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Abstract

We consider compact, embedded hypersurfaces of Euclidean spaces evolving by fully non-linear flows in which the normal
speed of motion is a homogeneous degree one, concave or convex function of the principal curvatures, and prove a non-collapsing
estimate: Precisely, the function which gives the curvature of the largest interior ball touching the hypersurface at each point is
a subsolution of the linearized flow equation if the speed is concave. If the speed is convex then there is an analogous statement for
exterior balls. In particular, if the hypersurface moves with positive speed and the speed is concave in the principal curvatures, the
curvature of the largest touching interior ball is bounded by a multiple of the speed as long as the solution exists. The proof uses
a maximum principle applied to a function of two points on the evolving hypersurface. We illustrate the techniques required for
dealing with such functions in a proof of the known containment principle for flows of hypersurfaces.

1. Introduction

Let Mn be a connected, compact manifold, and X : Mn ×[0, T ) → R
n+1 a family of smooth embeddings evolving

by a curvature flow

∂X

∂t
= −Fν, (1)

where ν is the unit normal, and the speed F is produced from the second fundamental form and the metric by evalu-
ating a smooth, symmetric, homogeneous degree one, monotone increasing function of the principal curvatures. We
require that this function be defined on a symmetric, convex cone Γ ⊂ R

n. Thus F is determined completely by the
components hij of the second fundamental form with respect to any orthonormal frame. In fact,1 as a function of the
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matrix hij , F is smooth, homogeneous of degree one, strictly monotone increasing, and independent of the chosen
frame. Noting that the embedding X(·, t) separates Rn+1 into an open, precompact enclosed region, Ωt , and a non-
compact exterior, we specify that the unit normal ν be chosen to point out of Ωt . Having fixed the orientation in this
way, we will assume below that F is either concave or convex with respect to the component matrix of the second
fundamental form. The purpose of the paper is to prove a non-collapsing result for such flows, analogous to the result
proved for the mean curvature flow by the first author in [3]. We expect that this will provide a key step towards
understanding the singular behaviour of such flows for non-convex solutions: In the case of the mean curvature flow,
the monotonicity formula of Huisken [16] provides a lot of information about the structure of singularities, and this
is complemented by the asymptotic convexity results of Huisken and Sinestrari [18,19], and the differential Harnack
or Li–Yau–Hamilton type inequality proved by Hamilton [12]. The latter is available for a large class of flows [2], but
there are no analogues of the monotonicity formula or the asymptotic convexity result. The non-collapsing estimate
does not precisely replace either of these, but seems a useful tool which may be used in their stead.

The δ-non-collapsing estimate proved for the mean curvature flow in [3] amounts to the statement that every point
of the evolving hypersurface is touched by interior and exterior balls with radii equal to a constant δ divided by the
mean curvature H . It was shown there that this non-collapsing for interior balls is equivalent to the inequality

∥∥X(x, t) − X(y, t)
∥∥2 � 2δ

H(x, t)

〈
X(x, t) − X(y, t), ν(x, t)

〉

for all x, y ∈ M . Equivalently, this amounts to the inequality

Z(x, y, t) := 2〈X(x, t) − X(y, t), ν(x, t)〉
‖X(x, t) − X(y, t)‖2

� H(x, t)

δ
(2)

for all (x, y) ∈ (M × M) \ D, where D is the diagonal D = {(x, x): x ∈ M}. Note that the supremum of the left-hand
side of (2) over y gives the geodesic curvature of the largest interior ball which touches at x (see Section 2 where this
statement is made precise). Below we will formulate a non-collapsing result for more general curvature flows in terms
of this quantity.

Definition 1. The interior ball curvature Z(x, t) at the point (x, t) is defined by Z(x, t) = sup{Z(x, y, t): y ∈ M,

y 	= x}. The exterior ball curvature Z(x, t) at the point (x, t) is defined by Z(x, t) = inf{Z(x, y, t): y ∈ M, y 	= x}.

