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Abstract

We show that for a large class of maps on manifolds of arbitrary finite dimension, the existence of a Gibbs–Markov–Young
structure (with Lebesgue as the reference measure) is a necessary as well as sufficient condition for the existence of an invariant
probability measure which is absolutely continuous measure (with respect to Lebesgue) and for which all Lyapunov exponents are
positive.
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1. Introduction and statement of results

1.1. Background and main definitions

In the 1960’s, Sinai and Bowen showed that all smooth uniformly hyperbolic dynamical systems admit a finite
Markov partition [7,35]. Sinai, Ruelle and Bowen then used this remarkable geometric structure, and the associated
symbolic coding of the system, to study the ergodic properties such as the rate of decay of correlations. Attempts to
extend this approach to systems with discontinuities and/or satisfying weaker non-uniform hyperbolicity conditions
by constructing countable Markov partitions has had some, but limited, success, see [25], in part due to the difficulty of
constructing such partitions and in part due to the difficulty of understanding the ergodic theory of countable subshifts,
though there have also been significant advances recently on this latter area [1,9,8,21,33,34].
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About ten years ago, L.-S. Young proposed an alternative geometric structure, which we shall call a Gibbs–Markov–
Young (GMY) structure, as a way of studying the ergodic properties of certain dynamical systems [37,38]. In her
pioneering papers, Young showed that a GMY structure contains information about several ergodic properties of the
system such as for example the rate of decay of correlations. She also showed that classical results for uniformly
hyperbolic systems could be recovered in this framework (in fact it is straightforward to show that any system with a
finite Markov partition also admits a GMY structure) and that GMY structures exist in more general situation where
the classical approach fails. Over the last ten years, this approach has proved to be one of the most successful strategies
for understanding the ergodic properties of large classes of systems, with some papers focusing on the consequences
of having a GMY structure, e.g. [12,19,28,27], and others focusing on the construction of such structures, e.g. [2,11,
13,14,18,38]. Notwithstanding these results, we still do not have a complete characterization of systems which admit
a GMY structure. A natural generalization of the results of Sinai and Bowen to the smooth non-uniformly hyperbolic
setting would be the following:

Conjecture. A dynamical system admits a GMY structure iff it is non-uniformly hyperbolic.

We remark that in general one thinks of non-uniformly hyperbolicity as having non-zero Lyapunov exponents with
respect to some invariant probability measure. Moreover the notion of GMY structure presupposes a (not necessarily
invariant) reference measure. In this paper we will focus on the reference measure as being Lebesgue and the invariant
probability measure being absolutely continuous with respect to Lebesgue. In this setting, the main purpose of this
paper is to prove this conjecture in the endomorphism case in which all directions are (non-uniformly) expanding, i.e.
when all the Lyapunov exponents are positive. We shall concentrate first of all on the case of C2 endomorphisms (with
and without critical points), but our techniques also give us an almost complete characterization result in the expanding
case admitting singularities with unbounded derivative and also a slightly different almost complete characterization
in the case in which the map has both critical points and singularities.

To give the precise definitions suppose that M is a compact Riemannian manifold of dimension d � 1, Leb
(Lebesgue measure) is the normalized Riemannian volume on M and f : M → M is a measurable map which is
differentiable almost everywhere (we shall be more specific about the regularity assumptions in the statement of
results below).

Definition 1.1. Given a ball � ⊆ M , we say that F : � → � is an induced map if F(x) = f R(x)(x) and R : � → N

is an inducing time function with the property that f R(x)(x) ∈ � whenever x ∈ �. We say that an induced map
F : � → � is GMY if there exists a (Leb mod 0) partition P of � into open subsets such that R is constant on each
element U ∈P and F |U is a uniformly expanding diffeomorphism onto � with uniformly bounded volume distortion:
more precisely, there are 0 < κ < 1 and K > 0 such that for all U ∈P and all x, y ∈ U ,

(i) ‖DF(x)−1‖ < κ ;

(ii) log | detDF(x)
detDF(y)

| � K dist(F (x),F (y)).

Moreover, if the inducing time function R is integrable with respect to Leb, then we say that the induced map has
integrable return times. We say that f admits a GMY structure if it admits a GMY induced map with integrable return
times.

We remark that as we are considering Lebesgue as the reference measure, this definition only includes a special
case of the more general definition given by Young in [38]. In particular if not all directions are expanding or if the
reference measure is not Lebesgue, this definition has to be generalized (it may be necessary for example, to induce
on a Cantor set, see [37]), but what we give here is sufficient for our purposes.

Definition 1.2. We say that an invariant probability measure μ is expanding if all its Lyapunov exponents are positive,
i.e. for μ almost every x and every v ∈ TxM \ {0},

λ(x, v) := lim sup
n→∞

1

n
log

∥∥Df n(x)v
∥∥ > 0. (1)
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1.2. Geometry of expanding measures

We can now state our result in the simplest but already non-trivial case. Here and in the rest of the paper we shall
use the standard abbreviation of the term “absolutely continuous (with respect to Lebesgue) invariant probability” to
acip.

Theorem 1. Let f : M → M be a C2 local diffeomorphism. Then f admits a GMY structure if and only if it admits
an ergodic expanding acip.

The C2 local diffeomorphisms can be non-uniformly expanding (and strictly not uniformly expanding) in non-
trivial ways. Our result applies in particular to the class of examples of expanding local diffeomorphisms constructed
in [4]. Nevertheless, many interesting examples are of course not local diffeomorphisms but have critical points (for
example one-dimensional Collet–Eckmann maps or higher dimensional Viana maps). Our results apply to such cases
under some very mild non-degeneracy conditions on the set of critical points. These are analogous to the notion of a
“non-flat critical point” in the one-dimensional setting, which is essentially a point where at least some higher order
derivative does not vanish.

Definition 1.3. We say that x is a critical point if Df (x) is not invertible. We denote the set of critical points by C
and, for every n� 0, let Cn = ⋃n

i=0 f −n(C) and let dist(x,Cn) denote the distance between the point x and the set Cn.
We say that a critical set C is non-degenerate if for every n � 0 there are constants B > 1 and β,β ′ > 0 (possibly
depending on n) such that for every x ∈ M \ Cn,

(C1) B−1 dist(x,Cn)
β � ‖Df (x)−1‖−1 � B dist(x,Cn)

β ′
.

Moreover, the functions log |detDf n| and log‖(Df n)−1‖ are locally Lipschitz at points x ∈ M \ Cn: for every x, y ∈
M \ Cn with dist(x, y) < dist(x,Cn)/2 we have

(C2) |log‖Df n(x)−1‖ − log‖Df n(y)−1‖| � B dist(x, y)/dist(x,Cn)
β ;

(C3) |log |detDf n(x) − log |detDf n(y)|| � B dist(x, y)/dist(x,Cn)
β .

Notice that ‖Df (x)−1‖−1 is the minimum expansion of Df in any direction.

Theorem 2. Let f : M → M be a C2 map with a non-degenerate critical set. Then f admits a GMY structure if and
only if it admits an ergodic expanding acip.

Critical points are not the only way that maps can fail to be local diffeomorphisms. Many interesting and rele-
vant examples, also for applications, arise naturally with discontinuities and/or singularities (points near which the
derivative is unbounded).

Definition 1.4. We say that x is a singular point if Df (x) does not exist, including the case in which f is discontinuous
at x. We say that a set of singular points C is non-degenerate if Leb(C) = 0 and, for every n � 0, there are constants
B > 1 and β,β ′ > 0 (possibly depending on n) such that for every x ∈ M \ Cn, conditions (C2), (C3) of the previous
definition are satisfied, and condition (C1) is replaced by

(C1’) B−1 dist(x,Cn)
−β ′ � ‖Df n(x)‖ � B dist(x,Cn)

−β .

