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Abstract

We prove the existence of time-periodic, small amplitude solutions of autonomous quasi-linear or fully nonlinear completely res-
onant pseudo-PDEs of Benjamin—Ono type in Sobolev class. The result holds for frequencies in a Cantor set that has asymptotically
full measure as the amplitude goes to zero.

At the first order of amplitude, the solutions are the superposition of an arbitrarily large number of waves that travel with different
velocities (multimodal solutions).

The equation can be considered as a Hamiltonian, reversible system plus a non-Hamiltonian (but still reversible) perturbation
that contains derivatives of the highest order.

The main difficulties of the problem are: an infinite-dimensional bifurcation equation, and small divisors in the linearized oper-
ator, where also the highest order derivatives have non-constant coefficients.

The main technical step of the proof is the reduction of the linearized operator to constant coefficients up to a regularizing rest,
by means of changes of variables and conjugation with simple linear pseudo-differential operators, in the spirit of the method of
Iooss, Plotnikov and Toland for standing water waves (ARMA 2005). Other ingredients are a suitable Nash—Moser iteration in
Sobolev spaces, and Lyapunov—Schmidt decomposition.
© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.

Résumé

Nous démontrons I’existence de solutions de petite amplitude, périodiques en temps, de versions quasi-linéaires ou completement
non linéaires de 1’équation de Benjamin—Ono, dans le cas compleétement résonnant. Le résultat est démontré dans 1’échelle de
Sobolev, pour des fréquences dans un ensemble de Cantor de mesure asymptotiquement pleine a I’origine. Nous considérons le cas
général ou I’équation peut-&tre vue comme un systeme Hamiltonien réversible perturbé par une partie réversible, mais qui n’est
pas Hamiltonienne, contenant des dérivées d’ordre maximal.

Ces solutions sont, au premier ordre, obtenues par superposition d’un nombre arbitrairement grand d’ondes se propageant a des
vitesses différentes (solutions multimodales).

Les principales difficultés du probléme sont : la présence d’un noyau de dimension infinie pour 1’équation de bifurcation, et
I’occurence de petits diviseurs dans la résolution de 1’équation linéarisée, ou les dérivées de plus haut degré ont des coefficients
variables.

Nous montrons que 1’opérateur linéarisé est essentiellement conjugué a un opérateur a coefficients constants, modulo un terme ré-
gularisant. La démonstration, basée sur des changements de variables et des conjugaisons avec des opérateurs pseudo-différentiels,
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est inspirée par la méthode utilisée par looss, Plotnikov et Toland (ARMA 2005) pour démontrer I’existence d’ondes de gravité
stationnaires. La démonstration utilise également un schéma de Nash—-Moser adapté a ce contexte, dans 1’échelle des espaces de
Sobolev, ainsi qu’une décomposition de Lyapunov—Schmidt.

© 2012 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. The problem and main result

We consider autonomous equations of Benjamin—Ono type
wy + Mty + 3x (u”) + Na(u) =0 (1.1)

with periodic boundary conditions x € T := R /27 Z, where the unknown u (¢, x) is a real-valued function, t € R, H is
the periodic Hilbert transform, namely the Fourier multiplier

He'l¥ = —isign(j)eV*, jeZ,
and N is of type (I) or (II),

(M Na(u) = g1 (x,u, Hu, uy) + 0x (g2(x, u, Huy)), (1.2)
(D) Na(u) = go(x, u, Hu, uy, Hiyy). (1.3)

(1.1) is a quasi-linear problem in case (I) and a fully nonlinear problem in case (II).

We assume that the function g;(x, y) is defined for y = (y1, ..., y,) inthe ball B ={|y| <1} of R*, n =2, 3,4,
gi 1s 2w -periodic in the real variable x, and, together with its derivatives in y up to order 4, it is of class C” in all its
arguments (x, y), with

Y 1958l crmuny < Kers (1.4)
0< i<

for some constant K, » > 0. Moreover we assume that at y =0

8;‘g,-(x,0):0 Va e N, |a] <3, (1.5)

so that, regarding the amplitude, Ny (su) = 0(84) ase — 0.
We assume that the nonlinearity N (1) := 8, (u>) + N4 (u) behaves like the linear part ; + Hd., with respect to
the parity of functions u(¢, x) in the time—space pair (¢, x). This means to assume the reversibility conditions

g1(—=x, y1, —y2, —y3) = —g1(x, y1, ¥2, y3), 82(—=x, y1, y2) = g2(x, y1, y2), (1.6)