In the results to be described, an important role will be played by an equation we call the linearized flow. To
motivate this consider a smooth family of solutions X : M ×[0, T )×(−a, a) → R

n+1, and define f : M ×[0, T ) → R

by f (x, t) = 〈 ∂
∂s

(X(x, t, s))|s=0, ν(x, t)〉. Then f satisfies the equation

∂f

∂t
= Ḟ kl∇k∇lf + Ḟ klh

p
k hplf. (3)

Here Ḟ kl is the derivative of F with respect to the components hkl of the second fundamental form, defined by
Ḟ kl |ABkl = d

ds
(F (A + sB))|s=0 for any symmetric B . Particular solutions of (3) include the speed F (see [1, The-

orem 3.7]), corresponding to time translation X(x, t, s) = X(x, t + s), the functions 〈ν(x, t), �e〉 for �e ∈ R
n+1 fixed,

corresponding to spatial translations X(x, t, s) = X(x, t)+s�e, and the function 〈ν(x, t),X(x, t)〉+2tF (x, t) (see [25]
or [10, Theorem 14]), corresponding to the scalings X(x, s, t) = (1 + s)X(x, (1 + s)−2t).

To formulate our main result we need to recall the notion of viscosity subsolution or supersolution for parabolic
equations: If M is a manifold with (possibly time-dependent) connection ∇ and v : M × [0, T ) → R is continuous,
then v is a viscosity subsolution of the equation ∂u

∂t
= G(x, t, u,∇u,∇2u) if for every (x0, t0) ∈ M ×[0, T ) and every

C2 function φ on M × [0, T ) such that φ(x0, t0) = v(x0, t0) and φ(x, t) � v(x, t) for x in a neighbourhood of x0
and for t � t0 sufficiently close to t0, it is true that ∂φ

∂t
� G(x, t, φ,∇φ,∇2φ) at the point (x0, t0). The function v is

a viscosity supersolution if the same holds with both inequalities for φ reversed.
Our main result is the following:

Theorem 2. Assume that M is connected and X : M × [0, T ) → R
n+1 is an embedded solution of (1). If F is convex

then Z is a viscosity supersolution of the linearized flow (3). If F is concave then Z is a viscosity subsolution of (3).
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Note that in many cases the assumption of embeddedness need only be made on the initial hypersurface (see the
remarks at the end of Section 3). Before we prove Theorem 2, we mention an important consequence:

Corollary 3. If F is convex and X is an embedded solution of the curvature flow (1) with positive F , then infM
Z(x,t)

F (x,t)

is non-decreasing in t . If F is concave and X is an embedded solution of (1) with positive F , then supM
Z(x,t)
F (x,t)

is
non-increasing in t .

Proof. Since F satisfies Eq. (3) the result reduces to a simple comparison property of viscosity subsolutions and
supersolutions. We include the argument here for completeness: Assume F is convex, and for each t let φ(t) =
infx∈M

Z(x,t)
F (x,t)

. We must show that φ is non-decreasing in t . We will accomplish this by proving that Z(x, t)− (φ(t0)−
εet−t0)F (x, t) � 0 for any t0 ∈ [0, T ), t ∈ [t0, T ) and ε > 0. Taking the limit ε → 0 then gives Z(x, t)� φ(t0)F (x, t)

and hence φ(t) � φ(t0) for t � t0.
Fix t0 ∈ [0, T ) and ε > 0. Then Z(x, t0)− (φ(t0)−ε)F (x, t0) � εF (x, t0) > 0 for all x, so if Z− (φ(t0)−εet−t0)F

does not remain positive for t > t0 then there exists a time t1 > t0 and a point x1 ∈ M such that Z − (φ(t0)− εet−t0)F

is non-negative on M × [t0, t1], but Z(x1, t1) − (φ(t0) − εet1−t0)F (x1, t1) = 0. Since Z is a supersolution of Eq. (3),
we have at this point

0 � ∂

∂t

((
φ(t0) − εet−t0

)
F

) − Ḟ kl∇k∇l

((
φ(t0) − εet−t0

)
F

) − (
φ(t0) − εet−t0

)
FḞ klh

p
k hpl

= −εet1−t0F + (
φ(t0) − εet1−t0

)(
Ḟ kl∇k∇lF + Ḟ klh

p
k hpl

)
− Ḟ kl∇k∇l

((
φ(t0) − εet1−t0

)
F

) − (
φ(t0) − εet1−t0

)
FḞ klh

p
k hpl

= −εet1−t0F

< 0,

a contradiction proving that Z − (φ(t0) − εet−t0)F remains positive. The argument for F concave is similar. �
Corollary 3 is equivalent to the statement that the interior (for F concave) or exterior (for F convex) of the evolving

hypersurfaces remains δ-non-collapsed on the scale of F , in the sense of [3].
We remark here that the interpretation of the non-collapsing estimate via subsolutions and supersolutions of the

linearized flow (3) gives a new perspective even for the mean curvature flow. Indeed, our proof is quite different from
that in [3], and rather more transparent.