For maps which have a non-degenerate singular set we get an almost complete characterization, the only gap
occurring due to the fact that a GMY structure does not necessarily imply the following integrability condition.

Definition 1.5. We say that μ is regularly expanding if it is expanding and in addition we have

log
∥∥Df −1

∥∥ ∈ L1(μ). (2)
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Notice that condition (2) implies in particular that the limsup in (1) is actually a limit. We remark also that the
integrability condition (2) is always satisfied in the setting of Theorems 1 and 2. This is immediate in the local
diffeomorphism case since ‖Df ‖ and ‖Df −1‖ are uniformly bounded above and below, and non-trivial in the case
of C2 maps where it is proved in [31, Lemma 4.2], based on [26, Remark 1.2]. In the C2 setting (2) implies also the
integrability of log‖Df ‖ since ‖Df ‖ is bounded above.

Theorem 3. Let f : M → M be a C2 map outside a non-degenerate singular set. If f admits a GMY structure then it
admits an ergodic expanding acip. Conversely, if f admits an ergodic regularly expanding acip then it admits a GMY
structure.

Finally, there are also many systems of interest which have a combination of critical points and singularities and
possibly discontinuities near which the derivative is bounded away from zero and infinity (notice that this last situation
is not included in the definitions of critical and singular points given above). These cases are actually quite subtle and
the interaction between the critical and singular points can give rise to some significant technical issues.

Definition 1.6. We say that f admits a non-degenerate critical/singular set C if it is a C2 local diffeomorphism
outside a set C on which Df (x) is not invertible or does not exist (including the case in which f is discontinuous
at x) such that Leb(C) = 0 and, for every n � 0, there are constants B > 1 and β > 0 such that for every x ∈ M \ Cn,
conditions (C2), (C3) above are satisfied, and condition (C1) or (C1’) is replaced by

(C1”) B−1 dist(x,Cn)
β � ‖Df n(x)−1‖−1 � ‖Df n(x)‖ � B dist(x,Cn)

−β .

Theorem 4. Let f : M → M be a C2 local diffeomorphism outside a non-degenerate critical/singular set C. If f

admits a GMY structure then it admits an ergodic expanding acip. Conversely, if f admits an ergodic regularly
expanding acip μ satisfying logd(x,Cn) ∈ L1(μ) then it admits a GMY structure.

Due to the very weak conditions on the critical set, we allow here both critical points and singularities and even
allow the same point to be critical in one direction and singular in the other, we need to assume the integrability of the
logarithm of the distance function to the critical set.

1.3. The liftability problem

Our results can also be viewed in the context of the so-called “liftability problem”. It is a classical result that a
GMY map F admits an ergodic absolutely continuous invariant probability measure (acip) ν with bounded density;
see e.g. [37, Lemma 2] but the result goes back, at least in its idea, to the 50’s and is often considered a Folklore
Theorem. It is then possible to define a measure

μ =
∑∞

j=0 f
j∗ (ν|{R > j})∑∞

j=0 ν({R > j}) , (3)

which is seen by standard arguments to be f -invariant and absolutely continuous. The integrability condition with
respect to the Riemannian volume and the bounded density of ν imply the integrability of R with respect to ν and thus
guarantees that the denominator is finite. It follows that μ is an acip for f .

Definition 1.7. If F is an induced map of f and ν and μ are F -invariant and f -invariant probability measures
respectively, related by the formula (3), then we say that μ is the projection of ν or that ν is the lift of μ to the induced
map.

A natural question is which measures can be obtained in this way, i.e. which measures admit a lift to a GMY
induced map. A few papers have addressed the issue from various points of view, see for example [10,24,29,30,39]
and in particular [17] in which a one-dimensional version of some of the results presented here are obtained, and [32]
in which the liftability problem is studied in great generality (not just absolutely continuous measures) under some
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sets of assumptions different from, but related to, the assumptions of this paper. One direction of the implications
stated in each of the theorems above can be viewed and formulated in this light. Thus, for example we have:

Theorem 5. Let f : M → M be a C2 map with a non-degenerate critical set. Then every ergodic expanding acip is
liftable.

To see how Theorem 5 follows from Theorem 2 (and the corresponding liftability statements in the other settings
follow from the corresponding theorems) recall first of all that, under the assumption of the existence of an expand-
ing acip μ, Theorem 2 implies the existence of a GMY induced map. Let ν be the absolutely continuous ergodic
F -invariant measure for the GMY map with integrable return time function R. Thus we just need to discuss the rela-
tionship between the original measure μ and the lift of the measure ν to the induced GMY map. From [37, Lemma 2]
it follows that ν has density with respect to Lebesgue measure on � bounded from above and below by positive con-
stants. Then we easily get that R is also Lebesgue integrable. Keeping in mind that this return time is defined in terms
of f N we define R̃ = NR and the corresponding f -invariant probability measure μ̃ by (3). It just remains to show
that μ̃ = μ. This follows from the standard fact that we have that μ̃ and μ are both ergodic absolutely continuous
f -invariant measures which contain � in their support and therefore they must be equal.

1.4. GMY structure implies expanding acip

One direction of the implications mentioned in our results is relatively straightforward, namely the fact that a GMY
structures imply the existence of an expanding acip. We have already mentioned in the previous paragraph the classical
arguments which show that a GMY structure implies the existence of an acip μ, and it thus only remains to show that
μ has all positive Lyapunov exponents. Let Rn = Rn(x) denotes the number of iterations of f required for x to have
n returns under the induced map F . Then we can write

1

n
log

∥∥DFn(x)v
∥∥ = 1

n
log

∥∥Df Rn(x)(x)v
∥∥ = Rn

n

1

Rn

log
∥∥Df Rn(x)v

∥∥.

By the integrability of the return times we have Rn/n converging to some positive constant, and therefore by the
positivity of the Lyapunov exponent for F it follows that the above equation is positive as n → ∞ and this implies
that f also has positive Lyapunov exponent.

1.5. Technical remarks and overview of the paper

In the previous paragraph we have already discussed one direction of the implications in our main theorems. Thus,
our full attention in the body of the paper is devoted to the construction of a GMY structure relying only on the
assumption of the existence of an expanding acip. This construction consists of two main steps: the construction of
the GMY induced map and the control of the return times in order to ensure integrability. In both of these steps we
achieve, over and above the novelty of the results, major simplification and greater conceptual clarity in comparison
to most existing approaches for similar constructions in other settings. Indeed, in most papers in which a GMY
structure is obtained e.g. [5,11,15,16,20,22,38] the construction is quite involved and technical, using a mixture of
combinatorial, analytic and probabilistic arguments. Also, in these papers significantly stronger assumptions are used
which imply relatively fast rates of decay (e.g. exponential or polynomial) of the inducing time function, depending
on various additional assumptions on the map. In our case, we are here able to implement what is essentially the
most naive strategy in order to achieve our goal, namely to choose some small ball � and iterate it until some subset
of � covers � in the right way. This subset then becomes one of the elements of the final partition and we repeat
the procedure with the remaining points. A crucial tool used here to ensure that all regions of � eventually grow
sufficiently large is the notion of hyperbolic time. This idea which was first applied in the setting of non-uniformly
expanding maps in [3] and has since then been widely applied in a variety of settings including the construction of
induced GMY maps in some situations such as those considered in [5,20] but not in many other constructions such as
[38,11,22,15,16]. A major benefit of our approach is that it gives a particularly efficient algorithm. This allows us to
obtain the integrability of the return times with no particular assumptions. Similar arguments and related results have
been obtained by Pinheiro in a previous paper [31] and a more general recent preprint [32].
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A far as the organization of the paper is concerned, notice that the statement of Theorem 4 concerning sufficient
conditions for the existence of a GMY map, includes Theorems 1, 2 and 3 as special cases (we shall show that the
additional integrability condition logd(x,Cn) ∈ L1(μ) assumed explicitly in Theorem 4 is automatically satisfied in
the other cases, see Remark 2.6). We shall therefore concentrate on the proof of the most general setting as formulated
in Theorem 4. In Section 2 we show that some power of f satisfies some stronger expansion condition and also some
slow recurrence to the singular set. These are the standard conditions which are usually assumed in the setting of
so-called non-uniformly expanding maps. In Section 3 we recall some known properties of non-uniformly expanding
maps including the crucial notion of hyperbolic time. We also prove the important fact that the support of an invariant
measure for a non-uniformly expanding map contains a ball. This is important in our setting because, unlike the
situation in other papers such as [5,20,31], we are not assuming that the map is non-uniformly expanding on the
whole manifold. In Section 4 we give the complete construction of the induced GMY map.

