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Abstract

The paper concerns multiplicity of vector solutions for nonlinear Schrodinger systems, in particular of semi-positive solutions.
New variational techniques are developed to study the existence of this type of solutions. Asymptotic behaviors are examined in
various parameter regimes including both attractive and repulsive cases.

© 2012 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

0. Introduction

In this paper, we consider the following nonlinear Schrodinger systems:
—Au+Au= u]u3 + ﬁuv2 in £2,
—Av+ v = uov3 + Buv  in 2, (*)
u,v € H}(R2).

Here £2 is a bounded domain in R” (n < 3) and A;, u; > 0 fori = 1, 2. In this paper, we show the multiple existence of
semi-positive solutions (uy, vg) for (x). As there may be semi-trivial solutions (which are zero for some components)
we call a solution non-trivial if every component is non-zero. Here we say a non-trivial solution (u, v) is a semi-
positive solution for (x) if and only if it satisfies # > 0 or v > 0 in £2.

For positive solutions (which means # > 0 and v > 0 in £2) of nonlinear Schrodinger systems, there has been ex-
tensive work in recent years (cf. [1-7,11,13,15-22,24,27-30] and their references). In particular, we refer to results of
[13] which partially inspire our work of the current paper. Dancer, Wei and Weth [13] showed that the a priori bounds
of positive solutions and the multiplicity of positive solutions of nonlinear Schrodinger systems are complementary
to each other depending on the parameter regimes. They showed the existence of a priori bounds of positive solutions
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for some nonlinear Schrodinger systems which contain (). Applying their result to (%), when 8 > —, /12, there
exists a constant C = C(B, i1, u2, £2) such that |lul| L (2), |vllLx(e) < C for any positive solutions (u, v). On the
other hand, when A1 = A> = 1 = w2 = 1 in (%), they showed the multiple existence of positive solutions of (). More
precisely, when 8 < —1, (*) has an unbounded sequence of positive solutions (u);2, such that

lugllLo(2) + lvkllLoe(2) — 00 as k — oo.

These positive solutions were given by minimax method from making use of a symmetry o (u, v) = (v, u). That is, the
variational functional 14 (u, v) associated with (x) satisfies Ig (o (u, v)) = Ig(u, v) for o (u, v) = (v, u). This multiplic-
ity result was recovered and generalized to the non-symmetric case of @1 # wy by using a bifurcation method in [5]
in which an unbounded sequence of positive solutions was established for 8 < —,/u1 12 when the domain is radial.
For nonlinear Schrodinger systems (%) with A1 = A2 = 1 = 2 = 1, these results suggest that 8 = — /s is
the threshold that divides the existence of a priori bounds of positive solutions and the existence of an unbounded
sequence of positive solutions. In this paper, we consider the existence and multiplicity of semi-positive solution
of (*). A natural question is to examine the coupling constant 8 and to find the coupling value that separates the
a priori bounds and infinitely many semi-positive solutions. Our results suggest that 8 = 0 is the threshold dividing
the existence of a priori bounds of semi-positive solutions and the existence of an unbounded sequence of semi-positive
solutions. This is the main motivation of the current work. We also study the asymptotic properties of semi-positive
solutions when 8 — 0 and 8 — o0, and establish multiplicity results of semi-positive solutions in these regimes.
When g < 0, we get infinite many semi-positive solutions of (x) by the following theorem.

Theorem 0.1. Let B < 0. Then (x) has a sequence of solutions (uy, vi) such that
up >0, NlukllLe2) + llvillLoe(2) — 00 as k — oo.

Moreover, if B € (— /11142, 0), then vy must change sign for large k.
When g > 0 is small, we get multiplicity of semi-positive solutions of (x) as follows.

Theorem 0.2. For given k € N, there exists By > 0 such that, for any B € (0, Bx), we have k semi-positive solutions
wi,vi)of ) withu; >0in 2 (i=1,2,...,k).

Roughly speaking, our semi-positive solutions are given by making use of a symmetry o (u, v) = (u, —v). That
is, it is essential that the variational functional Ig(u, v) satisfies Ig(u, v) = Ig(u, —v). More generally, we develop
an abstract framework in Section 2. We consider the following situation. Let H be a Hilbert space and suppose that
o : H— H satisfies

o2 =idy, (0.1)

o #idy. 0.2)

Then, for C'-manifold M C H which does not contain fix points of o and C'-functional J : M — R satisfying
J(o(u)) = J(u) and some conditions, we can prove the multiple existence of the critical values of J. For details,
see Section 2. We point out that generalizations and variants of the genus theory have been established recently in
[9,10,26]. Refs. [9,10] were for existence of multiple vector solutions of some elliptic systems. Ref. [26] was on
existence of multiple sign-changing vector solutions with each component sign-changing for systems like (%) in the
defocussing case (i.e., it < 0). In the general perspective we use partial symmetry for variants of the genus theory in
this paper.

Next, we consider the asymptotic behavior of semi-positive solutions as § — 0. To state our result about the

asymptotic behavior, we need the following notations: for J,(v) = (4u2||v||‘£4(9))_1: r={ve H(} (£2) | fQ |Vv|2 +

lul?dx =1} — R, we define symmetric mountain pass values bﬁ (n e NU{0}) by

bZ = inf max Jo(2(0)),
,1 yzlanzGES)'s 2(129))

P ={10) e C(S", 22) | y2(=0) = —12(6) for all € 5"},

where $" ={0 = (01, ...,0,41) € R"t1 | 16| = 1}. Now, we show the following theorem.
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Theorem 0.3. For given k € N, there exists ;> 0 such that, for any p € (— By, B;), we have k solutions (u; g, v; g)
of k) withu; g >0in 2 (i=1,2,...,k) and (u; g, v; g) satisfy the following: extracting a subsequence B; — 0, we
have

(i ;. vip;) = (Wi0.vi,0) in Hy(2) x Hy(£2).
Here u; o is a positive least energy solution of
—Au+Au= M1u3 in$2,
ue HL (). 0.3)
v;.0 Is a solution of
—Av+ v = u2v3 in$2,
ve Hy(2). (0.4)
In particular, v; o corresponds to the critical value bl.2 which is given by a symmetric mountain pass theorem.

Remark 0.4. The functional J(v) : ¥» — R corresponds to (0.4). In fact, for a critical point vy of J,
(4 /pL2||v0||i4(m)’1 vg is a non-trivial solution of (0.4).

Remark 0.5. The semi-positive solutions (u; g, v; g) in Theorem 0.3 may be different from the semi-positive solutions
(u;, v;) in Theorem 0.1 or Theorem 0.2.

Next, we consider the semi-positive solutions for the case § is large. In [18], Liu and Wang showed that, for given
k € N, there exists B’y > 0 such that, for any 8 > B’x, () has at least k solutions. In this paper, we get multiplicity of
semi-positive solutions of (x) as follows.

Theorem 0.6. For given k € N, there exists By > 0 such that, for any B > B, (x) has at least k semi-positive solutions
(ui g, vig) withu; g>0in 2 (i=1,2,...,k).

We study the asymptotic behavior as g — oo. For the solution (u; g, v; g) of Theorem 0.6, (/Bui g, /Bvig) is
bounded in HO1 (£2) x H(} (£2) as B — oo. (See Section 7.) Thus, extracting a subsequence f; — 0o, we expect that

( /ﬂ./ui’ﬁj, VBj vi,ﬂj) approaches to a solution of

—Au+ Au= uv? in $2,

—Av+ v = u?v in £,

u,v e HY(2). (0.5)

Here, we remark that (0.5) does not have semi-trivial solutions. In fact, letting (0, v) be a solution of (0.5), we also
have v = 0 from the second equation of (0.5). For the limiting equation (0.5), we have the following:
Theorem 0.7. Eq. (0.5) has infinitely many semi-positive solutions (uy, vi) such that uy > 0 in 2 and

lukllLoo (£2) + vk llLe (£2) = 00 as k — oo. (0.6)
Moreover, when A1 = Ay, vi must change sign for large k € N.
Remark 0.8. The solutions (ux, vr) of Theorem 0.7 are characterized by values e o which are deﬁged as fol-
lows. Let N = {(u,v) € H} (2) x H}(2) | [gn [Vul® + [VV[* + A1[ul> + 2ov?dx = 1, ugv # 0}, Joo(u,v) =
(8||u+v||iz(m)*‘ . We define ej o (k € NU{0}) by

k0o = inf{c eR | y([foo < c]N) > k}

Here y is a genus corresponding to o (4, v) = (u, —v) which is defined in Section 2.
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Remark 0.9. When A = A» = X > 0, all positive solutions (u, v) of (0.5) must satisfy u = v. In fact, u — v satisfies
—A(w—v)+A(u—v)=uv(v—u).