2. The geometry of Z

We make precise here the meaning of upper and lower bounds on Z for fixed x ∈ M :

Proposition 4. Fix t ∈ [0, T ) and x ∈ M . Then Z(x, t) � k if and only if there exists an open subset B of Ωt with
connected smooth boundary having all principal curvatures equal to k with respect to the outer normal, and such that
X(x, t) ∈ ∂B . Similarly, Z(x, t)� k if and only if there exists an open set B with connected smooth boundary having
all principal curvatures equal to k with respect to the outer normal, and such that Ωt ⊂ B and X(x, t) ∈ ∂B .

Thus a positive upper bound Z(x, t) � k amounts to an enclosed ball of radius 1/k touching at X(x, t); a negative
lower bound Z(x, t) � −k is equivalent to an exterior ball of radius 1/k touching at X(x, t); a zero lower bound
Z(x, t)� 0 is equivalent to the statement that X(M, t) is contained in a half-space touching at X(x, t); and a positive
lower bound Z(x, t) is equivalent to the statement that X(M, t) is contained in a ball of radius 1/k which touches at
X(x, t).

Proof of Proposition 4. An upper bound Z(x, t) � k is equivalent to the statement Z(x, y, t) � k for all y 	= x. By
definition of Z this gives

2
〈
X(x, t) − X(y, t), ν(x, t)

〉
� k

∥∥X(x, t) − X(y, t)
∥∥2
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for all y 	= x. Dividing by k and completing the square this gives
∥∥∥∥X(y, t) −

(
X(x, t) − 1

k
ν(x, t)

)∥∥∥∥
2

� 1

k2

for all y 	= x. Setting p = X(x, t)− 1
k
ν(x, t), this says precisely that X(M, t)∩B1/k(p) = ∅ and X(x, t) ∈ ∂B1/k(p).

That is, there is an enclosed ball of curvature k touching at X(x, t). For the converse we note that the exterior normal
vector of an enclosed ball touching at X(x, t) agrees with ν(x, t), and work backwards though the above argument.

If Z(x, t)� 0 then X(x,y, t) � 0 for all y 	= x, so that 〈X(x, t)−X(y, t), ν(x, t)〉 � 0 for all y 	= x. Thus X(M, t)

lies in the closed half-space H = {z: z · e � c} where e = ν(x, t) and c = X(x, t) · ν(x, t). Again X(x, t) lies in the
boundary of H .

The remaining cases are similar. �
3. Interlude: the containment principle

The proof of the main theorem uses computations of the second derivatives of the function Z over the product
M × M , and involves a careful choice of coefficients particularly in the mixed second derivatives. We note that there
are many precedents for computations of this sort: Kružkov [23] applied maximum principles to the difference of
values at two points for solutions of parabolic equations in one space variable; for elliptic problems quantities such
as this were used by Korevaar [22], Kennington [21] and Kawohl [20] to derive a variety of convexity properties
of solutions. For parabolic equations estimates on the modulus of continuity have been developed in [7,8] and were
applied in [9,24] to eigenfunctions and heat kernels. In geometric flow problems related ideas appear in work on
the curve-shortening problem by Huisken [17] and Hamilton [13] and on Ricci flow by Hamilton [14]. More recent
refinements of these techniques appear in [4–6].

Before proving the main result, we illustrate some of the techniques involved in a simpler problem: The contain-
ment principle for solutions of fully non-linear curvature flows of hypersurfaces. For this problem we can consider
speeds F which need not be homogeneous of degree one, and need not be either convex or concave:

Theorem 5. Assume that F is an odd, increasing, symmetric function of the principal curvatures defined on Γ ∪(−Γ ),
where Γ ⊂ R

n is a symmetric cone containing the positive cone, and −Γ = {−A: A ∈ Γ }. Let Xi : Mi × [0, T ) →
R

n+1, i = 1,2, be two compact solutions to (1) with X1(M1,0) ∩ X2(M2,0) = ∅. Then the distance from X1(M1, t)

to X2(M2, t) is non-decreasing, and in particular X1(M1, t) ∩ X2(M2, t) = ∅ for t ∈ [0, T ).

Proof. Define d : M1 × M2 × [0, T ) →R by

d(x, y, t) = ∥∥X1(x, t) − X2(y, t)
∥∥.