80(=X, Y1, =y2, =¥3, =y4) = —8o(X, Y1, Y2, ¥3, 4), (1.7)
so that in both cases (I) and (II) AV (x) is odd for all even u, namely

u(—t,—x)=ult,x) = Nu)(—t,—x)=-N0)(,x). (1.8)

Assumptions (1.2), (1.3), (1.6), (1.7) are discussed in the next section.

Remark 1.1. Examples of such nonlinearities are:
(D Na() = (Hur) Hux +a@ut +uud +boul,  (AD Na@) =a@)(Hur)* +u3,

where a(x) is odd and b(x) is even.
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We construct small amplitude time-periodic solutions u(z, x) of period T = 27 /w, w > 0, where the period T is
also an unknown of the problem. Rescaling the time t+ — wt, this is equivalent to find 2 -periodic solutions of the
equation

oty + Hugy + 3 (1) + Na(u) =0, (1.9)

withu :T? > R, w > 0.
Regarding the time—space pair (¢, x) as a point of the 2-dimensional torus T2, we consider the L>-based Sobolev
space of real-valued periodic functions

Hf = H“(’JI‘Z; ]R) = {u = Z ureg: u_r =y € C, IIuII? = Z luk)? (k) < oo}, (1.10)
keZ? keZ?
where s > 0, (k) := max{1, |k|}, and e (z, x) := ¢/ K11 +kax)

The main result of the paper is the following theorem.

Theorem 1.2. There exist universal constants ro, so, co € N with the following properties.
Assume hypotheses (1.2)—(1.7) on the nonlinearity N, withr > ro. Let m > 2 and let 0 < k; <ky < --- < ky, be
m positive integers that satisfy

kit hmot > kn(m—3/2),  ki+-thn£m—1/2)j VjeN. (1.11)

Then there exist
(i) a trigonometric polynomial

m
v1(t, x) = Zaj cos(kjx — k?t),
=1

even in the pair (t, x), where aj € R,

4 m
2 _ N . P .
aj—m(zi_l"’) W J= L

(i) constants C, e > 0 that depend on ky, ..., kp, Kg ry3
(iii) a measurable Cantor-like set G C (0, &) of asymptotically full Lebesgue measure, namely

N (0,
€0
such that for every & € G problem (1.9) with frequency
w=1+3¢2

has a solution u, € H (T2, R) that satisfies

||u8_81_)1”S0<82C7 ug(—t, —x) =ug(t,x), fug(t,x)dtdx=0.
T2

Moreover u, € H® (']T2)f0r every s in the interval so < s < (r +¢p)/2.
Ifgi,i=0,1,2in(1.2), (1.3) is of class C*, then also u, € C*®(T?).

Remark 1.3. (i) The smallest example of k1, ..., k;, satisfying (1.11)is m =2, k; =2, ko = 3. For every m > 2 there
exist infinitely many choices of integers k| < - - - < ky, that satisfy (1.11). See also Remark 5.2.

(i1) so, ro and cq can be explicitly calculated: so = 22, cg = 28 (non-sharp calculation); for rg see (9.22) and the
lines below it.
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2. Motivations, questions and comments

The original Benjamin—Ono equation
Uy + Huyxx +uuy =0 (2.1)

models one-dimensional internal waves in deep water [5], and is a completely integrable [1] Hamiltonian partial
pseudo-differential equation,

3
oou=JVH@W), J=—0, H(u)=/<uHMx +M—)dx

2 6

The local and global well-posedness in Sobolev class for (2.1) and many generalizations of it (other powers u”u,,
other linear terms 0y |Dy|“u, 1 < a < 2, etc.) have been studied by several authors in the last years: see for example
Molinet, Saut and Tzvetkov [29], Colliander, Kenig and Staffilani [12], Tao [35], Kenig and Ionescu [18], Burq and
Planchon [11], Molinet [27,28], and the references therein. On the contrary, to the best of our knowledge, there are
few works about time-periodic or quasi-periodic solutions of Benjamin—Ono equations. One of them is [2], where
2-mode periodic solutions of (2.1) are studied by numerical methods; another one is [26], which deals with an old
very interesting question.