We mention here some key differences between our construction and that of [5,20,31]. One of the shortcomings
of [5] was a relatively inefficient construction which led to significantly larger inducing times than necessary, thus
allowing only polynomial estimates to be obtained. This aspect of the construction was improved in [20,31] where a
global partition of the manifold was introduced, leading to significantly more efficient construction where the inducing
times are essentially optimal. This strategy cannot be used here since our assumptions do not necessarily imply the
map to be non-uniformly expanding on the whole attractor. We therefore return to a more local construction but
develop a new strategy to improve the effectiveness of the inducing time estimates. Finally, in Subsection 4.4 we
prove the integrability of the inducing times for the constructed GMY map.

2. Non-uniform expansion and slow recurrence

In this section we prove that there exists some subset A ⊆ M on which some power of f satisfies some quite strong
expansivity and recurrence conditions.

Definition 2.1. Let f : M → M be a C2 local diffeomorphism outside a non-degenerate critical/singular set C. We
say that f is non-uniformly expanding (NUE) on a set A ⊂ M if there is λ > 0 such that for every x ∈ A one has

lim inf
n→+∞

1

n

n∑
j=1

log
∥∥Df

(
f j (x)

)−1∥∥ < −λ.

We say that f has slow recurrence (SR) if given any ε > 0 there exists δ > 0 such that for every x ∈ A we have

lim sup
n→+∞

1

n

n∑
j=1

− log distδ
(
f j (x),C

)
� ε,

where distδ(x,C) = 1 if dist(x,C) � δ and dist(x,C) otherwise.

The main result of this section is that there exists a set A on which some power of f satisfies the two conditions
(NUE) and (SR).

Proposition 2.2. Let μ be an ergodic regularly expanding acip. Then, for all N large enough, f N satisfies NUE and
SR on a forward f N -invariant set A with a positive Lebesgue measure subset of points whose f N -orbit is dense in A.

Proposition 2.2 allows us to reduce the proof of our main theorems to the proof of the following:

Theorem 6. Let f : M → M be a C2 local diffeomorphism outside a non-degenerate critical/singular set C. Assume
that f satisfies NUE and SR on a forward invariant set A with a positive Lebesgue measure subset of points whose
orbit is dense in A. Then f admits a GMY structure.

Theorem 6 and Proposition 2.2 imply a GMY structure F : � → � for f N with return time function R. Clearly this
immediately implies also a GMY structure F̃ : � → � for f by simply taking a new return time function R̃ = NR.
The integrability of R implies the integrability of R̃ and this therefore implies Theorem 4.
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We shall prove Theorem 6 in Sections 3 and 4. In the remaining part of this section we prove Proposition 2.2. We
first prove two auxiliary lemmas which are themselves of independent interest.

Lemma 2.3. Let μ be an ergodic regularly expanding acip. For all sufficiently large N ,∫
log

∥∥(
Df N

)−1∥∥dμ < 0. (4)

Proof. By the integrability condition (2), the subadditive ergodic theorem, and condition (1) on the positivity of all
Lyapunov exponents, there exists λ > 0 such that for μ almost every x we have

lim
n→∞

1

n
log

∥∥Df n(x)−1
∥∥ = −λ. (5)

In fact this λ may be chosen precisely as the smallest Lyapunov exponent, see e.g. [6, Addendum 4]. We remark that
since we are applying here the subadditive ergodic theorem we only have the inequality limn→∞ 1

n
log‖Df n(x)−1‖�∫

log‖Df −1‖dμ and therefore this does not necessarily imply
∫

log‖Df −1‖dμ < 0. That is why we need to take
some higher iterate of f .

We define the sequence of sets

BN = {
x: log

∥∥Df N(x)−1
∥∥ > −λN/2

}
and write∫

log
∥∥(

Df N
)−1∥∥dμ =

∫
M\BN

log
∥∥(

Df N
)−1∥∥dμ +

∫
BN

log
∥∥(

Df N
)−1∥∥dμ. (6)

From (5) and the definition of BN we have that μ(BN) → 0 as N → ∞ and so for sufficiently large N , assuming
without loss of generality that μ(M) = 1, we have∫

M\BN

log
∥∥Df N(x)−1

∥∥dμ� −λ

2
N

(
1 − μ(BN)

)
�−λ

3
N. (7)

It is therefore sufficient to prove that the second integral on the right hand side of (6) is not too large. This is intuitively
obvious since the measure of the BN is going to zero, but we must make sure that this is not compensated by the fact
that the integrand is possibly increasing in n. We shall use the following

Sublemma 2.4. Let ϕ ∈ L1(μ) and let (Bn)n be a sequence of sets with μ(Bn) → 0 as n → ∞. Then

1

n

n−1∑
j=0

∫
Bn

ϕ ◦ f j dμ → 0, as n → ∞.

Proof. From the L1 ergodic theorem (see e.g. [36, Corollary 1.14.1]) we have

1

n

n−1∑
j=0

ϕ ◦ f j L1−→ ϕ∗, as n → ∞. (8)

Then we can write∣∣∣∣∣1

n

n−1∑
j=0

∫
Bn

ϕ ◦ f j dμ −
∫
Bn

ϕ∗ dμ

∣∣∣∣∣ =
∣∣∣∣∣
∫ (

1

n

n−1∑
j=0

ϕ ◦ f j dμ − ϕ∗
)

χBn dμ

∣∣∣∣∣
�

∫ ∣∣∣∣∣1

n

n−1∑
ϕ ◦ f j dμ − ϕ∗

∣∣∣∣∣dμ.
j=0
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It follows from (8) that this last quantity converges to 0 when n → ∞. Since we also have
∫
Bn

ϕ∗dμ → 0, when
n → ∞, the conclusion then holds. �

Returning to the proof of the lemma, by the chain rule we have

∫
BN

log
∥∥Df N(x)−1

∥∥dμ�
N−1∑
j=0

∫
BN

log
∥∥Df

(
f j (x)

)−1∥∥dμ =: NbN. (9)

Applying Sublemma 2.4 with ϕ = log‖(Df )−1‖ we get that bN → 0 when N → ∞. Therefore, substituting (7) and
(9) into (6) we obtain the desired conclusion. �

Next we identify possible candidates for the set A in the proposition. The existence of A is based on the following
result on the existence of finitely many ergodic components for powers of f .