Multiplying # — v and integrating over £2 the above equation, we have
/|V(u — v)’2 + A(u — v)zdx =— / uv(u — v)zdx.
Q Q

Thus we have u = v. We also remark that there exist a priori bounds of —Au + Au = u> in £2 and u =0 on 3£2.
Therefore, when L1 = A = X > 0, (0.6) implies that vy is a sign-changing solution for large k € N. When 1| # A we
do not know whether v changes sign.

Now, we get the following theorem about the asymptotic behavior as § — o0.

Theorem 0.10. For given k € N, let (ux, g, vi,g) be a family of solutions of (x) which are given in Theorem 0.6. Then
there exist a subsequence 8; — o0 and (uy, 00, Vk,00) € HOl (£2) x HOl (£2) such that

(VBjuk,p;s v/ Bjvi,p;) = (Uk,00, Vk,00)  in Hy (2) x Hy(£2).
Here (Ui, 00, Vk,00) IS a solution of (0.5) and corresponds to critical value ey oo.

We devote the next four sections to the proofs of our theorems. For the case 8 < 0 or the case 8 > 0 small, we
reduce the functional Ig(u, v) to a functional Jg(u, v) defined on a subset of a torus Xy x X3 in Section 1. On the
other hand, for the case 8 > 0 is large, we reduce the functional I g(u, v) to a functional J s(u, v) defined on a subset
of the sphere X' in Section 6. In Section 2, we give an abstract theory for the multiple existence of the critical values
of C!-functional J : M - R satisfying J (o (1)) = J (). We will get most of our multiple existence of semi-positive
solutions by using these abstract results. In Section 3, we will show Theorem 0.1 and Theorem 0.2. In Sections 4-5, we

will prove Theorem 0.3. To show this, we apply the method from [25]. In Sections 6—7, we will show Theorems 0.6,
0.7 and 0.10.

1. The functional setting for the case § < 0 or the case > 0 small

To prove the existence of semi-positive solutions (u, v) with u > 0, we seek critical points of the following func-
tional

1 1 B
TG, v) = 2 (el +0I5E,) = 3 (e I3+ pallvlig) = 5 g vll3 < Hg (2) x Hg (2) > R.

Here we use notations u = max{u, 0}, u_ = min{u, 0} and

|||M|||§=/|Vulz+ku2dx, ||u||5=/|u|"dx.
22 2

For a critical point (u, v) of Ig(u, v), the positivity of u comes from the following proposition.
Proposition 1.1. Let (u, v) be a critical point of 1g(u, v) with u # 0. Then we have u > 0 in £2.
Proof. Let (u, v) be a critical point of Ig(u, v). Then Vig(u,v)(u_,0) = |||u_|||,2\1 = 0. Thus we have uy =u > 0.
Now, for 8 < 0, u satisfies
—Au + (M — ﬁvz)u = M1u3 > 0.
For 8 > 0, u satisfies
—Au+iu= (uluz +,3v2)u >0.

Since the maximum principle works for u in both cases, we have u > 0in 2. O
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We set X; ={u € HOl (£2) | llelll;;, =1} fori =1, 2. We remark that there exists C1 > 0 such that
llulla, llvlla < Cy forall (u,v) € ¥ x 2. (1.1)

To seek non-trivial critical points of /g(u, v), sometimes one may reduce Ig(u, v) to a functional defined on a
Nehari manifold with co-dimension 2. In this paper, we reduce /g (u, v) to a functional defined on an open subset
of torus X1 x X». Since we also consider a perturbation problem for 8 (Theorem 0.3), it is easy to treat a domain
which does not depend on S. This is the main reason to reduce the functional to one on the torus but not on a Nehari
manifold.

1.1. The reduction to a functional on a torus

When S € R, we set
g1, v) = 2 llupliflivlg — B2 llusvlls > 0,
Ng=1{(u,v)e X x 25 | g2(u,v) := pillusllf — Bllusvl3 > 0,
g3(u,v) := pa vl — Bllugvls >0

From the Holder inequality, we see that

{(M,U)ezl X 22|g1(u,7))>0}, /36(_007_\/11«1#2]’
Ng =1 {(u,v) € ¥y x X [uy #0}, B € (—/1iu2, 01,

{(u,v) e X1 x X | g2(u,v) >0, g3(u,v) >0}, Be(0,00).

We remark that, for all 8 € R, (u, v) € Ng implies g;(u,v) > 0 and u4 # 0. We can define a functional Jg(u, v)
on Ng by the following proposition.

Proposition 1.2. For any (u, v) € Ng, a function
(s,1) = Ig(su,tv) :R%r — R
has a unique maximum point (sg(u, v), tg(u, v)). Moreover, setting

Jg(u,v) = sup Ig(su, tv),

s,t>0
we have
J _ l 2 2
ﬁ(ua U)_4(Sﬁ(uvv) +t’3(M,U) ) (12)
1
=2 (msp (. V) s N + patg (u, v)vllG + 285w, v)2tp(u, v)2{luiv]|3) (1.3)
1l |3+ pallvllg — 28w vll3 (14)
4 pmipallugldivll — B2 lugvll
and

(i) sg(u,v), tg(u,v): N - Ry are C'-functions.

(ii) Jg(u,v):Ng— Risa C! -function.
(iii) If (u,v) € Ng is a critical point of Jg(u, v), then (sg(u, v)u,tg(u, v)v) is a non-trivial critical point of 1g(u, v).
(iv) Jg(u,v) satisfies (PS)-condition.

Proof. For any (u, v) € Ng, we set
f(s,0) = Ig(su, tv) : RE — R.

Differentiating f (s, t), we have
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af
3 4 2 2
oy @D =s—sTmllugly —st"pluivll;,

of
S D=1 uallvlly — s*tBllusvl3.

Thus critical points (s, t) of f (s, t) satisfy

[m||u+||i, ﬁllmﬂl%“ﬂ}_[l}
2 —_— .
Bllusvl3,  wallvlf 117 1

Here, noting 12 lut [131vl — B2 llusv| > 0, we have

[sz}_ 1 [uznvni, —ﬂl|u+v||§][1}

21 e 130003 = B2usvlld L=Aluvll3.  pallugly JL1
_ 1 [ u2llvllg — Bllutvll3 } .
prllus 3ol — Bllurvlld Lt lusl§ = Bllusvls 7 '

Since (u, v) € Ng, f (s, 1) has a unique critical point (so, 1) = (sg(u, v), 15 (u, v)). Next, to show (s, o) is a maximum
point, we calculate the second derivatives of f (s, 7).

O f 2 ) 2 1af 2 4
m(s,t) =1-=3s"willutlly —°Bllusvll; = ;g(s,l) =25 prllusly,
9% f 2

%(&1) = —2s1Bllutv|3,

32 f 19f

ST n=1- 32 uallvllf — s2Blluyvlls = P OOk 202 o |l

Therefore, we have

2
2 4
= F(SO’ to) = —2sg i1 lluglly,

: 2
irvey (50, f0) = —2Bsofollu+v||5-
2 2 4

= W(SO’ to) = =2t uallvlly.