In [26] Liu and Yuan apply a Birkhoff normal form and KAM method to show the existence of quasi-periodic
solutions of a Benjamin—Ono equation that is a Hamiltonian analytic perturbation of (2.1), with Hamiltonian of the
form

H@u)+ K (u), H = Benjamin—Ono, VK (1) = bounded operator.

The resulting equation is of the type
1
atuz_ax{mx +Eu2+£VK(u)} — Aut ), (2.2)

where the Hamiltonian vector field has a linear part A, which loses d4 = 2 derivatives, and a nonlinear part F', which
loses dr = 1 derivative and, for this reason, is an unbounded operator.

In general, as it was proved in the works of Lax, Klainerman and Majda on the formation of singularities (see for
example [23]), the presence of unbounded nonlinear operators can compromise the existence of invariant structure
like periodic orbits and KAM tori. In fact, the wide existing literature on KAM and Nash—Moser theory mainly deals
with problems where the perturbation is bounded (see Kuksin [25], Craig [13], Berti [6] for a survey. See also Moser
[30] where the KAM iteration is applied in problems where the Hamiltonian structure is replaced by reversibility).

For unbounded perturbations, quasi-periodic solutions have been constructed via KAM theory by Kuksin [25] and
Kappeler and Poschel [22] for KdV equations where d4 = 3 and the gap between the loss of derivatives of the linear
and nonlinear part is y := (d4 —dF) = 2, in analytic class; more recently, in [26] for NLS and (2.2) where d4 = 2 and
y =1, in C class; by Zhang, Gao and Yuan [36] for reversible NLS equations with d4 =2 and y = 1; and by Berti,
Biasco and Procesi [7], where wave equations with a derivative in the nonlinearity become a Hamiltonian system with
ds =1 and y = 1, in analytic class. See also Bambusi and Graffi [4] for a related linear result that corresponds to a
gap y > 1.

Periodic solutions for unbounded perturbations have been obtained for wave equations by Craig [13] for y > 1; by
Bourgain [10] in the non-Hamiltonian case u;; — uy, +u + utz = 0; by the author in [3] for the quasi-linear equation
uy — Au(l+ f |Vu|?dx) = ef (¢, x), where the integral plays a special role (f |Vul?dx depends only on time). Also
the pioneering result of Rabinowitz [34] for fully nonlinear wave equations of the form

Upp — Uxx +oty +F e, tu, ty, Uy, Uy, Uyp, Upye) =0

certainly has to be mentioned here; however, the dissipative term « 7 0 destroys any Hamiltonian or reversible struc-
ture and completely avoids the resonance phenomenon of the small divisors.

The threshold y = 1 in Hamiltonian problems with small divisors has been crossed in the works of Iooss, Plotnikov
and Toland [32,21,19,20] about the completely resonant fully nonlinear (y = 0) problem of periodic standing water
waves on a deep 2D ocean with gravity. So far their very powerful technique, which is a combination of (1) changes of
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variables and conjugations with pseudo-differential operators to obtain a normal form, and (2) a differentiable Nash—
Moser scheme, is essentially the only known method to overcome the small divisors problem in quasi-linear and fully
nonlinear PDEs.

Note that recently normal form methods for quasi-linear Hamiltonian PDEs have also been successfully applied to
Cauchy problems, see Delort [14].

Thus, some of the general, challenging and open questions that come from the aforementioned works are these:

e Which gap y is the limit case for the existence of invariant tori for nonlinear Hamiltonian PDEs? How many
derivatives can stay in the nonlinearity?
e What is the role of the Hamiltonian structure? Can it be replaced by other structures?

