδk
(β),

∣∣2cδk
(β)

∣∣ <
1

8δk

− b0.

Here we choose u0 ∈ H 1
0 (Ω) such that |||u0|||λ1 = 1 and ‖u0+‖4

4 � 4δk . Setting ψ(v) = (u0, v), ψ(v) satisfies

ψ(v) ∈ M4δk
⊂ Mδk

for all v ∈ Sk,

ψ(−v) = (u0,−v) = σ
(
ψ(v)

)
.

Then ψ(v) satisfies (3.1) and we get Lemma 3.2. �
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Now, we give the proof of Theorem 0.2.

Proof of Theorem 0.2. From Lemma 3.2, for any given k ∈ N, there exist δk > 0, βk > 0 and ψ ∈ C(Sk,Mδk
) with

ψ(−v) = σ(ψ(v)) such that

sup
v∈Sk

Jβ

(
ψ(v)

)
� d = inf

(u,v)∈∂Mδk

Jβ(u, v) for all β ∈ (−βk,βk).

Here, setting H = H 1
0 (Ω)×H 1

0 (Ω), σ(u, v) = (u,−v), M = Mδk
, J (u) = Jβ(u, v) (0 < β < βk), the assumptions of

Theorem 2.5 hold. Thus Jβ has at least k critical points. In conclusion from Proposition 1.2, we get Theorem 0.2. �
4. The asymptotic behavior of some critical values of Jβ

In this section, for Jβ(u, v), we will define the mountain pass values corresponding to solutions in Theorem 0.3.
Firstly, for J2(v), we define symmetric mountain pass values b2

n (n ∈ N ∪ {0}) by

b2
n = inf

γ2∈Γ 2
n

max
θ∈Sn

J2
(
γ2(θ)

)
,

Γ 2
n = {

γ2(θ) ∈ C
(
Sn,Σ2

) ∣∣ γ2(−θ) = −γ2(θ) for all θ ∈ Sn
}
,

where Sn = {θ = (θ1, . . . , θn+1) ∈ Rn+1 | |θ | = 1}. Then, from the symmetric mountain pass theory for J2, b2
n satisfies

the following:

(i) b2
n is a critical value of J2. In particular, b2

0 is a least energy level of J2.
(ii) b2

0 < b2
1 � b2

2 � · · · � b2
n � b2

n+1 � · · ·.
(iii) b2

n → ∞ as n → ∞.

Now, from Lemma 3.2, for any given k ∈ N , there exist δk > 0, βk > 0 and ψ ∈ C(Sk,Mδk
) with ψ(−v) = σ(ψ(v))

such that

sup
v∈Sk

Jβ

(
ψ(v)

)
� d = inf

(u,v)∈∂Mδk

Jβ(u, v) for all β ∈ (−βk,βk).

We fix k ∈ N , δk > 0 and βk > 0 as above. Here, for β ∈ (−βk,βk), we define minimax values di,β (i = 1,2, . . . , k)
of Jβ(u, v) by the following:

di,β = inf
g∈Γi

max
θ∈Si

Jβ

(
γ (θ)

)
,

Γi = {
γ (θ) ∈ C

(
Si,Mδk

) ∣∣ γ (−θ) = σ
(
γ (θ)

)
for all θ ∈ Si

}
. (4.1)

We remark that Γi �= ∅ by the existence of ψ . We show that di,β satisfies the following proposition.

Proposition 4.1. For i = 1,2, . . . , k, we have:

(i) di,β is a critical value of Jβ(u, v) for β ∈ (−βk,βk).
(ii) di,β → b1

0 + b2
i as β → 0.

Proof. Firstly we show (i). By a contradiction, we suppose that di,β is not a critical point. For ε0 > 0, there exists
γ ∈ Γi such that supθ∈Si Jβ(γ (θ)) � di,β + ε0. Here, applying Proposition 2.4, we have small ε ∈ (0, ε0) and η :
[0,1] × [Jβ � di,β + ε]Mδk

→ [Jβ � di,β + ε]Mδk
such that

η(0, u) = u for all u ∈ [Jβ � di,β + ε]Mδk
, (4.2)

η(1, u) ∈ [Jβ � di,β − ε]Mδk
for all u ∈ [Jβ � di,β + ε]Mδk

, (4.3)

η
(
1, σ (u)