Lemma 2.5. Let μ be an ergodic invariant probability measure for f . Given N � 1, there are 1 � � � N and f N -
invariant Borel sets C1, . . . ,C� such that:

(1) {C1, . . . ,C�} is a partition (μ-mod 0) of M with μ(Cj ) � 1/N for each 1 � j � �;
(2) (f N ,μ|Cj ) is ergodic for each 1 � j � �.

Proof. We start by proving that if C is an f N -invariant subset with positive measure, then μ(C) � 1/N . Indeed,
assume by contradiction that μ(C) < 1/N . Consider the f -invariant set

N−1⋃
j=0

f −j (C).

We have that

0 < μ

(
N−1⋃
j=0

f −j (C)

)
�

N−1∑
j=0

μ
(
f −j (C)

)
< 1.

This gives a contradiction, because the set is f -invariant and μ is ergodic.
Now, if (f N ,μ) is not ergodic, then we may decompose M into a union of two f N -invariant disjoint sets with

positive measure. If the restriction of μ to some of these sets is not ergodic, then we iterate this process. Note that this
must stop after a finite number of steps with at most N disjoint subsets, since f N -invariant sets with positive measure
have its measure bounded from below by 1/N . �

For a given N � 1 we shall refer to the sets Ai = supp(μ|Ci), with 1 � i � � and A1, . . . ,A� given by the previous
lemma, as the ergodic components of (f N ,μ). Observe that if μ is ergodic with respect to f N , then it has exactly one
ergodic component. We are now ready to complete the proof of the proposition.

Proof of Proposition 2.2. Choosing N sufficiently large, Lemmas 2.3 and 2.5 imply that there is some ergodic
component Ai of (f N,μ) such that

∫
Ai

log‖(Df N)−1‖dμ < 0. Thus, by Birkhoff’s ergodic theorem for μ almost
every x ∈ Ai one has

lim
n→∞

1

n

n−1∑
j=0

log
∥∥Df N

(
f Nj (x)

)−1∥∥ =
∫
Ai

log
∥∥(

Df N
)−1∥∥dμ < 0.

This proves NUE for f N for μ almost every point in the set Ai .
Let us now prove the slow recurrence condition SR for f N in the same ergodic component Ai . By assumption we

have log dist(·,CN) ∈ L1(μ). Therefore, by the monotone convergence theorem we have
∫
Ai

− log distδ(·,CN)dμ → 0,
when δ → 0. So, by Birkhoff’s ergodic theorem, given any ε > 0 there exists δ > 0 such that
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lim
n→∞

1

n

n−1∑
j=0

− log distδ
(
f Nj ,CN

) =
∫
Ai

− log distδ(·,CN)dμ � ε

for μ almost every x ∈ Ai which is exactly conditions (SR).

Remark 2.6. The integrability condition log dist(·,CN) ∈ L1(μ) is assumed explicitly in the statement of Theo-
rem 4, but not in the settings of Theorems 1, 2 and 3, where it actually follows from the other assumptions, in
particular the non-degeneracy conditions on the critical and singular sets together with the integrability condition
log‖Df −1‖ ∈ L1(μ) stated in (2). Indeed, log dist(·,CN) ∈ L1(μ) is trivially satisfied in the setting of local dif-
feomorphisms. In the presence of critical points, condition (C1) implies ‖Df (x)−1‖−1 � d(x,CN)β

′
which implies

‖Df (x)−1‖ � d(x,CN)−β ′
and thus

∫
log‖Df −1‖dμ � −β ′ ∫ logd(x,CN)dμ. Then from condition (2) we get

− ∫
logd(x,CN)dμ < +∞ which gives

∫
log d(x,CN)dμ > −∞ which implies log dist(·,CN) ∈ L1(μ). By a com-

pletely analogous argument, in the presence of singular points condition (C1’) implies ‖Df ‖ � d(x,CN)−β ′
which

implies log‖Df (x)‖� −β ′ log d(x,CN) and thus log d(x,CN) ∈ L1(μ) once again.

Concerning the set of points with dense orbits in Ai , we know that almost all orbits in the support of an ergodic
measure have dense orbit in the support of the measure, see e.g. [23, Proposition 4.1.18], and therefore have full μ

measure in Ai .
To complete the proof we define A′ as the set of points in M for which NUE and SR hold and let A := A′ ∩ Ai .

Then since both A′ and Ai are f N invariant, also A is f N invariant. Moreover, μ(A) = μ(Ai) > 0 and so, by absolute
continuity, the Lebesgue measure of A is positive. Thus the set A satisfies the required properties. This completes the
proof of the proposition. �
3. Choice of inducing domain

We now begin the proof of Theorem 6. Assume that f satisfies NUE and SR on a forward invariant set A with
positive Lebesgue measure subset of points whose orbit is dense in A. This section is devoted to the proof of the
following result and its corollary, which will be used for the choice of our domain � of definition for the induced
map F .

Proposition 3.1. For sufficiently small δ1 > 0, there is a ball B of radius δ1/4 such that Leb(B \ A) = 0. Moreover,
there are p ∈ B and N0 ∈N such that

⋃N0
j=0 f −j {p} is δ1/4-dense in A and disjoint from the critical/singular set C.

A similar statement was proved in [4, Lemma 5.6] under some stronger assumptions in the definition of condition
NUE. We fix once and for all a point p ∈ A and N0 ∈ N satisfying the conclusions of Proposition 3.1, i.e. such that
the set of preimages of p up to N0 is δ1/4-dense in A. For sufficiently small

δ0 � δ1

where the conditions on δ0 will be determined below, we define the (Leb mod 0) subsets of A

� = B(p, δ0) and �′ = B(p,2δ0). (10)

As a relatively straightforward corollary of Proposition 3.1 we shall prove that every ball of sufficiently large size, i.e.
of radius at least δ1, has a subset which maps diffeomorphically with bounded distortion onto �′ within a uniformly
bounded number of iterations.

Corollary 3.2. If δ0 is sufficiently small, then there are constants D0, K0 such that for any ball B̃ of radius δ1 with
Leb(B̃ \ A) = 0 there are an open set V ⊂ B̃ and an integer 0 � m� N0 for which:

(1) f m maps V diffeomorphically onto �′;
(2) for each x, y ∈ V ,

log

∣∣∣∣detDf m(x)

detDf m(y)

∣∣∣∣� D0 dist
(
f m(x), f m(y)

);
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(3) for each 0 � j � m and for all x ∈ f j (V ) we have

K−1
0 �

∥∥Df j (x)
∥∥,

∥∥(
Df j (x)

)−1∥∥,
∣∣detDf j (x)

∣∣ � K0;
in particular f j (V ) ∩ C = ∅.

To prove Proposition 3.1 we introduce the fundamental notion of a hyperbolic time which will play a key role also
in subsequent sections. This notion in the form in which we formulate it here was first defined and applied in [3]. We
fix once and for all B > 1 and β > 0 as in Definition 1.4, and take a constant b > 0 such that 2b < min{1, β−1}.

Definition 3.3. Given 0 < σ < 1 and δ > 0, we say that n is a (σ, δ)-hyperbolic time for x ∈ M if for all 1 � k � n,

n∏
j=n−k+1

∥∥Df
(
f j (x)

)−1∥∥� σk and distδ
(
f n−k(x),C

)
� σbk. (11)

In the case C = ∅ the definition of hyperbolic time reduces to the first condition in (11).

We denote

Hj(σ, δ) = {
x ∈ M: j is a (σ, δ)-hyperbolic time for x

}
.