Since A <0 and AC — B? = 4s313 (w1 pallus (3 Ivll5 — B2 lusvll3) > 0, (so, fo) is a maximum point of f(s, 7). Thus,
by direct calculations, we get (1.2)—(1.4).
Next we show (i). To show (i), we use the implicit function theorem. We consider the following function:

of
| FGsoun)] 560 52 2
F(S’t’u’v)_[G(s,t,u,v)}_[%(s,t) :Ry x Ng— R

Now, for any (u, v) € Ng, we have
F(so, 0, u,v) =0,

IF IF
I:W(SO’I(LM’ v) W(SO’IO’uvv)} _ [A B}
95 (so. to, u,v) S (s0. 10, u, v) B Cl

Thus from the implicit function theorem, we can easily see the C 1-plroperty of (s0,20) = (sg(u, v), tg(u, v)).
We show (ii). Noting

Jg(u,v) =1Ig (s,g (u, v)u,tg(u, v)v),

we can easily find that Jg(u,v)isa C !_function. Moreover we have
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Vuldgu,v)p =V, I (s/g(u, vu, tg(u, v)v) (V,,,Sﬁ(u, v)ou + sgu, v)go)
+ Vulg (s,g(u, vu, tg(u, U)U)Vul‘ﬁ(u, v)pv
= Vulg(sp(u, v)u, tg(u, v)v)sp(u, v)g, (1.6)
Vodgu, v)y =Vylg (sﬁ(u, vu, tg(u, v)v)tﬁ(u, V). 1.7)

Thus, if (u, v) € Ng is a critical point of Jg(u, v), then (sg(u, v)u, tg(u, v)v) is a non-trivial critical point of Ig(u, v)
and we get (iii).

Finally, we show (iv). If (u,,v,) € Ng is a (PS)-sequence for Jg, then Jg(u,, v,) are bounded and this means
the boundedness of (sg(uy, vn), tg(Un, vy)) from (1.2). Thus from (1.6)—(1.7), (sg(Un, Vi)un, tg(Un, v4)vy) is also a
(PS)-sequence for /4. Since I5(u, v) satisfies (PS)-condition, Jg(u, v) also satisfies (PS)-condition. O

From (1.2), for all B € R, it is obvious that Jg(u, v) is bounded from below. Moreover, we have the following
proposition.
Proposition 1.3. When 8 < 0, we have

liminf Jg(u, v) = o0. 1.8
(u,v)eNg, dist{(u,v),0Ng}—0 ﬂ( ) ( )

Proof. For any sequence (i, vn)),f"=1 C Ng with g1(up, vy) — 0 (n — 00), we need to show Jg(uy, v,) — 00
(n — 00). Since [|u, llx, = llvellx, = 1, for some ug, vp € H(} (£2), we may assume
U, —> uo, v, — vg strongly in L4(.Q).

Here if g2(ug, vo) + g3(uo, vo) > 0, then it is obvious that (1.8) holds. Thus we assume g» (1o, vo) + g3(uo, vo) = 0.
Since 8 < 0, we have ug = vg = 0 and we find |ju, ||3 — 0, ||vn||j — 0 as n — oo. Since Jg(u, v) is written by (1.4),
we get (1.8). O

Remark 1.4. From Proposition 1.3, when 8 < 0, the behavior of Jg(u, v) in the neighborhood of d Ng does not disturb
deformation arguments. When g > 0, it is complicated by the behavior of Jg(u, v) in the neighborhood of 9 Ng and
we cannot expect the property like (1.8). But for 8 > 0 small, Jg(u, v) satisfies the property like (1.8) on a proper
subset M5 C Ng. (See Proposition 1.9.)

1.2. The case B > 0 small

For § > 0, we set
Ms = {(,v) € Z1 x D2 | pillusllf > 8, palvlly > 3}
We remark that Ms A0 if § < ﬁ where by is given by
1 1 2 _ 1

bo =min{b}, b2} > 0, bl = inf ——— >0, b= inf ——— >
L ’ O e dugloll]

= in (1.9)
wey 4y flull}

Here bf) (i =1,2)is aleast energy level of (1.15) and (1.17) respectively. (See Remark 1.8.) We also remark that M
is independent of S.

Lemma 1.5. For any given § € (0, ﬁ), there exists Bs € (0, /i1 42 ) such that

Ms C Ng  forall B € (— /11, Bs)-
Proof. When g € (—,/u112,0), Ms C Ng is obvious. For § € (0, ﬁ), we choose S5 > 0 satisfying § > ,85Cf. Here
C is a constant given in (1.1). Then it holds

willug Iy >8> BCi = Bllusvll;  forall (u,v) € Ms, B €0, Bs).
By a similar way, we have u2||v||3 > ﬂ||u+v||%. Thus we get M5 C Ng forall B € (— /12, Bs). O
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From Lemma 1.5, Jg(u, v) is defined on M.

Lemma 1.6. For any given § € (0, ﬁ), there exists a constant Cg > 0 which does not depend on 8 such that
sg(u,v) < Cs, tg(u,v) < Cs forall (u,v) e Ms, B e (—Ps, Bs)- (1.10)
Here Bs was given in Lemma 1.5. Moreover it holds

1 1
Jitlulld vl

Proof. Suppose (u,v) € Ms, B € (—Ps, Bs). Since sg(u, v) was written by (1.5), we have

(s,g(u,v),tﬂ(u,v))—> < ) uniformly for (u,v) € Ms as § — 0. (1.11)

pallvliy = Blluolly (a4 B CY

4y, 4 2 X 2
sl I = B2l (uaen — B2

sg(u, v)2 =

Here C is a constant given in (1.1) and we have used the fact that 11 ||u+||2, ,uz||v||2 > ¢ for all (4, v) € Ms. And we
also have

sg(u, v)2 — uniformly for (u, v) € Mg as § — 0.

pllug Il

Since 1g(u, v) also was similarly written by (1.5), we obtain (1.10) and (1.11). O

Proposition 1.7. For any given 6 € (0, ﬁ), there exists a constant cs(f) with cs(B) — 0 (as B — 0) such that
Jg(u, v) satisfies

| Jg(u, v) = Ji(w) — L (v)| < c5(B)  forall (u,v) € Ms, B €(—Bs. Bs). (1.12)
[Viedp @, v) = VI @[, , <cs(B)  forall (u,v) € Ms, B € (—Bs. Bs), (1.13)
Vo Jp @, v) = VR, , <cs(B)  forall (u,v) € Ms, B (=Bs, Bs), (1.14)

where, fori =1,2, J;(u) = m T.%i ={veH} ()| (u,v), =0} and

Vi@l = swp Vo]
veT, Zi, llvlly; =1

. . 2 4 )
Remark 1.8. For any u € X with uy # 0, a function s > I1(su) = %5 — i ||u+||j has a maximum value at a

. . . _ 1 .
unique maximum point s = WA and we can write as follows
1
Jl(u):supll(su)ziét, (1.15)
s>0 4 ||u+||4
wl(u)<p=—78/uicpdx forall g € T, X). (1.16)
el Nl J

- . 2 4 . . .
By a similar way, for any u € X5, a function f — > (tu) = % — t? wall v||j has a unique maximum point and we have

Jo(u) =sup Ir(tv) = —, (1.17)
10 4pallvlly
VL)Y =— - /v31/fdx for all ¥ € T, X». (1.18)
m2llvlly

2
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Proof of Proposition 1.7. From (1.4), (1.15) and (1.17), we can directly calculate Jg(u, v) — J1 (u) — J2(v) as follows:
1 upv|? u vl upvl?
Jytu) — 1) — o) = - Bllusv3 <ﬂ|l ol Bllus ||2_2)_

4 piollug Il — B2luvld \ il wallvllf
For (u,v) € Ms, B € (—Ps, Bs), we have

4 4 4
|Jp(u, v) = J1(u) — J(v)| < cilpl <C1|ﬂ| 4 Gilfl +2>. (1.19)
dpupr - B\ 8 .