We show

min
M1×M2

d(·, t)� min
M1×M2

d(·,0),

which is positive, since the initial hypersurfaces are disjoint. As notation we will also set

w(x,y, t) = X1(x, t) − X2(y, t)

d(x, y, t)

and write ∂x
i = ∂X1

∂xi
and ∂

y
i = ∂X2

∂yj
.

The function d evolves under (1) by

∂

∂t
d = 〈w,−Fxνx + Fyνy〉. (4)

Suppose there is a spatial minimum of d at (x0, y0, t0). Then at this point,

∇M1×M2d = 0 and HessM1×M2d � 0.
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Choosing local orthonormal coordinates on M1 ×M2 at (x0, y0, t0), that is, orthonormal coordinates {xi} at x0 and
orthonormal coordinates {yi} at y0 we have

∇M1
j d = 〈

∂x
j ,w

〉
and ∇M2

j d = −〈
∂

y
j ,w

〉
.

Since we assumed that F is odd, the flow is invariant under change of orientation and we can choose νx = νy = w. In
view of the definition of w, we have at (x0, y0, t0) that

∇M1
j w = 1

d
∂x
j and ∇M2

j w = − 1

d
∂

y
j . (5)

For the second spatial derivatives of d we have

∇M1
i ∇M1

j d = 〈∇M1
i ∇M1

j X1,w
〉 + 〈

∂x
j ,∇M1

i w
〉
,

∇M2
i ∇M1

j d = 〈
∂x
j ,∇M2

i w
〉

and

∇M2
i ∇M2

j d = −〈∇M2
i ∇M2

j X2,w
〉 − 〈

∂
y
j ,∇M2

i w
〉
.

Using (5), at (x0, y0, t0) these become

∇M1
i ∇M1

j d = 〈∇M1
i ∇M1

j X1,w
〉 + 1

d
g

M1
ij ,

∇M2
i ∇M1

j d = − 1

d

〈
∂x
j , ∂

y
i

〉
and

∇M2
i ∇M2

j d = −〈∇M2
i ∇M2

j ,w
〉 + 1

d
g

M2
ij .

We derive the following at (x0, y0, t0): For any vector v we have

0 � vivj
(∇M1

i ∇M1
j d + 2∇M2

i ∇M1
j d + ∇M2

i ∇M2
j d

)

= −hx
ij v

ivj 〈νx,w〉 + 1

d
g

M1
ij vivj + hy

ij v
ivj 〈νy,w〉 + 1

d
g

M2
ij vivj − 2

d
vivj

〈
∂x
i , ∂

y
j

〉
.

Since w = νx = νy , the local coordinates near x and y may be chosen such that ∂x
i = ∂

y
i for all i and g

M1
ij =

g
M2
ij = δij . The above becomes

hx
ij v

ivj � hy
ij v

ivj ,

or since v is arbitrary, hx
ij � hy

ij . Finally, since F is monotone, we have Fx � Fy , and hence by (4) we have

∂d

∂t
= −Fx + Fy � 0. �

Remarks. (1) If F is as in Theorem 5, it can be shown using a similar argument as above that for compact solutions
of (1) with embedded initial hypersurface, the evolving hypersurfaces remain embedded while the curvature remains
bounded: Defining dRn+1(x, y, t) = ‖X(x, t) − X(y, t)‖, a curvature bound implies that there is a neighbourhood E

of D = {(x, x): x ∈ M} in M × M such that

dRn+1(x, y, ·) � CdM(x, y).

We may then apply the argument for the containment principle on (M × M) \ E to conclude that embeddedness is
preserved.

(2) In the containment principle the assumption that F is odd can be relaxed if we make an additional topological
assumption on the hypersurfaces to guarantee the correct orientation: If we assume F is defined on an arbitrary
symmetric cone Γ containing the positive cone, and M1 = ∂Ω1 and M2 = ∂Ω2 with Ω1 ⊂ Ω2, and require that
the unit normal to Mi points out of Ωi for i = 1,2, then the above argument goes through with minor changes.
Without such a condition disjointness may not be preserved: For example if n = 2 and F = H + |A|, with the cone
Γ = {(κ1, κ2): max{κ1, κ2} > 0}, then surfaces with opposite orientation will move closer together (and can cross). In
this example it is also true that embedded initial surfaces can evolve smoothly to become non-embedded.
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4. Proof of the main theorem

We now prove Theorem 2, namely, that Z (Z) is a viscosity supersolution (subsolution) of the linearized flow (3)
when if F is convex (concave).