) = σ
(
η(1, u)

)
for all u ∈ [Jβ � di,β + ε]Mδk

. (4.4)

Setting γ̃ (θ) = η(1, γ (θ)), we have γ̃ ∈ Γi and supθ∈Si Jβ(γ̃ (θ)) � di,β − ε. This contradicts the definition of di,β .
Thus di,β is a critical point.
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Next, we show (ii). From Proposition 1.7, we have

J1(u) + J2(v) − cδk
(β) � Jβ(u, v) � J1(u) + J2(v) + cδk

(β)

for all (u, v) ∈ Mδk
and β ∈ (−βk,βk). For any ε > 0, we choose γ2 ∈ Γ 2

i such that

max
θ∈Si

J2
(
γ2(θ)

)
� b2

i + ε.

Setting γ (θ) = (u0, γ2(θ)) where u0 is a minimizer of J1(u), then we have γ (θ) ∈ Γi and

di,β � max
θ∈Si

Jβ

(
γ (θ)

)
� J1(u0) + max

θ∈Si
J2

(
γ2(θ)

) + cδk
(β) � b1

0 + b2
i + ε + cδk

(β). (4.5)

On the other hand, we choose γ ∈ Γi such that

max
θ∈Si

Jβ

(
γ (θ)

)
� di,β + ε.

Writing γ (θ) = (γ1(θ), γ2(θ)) ∈ Σ1 × Σ2, we have γ2(θ) ∈ Γ 2
i and

b1
0 + b2

i � J1
(
γ1(θ)

) + max
θ∈Si

J2
(
γ2(θ)

)
� max

θ∈Si
Jβ

(
γ (θ)

) + cδk
(β) � di,β + ε + cδk

(β). (4.6)

From (4.5)–(4.6), we have∣∣di,β − (
b1

0 + b2
i

)∣∣ � ε + cδk
(β).

Since ε > 0 is arbitrary and cδk
(β) → 0 as β → 0, we obtain (ii). �

5. Proof of Theorem 0.3

In this section, we will complete the proof of Theorem 0.3. For i ∈ {1,2, . . . , k}, we show the following proposition.

Proposition 5.1. For any ε > 0, there exists β ′
k > 0 such that, for all |β| < β ′

k , Jβ(u, v) has critical points in Aε
β which

are defined by

Aε
β =

{
(u, v) ∈ Mδk

∣∣∣∣∣ db1
0 � J1(u) � b1

0 + ε,

b1
0 + b2

i − ε � Jβ(u, v) � b1
0 + b2

i + ε

}
.

We remark that Aε
β is an invariant set for σ(u, v) = (u,−v) and Aε

β �= ∅. If Proposition 5.1 holds, then we get
Theorem 0.3 as follows:

Proof of Theorem 0.3. From Proposition 5.1, for all ε > 0 and |β| < β ′
k , there exists critical point (ui,β, vi,β) of

Jβ(u, v) which satisfies

b1
0 � J1(ui,β) � b1

0 + ε,

b1
0 + b2

i − ε � Jβ(ui,β, vi,β) � b1
0 + b2

i + ε.

Since ε > 0 is arbitrary, from Proposition 1.7, we see that ui,β , vi,β satisfy

J1(ui,β) → b1
0 J ′

1(ui,β) → 0 as β → 0,

J2(vi,β) → b2
i J ′

2(vi,β) → 0 as β → 0.

Thus, after extracting subsequence βj → 0, there exist ui,0 ∈ Σ1 and vi,0 ∈ Σ2 which are critical points of J1(u) and
J2(v) respectively, such that

ui,βj
→ ui,0 as βj → 0, J1(ui,0) = b1

0, J ′
1(ui,0) = 0, (5.1)

vi,βj
→ vi,0 as βj → 0, J2(vi,0) = b2

i , J ′
2(vi,0) = 0. (5.2)

From (5.1)–(5.2), Proposition 1.1 and Proposition 1.2, we get Theorem 0.3. �



16 Y. Sato, Z.-Q. Wang / Ann. I. H. Poincaré – AN 30 (2013) 1–22
In what follows, we will show Proposition 5.1 by a contradiction. If Proposition 5.1 does not hold, then there exist
ε0 > 0 and a sequence βj → 0 such that Jβj

(u, v) does not have critical points in A
ε0
βj

.