Here C; is a constant given in (1.1) and we have used the fact that u ||u+||ﬁ, u2||v||i > § for all (u,v) € Ms.
From (1.19), we get (1.12). Next we calculate V, Jg(u, v)¢ — VJi(u)p for any ¢ € T, X1. From (1.6),

Viudpu, v)p = —sp(u, v)4y,1 / uiga dx — Bsg(u, v)ztﬁ (u, v)2 / u+v2(p dx.
Q Q
Combining (1.16), we have

|Vudg(u, v)p — VI | < |spu, v)* —

— m/ui|go|dx+|ﬁ|s,s<u,v)zr,s(u,v)zfuw%wdx
il 1§

< spu, v)* — w1Cllelln, + 18IC5Cl@ly, -

2 8
KTl + ”4
We obtain (1.13) from the above inequality and Lemma 1.6. (1.14) also holds from a similar calculation. 0O

For small 8 > 0, the following proposition plays a role similar to Proposition 1.3.

Proposition 1.9. For any B8 € (—Bs, Bs), we have

1

sup  Jg(u,v) < = +cs(B), (1.20)
(u.v)eM; 28
1

inf  Jg(u,v) > —~+bg— . 1.21

(u,vl)réaMa p,v) 48+ 0=cs(h) ( )

Here by was given in (1.9).

Proof. From Proposition 1.7, for (u, v) € Ms, B € (—Bs, Bs), we have

Ji() + () —cs(B) < Jg(u,v) < J1(w) + J2(v) + cs(B).
We remark that
inf  Ji(u) = b} > bo, inf Jo(v) > b§ > bo.
veX)

ueX,uy#0
Here (u,v) € 9M; implies Jy(u) = 75 or J>(v) = 35 and (u, v) € Ms implies J; (u) < 75 or J2(v) < 75. Therefore
we get (1.20) and (1.21). O

2. The multiplicity of critical values for o -invariant functionals

In this section, we construct abstract theories to get the multiple existence of critical points of functionals having
symmetry J (o (u)) = J(u) where u is in a Hilbert space and o satisfies (0.1)—(0.2). To do so, we construct a genus
type index for the symmetry o. In [23] or [13], the authors constructed the genus type index for o (—u) = u in the
scaler case or o (1, v) = (v, u) in the vector case respectively.

In this section, let H be a Hilbert space and o : H — H be a bounded linear operator satisfying (0.1)—(0.2). Setting
Hyo={u € H|o(u) =u}, Hyp is a subspace composed of fixed points of o. Here Hy # H from (0.2). We also set
H = HOL # {0}. For any u € H, we uniquely write u = ug +u1, (1o, u1) € Hy @ H;. Then, from (0.1)—(0.2), we have

o(ug+uy) =ug—u, forallu =uyg+u; € Hy+ H;.
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For this 0 : H — H, we define a genus as follows:

Definition 2.1. For any o -invariant closed set A C H \ Hp, y (A) is the least integer n such that there exists a function
g € C(A,R"\ {0}) with

g(a(u)) =—g(u) forallueA. (2.1)

If there is no such g, we define y (A) = co. We also define y (¥) = 0.
Here, when g satisfies (2.1), we say g is a 0-odd function. When J € C(A, R) satisfies

J(ow)=J(u) forallucA,
we say J is a o-invariant functional or a o -even functional. When i € C(A, H) satisfies
h(a(u)) = o(h(u)) forallu € A,

we say & is o-equivariant.
The following theorem is the main theorem in this section:

Theorem 2.2. Let M C H \ Hy be a o-invariant C'-manifold and J : M — R be a o -even C'-functional satisfying
(PS)-condition. Moreover, we assume that

inf J(u) > —o0, 2.2)
ueM

liminf J(u) =00, (2.3)
ueM, dist{u, 0 M}—0
and, for any k € N, there exists W € C(Sk, M) with ¥y (—x) = o (¥ (x)). Then J has an unbounded nondecreasing
sequence of critical values (cx)p2.,. Here cy. is defined by

Ck :inf{ceR | y([J < c]M) 2k},
J<cu={ueM|Jw<c}. 2.4)

Firstly we state the properties of our genus. These are similar to the properties of the genus type index constructed
in [23] or [13].

Lemma 2.3. Let A, B C H \ Hy be o-invariant closed sets. Then we have:

(i) If AC B, then y(A) < y(B).
(i) y(AUB) <y(A)+y(B).
(iii) Ifh € C(A, H \ Hy) satisfies h(c (u)) = o (h(u)), then y (A) < y (h(A)).
(iv) y(A\ B) = y(A) —y(B).
) If y(A) > 1, then A is an infinite set.
(vi) If A is a compact set, then y(A) < 0o. Moreover there exists o -invariant neighborhood of N of A in M such
that y (A) =y (N).
(vii) If Y € C(S™, H \ Hy) satisfies ¥ (—u) = o (Y (w)), then y (¥ (S")) >n+ 1.

Proof. First of all, we show (iii). If y(h(A)) = oo, (iii) is trivial. Supposing y (h(A)) = m < oo, there exists
o-odd function g € C(h(A),R™ \ {0}). Then (g o h) € C(A,R™ \ {0}) satisfies (g o h)(c(u)) = g(o(h(u))) =
—(g o h)(u). Thus we have y (A) < m =y (h(A)) and (iii) holds. We get (i), taking an inclusion map id4 € C(A, B)
in (iii). Next, we show (v). When A is a finite set, A is written by A = {uy,...,ur,o(y),...,0(ur)} where
Ui, ...,uUg,0U1),...,0(uy) are different from each other. Then we have g € C(A, R\ {0}) such that g(x;) =1,
glo(x;))=—1fori=1,...,k. Thus we find y (A) = 1. This implies (v).
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Next, we show (ii). Supposing y(A) =n < oo, y(B) =m < oo, thereAexist o-odd functions g € C(A,R" \ {0})
and h € C(ﬁ, R™ \ {0}). By the extension theorem of Tietze, we have g, h € C(H, H) such that g(u) = g(u) for all
u € A and h(u) = h(u) for all u € B. Here, set

&) —g(o(u) ) — h(u) — h(o(u))
= u)=——>"".
2 2
Then g and h are o-odd and also an extension of g and h respectively. Since f = (g|aus, fz|AU3) € C(AU B, R\
{0}) also o-0odd, we get y (AU B) <n+m =y (A)+ y(B). (iv) easily follows from (i) and (ii).

Next, we show (vi). For any u € A, we set T, = By, 2(u) U By, /2(c(u)) where d, = dist{u, Ho} > 0. Then
we have y(7,) = 1. Since A is compact and {7, | u € A} are open covering of A, for finite uy,...,ur € A,
we have A C ULI T,,. From (ii), we get y(A) < k. Next, we show later part of (vi). We remark that letting
Ns(A) be é-neighborhood of A in M, Ns(A) is o-invariant and Ns(A) C H \ Hp for small § > 0. Supposing
y(A) = n, there exists a o-odd function g € C(A,R" \ {0}). By a similar way to show (iii), we have o-odd
function g € C(N;s(A),R" \ {0}). Thus we get y(Ns(A)) < n = y(A). On the other hand, A C Ns(A) implies
Y (Ns(A)) =y (A). Thus we get y (Ns(A)) =y (A).