A fundamental consequence of properties NUE and SR is the existence of hyperbolic times as in the following result
whose proof can be found in [4, Lemma 5.4].

Lemma 3.4. There are δ > 0, 0 < σ < 1 and θ > 0 such that

lim sup
n→∞

1

n
#
{
1 � j � n: x ∈ Hj(σ, δ)

}
� θ,

for every x ∈ A.

From now on we consider δ, σ, θ fixed as in Lemma 3.4 and let Hj = Hj(δ, σ ).

Remark 3.5. It easy to see that if x ∈ Hj for a given j ∈ N, then f i(x) ∈ Hm for any 1 � i < j and m = j − i.

The next lemma gives the main properties of the hyperbolic times such as uniform backward contraction and
bounded distortion. For the proof see [4, Lemma 5.2, Corollary 5.3].

Lemma 3.6. There exist δ1,C1 > 0 such that if n is a (σ, δ)-hyperbolic time for x, then there is neighborhood Vn of x

such that:

(1) f n maps Vn diffeomorphically onto a ball of radius δ1 around f n(x);
(2) for every 1 � k � n and y, z ∈ Vn,

dist
(
f n−k(y), f n−k(z)

)
� σk/2 dist

(
f n(y), f n(z)

);
(3) for any y, z ∈ Vn,

log
|detDf n(y)|
|detDf n(z)| � C1 dist

(
f n(y), f n(z)

)
.

We call the sets Vn hyperbolic pre-balls and their images f n(Vn) hyperbolic balls. The latter are actually balls of
radius δ1 > 0. Notice that δ1 > 0 can be taken arbitrarily small for a fixed choice of δ > 0.

Lemma 3.7. Assume that 2δ1 < δ < 1. There is C2 > 0 such that if n is a (σ, δ)-hyperbolic time for x and Vn is the
corresponding hyperbolic pre-ball, then:
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(1) for every 1 � k � n and y ∈ Vn,

dist
(
f k(y),C

)
� 1

2
min

{
δ, σ b(n−k)

};
(2) for any Borel sets Y,Z ⊂ Vn,

1

C2

Leb(Y )

Leb(Z)
� Leb(f n(Y ))

Leb(f n(Z))
� C2

Leb(Y )

Leb(Z)
;

(3) there is τn > 0 such that for any x ∈ Hn one has B(x, τn) ⊂ Vn. In particular, every Hn is covered by a finite
number of hyperbolic pre-balls.

Proof. Since n is a hyperbolic time for x, then using the second item of Lemma 3.6 we obtain

dist
(
f k(y),C

)
� dist

(
f k(x),C

) − dist
(
f k(x), f k(y)

)
� dist

(
f k(x),C

) − δ1σ
(n−k)/2. (12)

Now, if dist(f k(x),C) = distδ(f k(x),C), recalling that we have taken b < 1/2, then using (12) and the definition of
hyperbolic time we get

dist
(
f n−k(y),C

)
� 1

2
σb(n−k),

as long as δ1 < 1/2. Otherwise, we have dist(f k(x),C) � δ, and so

dist
(
f k(y),C

)
� 1

2
δ,

as long as δ1 < δ/2. This proves the first item.
Let us now prove the second item. By a change of variables induced by f n we may write

Leb(f n(Y ))

Leb(f n(Z))
=

∫
Y
|detDf n(y)|d Leb(y)∫

Z
|detDf n(z)|d Leb(z)

= |detDf n(y0)|
∫
Y

| detDf n(y)
detDf n(y0)

|d Leb(y)

|detDf n(z0)|
∫
Z

| detDf n(z)
detDf n(z2)

|d Leb(z)
,

where y0 and z0 are chosen arbitrarily in Y and Z, respectively. Using the third item of Lemma 3.6 we easily find
uniform bounds for this expression.

To prove the third item, we observe that from the first item we can take a neighborhood Nn of the critical/singular
set such that Vn ⊂ M \ Nn. Hence, there is a constant Kn depending only on the hyperbolic time n such that
‖Df n|Vn‖� Kn and so the result follows. �
Proof of Proposition 3.1. For the first part of the proposition, it is enough to prove that there exist balls of radius
δ1/4 where the relative measure of A is arbitrarily close to one. Since the set of points with infinitely many hyperbolic
times is positively invariant and A also is positively invariant, we may assume, without loss generality, that every point
in A has infinitely many hyperbolic times. Let ε > 0 be some small number. By regularity of Leb, there is a compact
set Ac ⊂ A and open set A0 ⊃ A such that

Leb(A0 \ Ac) < ε Leb(A). (13)

Assume that n0 is large enough so that for every x ∈ Ac, any hyperbolic pre-ball Vn(x) with n� n0 is contained in A0.
Let Wn(x) be a part of Vn(x) that is sent diffeomorphically by f n onto the ball B(f n(x), δ1/4). By compactness there
are x1, . . . , xr ∈ Ac and n(x1), . . . , n(xr) � n0 such that

Ac ⊂ Wn(x1)(x1) ∪ · · · ∪ Wn(xr )(xr ). (14)

For the sake of notational simplicity we shall write for each 1 � i � r ,

Vi = Vn(xi )(xi), Wi = Wn(xi)(xi) and ni = n(xi).
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Let n∗
1 < n∗

2 < · · · < n∗
s be the distinct values taken by the ni ’s. Let I1 ⊂N be a maximal subset of {1, . . . , r} such that

for each i ∈ I1 both ni = n∗
1, and Wi ∩ Wj = ∅ for every j ∈ I1 with j �= i. Inductively, we define Ik for 2 � k � s

as follows: supposing that I1, . . . , Ik−1 have already been defined, let Ik be a maximal set of {1, . . . , r} such that for
each i ∈ Ik both ni = n∗

k , and Wi ∩ Wj = ∅ for every j ∈ I1 ∪ · · · ∪ Ik with i �= j .
Define I = I1 ∪ · · · ∪ IS . By construction we have that {Wi}i∈I is a family of pairwise disjoint sets. We claim that

{Vi}i∈I is a covering of Ac. To see this, recall that by construction , given any Wj with 1 � j � r , there is some i ∈ I

with n(xi) � n(xj ) such that Wxj
∩ Wxi

�= ∅. Taking images by f n(xi ) we have

f n(xi )(Wj ) ∩ B
(
f n(xi )(xi), δ1/4

) �= ∅.

It follows from Lemma 3.6, item (2) that

diam
(
f n(xi )(Wj )

)
� δ1

2
σ (n(xj )−n(xi ))/2 � δ1

2
,

and so

f n(xi )(Wj ) ⊂ B
(
f n(xi )(xi), δ1

)
.

This gives that Wj ⊂ Vi . We have proved that given any Wj with 1 � j � r , there is i ∈ I so that Wj ⊂ Vi . Taking
into account (14), this means that {Vi}i∈I is a covering of Ac.

By Lemma 3.6, item (3) one may find τ > 0 such that

Leb(Wi) � τ Leb(Vi), for all i ∈ I.

Hence,

Leb

(⋃
i∈I

Wi

)
=

∑
i∈I

Leb(Wi) � τ
∑
i∈I

Leb(Vi) � τ Leb

(⋃
i∈I

Vi

)
� τ Leb(Ac).