As in the previous section, the proof involves computation with the second derivatives over the product M × M .
However, the computation here has an unexpected feature: In all the previous computations of this type mentioned
above, the two points x and y have appeared in a symmetric way, so that the choice of coefficients in the second
derivatives is determined by information at both points. This has been a serious obstacle to applications of the methods
to fully non-linear flows, since the coefficients of the equation at different points would involve the second derivatives
(or second fundamental form) at different points, and there is insufficient control on these to allow a useful comparison.
However, in the present computation x and y play very different roles, and in particular the function Z only depends
on x at the level of the highest derivatives. Accordingly we are able to use a choice of coefficients in the second
derivatives which depends on x but not on y, thus removing any need to compare the second fundamental form at
different points. The key observation that makes this choice work is given in Lemma 7.

Proof of Theorem 2. The definitions of Z(x, t) and Z(x, t) involve extrema of Z over the non-compact set {y ∈ M:
y 	= x}. Accordingly we begin by extending Z to a continuous function on a suitable compactification.

The diagonal D is a compact submanifold of dimension and codimension n in M × M . The normal subspace
N(x,x)D of D at (x, x) is the subspace {(u,−u): u ∈ TxM} ⊂ T(x,x)(M × M). The tubular neighbourhood theorem
provides r > 0 such that the exponential map is a diffeomorphism on {(x, x,u,−u) ∈ T M × T M: 0 < ‖u‖ < r}. We
‘blow up’ along D to define a manifold with boundary M̂ which compactifies (M ×M) \D as follows: As a set, M̂ is
the disjoint union of (M × M) \ D with the unit sphere bundle SM = {(x, v) ∈ T M: ‖v‖ = 1}. The manifold-with-
boundary structure is defined by the atlas generated by all charts for (M × M) \ D, together with the charts Ŷ from
SM × (0, r) defined by taking a chart Y for SM , and setting Ŷ (z, s) := (exp(sY (z)), exp(−sY (z))).

We extend the function Z to M̂ × [0, T ) as follows: For (x, y) ∈ (M × M) \ D and t ∈ [0, T ) we define

Z(x, y, t) = 2〈X(x, t) − X(y, t), ν(x, t)〉
‖X(x, t) − X(y, t)‖2

.

For (x, v) ∈ SM we define

Z(x, v, t) = h(x,t)(v, v),

where h(x,t) is the second fundamental form of Mt at x. Since X is an embedding, Z is continuous on (M × M) \ D.
A straightforward computation shows that the above extension of Z to M̂ is also continuous. It follows that Z(x, t) is
attained on M̂ , in the sense that either there exists y ∈ M \ {x} such that Z(x, t) = Z(x, y, t), or there exists v ∈ TxM

with ‖v‖ = 1 such that Z(x, t) = Z(x, v, t). Also, since the supremum over M \{x} equals the supremum over M̂ , and
this is no less than the supremum over the boundary SM , we have that Z(x, t) is no less than the maximum principal
curvature κmax(x, t). Similarly, Z(x, t) is attained on M̂ and is no greater than the minimum principal curvature
κmin(x, t).

To prove that Z is a subsolution if F is concave, we consider, for an arbitrary point, (x0, t0), an arbitrary C2

function φ which lies above Z on a neighbourhood of (x0, t0) in M × [0, t0], with equality at (x0, t0), and prove
a differential inequality for φ at (x0, t0).

Observe that for all x close to x0, and all t � t0 close to t0 we have Z(x, y, t) � Z(x, t) � φ(x, t) for each y 	= x

in M , and Z(x, v, t) � Z(x, t) � φ(x, t) for all v ∈ SxM . Furthermore equality holds in the last inequality in both
cases when (x, t) = (x0, t0). By definition of Z we either have Z(x0, y0, t0) = Z(x0, t0) for some y0 	= x0, or we have
Z(x0, ξ0, t0) = Z(x0, t0) for some ξ0 ∈ Sx0M .