Here, we remark that a set of critical values of J1(u) is nowhere dense. Thus there exists b1
0 + 1

3ε0 < a0 < a1 <

b1
0 + ε0 such that J1(u) does not have critical points in [a0 � J1 � a1]Σ1 .

Remark 5.2. Fučík, Kučera, Nečas, Souček and Souček [14] gave a result for the Morse–Sard theorem in infinite
dimensional setting. Since Ĩ1(u) = 1

2‖u‖2
λ1

− 1
4μ1‖u‖4

4 : H 1
0 (Ω) → R is analytic and satisfies (PS)-condition, the set

of critical values of Ĩ1(u) is measure zero and closed. Thus the set of critical values of Ĩ1(u) is nowhere dense. This
implies the nowhere denseness of the set of critical values of J1(u). Moreover there exist further results of Dancer [12]
and Cao and Noussair [8] about when critical values of I1(u) are isolated.

Since there are not critical points of J1(u) in [a0 � J1 � a1]Σ1 , we set

ρ0 = inf
u∈[a0�J1�a1]Σ1

∣∣∣∣∣∣∇J1(u)
∣∣∣∣∣∣

λ1∗ > 0. (5.3)

Then we have the following lemma.

Lemma 5.3. . For sufficiently small |βj | > 0, we have the following: for any (u, v) ∈ A
ε0
βj

with u ∈ [a0 � J1 � a1],
there exists (X,Y ) ∈ TuΣ1 × TvΣ2 such that

‖X‖λ1 = 1, Y = 0,

∇J1(u)X � ρ0

2
, ∇Jβj

(u, v)(X,Y ) � ρ0

2
.

Proof. Let (u, v) ∈ A
ε0
βj

with u ∈ [a0 � J1 � a1]Σ1 . From (5.3), we see that there exists X ∈ TuΣ1 such that

∇J1(u)X � 3ρ0

4
.

From Proposition 1.7, choosing small |βj | > 0 such that cδk
(βj ) <

ρ0
4 , we have

∇Jβj
(u, v)(X,0) � ∇J1(u)X − cδk

(βj )|||X|||λ1 � ρ0

2
.

Thus we get Lemma 5.3. �
Lemma 5.4. For small |βj | > 0, there exists a vector field (u, v) �→ (X(u, v),Y (u, v)) : A

ε0
βj

→ TuΣ1 × TvΣ2 such
that:

(i) |||X(u,v)|||2λ1
+ |||Y(u, v)|||2λ2

= 1 and (X(u, v),Y (u, v)) are Lipschitz continuous.
(ii) (X(σ (u, v)), Y (σ (u, v))) = σ(X(u, v),Y (u, v)).

(iii) There exists μj > 0 such that ∇Jβj
(u, v)(X(u, v),Y (u, v)) � μj for all (u, v) ∈ A

ε0
βj

.

(iv) For any (u, v) ∈ A
ε0
βj

with u ∈ [a0 � J1 � a1]Σ1 , we have ∇J1(u)X(u, v) � ρ0
2 and ∇Jβj

(u, v)(X(u, v),

Y (u, v)) � ρ0
2 .

Proof. Since Jβj
(u, v) does not have critical points in A

ε0
βj

, there exists μj > 0 such that

μj = inf
(u,v)∈A

ε0
βj

∣∣∣∣∣∣∇Jβj
(u, v)

∣∣∣∣∣∣∗ > 0. (5.4)

We also remark that ∇Jβj
(σ (u, v)) = σ(∇Jβj

(u, v)). Thus from (5.4) and Lemma 5.3, we can construct a vector field
with desired properties. �

Here we consider the following ODE:
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dη1

dt
= −X(η1, η2),

dη2

dt
= −Y(η1, η2),

η1(0;u0, v0) = u0, η2(0;u0, v0) = v0.

Then deformation flow η(t, (u, v)) = (η1(t, (u, v)), η1(t, (u, v))) satisfies the following:

(i) When η(t, (u, v)) ∈ A
ε0
βj

, we have d
dt

Jβj
(η(t, (u, v))) � −μj .

(ii) When η(t, (u, v)) ∈ A
ε0
βj

∩ [a0 � J1 � a1]Σ1 , we have d
dt

Jβj
(η(t, (u, v))) � −ρ0

2 and d
dt

J1(η1(t, (u, v))) � −ρ0
2 .