From (13) one deduces that Leb(Ac) > (1 − ε)Leb(A). Noting that the constant τ does not depend on ε, choosing
ε > 0 small enough we may have

Leb

(⋃
i∈I

Wi

)
>

τ

2
Leb(A). (15)

We are going to prove that

Leb(Wi \ A)

Leb(Wi)
<

2ε

τ
, for some i ∈ I. (16)

This is enough for our purpose, since taking B = f n(xi )(Wi) we have by invariance of A and Lemma 3.6, item (3)

Leb(B \ A)

Leb(B)
� Leb(f n(xi )(Wi \ A))

Leb(f n(xi )(Wi))
� C0

Leb(Wi \ A)

Leb(Wi)
= 2C0ε

τ
,

which can obviously be made arbitrarily small. From this one easily deduces that there are disks of radius δ1/4 where
the relative measure of A is arbitrarily close to one.

Finally, let us prove (16). Assume, by contradiction, than it does not hold. Then, using (13) and (15)

ε Leb(A) > Leb(A0 \ Ac)� Leb

((⋃
i∈I

Wi

)
\ A

)
� 2ε

τ
Leb

(⋃
i∈I

Wi

)
� ε Leb(A).

This gives a contradiction and proves the first part of the proposition.
For the second part, since we are assuming that f is a local diffeomorphism up to a set of zero Lebesgue measure,

then the set

B =
⋃
n�0

f −n

( ⋃
m�0

f m(C)

)

has Lebesgue measure equal to zero. On the other hand, there is a positive Lebesgue measure subset of points in
A with dense orbit. Thus there must be some point q ∈ A \ B with dense orbit in A. Take N0 ∈ N for which
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q,f (q), . . . , f N0(q) is δ1/4-dense in A and f N0(q) ∈ B . The point p = f N0(q) satisfies the conclusion of the
lemma. �
Proof of Corollary 3.2. The proof is similar to [5, Lemma 2.6], though we repeat it here in order to clarify the fact
that also it holds in the situation where A is not necessarily equal to M . Since

⋃N0
j=0 f −j {p} is disjoint from C, then

choosing δ0 sufficiently small we have that each connected component of the preimages of B(p,2δ0) up to time N0

is bounded away from the critical/singular set C and is contained in a ball of radius δ1/4. Moreover,
⋃N0

j=0 f −j {p} is
δ1/4-dense in A and this immediately implies that any ball B as in the statement of the lemma contains a preimage
V of B(p,2δ0) which is mapped diffeomorphically onto B(p,2δ0) in most N0 iterates, thus giving (1). Moreover,
since the number of iterations and the distance to the critical region are uniformly bounded, we immediately get (2)
and (3). �
4. Markov structure and recurrence times

In this section we give the complete construction of the induced map F : � → � and prove the required properties.
We divide the section into four subsections. In 4.1 we give the purely combinatorial algorithm for the construction.
In 4.2 we show that all partition elements constructed according to this algorithms satisfy the required expansion and
distortion properties. In 4.3 we show that the algorithm actually gives a partition mod 0 of � in the sense that Lebesgue
almost every point of � belongs to the interior of some partition element. Finally, in 4.4 we prove the integrability of
the return times.

4.1. The partitioning algorithm

We start by describing an inductive construction of the P partition (Leb mod 0) of �. Given a point x ∈ Hn ∩ �,
by Lemma 3.6 there exists a hyperbolic pre-ball Vn(x) such that f n(Vn(x)) = B(f n(x), δ1). From Proposition 3.2,
there are a set V ⊂ B(f n(x), δ1) and an integer 0 � m� N0 such that f m(V ) = �′ ⊃ �. Define

Ux
n,m = (

f |n,m
Vn(x)

)−1
(�). (17)

These sets Ux
n,m are the candidates for elements of the partition of � corresponding to the induced map F since they

are mapped onto � with uniform expansion and bounded distortion. Notice that the sets Ux
n,m and Ux′

n′,m′ for distinct
points x, x′ are not necessarily disjoint and this is a major complication in the construction. The strategy for dealing
with this is additionally complicated by the fact that Ux

n,m does not necessarily contain the point x. To deal with these
issues, we introduce sets �n and Sn such that �n is the part of � that has not been partitioned up to time n, and Sn,
that we call the satellite set, corresponding to the portion of a reference hyperbolic pre-ball that was not used for
constructing an element of the partition. It is important to note that to each step of the algorithm is associated a unique
hyperbolic time and possibly several distinct return times.

First step of induction. We fix some large n0 ∈ N and ignore any dynamics occurring up to time n0. Define �c =
M \�. By the third item of Lemma 3.7, Hn0 can be covered by a finite number of hyperbolic pre-balls, and thus there
are z1, . . . , zNn0

∈ Hn0 such that

Hn0 ⊂ Vn0(z1) ∪ · · · ∪ Vn0(zNn0
).

Consider a maximal family

Un0 = {
Ux1

n0,m1
, . . . ,U

xkn0
n0,mkn0

}
of pairwise disjoint sets of type (17) contained in � with x1, . . . , xkn0

∈ {z1, . . . , zNn0
}. These are the elements of the

partition P constructed in the n0-step of the algorithm. Set R(x) = n0 + mi for each x ∈ U
xi
n0,mi

with 0 � i � kn0 .
Now let

H̃n0 = {z1, . . . , zNn } \ {x1, . . . , xkn }

0 0
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be the set of points in {z1, . . . , zNn0
} which were not “used” in the construction of Un0 . Notice that the reason they

were not used is that the associated sets of the form Un0,m overlap one of the sets in Un0 which were selected. We
want to keep track of which sets overlap which and so, for each given U ∈ Un0 , and each 0 � m� N0, we define

Hm
n0

(U) = {
x ∈ H̃n0 : Ux

n0,m
∩ U �= ∅}

(18)

and the n0-satellite

Sn0(U) =
N0⋃

m=0

⋃
x∈Hm

n0
(U)

Vn0(x) ∩ (� \ U).

Thus, the n0-satellite of U is the union of all hyperbolic pre-balls which “could have” had a subset returning to � but
were unlucky in that such a subset overlaps the set U which was chosen instead. It will be convenient to consider also
the n0-satellite associated to �c ,

Sn0

(
�c

) =
N0⋃

m=0

⋃
x∈Hm

n0
(�c)

Vn0(x) ∩ �.

Finally we define the global n0-satellite

Sn0 =
⋃

U∈Un0

Sn0(U) ∪ Sn0

(
�c

)
(19)

and

�n0 = � \
⋃

U∈Un0

U. (20)

General step of induction. The general step of the construction follows the ideas above with minor modifications.
Assume that the set �s is defined for each s � n−1. Once more by the third item of Lemma 3.7 there are z1, . . . , zNn ∈
Hn such that

Hn ⊂ Vn(z1) ∪ · · · ∪ Vn(zNn).

Consider a maximal family

Un = {
Ux1

n,m1
, . . . ,U

xkn
n,mkn

}
of pairwise disjoint sets of type (17) contained in �n−1 with x1, . . . , xkn ∈ {z1, . . . , zNn}. These are the elements of
the partition P constructed in the n-step of algorithm. Set R(x) = n + mi for each x ∈ U

xi
n,mi

with 0 � i � kn. Let

H̃n = {z1, . . . , zNn} \ {x1, . . . , xkn}.
Given U ∈ Un0 ∪ · · · ∪ Un, we define for 0 �m � Nn,

Hm
n (U) = {

x ∈ H̃n: Ux
n,m ∩ U �= ∅}

(21)

and its n-satellite

Sn(U) =
Nn⋃

m=0

⋃
x∈Hm

n (U)

Vn(x) ∩ (� \ U).