We consider the latter case first: Define a smooth unit vector field ξ near (x0, t0) by choosing ξ(x0, t0) = ξ0, extend-
ing to (x, t0) for x close to x0 by parallel translation along geodesics, and extending in the time direction by solving
∂ξ
∂t

= FW(ξ), where W is the Weingarten map. This construction implies that ∇ξ(x0, t0) = 0 and ∇2ξ(x0, t0) = 0,
and from the evolution equation for the second fundamental form we find that

∂ (
h(ξ, ξ)

) = Ḟ kl∇k∇l

(
h(ξ, ξ)

) + F̈ kl,pq∇ξ hkl∇ξ hpq + h(ξ, ξ)Ḟ klh
p
k hpl
∂t
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at the point (x0, t0). The second term on the right is non-positive by the concavity of F . At the point (x0, t0) we
also have φ = h(ξ, ξ), and since φ � h(ξ, ξ) at nearby points and earlier times we also have ∂φ

∂t
� ∂

∂t
(h(ξ, ξ)) and

∇2φ � ∇2(h(ξ, ξ)) at this point. Combining these inequalities gives ∂φ
∂t

� Ḟ kl∇k∇lφ + φḞ klh
p
k hpl at (x0, t0) as

required.
Next we consider the case where Z(x0, y0, t0) = φ(x0, t0) for some y0 	= x0, and φ(x, t) � Z(x, y, t) for all

points x near x0, times t � t0 near t0, and arbitrary y 	= x in M . This implies that ∂φ
∂t

(x0, t0) � ∂Z
∂t

(x0, y0, t0), that
the first spatial derivatives of φ − Z in x and y vanish at (x0, y0, t0) and that the second spatial derivatives of φ − Z

are non-negative at (x0, y0, t0). We compute these derivatives, working in local normal coordinates {xi} near x and
{yi} near y. To simplify notation we define d = |X(x, t) − X(y, t)| and w = X(x,t)−X(y,t)

d
and write ∂x

i = ∂X
∂xi . We

first compute the first spatial derivatives with respect to y:

∂

∂yi
(φ − Z) = 2

d2

〈
∂

y
i , νx − dZw

〉
. (6)

This determines the tangent plane at y. In fact the following stronger statement holds:

Lemma 6. At the point (x0, y0, t0), νy = νx − dZw.

Proof. By Proposition 4, there is an interior ball B of radius 1/Z touching at X(x, t) and X(y, t). The outward normal
to B at these points agrees with the outward normal to the hypersurface X(M, t). In particular νy = Z(X(y, t) −
(X(x, t) − 1/Zνx)) = νx − dZw. �

The first derivatives with respect to x are slightly more complicated:

∂

∂xi
(φ − Z) = ∂φ

∂xi
− 2

d

(
hxp

i

〈
w,∂x

p

〉 − Z
〈
w,∂x

i

〉)
. (7)

The left, and therefore right, sides of Eqs. (6) and (7) vanish at (x0, y0, t0).
Now we differentiate further to find the second derivatives: Using the fact that the first derivatives of Z with respect

to y vanish, we find

∂2

∂yi∂yj
(φ − Z) = 2

d2

{〈
hy

ij νy, dZw − νx

〉 + Z
〈
∂

y
i , ∂

y
j

〉}

= 2

d2

(
Zδij − hy

ij

)
. (8)

Differentiating (6) with respect to the x coordinates gives the mixed partial derivatives:

∂2

∂xj ∂yi
(φ − Z) = − 2

d2

(
Zδ

p
j − hxp

j

)〈
∂

y
i , ∂x

p

〉 − 2

d

∂φ

∂xj

〈
w,∂

y
i

〉
. (9)

Differentiating (7) with respect to the x coordinates gives

∂2

∂xi∂xj
(φ − Z) = 2

d2

(
Zδij − hx

ij

) + Zhx
jpδpqhx

qi − 2

d
∇phx

ij δ
pq

〈
w,∂x

q

〉

− Z2hx
ij + 2

d

∂φ

∂xj

〈
w,∂x

i

〉 + 2

d

∂φ

∂xi

〈
w,∂x

j

〉 + ∂2φ

∂xi∂xj
. (10)

Finally we compute the time derivative:

∂

∂t
(φ − Z) = ∂φ

∂t
+ 2Fx

d2
− 2Fy

d2
〈νy, νx − dZw〉 − 2

d
〈w,∇Fx〉 − Z2Fx

= ∂φ

∂t
+ 2Fx

d2
− 2Fy

d2
− 2

d
〈w,∇Fx〉 − Z2Fx. (11)
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Combining Eqs. (8)–(11) and the inequalities at (x0, y0, t0) we obtain

0 � − ∂

∂t
(φ − Z) + Ḟ

ij
x

(
∂2

∂xi∂xj
(φ − Z) + 2

∂2

∂xi∂yj
(φ − Z) + ∂2

∂yi∂yj
(φ − Z)