From (ii), we see that, for (u, v) ∈ A
ε0
βj

with J1(u) < b1
0 + 1

3ε0, when η(t, (u, v)) passes through ∂A
ε0
βj

, η(t, (u, v))

must satisfy Jβj
(η(t, (u, v))) = b1

0 + b2
i − ε0. Moreover, from (i), η(t, (u, v)) must pass through ∂A

ε0
βj

for finite time.
Now, we complete the proof of Proposition 5.1.

Completion of the proof of Proposition 5.1. By the definition of b1
0 and b2

i , we can choose u0 ∈ Σ1 and γ2(θ) ∈ Γ 2
i

such that

J1(u0) < b1
0 + 1

3
ε0,

max
θ∈Si

J2
(
γ2(θ)

)
< b2

i + 1

3
ε0.

We set

γ (θ) = (
u0, γ2(θ)

) ∈ Γi.

Since di,βj
→ b1

0 + b2
i as βj → 0, for sufficiently small |βj | > 0, we have

max
θ∈Si

Jβj

(
γ (θ)

)
< b1

0 + b2
i + ε0.

Moreover Jβj
(γ (θ)) � b1

0 + b2
i − ε0 implies γ (θ) ∈ A

ε0
βj

. For large t > 0, we set

γ̃ (θ) = (
η1

(
t;γ (θ)

)
, η2

(
t;γ (θ)

))
.

Then we have γ̃ (θ) ∈ Γi and

max
θ∈Si

Jβj

(
γ̃ (θ)

)
< b1

0 + b2
i − ε0.

This is a contradiction for (4.1) and Proposition 4.1. Thus Proposition 5.1 holds and we complete the proofs of our
theorems. �
6. The setting for large β and the proofs of Theorem 0.6 and Theorem 0.7

To prove Theorem 0.6 and Theorem 0.10, we seek critical points of the following functional

Ĩβ(u, v) = 1

2

(|||u|||2λ1
+ |||v|||2λ2

) − 1

4β

(
μ1‖u+‖4

4 + μ2‖v‖4
4

) − 1

2
‖u+v‖2

2 : H 1
0 (Ω) × H 1

0 (Ω) → R.

Here, when β = ∞, we regard Ĩ∞(u, v) as

Ĩ∞(u, v) = 1

2

(|||u|||2λ1
+ |||v|||2λ2

) − 1

2
‖u+v‖2

2 : H 1
0 (Ω) × H 1

0 (Ω) → R.

We remark that if (u, v) is a critical point of Ĩβ(u, v) for β ∈ (0,∞) then (u/
√

β,v/
√

β ) is a solution of (∗) and if
u �= 0 we have u > 0 in Ω from Proposition 1.1. Similarly, if (u, v) is a critical point of Ĩ∞(u, v), then (u, v) is a
solution of (0.5). We set
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Σ = {
(u, v) ∈ H 1

0 (Ω) × H 1
0 (Ω)

∣∣ |||u|||2λ1
+ |||v|||2λ2

= 1
}
,

Σ+ = {
(u, v) ∈ Σ

∣∣ |||u−|||λ1 < 1
}
,

N = {
(u, v) ∈ Σ

∣∣ u+v �≡ 0
}
.

For β ∈ (0,∞], we define a functional J̃β(u, v) as follows.

Proposition 6.1. Suppose β ∈ (0,∞]. For any (u, v) ∈ Σ+ if β < ∞, (u, v) ∈ N if β = ∞, a function

t �→ Ĩβ (tu, tv) : R+ → R

has a unique maximum point

t̃β (u, v) =
{√

β(μ1‖u+‖4
4 + μ2‖v‖4

4 + 2β‖u+v‖2
2)

− 1
2 , β ∈ (0,∞),

(
√

2‖u+v‖2)
−1, β = ∞.

Moreover, setting

J̃β(u, v) = sup
t>0

Ĩβ(tu, tv) =
{ β

4
(
μ1‖u+‖4

4+μ2‖v‖4
4+2β‖u+v‖2

2
)
,

β ∈ (0,∞),

1
8‖u+v‖2

2, β = ∞,

we have:

(i) t̃β (u, v) : Σ+ → R+ is a C1-function.
(ii) J̃β(u, v) : Σ+ → R is a C1-function.