It will be convenient to consider also the n-satellite associated to �c ,

Sn

(
�c

) =
Nn⋃

m=0

⋃
x∈Hm(�c)

Vn(x) ∩ (
� \ �c

)
.

n
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Finally we define the global n-satellite

Sn =
⋃

U∈Un0∪···∪Un

Sn(U) ∪ Sn

(
�c

)
(22)

and

�n = � \
⋃

U∈Un0∪···∪Un

U. (23)

Remark 4.1. Note that the construction of these objects has been performed in such a way that for each n � n0 one
has

Hn ⊂ Sn ∪
⋃

U∈Un0∪···∪Un

U.

4.2. Expansion and bounded distortion

Recall that, by construction, the return time R for an element U of the partition P of � is made by a certain
number n of iterations given by the hyperbolic time of a pre-ball Vn ⊃ U , plus a certain number m � N0 of additional
iterates which is the time it takes to go from f n(Vn), which could be anywhere in M , to f n+m(Vn), which covers �

completely. It follows from Lemmas 3.6 and Proposition 3.2 that

∥∥Df n+m(x)−1
∥∥�

∥∥Df m
(
f n(x)

)−1∥∥.
∥∥Df n(x)−1

∥∥ � K0σ
n/2 � K0σ

(n0−N0)/2.

Taking n0 sufficiently large we can make this last expression smaller than one. We also need to show that there exists
a constant K > 0 such that for any x, y belonging to an element U ∈ P with return time R, we have

log

∣∣∣∣detDf R(x)

detDf R(y)

∣∣∣∣� K dist
(
f R(x), f R(y)

)
.

By Lemmas 3.6 and Proposition 3.2, it is enough to take K = D0 + C1K0.

Remark 4.2. Analogously to Lemma 3.7, there exists a constant C4 > 0 such that for any Borel sets Y,Z ⊂
(f |n+m

Vn
)−1(�′) we have

1

C4

Leb(Y )

Leb(Z)
� Leb(f n+m(Y ))

Leb(f n+m(Z))
� C4

Leb(Y )

Leb(Z)
.

4.3. The measure of satellites

In this section, we will show that the algorithm described above does indeed produce a partition (Leb mod 0) of
�. Notice first of all that since � ⊃ �n0 ⊃ �n0+1 ⊃ . . . , we only have to check that Leb(

⋂
n �n) = 0. This is a

consequence of the following:

Proposition 4.3.
∑∞

n=n0
Leb(Sn) < ∞.

Indeed, it follows from Proposition 4.3 and the Borel–Cantelli theorem that Lebesgue almost every point in �

belongs to finitely many S′
ns. Since a generic point x ∈ � has infinitely many σ -hyperbolic times, it follows that for

almost every x ∈ � one can find n such that x ∈ Hn and x /∈ Sj for j � n. Thus, recalling Remark 4.1 one must have
x ∈ {R = n + m} for some 0 � m �N0. Since this is valid for Lebesgue almost all x ∈ �, then Leb(

⋂
n �n) = 0.

Thus we just need to prove Proposition 4.3. We shall prove first two auxiliary lemmas. The first one gives in
particular that Ux

n,m represents a positive proportion of Vn(x).
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Lemma 4.4. There exists C3 > 0 such that given any n � 1 and any set of points x1, . . . , xN ∈ Hn such that the
corresponding U

xi
n,m coincide, i.e. U

xi
n,m = U

x1
n,m for 1 � i � N , then

Leb

(
N⋃

i=1

Vn(xi)

)
� C3 Leb

(
Ux1

n,m

)
.

Proof. For simplicity of notation we shall write for 1 � i � N ,

Vn(xi) = Vi and B
(
f n(xi), δ1

) = Bi.

We define

X1 = V1 and Xi = Vi \
i−1⋃
j=1

Vj , for 2 � i �N.

Similarly

Y1 = B1 and Yi = Bi \
i−1⋃
j=1

Bj , for 2 � i � N.

Observe that V1 ∪ · · · ∪ VN = X1 ∪̇ · · · ∪̇ XN and B1 ∪ · · · ∪ BN = Y1 ∪̇ · · · ∪̇ YN . Recalling that U
xi
n,m = U

x1
n,m for

1 � i � N , by bounded distortion we have

Leb(Xi)

Leb(U
x1
n,m)

� C2
Leb(Yi)

Lebf n(U
x1
n,m)

.

Hence

Leb(V1 ∪ · · · ∪ VN)

Leb(U
x1
n,m)

=
∑N

i=1 Leb(Xi)

Leb(U
x1
n,m)

� C2

∑N
i=1 Leb(Yi)

Leb(f n(U
x1
n,m))

� C2
Leb(B1 ∪ · · · ∪ BN)

Leb(f n(U
x1
n,m))

.

Moreover, by a change of variables we have∫
�

d Leb(z) =
∫

f n(Ux
n,m)

∣∣detDf m(y)
∣∣d Leb(y).

So, by Proposition 3.2,

Leb
(
f n

(
Ux

n,m

))
� K−1

0 Leb(�).

Therefore the result follows taking C3 = C2K0 Leb(M)\Leb(�). �
The next lemma shows that, for each n and m fixed, the Lebesgue measure of the union of candidates Ux

n,m which
intersects an element of partition is proportional to the Lebesgue measure of this element. The proportion constant
can actually be made uniformly summable in n.

Lemma 4.5. There exists C5 > 0 such that given 0 � m� N0, k � n0 and U ∈ Uk , then for any n� k,

Leb

( ⋃
x∈Hm

n (U)

Ux
n,m

)
� C5σ

n−k
2 Leb(U).

Proof. Consider an integer k � n0 and a set U ∈ Uk . Recall that by construction we have R|U = k + m0 for some
0 � m0 � N0. Moreover, U is part of a hyperbolic pre-ball Vk which is sent diffeomorphically onto � by f k+m0 ;
recall (17). We define

T = (
f |k+m0

)−1(
�′ \ �

)
.
Vk
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Now consider L ∈ N large so that

2K0σ
(L−1)N0/2 < 1,

where N0 and K0 are given by Proposition 3.1 and Proposition 3.2 respectively. We shall split the proof into two
separate cases depending on whether k � n� k + LN0 or n > k + LN0.

(1) Assume first that k � n � k + LN0. Fix some set Ux
n,m with x ∈ Hm

n (U). Having in mind the conclusion we
need, it is no restriction to assume that Ux

n,m intersects the complement of U ∪ T (observe that U ∪ T is obviously a
proportion of U ). Hence, there is a point u ∈ Ux

n,m ∩ T for which v = f k+m0(u) satisfies dist(v,p) = 3δ0/2.

Claim 7. There is a uniform constant ρ̃ > 0 for which Leb(f n,m(Ux
n,m ∩ T )) � ρ̃.

Consider first that n + m > k + m0. Considering � = (n + m) − (k + m0) we have 0 � � � LN0 + N0. Just by
continuity there is ρ > 0 and a neighborhood Vρ of u such that both

f n+m(Vρ) = B
(
f �(v), ρ

) ∩ � and f k+m0(Vρ) ⊂ �′ \ �.

Observe that f sends f k+m0(Vρ) onto B(f �(v), ρ) ∩ � in � iterates. Moreover, when we look back, we see that the
� backward iterates comprise a certain number of at most N0 backward iterates plus at most LN0 backward iterates
of a hyperbolic ball. Thus, by Proposition 3.2 and Lemma 3.7 we guarantee some uniform bound on the derivative of
those backward iterates. This means that it is possible to choose ρ uniformly. Hence, there ρ̃ (depending only on ρ)
for which

Leb
(
f n+m

(
Ux

n,m ∩ T
))

� ρ̃,

which gives the claim in this case.
Consider now n + m < k + m0. Taking in this case � = (k + m0) − (n + m), we have � � N0. By continuity there

is ρ > 0 for which

f �
(
B

(
f n+m(u),ρ

) ∩ �
) ⊂ �′ \ �.