)

= −∂φ

∂t
+ Ḟ

ij
x ∇i∇jφ + φḞ

ij
x hx

ipδpqhx
qj − 4Fx

d2
+ 4

d2
Ḟ

ij
x hx

iqδqp
〈
∂

y
j , ∂x

p

〉

+ 2Fy

d2
− 2

d2
Ḟ

ij
x hy

ij + 4Z

d2
Ḟ

ij
x δij − 4Z

d2
Ḟ

ij
x

〈
∂x
i , ∂

y
j

〉 + 4

d
Ḟ

ij
x

∂φ

∂xi

〈
w,∂x

j − ∂
y
j

〉
. (12)

Now note that, by the homogeneity of F , Fx = Ḟ
ij
x hx

ij , so that

−4Fx

d2
+ 4

d2
Ḟ

ij
x hx

iqδqp
〈
∂

y
j , ∂x

p

〉 = − 4

d2
Ḟ

ij
x hx

iqδqp
(
δjp − 〈

∂
y
j , ∂x

p

〉)
.

We can also write

4Z

d2
Ḟ

ij
x δij − 4Z

d2
Ḟ

ij
x

〈
∂x
i , ∂

y
j

〉 = 4Z

d2
Ḟ

ij
x

(
δij − 〈

∂
y
j , ∂x

i

〉)
.

To control the first two terms on the second line of (12) we use the following observation:

Lemma 7. If F is concave, then for any y 	= x we have

Ḟ
ij
x hy

ij � Fy.

If F is convex, then the reverse inequality holds.

Proof. Let A = hx and B = hy . Then concavity of F gives

F(B) � F(A) + ḞA(B − A) = F(A) + ḞA(B) − ḞA(A).

The homogeneity of F gives by the Euler relation that ḞA(A) = F(A), yielding

F(B) � ḞA(B)

as claimed. The inequality is reversed for F convex. �
Using these observations, together with the identity for ∂φ

∂xi coming from the vanishing of ∂
∂xi (φ − Z) in Eq. (7),

we find

0 � −∂φ

∂t
+ Ḟ

ij
x ∇i∇jφ + φḞ

ij
x hx

ipδpqhx
qj

+ 4

d2
Ḟ

ij
x (Zδip − hx

ip)δpq
(
δqj − 〈

∂
y
j , ∂x

q

〉 + 2
〈
w,∂x

q

〉〈
w,∂

y
j − ∂x

j

〉)
.

We now prove that the final term is non-positive, that is,

Lemma 8. The term Ḟ
ij
x (Zδip − hx

ip)δpq(δqj − 〈∂y
j , ∂x

q 〉 + 2〈w,∂x
q 〉〈w,∂

y
j − ∂x

j 〉) is non-positive.

Proof. We now choose the local coordinates {xi} and {yi} more carefully. Throughout we continue to compute at the
minimum (x0, y0, t0). Then we may choose ∂

y
n and ∂x

n to be coplanar with w, and ∂
y
i = ∂x

i for i = 1, . . . , n − 1. This
ensures that δqj − 〈∂y

j , ∂x
q 〉 + 2〈w,∂x

q 〉〈w,∂
y
j − ∂x

j 〉 is non-zero only when j = q = n.
By Proposition 4, there is an interior ball B which touches the hypersurface at X(x, t) and X(y, t) and has exterior

normal νx at X(x, t). By convexity of B we have 〈X(x, t) − X(y, t), ν(x, t)〉 � 0, and hence2 〈w,νx〉 � 0. Define
α ∈ [0,π/2) by 〈w,νx〉 = sinα. Note that we have one final degree of freedom in the coordinates: the directions of

2 In fact, if the normal is reversed – so that 〈w,νx 〉 � 0 – a similar argument yields the same conclusion, namely inequality (14). This is an
important observation, required in the proof of exterior non-collapsing for convex speeds below.
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∂x
n and ∂

y
n . Direct ∂x

n such that 〈w,∂x
n 〉 = −cosα. Now define θ ∈ [0,π/2) and the orientation of ∂

y
n by the conditions

〈∂y
n , ∂x

n 〉 = −cos 2θ and 〈∂y
n , νx〉 = sin 2θ . Then the vanishing of ∂yn(φ − Z) implies〈

∂
y
n , νx

〉 = 2〈w,νx〉
〈
∂

y
n ,w

〉 ⇒ sin 2θ cos 2α = sin 2α cos 2θ. (13)