(iii) If (u, v) ∈ Σ+ is a critical point of J̃β(u, v), then (t̃β(u, v)u, t̃β(u, v)v) is a non-trivial critical point of Ĩβ(u, v).
(iv) J̃β(u, v) satisfies PS-condition.

Proof. For β ∈ (0,∞], from direct calculations, we can write t̃β (u, v) and J̃β(u, v) explicitly. Thus, from those
representations, we see that (i)–(ii) hold. (iii)–(iv) also are very standard. �

We seek critical points of J̃β in N = {(u, v) ∈ Σ, | u+v �≡ 0} ⊂ Σ+.

Proposition 6.2. When β ∈ (0,∞], we have

lim inf
(u,v)∈N,dist{(u,v),∂N}→0

J̃β(u, v) = βb0. (6.1)

Here b0 was given in (1.9) and, when β = ∞, we regard βb0 as ∞. In particular, J̃β(u, v) < βb0 implies u+v �= 0.

Proof. When β = ∞, (6.1) clearly holds. Thus we suppose β ∈ (0,∞). For any sequence ((un, vn))
∞
n=1 ⊂ N with

‖un+vn‖2 → 0 (n → ∞), we should show lim infn→∞ J̃β(un, vn) � βb0. Since |||un|||λ1 + |||vn|||λ2 = 1, there exist
subsequence nj → ∞ and some u0, v0 ∈ H 1

0 (Ω) such that

unj + → 0, vnj
→ v0 strongly in L4(Ω).

Here if u0 = v0 = 0, then it is obvious that limnj →∞ J̃β(unj
, vnj

) = ∞. On the other hand, if u0 = 0, v0 �= 0, we have

lim
nj →∞ J̃β(unj

, vnj
) = β

4μ2‖v0‖4
4

� βb0.

Thus we assume (u0, v0) ∈ V = {u,v ∈ Σ | u+ �= 0, v �= 0, uv = 0}. Then we can also show

inf
(u,v)∈V

J̃β(u, v) = inf
(u,v)∈∂V

J̃β(u, v) � βb0. (6.2)

In fact, letting (u∗, v∗) ∈ V be a minimizer of inf(u,v)∈V J̃β(u, v), then (u∗, v∗) is a solution of (∗) with β = 0 and
J̃β(u∗, v∗) � 2βb0. Thus inf(u,v)∈V J̃β(u, v) does not have minimizers in V and we get (6.2). Thus we get Proposi-
tion 6.2. �
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Next, we give the proofs of Theorem 0.6 and Theorem 0.7. To show these theorems, we need the following lemma.

Lemma 6.3. For any given k ∈ N, there exist βk ∈ (0,∞) and ψ ∈ C(Sk,N) with ψ(−u) = σ(ψ(u)) such that

sup
u∈Sk

J̃β

(
ψ(u)

)
� βb0 for all β ∈ (βk,∞]. (6.3)

Proof. Let Wk be k-dimensional subspaces of H 1
0 (Ω) such that W1 ⊂ W2 ⊂ · · · ⊂ Wk ⊂ Wk+1 ⊂ · · ·. For any given

k ∈ N, we set Sk := {u ∈ Wk | |||u|||λ2 = 1} and define ψ(u) : Sk → N by

ψ(u) =
( |u|√

2|||u|||λ1

,
u√
2

)
.

Here we choose βk satisfying

βkb0 � sup
u∈Sk

|||u|||2λ1

2‖u‖4
4

.

Then ψ(u) satisfies ψ(−u) = σ(ψ(u)) and

J̃β

(
ψ(u)

)
�

|||u|||2λ1

2‖(|u|u)‖2
2

� βkb0 for all β ∈ (βk,∞].

Thus we get Lemma 6.3. �
Now, we show Theorem 0.6.

Proof of Theorem 0.6. From Lemma 6.3, for any given k ∈ N, there exist βk > 0 and ψ ∈ C(Sk,N) with ψ(−v) =
σ(ψ(v)) such that

sup
v∈Sk

Jβ

(
ψ(v)

)
� βb0 for all β > βk.