By Proposition 3.2 we have some uniform bound on the derivative of the backward iterates of f �(B(f n+m(u),ρ)∩�).
This means that it is possible to choose ρ uniformly, and so there exists ρ̃ (depending only on ρ) for which the claim
again holds.

Let us now use the claim to prove the first part of the lemma. Note that we can find ξ > 0 such that

Leb(�′ \ �)

Leb(�)
� ξ,

and so, by bounded distortion in time k + m0,

Leb(T )

Leb(U)
� C4

Leb(�′ \ �)

Leb(�)
� C4ξ. (24)

By bounded distortion in the time n + m,

Leb(Ux
n,m)

Leb(Ux
n,m ∩ T )

� C4
Leb(�)

ρ̃
. (25)

Now observe that for fixed n,m and given x, x′ ∈ Hm
n (U) one must have Ux

n,m = Ux′
n,m or Ux

n,m ∩ Ux′
n,m = ∅. Since

Ux
n,m ∩ T is contained in T , it follows from (24) and (25) that

Leb

( ⋃
x∈Hm

n (U)

Ux
n,m

)
� C2

4ξ
Leb(�)

ρ̃
Leb(U).

(2) Assume now that n > k + LN0. Since for each Ux
n,m we have

diam
(
f k+m0

(
Ux

n,m

))
� 2δ0K0σ

n−(k+m0)/2
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then, by the choice of L, the sets Ux
n,m are contained in T ∪U for n > k +LN0. Moreover, defining the annulus inside

�′ around the boundary of �

An,k = {
x ∈ �′: dist(x, ∂�) � 2δ0K0σ

n−(k+N0)/2}
we have

f k+m0
(
Ux

n,m

) ⊂ An,k.

By bounded distortion

Leb(
⋃

x∈Hm
n (U) U

x
n,m)

Leb(U)
� C4

Leb(An,k)

Leb(�)
.

Since there is a constant η > 0 for which

Leb(An,k)

Leb(�)
� ησ

n−k
2 ,

then we have

Leb

( ⋃
x∈Hm

n (U)

Ux
n,m

)
� ηC4σ

n−k
2 Leb(U).

Take C5 = max{C2
4ξLeb(�)/ρ̃, ηC4}. �

We are now ready to complete the proof of the main proposition of this section.

Proof of Proposition 4.3. Observe that
∞∑

n=n0

Leb(Sn) �
∞∑

n=n0

Leb
(
Sn

(
�c

)) +
∞∑

k=n0

∑
U∈Uk

∞∑
n=k

Leb
(
Sn(U)

)
. (26)

We start by estimating the sum with respect to the satellites of �c. It follows from the definition of Sn(�
c) and

Lemma 3.6 that

Sn

(
�c

) ⊂ {
x ∈ �: dist(x, ∂�) < 2δ1σ

n/2}.
Thus, we can find ζ > 0 such that

Leb
(
Sn

(
�c

))
� ζσn/2.

This obviously implies that the part of the sum respecting �c in (26) is finite.
Consider now k � n0 and n � k. Fix U ∈ Uk and consider Sn(U) the n-satellite associated to it. By definition of

Sn(U) and Lemma 4.4 we have

Leb
(
Sn(U)

)
�

N0∑
m=0

Leb

( ⋃
x∈Hm

n (U)

Vn(x)

)
� C3

N0∑
m=0

Leb

( ⋃
x∈Hm

n (U)

Ux
n,m

)
. (27)

For the last step observe that for fixed n,m and given x, x′ ∈ Hm
n (U) one must have Ux

n,m = Ux′
n,m or Ux

n,m ∩Ux′
n,m = ∅.

Thus, by Lemma 4.5,

Leb
(
Sn(U)

)
� C3C5(N0 + 1)σ

n−k
2 Leb(U).

Letting C = C3C5(N0 + 1) it follows that
∞∑

k=n0

∑
U∈Uk

∞∑
n=k

Leb
(
Sn(U)

)
� C

∞∑
k=n0

∑
U∈Uk

∞∑
j=0

σ j/2 Leb(U) = C
1

1 − σ 1/2

∞∑
k=n0

∑
U∈Uk

Leb(U)

� C
1

1 − σ 1/2
Leb(�).

This gives the conclusion. �



J.F. Alves et al. / Ann. I. H. Poincaré – AN 30 (2013) 101–120 119
4.4. Integrability of the inducing times

In the previous sections we proved the existence of a Lebesgue mod 0 partition P of � and an inducing time
function R : � → N which is constant in the elements of P . Moreover, the map F : � → � defined for F(x) =
f R(x)(x) is a C2 piecewise uniformly expanding map with uniform bounded distortion. By [37, Lemma 2] such a
map has a unique absolutely continuous (with respect to Lebesgue measure) ergodic invariant probability measure ν

whose density is bounded away from zero and infinity by constants. Thus in particular the integrability with respect
to Lebesgue of the return time function R is equivalent to the integrability with respect to ν. To complete the proof it
is therefore sufficient to prove the following

Proposition 4.6. The inducing time function R is ν-integrable.

Proof. We first introduce some notation. For x ∈ � we consider the orbit x,f (x), . . . , f n−1(x) of the point x under
iteration by f for some large value of n. In particular x may undergo several full returns to � before time n. Then we
define the following quantities:

H(n)(x) := number of hyperbolic times for x before time n,

S(n)(x) := number of times x belongs to a satellite before time n,

R(n)(x) := number of returns of x before time n.

Each time that x has a hyperbolic time, it either then has a return within some finite and uniformly bounded number
of iterations, or by definition it belongs to a satellite. Therefore there exists some constant κ > 0 independent of x and
n such that

R(n)(x) + S(n)(x) � κH(n)(x).

Notice that x may belong to a satellite or have a return without it having a hyperbolic time itself, since it may belong
to a hyperbolic pre-ball of some other point y which has a hyperbolic time. Dividing the above equation through by n

we get

R(n)(x)

n
+ S(n)(x)

n
� κH(n)(x)

n
.

Recalling that hyperbolic times have uniformly positive asymptotic frequency, there exists a constant θ > 0 such that
H(n)(x)/n � θ for all n sufficiently large, and therefore, rearranging the left hand side above gives

R(n)(x)

n

(
1 + S(n)(x)

R(n)(x)

)
� κθ > 0.

Moreover S(n)(x)/R(n)(x) converges by Birkhoff’s ergodic theorem to precisely the average number of times
∫

S dν

that typical points belong to satellites before they return, and from Proposition 4.3 it follows that
∫

S dν < ∞. There-
fore, we have

R(n)(x)

n
� κ ′ > 0 (28)

for all sufficiently large n where κ ′ can be chosen arbitrarily close to κθ/(1 + ∫
S dν) which is independent of x

and n. To conclude the proof notice that n/R(n)(x) is precisely the average return time over the first n iterations
and thus converges by Birkhoff’s ergodic theorem to

∫
R dν. This holds even if we do not assume a priori that R is

integrable since it is a positive function and thus
∫

R dν is always well defined and lack of integrability necessarily
implies

∫
R dν = +∞. Thus, arguing by contradiction and assuming that

∫
R dν = +∞ gives n/R(n)(x) → ∫

R dν =
+∞ and therefore R(n)(x)/n → 0. This contradicts (28) and therefore implies that we must have

∫
R dν < +∞ as

required. �
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