That is, sin(2θ − 2α) = 0 and we find θ = α. The identity (13) now implies that 〈∂y
n ,w〉 = cos θ and we may compute

δqj − 〈
∂

y
j , ∂x

q

〉 + 2
〈
w,∂x

q

〉〈
w,∂

y
j − ∂x

j

〉 = 1 + cos(2θ) + 2 cos θ(−cos θ − cos θ)

= 2 cos2 θ − 4 cos2 θ = −2 cos2 θ � 0. (14)

Now consider the coefficient matrix Ḟ
ij
x (Zδip − hx

ip)δpq of the preceding term. Since Z(x0, y0, t0) = Z(x0, t0) �
κmax(x0, t0) := maxξ∈Sx0 M h(ξ, ξ), we find that the matrix Zδij −hx

ij is non-negative definite at (x0, y0, t0). In a frame

which diagonalizes the second fundamental form at x, Ḟx is also diagonal, so we see that Ḟ
ij
x (Zδip − hx

ip)δpq is
symmetric and non-negative definite. The result follows. �

We can now conclude that

0 � −∂φ

∂t
+ Ḟ

ij
x ∇i∇jφ + φḞ

ij
x hx

ipg
pq
x hx

qj ,

which completes the proof that Z is a viscosity subsolution of (3).
Now consider the case that F is convex with respect to hij . Then the flow (1) is equivalent to the flow

∂X

∂t
= −F∗(λ∗1, . . . , λ∗n)ν∗,

where ν∗ is the inward pointing unit normal, λ∗i = −λi are the principal curvatures with respect to ν∗, and F∗ is
defined by F∗(z) := −F(−z). We therefore have

Ḟ
ij∗ (λ∗1, . . . , λ∗n) = Ḟ ij (λ1, . . . , λn) and

F̈
pq,rs∗ (λ∗1, . . . , λ∗n) = −F̈ pq,rs(λ1, . . . , λn).

So F∗ is concave with respect to the ‘inward pointing’ second fundamental form. Now consider

Z∗ := 〈w,ν∗〉
d

= −Z.

Then the claim follows if we can show that Z = −Z∗ is a viscosity supersolution of (3). But this already follows
from the calculations above, since all of the viscosity inequalities are reversed, as are the inequalities of Lemma 7 and
Lemma 8; the latter following from the sign reversal of the term Zδip − hx

ip . �
5. Conclusions and remarks

We make some final remarks and mention here some immediate implications of the non-collapsing result:

(1) Interior non-collapsing for concave F rules out blow-up limits such as the product of the grim reaper with R
n−1

(if the initial hypersurface has positive F ), since this has the interior ball curvature Z asymptotically constant
while the speed F approaches zero, violating Corollary 3. The exterior non-collapsing does not appear to rule out
this possibility. Note that without the assumption of embeddedness, such singularities do indeed occur, even in
mean curvature flow.

(2) In the case of mean curvature flow where both interior and exterior non-collapsing hold, we are able to deduce
directly that for uniformly convex hypersurfaces all principal curvatures are comparable, implying a simple proof
of the Huisken and Gage–Hamilton theorems on the asymptotic behaviour for convex solutions [15,11]. If only
one-sided non-collapsing holds then we cannot immediately conclude such a strong result, but nevertheless the
convergence arguments in the convex case become rather easy: For example, in the case where F is convex, we
have Z(x, t)� εF (x, t) � εκmax(x, t), from which it follows that the circumradius (bounded by the reciprocal of
Z(x, t) for any x) is bounded by ε−1 times the inradius. No such result holds in the case where F is concave,
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however – this should not be surprising since there are examples of concave, homogeneous degree one functions F

such that convex hypersurfaces can evolve to be non-convex under Eq. (1) (see [10, Example 1]).
(3) As in the case of mean curvature flow, analogues of Corollary 3 hold with F replaced by any positive solution of

the linearized flow (3). In particular we can allow star-shaped initial hypersurfaces even if F is not positive, by
using the solution 〈X,ν〉 + 2tF of (3).

(4) If the assumption that M is connected is dropped, then some caution is required (similar considerations apply as
in the containment principle of Section 3): If the hypersurface X(M,0) is the boundary of a region Ω0 and the
normal is everywhere pointing out of Ω , then the proof goes through unaltered. However the result may not apply
if two connected components of the hypersurface bound a common region, with the normals pointing into the
region in one component and out on the other.
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