Finally we show (vii). By a contradiction, we assume y (¥ (S™)) < n. Then there exists a o-odd function g €
C(y(S™),R"\ {0}). Here g oy € C(S", R" \ {0}) is an odd function but this contradicts the Borsuk—Ulam theorem.
Thus we obtain (vii). O

g(u)

Proposition 2.4. Let M C H \ Hy be a o -invariant C'-manifold and J : M — R be a o -even C-functional satisfying
(PS)-condition. Moreover, we assume that

liminf J(w) =d < 0. (2.5)
ueM, dist{u, 0 M}—0

Then, for any ¢ < d and § > 0, there exist € > 0 and n:[0,1] X [J < c+ €]y — [J < ¢+ €]y such that

nO0,u)=u foralluelJ <cr+€lu, (2.6)
n(l,u)elJ<cr—¢€ly foralluelJ <cr+e€ly\ Ns(Ke), 2.7
n(l,o(u)):o(n(l,u)) forallu e[J <cr+€ly. (2.8)

Here K. ={ue M| J(u)=c, J'(u) =0} and Ns(K.) is §-neighborhood of K. in M.
Proof. For any u € M, we uniquely write u = ug +u1 € Hy+ H; and J (o («)) is also uniquely written as J (o (1)) =
J(ug —uy). Since J : M — R is o-even, we also have

Jwo—uy)=J(wo+uy) forallu =ug+u; € Hy+ Hy.
Therefore, noting V, = V,,, + V,,,, we obtain

VI(ew)p=0(VJIW)p=VJwo(p). (2.9)
Constructing a deformation flow 1 : [0, 1] x [J < ¢+ €]y — [J < ¢ + €]y by a standard way, it is obvious that 7

satisfies (2.6)—(2.7). In addition, (2.8) holds from (2.9). O

Proof of Theorem 2.2. Firstly we show (i). By a contradiction, we suppose that ¢ is not a critical point. From the
definition of ¢, for any € > 0, we have y ([J < ¢t + €]y) > k. Applying Proposition 2.4 for ¢ = ¢x and K, = ¥,
there exist e > Q0 and n: [0, 1] X [J < cx + €]y — [J < ¢k + €]y such that

n0,u)=u foralluelJ <cr+¢€lu, (2.10)
n(lyu) elJ<cyr—¢€ly foralluell <cr+¢€ly, 2.11)
n(l,o(u)):a(n(l,u)) forallu e [J <cr +€]ly. (2.12)

From (2.12) and (iii) of Lemma 2.3, we have

y([J <cr+elm) <y(n(L[J <cr+eln)). (2.13)
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From (2.11) and (i) of Lemma 2.3, we have
y(n(1L, 1 <cx+e€lu)) <y (I <cx —€lm). (2.14)

Combining (2.13)—(2.14), we get y ([J < cx —€lp) = v ([J < ck + €]y) = k and this contradicts the definition of ck.
Thus ¢ is a critical point. (ii) is obvious from the definition of c¢. Next we show (iii). By a contradiction, we suppose
that ¢, — ¢ < 00 as k — oo. Since J satisfies (PS)-condition, Kz = {u € M | J(u) = ¢, J'(u) =0} is a compact set.
Thus, from (vi) of Lemma 2.3, there exists a o -invariant neighborhood of Ns(K;z) such that y(Kz) = y (Ns(Kz)) =
g < 0o. Applying Proposition 2.4 for ¢ = ¢ and Kz, there existe >0 and : [0, 1] X [J < c+€ly —> [J <Cc+€lu
such that

n(0,u)=u forallu e[J<é+elu, (2.15)
n(lyu)el[J<c—ely foralluel[J <c+e€ly\ Ns(Kz), (2.16)
n(l,ow)=0(n,u) foralluelJ<c+ely. (2.17)

Since ¢ — ¢ < 00 as k — 00, there exists k¢ such that
€
c— 3 <cp <c forall k> k.

From the definition c,44, we have y ([J < cxgtg + €lm) = ko + ¢. Then, using (i), (iii) and (iv) of Lemma 2.3, we
have

(=g

WV

y([J < —€lum)

>y (n(1. [ < crorq +€lu \ Ns(Ke)))
>y (1. [ < croaq +€ln) — v (Ns(K2)))
= (ko +¢q) —q =ko.

This is a contradiction to the definition of cg,. Thus we see that ¢y — coas k — oco. O
By a similar way to Theorem 2.2, we get the following theorem.

Theorem 2.5. Let M C H \ Hy be a o -invariant C'-manifold and J : M — R be a o-even C'-functional satisfying
(PS)-condition. Moreover, we assume that

inf J(u) > —o0, (2.18)

ueM

liminf J(w)=d < o0, (2.19)
ueM,dist{u,0M}—0

and, for some k € N, there exists € C(S*, M) with Y (—x) = o (Y (x)) such that sup,cgx J (Y (x)) < d. Then J(u)

has at least k critical points.

Proof. We define ¢; (1 <i < k) as (2.4). Then we see that ¢ < ¢p < --- < ¢ (< d) are critical values of J(u).
Moreover, if ¢; = ¢j41 = -+ = ¢j14 holds, then y(K.,) > ¢g + 1. This is shown by a similar way to show ¢ — o0
in the proof of Lemma 2.3. From (v) of Lemma 2.3, y (K.,) = q¢ + 1 > 2 implies K, is an infinite set. Thus we get
Theorem 2.5. O

3. Proofs of Theorem 0.1 and Theorem 0.2

In this section, we will give the proofs of Theorem 0.1 and Theorem 0.2 by using abstract theories for o (1, v) =
(u, —v): H(} (£2) x H(} (£2)— H(} (£2) x H(} (£2). To apply our abstract theory, we need the following lemma.

Lemma 3.1. Suppose B < 0. For any k € N, there exists € C(S¥, Npg) such that  (—v) = o (Y (v)).
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Proof. We choose non-empty open sets £21, £2p C §2 with 2| N §£2, = . We also choose ug € HOl (£21) such that
lluollx, = 1 and uo # 0. Let Wy be a k-dimensional subspace of H (£22). Then it is obvious that 1 2 [[uo I3V 1|5 —
B*lluosvll3 > 0 for all v € S¥ := {v € Wi | l|lvll5, = 1}. Thus, setting ¥ (v) = (uo, v), ¥ (v) satisfies ¥ (v) € Ng for
all ve S¥ and ¥ (—v) = (g, —v) = o (Y (v)). O

Here, we give the proof of Theorem 0.1.
Proof of Theorem 0.1. Suppose 8 < 0. We apply Theorem 2.2 for H = HO1 (£2) x HO1 £2),0,v)=u,—v), M =
Ng, J(u) = Jg(u, v). Firstly, we will check that the assumptions of Theorem 2.2 hold. From Proposition 1.3, we have

liminf Jg(u,v) =00
(u,v)€Ng, dist{(u,v),d0Ng}—0

Moreover, from Lemma 3.1, for any k € N, there exists ¥ € C (Sk, Ng) such that ¥ (—u) = o (¥ (u)). Therefore the
assumptions of Theorem 2.2 hold and Jg has a sequence of critical values (ck),‘zil such that ¢, — oo as k — o0.
Let (ug, vy) be a critical point of Jg corresponding to c; and we set (U, Vi) = (sg(u, vi)ug, tg(ug, vk)v). Then,
from (iii) of Proposition 1.2, (Ux, V) is a non-trivial critical point of /g. From Proposition 1.1, we see Uy > 0 in £2.
Moreover, from (1.3) and 8 < 0, we find

(11U + 2l Vill2) 1821 = i Uy + pall Vills = dex — 0o (k — 00).

Thus we get ||Uklloo + || Vk lloo = 00. On the other hand, when 8 > —. /w12, there exists a priori bound of positive
solution of (x) by a result of [13]. Thus, when 8 € (—./t1 112, 0), Vi must change sign for large k. Now, the proof of
Theorem 0.1 is complete. O

Next, we show Theorem 0.2. To prove Theorem 0.2, we need the following lemma.

Lemma 3.2. For any given k € N, there exist §; >0, B > 0 and € C (S, Ms,) with ¥ (—v) = o (Y (v)) such that
sup J/;(l//(v)) <d= ( )inf Jg(u,v) forall B € (=P, Br)- (3.1
u,v

vesk €My,

Proof. Let W be k-dimensional subspace of HO1 (£2) such that
WicWC---CWe CWgpg C---.
For any given k € N, we choose small §; > 0 satisfying
ollvll3 > 48 forallve S :={ve Wi | lIvll:, = 1}.
We remark that 8 also satisfies 46; € (0, ﬁ). For this §; > 0, from Proposition 1.9 and Proposition 1.7, there exists

Br = Bs, > 0 such that, for all 8 € (— B, Pr), we have

sup  Jg(u,v) < +cs,(B),

(. v) My, 8%

1
inf J — +by—
(u, U;I€13M5k ﬁ(M v) > + 0 € ).

|2¢5,(B)| < =— — bo.
Here we choose ug € H(} (£2) such that [[ug|l;, = 1 and [luo[|§ > 48k. Setting ¥ (v) = (uo, v), ¥ (v) satisfies

¥ (v) € Mys, C My, forallve S*,
¥ (—v) = (uo, —v) = o (Y (v)).
Then v (v) satisfies (3.1) and we get Lemma 3.2. O
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Now, we give the proof of Theorem 0.2.