Thus, from Theorem 2.5, J̃β has at least k critical values e1,β � e2,β � · · · � ek,β . Here ei,β is defined as follows:

ei,β = inf
{
c ∈ R

∣∣ γ
([J̃β � c]N

)
� i

}
. (6.4)

Let (ui,β, vi,β) be a critical point corresponding to critical value ei,β of J̃β(u, v). We set (Ui,β,Vi,β) =
( 1√

β
tβ(ui,β, vi,β)ui,β, 1√

β
tβ(ui,β, vi,β)vi,β). Then (Ui,β,Vi,β) are solutions of (∗) and we get Theorem 0.6. �

Finally, we give the proof of Theorem 0.7.

Proof of Theorem 0.7. Firstly we remark that lim inf(u,v)∈N,dist{(u,v),∂N}→0 J̃∞(u, v) = ∞ from Proposition 6.2.
And, from Lemma 6.3, for any k ∈ N, there exists ψ ∈ C(Sk,N) with ψ(−v) = σ(ψ(v)). Thus, from Theorem 2.2,
J̃∞ has a sequence of critical values (ek,∞)∞k=1 such that ek,∞ → ∞ as k → ∞. Here ek,∞ is defined by

ek,∞ = inf
{
c ∈ R

∣∣ γ
([J̃∞ � c]N

)
� k

}
. (6.5)

Let (uk, vk) be a critical point of J̃∞ corresponding to ek,∞ and we set (Uk,Vk) = (t̃∞(uk, vk)uk, t̃∞(uk, vk)uk). Then
(Uk,Vk) is a solution of (0.5) and we find

‖Uk+Vk‖2∞|Ω| � ‖Uk+Vk‖2
2 = t̃∞(uk, vk)

4‖uk+vk‖2
2

= 8J̃∞(uk, vk) = 8ek,∞ → ∞ (k → ∞).

From the above inequality, we get ‖Uk‖∞ +‖Vk‖∞ → ∞. Moreover, from observation in Remark 0.9, when λ1 = λ2,
vk must change sign for large k. From the above results, the proof of Theorem 0.7 is complete. �
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7. The asymptotic behavior as β → ∞

In this section, we consider the asymptotic behavior of solutions which were given in Theorem 0.6 as β → ∞. In
what follows, we fix a k ∈ N and let (uk,β, vk,β) be a family of critical points of J̃β(u, v) corresponding to critical
value ek,β . Here ek,β was defined in (6.4). The following theorem is the main theorem in this section.

Theorem 7.1. There exists a subsequence βj → ∞ such that

(uk,βj
, vk,βj

) → (uk,∞, vk,∞) in H 1
0 (Ω) × H 1

0 (Ω).

Here (uk,∞, vk,∞) is a critical point of J̃∞(u, v) corresponding to the critical value ek,∞. Here ek,∞ was defined
in (6.5).

We remark that Theorem 0.10 easily follows from Theorem 7.1.

Proof of Theorem 0.10. For the (uk,βj
, vk,βj

) and (uk,∞, vk,∞) in Theorem 7.1, we set

(Uk,βj
,Vk,βj

) =
(

1√
βj

tβj
(uk,βj

, vk,βj
)uk,βj

,
1√
βj

tβj
(uk,βj

, vk,βj
)vk,βj

)
,

(Uk,∞,Vk,∞) = (
t∞(uk,∞, vk,∞)uk,∞, t∞(uk,∞, vk,∞)vk,∞

)
.

Then (Uk,βj
,Vk,βj

) are solutions of (∗) obtained in Theorem 0.6 and (
√

βjUk,βj
,
√

βjVk,βj
) converges to

(Uk,∞,Vk,∞) which is a solution of (0.5) corresponding to critical value ek,∞. These complete the proof of The-
orem 0.10. �

In the rest of this section, we will show Theorem 7.1. We need the following lemmas.

Lemma 7.2. For any M > 0, we have

1

8M
− 1

2β
(μ1 + μ2)C

4
1 � ‖u+v‖2

2 � C4
1 for all (u, v) ∈ [Jβ � M]N. (7.1)

Here C1 was given in (1.1).

Proof. Since Jβ(u, v) � M is equivalent to 1
8M

� 1
β
(μ1‖u+‖4

4 + μ2‖v‖4
4)+ 2‖u+v‖2

2, we easily get Lemma 7.2. �
Lemma 7.3. For any M > 0 and ε > 0, there exists β ′′

M = β ′′
M(ε) > 0 such that, for all β � β ′′

M , we have

Jβ(u, v) < J∞(u, v) � Jβ(u, v) + ε for all (u, v) ∈ [Jβ � M]N.