Proof of Theorem 0.2. From Lemma 3.2, for any given k € N, there exist §; > 0, S > 0 and ¥ € C (S, Ms,) with
¥ (—v) = o (¥ (v)) such that

sup Jg (¥ (v)) <d = (M’Ugmk Jg(u,v) forall B € (—PBk, Br).

veSk

Here, setting H = H(} (£2) x H(} (£2),0(u,v) =, —v), M = Ms,, J(u) = Jg(u,v) (0 < B < ), the assumptions of
Theorem 2.5 hold. Thus Jg has at least k critical points. In conclusion from Proposition 1.2, we get Theorem 0.2. O

4. The asymptotic behavior of some critical values of Jg

In this section, for Jg(u, v), we will define the mountain pass values corresponding to solutions in Theorem 0.3.
Firstly, for J>(v), we define symmetric mountain pass values b,% (n e NU{0}) by

b2 = inf maxJ. 0)),
" y2el20€S” 2()/2( ))

I ={10) e C(S", 22) | y2(=0) = —y2(6) for all € 5"},

where " = {0 = (01, ...,0,41) € R™! | |0] = 1}. Then, from the symmetric mountain pass theory for J5, bﬁ satisfies
the following:

@) bg is a critical value of J;. In particular, bé is a least energy level of J,.

(i) by <bf <b3<---<by<bp, <---

(iii) b2 — oo asn — 0.
Now, from Lemma 3.2, for any given k € N, there exist §; > 0, B > 0 and ¢ € C (S, Ms,) with Y (—v) = o (¥ (v))
such that

sup Jg(¥(v)) <d= inf  Jg(u,v) forall B e (—P, fr).

vesk (u,v)€0 My,

We fix k € N, 8; > 0 and By > 0 as above. Here, for 8 € (—Bk, i), we define minimax values d; g (i =1,2,...,k)
of Jg(u, v) by the following:

dip= inf max Jp(v(®)).
Ii={y®) eC(S' Ms)|y(—0)=0(y(®) forallo € §'}. (4.1)

We remark that I'; # () by the existence of . We show that d; g satisfies the following proposition.

Proposition 4.1. Fori =1,2, ..., k, we have:

(1) d; g is a critical value of Jg(u, v) for B € (—Bk, Br)-
(ii) di.p — b(]) +bl.2 as B — 0.

Proof. Firstly we show (i). By a contradiction, we suppose that d; g is not a critical point. For €y > 0, there exists
y € I} such that supggi Jg(y(0)) < d; g + €o. Here, applying Proposition 2.4, we have small € € (0, ¢p) and 7 :
[0,1] x [Jg <dip+ G]Msk — [Jg<dipg+ E]Msk such that

n0,u)=u forallue[Jg <d;g +€]M5k’ 4.2)
n(l,u)e[Jg<dipg— E]Msk forallu € [Jg <d;p +€]M5k’ 4.3)
r](l, o(u)) = o(n(l, u)) forall u € [Jg < dip + €]um;, - 4.4)

Setting ¥ (0) = n(1, y(#)), we have y € I; and supyqi Jg(y (0)) < d; g — €. This contradicts the definition of d; g.
Thus d; g is a critical point.
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Next, we show (ii). From Proposition 1.7, we have
Ji) + 2 (v) — 5, (B) < Jg(u, v) < J1(u) 4+ J2(v) + c5,.(B)
for all (u,v) € Ms, and B € (—p, Bi). For any € > 0, we choose y, € I“l.2 such that

max J>(y2(9)) < b? + €.
feSt

Setting y (0) = (ug, y2(0)) where ug is a minimizer of Ji(u), then we have y () € I'; and
di.p < max Jp(v () < Jiuo) + max L (72(0)) + cs,(B) < b + b} + € + cs, (B). (4.5)
1 6 1

€

On the other hand, we choose y € I'; such that
max Jg (y(@)) <dipg+e.
fest
Writing y (6) = (y1(6), 72(0)) € X1 x X, we have y2(9) € I'* and
b+ b} < Iy (r1©) + ;nasx L (1200)) < gnagsx Jp(y(©)) +cs5, (B) < dig+ €+ s, (B). (4.6)
est [Sh
From (4.5)-(4.6), we have
|dip — (by +b7)| < €+ 5, (B).
Since € > 0 is arbitrary and ¢;, (8) — 0 as B — 0, we obtain (ii). O
5. Proof of Theorem 0.3

In this section, we will complete the proof of Theorem 0.3. Fori € {1, 2, ..., k}, we show the following proposition.

Proposition 5.1. For any € > 0, there exists B, > 0 such that, for all |B| < B, Jg(u, v) has critical points in A% which
are defined by

db(l)éfl(u)
bé —l—biz —€

by +e,
Jp(u,v) < bl + b} +e

73: {(u,v) € Ms,

NN

We remark that Afg is an invariant set for o (u, v) = (4, —v) and Ag = (). If Proposition 5.1 holds, then we get
Theorem 0.3 as follows:

Proof of Theorem 0.3. From Proposition 5.1, for all € > 0 and |B| < B, there exists critical point (u; g, v; g) of
Jg(u, v) which satisfies

by < Ji(uip) < by +e,
b(l) +bi2 —e < Jg(uip,vig) < b(l) + biz + €.
Since € > 0 is arbitrary, from Proposition 1.7, we see that u; g, v; g satisfy
N(uig) = by J{(uig) =0 asp—0,
o (vi ) — bi2 Jy(ip)—>0 asp—0.

Thus, after extracting subsequence B; — 0, there exist u; o € X1 and v; o € X which are critical points of J; (u) and
J2(v) respectively, such that

uip, —uio asB;—0, Ji(uio)=by,  J{(uio)=0, (5.1)
vig, = vio asB;— 0, Jr(vio) =D, J5(vi0) = 0. (5.2)

From (5.1)—(5.2), Proposition 1.1 and Proposition 1.2, we get Theorem 0.3. O
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In what follows, we will show Proposition 5.1 by a contradiction. If Proposition 5.1 does not hold, then there exist

€0 > 0 and a sequence 8; — 0 such that J,gj (u, v) does not have critical points in A;O]

Here, we remark that a set of critical values of J;(u) is nowhere dense. Thus there exists b(l) + %eo <ap<al <
b(l) + €0 such that J; (1) does not have critical points in [ag < J1 < a1l .

Remark 5.2. Fudik, Kuéere}, Necas, Soucek and Soucek [14] gave a result for the Morse—Sard theorem in infinite
dimensional setting. Since 11 (u) = %Hulﬁl — %m lu ||j‘1 : HO1 (£2) — R is analytic and satisfies (PS)-condition, the set

of critical values of I (u) is measure zero and closed. Thus the set of critical values of I; («) is nowhere dense. This
implies the nowhere denseness of the set of critical values of J (). Moreover there exist further results of Dancer [12]
and Cao and Noussair [8] about when critical values of I; (1) are isolated.

Since there are not critical points of Ji (1) in [ap < Ji < aylyx,, we set

po = inf vl , >o. (5.3)
1

u€lap<Ji<ails
Then we have the following lemma.