Proof. By a direct computation, we have

J̃β(u, v) = J̃∞(u, v) − μ1‖u+‖4
4 + μ2‖v‖4

4

8(μ1‖u+‖4
4 + μ2‖v‖4

4 + 2β‖u+v‖2
2)‖u+v‖2

2

. (7.2)

Thus it is trivial that J̃β(u, v) < J̃∞(u, v). For any M > 0, from Lemma 7.2, Jβ(u, v) � M implies (7.1). From (7.1)
and (7.2), we get Lemma 7.3. �

To show Theorem 7.1, the following proposition is essential.

Proposition 7.4. We have ek,β � ek,∞ and

ek,β → ek,∞ as β → ∞.

Here ek,β and ek,∞ were defined in (6.4) and (6.5) respectively.
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Proof. Firstly, we show ek,β � ek,∞. Since J̃β(u, v) < J̃∞(u, v), we have [J∞ � c]N ⊂ [Jβ � c]N for any c ∈ R.
From the definitions of ek,∞ and (i) of Lemma 2.3, for any ε > 0, we have

γ
([Jβ � ek,∞ + ε]N

)
� γ

([J∞ � ek,∞ + ε]N
)
� k.

This implies ek,β � ek,∞ + ε and, since ε > 0 is arbitrary, we get ek,β � ek,∞. Next we show ek,β → ek,∞ as β → ∞.
From Lemma 7.3, for M = ek,∞ + 1 and any ε ∈ (0, 1

2 ), there exists β ′′
M > 0 such that for all β � β ′′

M we have
[Jβ � ck,β + ε]N ⊂ [J∞ � ck,β + 2ε]N . From the definitions of ek,β and (i) of Lemma 2.3, we get

γ
([J∞ � ek,β + 2ε]N

)
� γ

([Jβ � ek,β + ε]N
)
� k.

Thus we have ek,∞ � ek,β + 2ε for all β � β ′′
M . Combining ek,β � ek,∞, we get ek,β → ek,∞ as β → ∞. �

Now we give the proof of Theorem 7.1.

Proof of Theorem 7.1. Let (uk,β, vk,β) be a family of critical points of J̃β(u, v) corresponding to critical value ek,β .
Then there exist uk,∞, vk,∞ ∈ H 1

0 (Ω) and a subsequence (βj )
∞
j=1 such that

uk,βj
→ uk,∞, vk,βj

→ vk,∞ weakly in H 1
0 (Ω) and strongly in L4(Ω) as βj → ∞.

Here, from Lemma 7.2, we see that (uk,∞)+ �= 0, vk,∞ �= 0. Thus tβj
(uk,βj

, vk,βj
) also converges to t∞ =

(
√

2‖(uk,∞)+vk,∞‖2
2)

−1 and (t∞uk,∞, t∞vk,∞) is a critical point of Ĩ∞(u, v). Now, if we show

|||uk,∞|||λ1 + |||vk,∞|||λ2 = 1, (7.3)

then our proof is complete. In fact, if (7.3) holds, then uk,βj
and vk,βj

strongly converge to uk,∞ and vk,∞ in H 1
0 (Ω),

respectively. Moreover, from Proposition 7.4, we have J̃∞(uk,∞, vk,∞) = ek,∞. Thus Theorem 7.1 obviously holds.
We will show (7.3). Since (t∞uk,∞, t∞vk,∞) is a critical point of Ĩ∞(u, v), we have

|||uk,∞|||λ1 + |||vk,∞|||λ2 = 2t2∞
∥∥(uk,∞)+vk,∞

∥∥2
2. (7.4)

On the other hand, from the representation of tβj
(uk,βj

, vk,βj
) in Proposition 6.1, we have

1 = tβj
(uk,βj

, vk,βj
)2

[
1

β

(
μ1‖uk,βj

‖4
4 + μ2‖vk,βj

‖4
4

) + 2
∥∥(uk,βj

)+vk,βj

∥∥2
2

]
. (7.5)

From (7.4) and (7.5), we get (7.3) and Theorem 7.1 holds. �
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