Lemma 5.3. . For sufficiently small |B;| > 0, we have the following: for any (u,v) € AZ‘; with u € [ag < J1 < ay),
there exists (X,Y) € T, X x T, X, such that

Xl =1, Y=0,
£0 L0
VIWX >, Vi o)X Y) > 2

Proof. Let (u,v) A;Ol with u € [ap < J1 < aylyx,. From (5.3), we see that there exists X € 7, 2 such that

3
VI )X > %.

From Proposition 1.7, choosing small || > 0 such that ¢5, (8;) < %, we have

£0

Vg (w, 0)(X, 0) 2 VI @)X = cs (BPIIXI, = -

Thus we get Lemma 5.3. O

Lemma 5.4. For small |B;| > 0, there exists a vector field (u, v) — (X (u,v), Y (u,v)): A;O/ — 1,21 x Ty X such
that: '

) X (u, v)|||§1 + 1Y (u, v)|||§2 =1 and (X (u,v), Y(u, v)) are Lipschitz continuous.
(i) (X(o(u,v)),Y(0ou,v))) =0(X(u,v),Yu,v)).
(ii1) There exists pj > 0 such that VJg, (u, v)(X (u, v), Y (u,v)) = u; for all (u,v) € A;O/

(iv) For any (u,v) € A;OI with u € [ag < J1 < ailx,, we have VJi(u)X (u,v) > % and VJ,gj(u,v)(X(u,v),
Y(u,v) > 4. '

Proof. Since Jg, (u, v) does not have critical points in A;‘;, there exists 1 ; > 0 such that

pj=inf _||VJg @, v)|, >0. (5.4)
(u,v)eAﬂ(;_

We also remark that VJ 8; (o(u,v))=0(V J,gj (u,v)). Thus from (5.4) and Lemma 5.3, we can construct a vector field
with desired properties. O

Here we consider the following ODE:
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dm dn

_— = —X ) N _— = —Y N N
7 (M1, m2) I (M1, m2)
n1(0; ug, vo) = uo, 12(0; ug, vo) = vo.

Then deformation flow n(z, (u, v)) = (11 (¢, (u, v)), n1 (¢, (u, v))) satisfies the following:

(i) When n(, (u, v)) € Af, we have g.Jg, (n(t, (u, v)) < =
(ii) When n(t, (u,v)) € A;(; Nlao < Ji <ajlyx,, we have %Jﬂj (n(t, (u,v))) < =2 and L Jy (1 (¢, (u, v))) < —2.

From (ii), we see that, for (i, v) € A;‘j with J1(u) < b(l) + %eo, when 7(¢, (1, v)) passes through BATS‘;, n(t, (u, v))
must satisfy Jg; (n(z, (u, v))) = b(l) + bi2 — €0. Moreover, from (i), n(¢, (u, v)) must pass through 8Afg°/_ for finite time.
Now, we complete the proof of Proposition 5.1. '

Completion of the proof of Proposition 5.1. By the definition of b(]) and bl.z, we can choose ug € X1 and y»(0) € Fl.2
such that

1
Ji (o) < by + €0,

2 1
max J2()/2(9)) <b; + =e€p.
gesi 3
We set
y () = (uo, v2(0)) € I;.
Since d; p; — b(l) + bi2 as B; — 0, for sufficiently small || > 0, we have
max Jg; (v (0)) < by + b} + €o.
fes!
Moreover Jg; (v (6)) > b(l) + bi2 — €o implies y(0) € A;(; For large t > 0, we set
7©) = (m(t: v ©6)), m(r: ¥ (©))).
Then we have y(0) € I'; and
max Jg; (7(0)) < by + b} — €o.
fes!

This is a contradiction for (4.1) and Proposition 4.1. Thus Proposition 5.1 holds and we complete the proofs of our
theorems. O

6. The setting for large 8 and the proofs of Theorem 0.6 and Theorem 0.7

To prove Theorem 0.6 and Theorem 0.10, we seek critical points of the following functional

- 1 1
Tp(u, v) = 2 (el +0I5,) = o (a3 + pallvl3) = Sl vl : Ho (2) x Ho (2) — R.

1
4p
Here, when 8 = oo, we regard foo(u, v) as

7 _1 2 2 ! 2. gl 1
Too(u, v) = E(IIIMIIIM +llvllz,) - 7 lugvlly = Ho ($2) x Hy (£2) — R.

We remark that if (u, v) is a critical point of i,g (u, v) for B € (0, 00) then (u/+/B,v/+/B) is a solution of (x) and if
u # 0 we have u > 0 in £2 from Proposition 1.1. Similarly, if (u, v) is a critical point of Ioo(u, v), then (u,v) is a
solution of (0.5). We set
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2 = {(u,v) € Hy(2) x Hy () [ llullf, + VI3, = 1},
T ={wv) e X | flu-llx <1},
N={u,v)e X |usv#0}.

For B € (0, oo], we define a functional fﬁ (u, v) as follows.

Proposition 6.1. Suppose B € (0, o). For any (u,v) € X if B <00, (u,v) € N if B = 00, a function
t— iﬁ(tu,tv) :Ry - R
has a unique maximum point
_1
alu,v) = {«/F(mlltulli+Mz|lvlli+2ﬂllu+v||§) 2, Be(0,00),
V2lusvl) ™ p=oc.

Moreover, setting

A lug 13 +ualvld+28lurvl3),

f,g(u, v) = sup iﬁ(tu, tv) = ]
gllutvll3, B =00,

t>0

{ B B € (0, 00),

we have:

(i) p(u,v): ¥y — Ry is a C'-function.

(ii) Jp(u,v): Xy — Ris a C'-function.
>iii) If (u,v) € X4 is a critical point of flg (u, v), then (fﬁ (u,v)u, flg (u, v)v) is a non-trivial critical point of i,g (u,v).
@iv) jﬁ (u, v) satisfies PS-condition.

Proof. For B € (0, oo], from direct calculations, we can write f,g (u,v) and f,g (u, v) explicitly. Thus, from those
representations, we see that (i)—(ii) hold. (iii)—(iv) also are very standard. O

We seek critical points of fﬂ inN={(u,v)e X, |ugv#0} C Xy4.

Proposition 6.2. When 8 € (0, co], we have

liminf Jp(u, v) = Bby. (6.1)
(u,v)eN, dist{(u,v),dN}—0

Here by was given in (1.9) and, when B = oo, we regard Bbgy as oo. In particular, f,g (u, v) < Bby implies uyv # 0.

Proof. When B = oo, (6.1) clearly holds. Thus we suppose 8 € (0, 0c0). For any sequence (u,, v,))°°, C N with

n=1
lupsvnllz2 — O (n — o0), we should show liminf, o Jg(uy, vy) = Bbo. Since [|uyllr, + llvalla, = 1, there exist
subsequence n; — oo and some ug, vy € HO1 (£2) such that

un;+ —> 0, Un; = Vo strongly in LY(R).
Here if ug = vg = 0, then it is obvious that limnj_>OO fﬂ (u,,j, vn_,.) = 00. On the other hand, if ug = 0, vy # 0, we have
. B
lim Jg(u,.,v,,)=——— = Bby.
o e T8 1) = o = PO
Thus we assume (ug, vg) € V={u,ve X |usy #0,v #0,uv =0}. Then we can also show

inf Jg(u,v)= inf Jg(u,v) > Bby. (6.2)
(u,v)eV (u,v)€edV

In fact, letting (i, v4«) € V be a minimizer of inf, ,)ev f,g (u, v), then (uy, vy) is a solution of (x) with § =0 and

jﬂ (5, v4) = 2Bbo. Thus inf(, ,)ey fﬂ (u, v) does not have minimizers in V and we get (6.2). Thus we get Proposi-

tion 6.2. O
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Next, we give the proofs of Theorem 0.6 and Theorem 0.7. To show these theorems, we need the following lemma.

Lemma 6.3. For any given k € N, there exist By € (0, 00) and ¥ € C(S*, N) with ¥ (—u) = o (¥ (u)) such that
sup Jg (¥ () < Bbo forall B € (Bx, o). (6.3)

uesSk

Proof. Let Wy be k-dimensional subspaces of H(} (£2) such that Wy C Wo C --- C Wi C Wi C ---. For any given
k €N, we set S* := {u € Wy | |lull;, = 1} and define ¥ (u) : S* — N by

e ( wl )
uy={——,—|.
V2\ullx, V2
Here we choose B satisfying
_ e
Bibo > sup —L.
uesk 2”””4
Then v (u) satisfies ¥ (—u) = o (¥ («)) and
|||M|||§1 < Brbo  forall B € (B, o]
—— < Prbo k> O]
2| (lulu) 113
Thus we get Lemma 6.3. O

Ts(y W) <

Now, we show Theorem 0.6.

Proof of Theorem 0.6. From Lemma 6.3, for any given k € N, there exist f; > 0 and ¥ € C(S¥, N) with ¢ (—v) =
o (¥ (v)) such that

sup Jﬂ(Ip(v)) < Bby forall B > By.

vesk
Thus, from Theorem 2.5, j/g has at least k critical values ej g < ez g <--- < e g. Here ¢; g is defined as follows:
eip=inf{c eR|y([Jp <clv) >i}. (6.4)
Let (u;g,v;g) be a critical point corresponding to critical value e; g of f,g (u,v). We set (Ujg,Vipg) =
(ﬁtﬁ(ui,ﬁ, Vi U8, ﬁt,g(ui,,g, v; g)vi g). Then (U; g, V; g) are solutions of (x) and we get Theorem 0.6. O

Finally, we give the proof of Theorem 0.7.

Proof of Theorem 0.7. Firstly we remark that liminf(, yyen, dist{(u,v),aN}—0 foo(u, v) = oo from Proposition 6.2.
/§nd, from Lemma 6.3, for any k € N, there exists ¥ € C(S¥, N) with Y (—v) = o (¥ (v)). Thus, from Theorem 2.2,
Joo has a sequence of critical values (ek,oo),fi | such that eg oo — 00 as k — o0o. Here e, is defined by

ek,0o =infl{c € R |y ([Joo < cly) = k}. (6.5)

Let (ux, vx) be a critical point of foo corresponding to ex o, and we set (Ug, Vi) = (foo (UK, Vi) UK, Too (UK, Vi) ux). Then
(Uk, Vi) is a solution of (0.5) and we find

Ukt Vil 21921 = 1 Ukt Viell3 = Foo (e, vi) *lluis vicl13
= 8Jo0 (g, V) = 8f.00 — 00 (k — 00).

From the above inequality, we get ||Ug |loo + || Vi llco = 00. Moreover, from observation in Remark 0.9, when A| = A7,
v; must change sign for large k. From the above results, the proof of Theorem 0.7 is complete. O
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7. The asymptotic behavior as § — oo

In this section, we consider the asymptotic behavior of solutions which were given in Theorem 0.6 as § — cc. In
what follows, we fix a k € N and let (ug g, vi,g) be a family of critical points of Jg(u, v) corresponding to critical
value ey g. Here e g was defined in (6.4). The following theorem is the main theorem in this section.

Theorem 7.1. There exists a subsequence 8; — 00 such that
(uk ;. Vi) — (k00 Vk,oo) i Ho (2) x Hy (£2).

Here (uf o0, Vk,00) IS a critical point of foo (u, v) corresponding to the critical value ey . Here e was defined
in (6.5).

We remark that Theorem 0.10 easily follows from Theorem 7.1.

Proof of Theorem 0.10. For the (uk,,g_,., vk,ﬁj) and (U, o0, Vk,00) in Theorem 7.1, we set

1 1
WUk,p;+ Vi) = <\/—thﬁj (Ui, ;> Vi, B Uk, B » ﬁtﬁj (uk,g;» vk,ﬂj)vk,,s,),

(Uk,oo’ Vk,oo) = (too(uk,oo’ Uk,oo)uk,om too(uk,oo, Uk,oo)vk,oo)-

Then (Ugg;, Vk,p;) are solutions of (x) obtained in Theorem 0.6 and (/B;Ukpg;,+/BjVk.p;) converges to
(Uk,005 Vik,00) Which is a solution of (0.5) corresponding to critical value ex . These complete the proof of The-
orem 0.10. O

In the rest of this section, we will show Theorem 7.1. We need the following lemmas.

Lemma 7.2. For any M > 0, we have
1 1
8M 28

Here C1 was given in (1.1).

(w1 + u2)CY < llugvl3 < CY - forall (u,v) € [Jp < M. (7.1)

Proof. Since Jg(u, v) < M is equivalent to ﬁ < %(m Il ||3 + ,u2||v||2) + 2||u+v||§, we easily get Lemma 7.2. O

Lemma 7.3. For any M > 0 and € > 0, there exists B, = B;(€) > 0 such that, for all B > By, we have

Jg(u,v) < Joo(u,v) < Jg(u,v) +€ forall (u,v) €[Jg < Mly.

Proof. By a direct computation, we have

pillugllf + pallold

Jp(u, v) = Joo(u, v) — )
8(willus NI + wallvllf + 2B lusvl3)llusvll3

(7.2)

Thus it is trivial that J};(u, V) < foo(u, v). For any M > 0, from Lemma 7.2, Jg(u, v) < M implies (7.1). From (7.1)
and (7.2), we get Lemma 7.3. O

To show Theorem 7.1, the following proposition is essential.

Proposition 7.4. We have ey g < ex o0 and
er.p —> €koo asf— oo.

Here ey g and ey oo were defined in (6.4) and (6.5) respectively.
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Proof. Firstly, we show e g < ef 0. Since J};(u, V) < foo(u, v), we have [Joo < c]y C [Jg < cly for any c € R.
From the definitions of e; » and (i) of Lemma 2.3, for any € > 0, we have

Y (U < koo +€IN) 2 ¥ (Voo < koo +€lN) > k.

This implies ek g < ex, 0 + € and, since € > 0 is arbltrary, we get e g < e, 00. Next we show eg g — e 0 as f — 00.
From Lemma 7.3, for M = ¢, + 1 and any € € (0, 5), there exists B, > 0 such that for all 8 > B, we have
[Jg < ckp+€lv ClJo < ck g + 2€]n. From the definitions of e; g and (i) of Lemma 2.3, we get

Y(Uoo <erp+26ely) =y ([Up <erp+ G]N)

Thus we have e oo < eg,g + 2¢ forall § > Comblmng ek < ero0, WE geteg g — ep o0 as f—00. O
Now we give the proof of Theorem 7.1.

Proof of Theorem 7.1. Let (uy g, vk,g) be a family of critical points of J, s (u, v) corresponding to critical value e g.
Then there exist ux o0, Vk,00 € Hé (£2) and a subsequence (,BJ)OQ | such that

Uk,p; = Uk, o0, Uk, B; = Vk,o0 weakly in HOl (£2) and strongly in L*(2) as Bj — oo.

Here, from Lemma 7.2, we see that (ux c0)+ 7 0, Vkoo 7 0. Thus g (uk,ﬁj,vky,gj) also converges to foo =
(V21 (tk,00)+ Vk,0013) ™! and (foctk, 00, foo Uk, 00) is @ critical point of I (i, v). Now, if we show

Nk, collng + Mve,collla, =1, (7.3)

then our proof is complete. In fact, if (7.3) holds, then u, B; and vy, Bj strongly converge to ux oo and vg oo in H(} (£2),

respectively. Moreover, from Proposition 7.4, we have foo (Uk, 00, Uk, 00 ) = €k.00. Thus Theorem 7.1 obviously holds.
We will show (7.3). Since (fooltk, 00, tooVk.00) 18 a critical point of I, (1, v), we have

2
etk ool + Mok ol = 202 || (k.00) + V.00 | 5- (1.4)

On the other hand, from the representation of ig; (u, B;» Uk, ﬁj) in Proposition 6.1, we have

1=1p,(u PL < (o g 14+ 2l v, 12) + 2] Gt ) v | (7.5)
- ﬁj k,ﬁjv vk,ﬂj ‘B M1 uk,ﬁj 4 Mn2 vk,ﬁj 4 uk,ﬁj +vk,ﬁj 2| .
From (7.4) and (7.5), we get (7.3) and Theorem 7.1 holds. O
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