The motivations of the present paper are in these questions. Theorem 1.2 joins the above mentioned results in the
aim of approaching an answer, at least in simple cases, and shows that

(i) if the dimension is the lowest for a PDE, (z, x) € T2, and
(ii) the derivatives in the nonlinearity have a suitable structure (see (1.2), (1.3), (1.6), (1.7)),

then problem (1.1), where y = 0 (the nonlinearity A (1) loses 2 derivatives like the linear part) admits solutions that
bifurcate from the equilibrium u# = 0. The Hamiltonian structure here is replaced by reversibility: (1.1), in general, is
a non-Hamiltonian perturbation of the cubic Benjamin—Ono Hamiltonian equation

i + Hdxeu + 5 (u’) =0,

but NV (u) satisfies the reversibility condition (1.8).
Let us explain the reversible structure in some detail. As a dynamical system, problem (1.1) is

dqu() =V (u@®), (2.3)

a first order ordinary differential equation in the infinite-dimensional phase space LQ(T; R), where the vector field
V:HYXT;R) > LX(T;R), u — V(u) is

V() (x) = =Hwue(x) = 3y (> () = Nau) (x),
The phase space can be split into two subspaces Lg ® L(Z) of even and odd functions of x € T respectively,
u=u’+u’, u¢(—x) =u(x), u’(—x) = —u(x), xeT, uel*T;R).

To decompose u = u® + u° means to split the real and imaginary part of each Fourier coefficient of u € L*(T; R),
namely

u@) =Y de w0 =Y Reapedt,  ux)=Y i(mi;)el.
JEZ JEZ JEZ

Consider the reflection

R:u=u®+u’— Ru=u®—u°. (2.4)
R is an R-linear bijection of L>(T; R), and R? is the identity map. In terms of Fourier coefficients,
Riu(x)=> a;e’™ > Ru(x) = i;e'’", (2.5)
JEZ JEZL

where I/Z is the complex conjugate of 7 ;. Note that Ru is real-valued for every real-valued u. (2.3) is a reversible
system in the sense that

VoR=—RoV. (2.6)

It is immediate to check (2.6) for the linear part H,, of V using (2.5), and for the cubic part 9, w?) using (2.4). To
prove (2.6) for M4 (u), using (1.6), (1.7) and (2.4) one has

a(=x)=—px), a@x):=Na(Ru)(x), B(x):=Nau)(x).
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Splitting @ = @® + «?, B = B¢ + B¢ and projecting the equality o (—x) = —B(x) onto Lg and Lg give o = — B¢ and
a’ = 8%, namely RB = —a, which is (2.6) for NVj.

(2.6) implies that V(u) € Lg for all u € Lz N H?. For, Lg is the set of fixed points # = Ru, therefore V (u) =
—RV (u), whence (V (u))¢ =0.

By (2.6), if u(¢) solves (2.3), then also Su(¢) := R(u(—t)) is a solution of (2.3). Thus we look for solutions of (2.3)
in the subspace X of the fixed points of §. It is easy to see, using (2.4), (2.5), that X is the space of functions u(¢, x)
that are even in the time—space pair (¢, x), namely u(—t, —x) = u(t, x).

To prove Theorem 1.2 we apply (and slightly modify, under certain technical aspects; see below) the method of
Iooss, Plotnikov and Toland. Like in [21], the main difficulties here are: (i) in the bifurcation equation, which is
infinite-dimensional (for this reason (1.1) is said to be a completely resonant problem); and, especially, (ii) in the
inversion of the linearized operator, which has non-constant coefficients also in the highest order derivatives and,
therefore, contains small divisors that are not explicitly evident.

The main tool in the inversion proof is the reduction of the linearized operator £ to constant coefficients up to a
regularizing rest, by means of changes of variables first (to obtain proportional coefficients in the highest order terms),
then by the conjugation with simple linear pseudo-differential operators that imitate the structure of £ (they are the
composition of multiplication operators with the Hilbert transform ), to obtain constant coefficients also in terms of
lower order, and to lower the degree of the highest non-constant term.

Since we look for periodic solutions, after a finite number of steps this reducibility scheme implies the invertibility
of £, by standard Neumann series.

Other, and minor, technical points are the following. Like in [21], the Lyapunov—Schmidt decomposition is not
used directly on the nonlinear equation, as it would be made in classical applications (see [6] for the Lyapunov—
Schmidt decomposition in completely resonant problems). Instead, it is used a first time at the beginning of the proof,
in a formal power series expansion of the nonlinear problem, to look for a suitable starting point of the Nash—Moser
iteration. In other words, this means to find a non-degenerate solution of the “unperturbed bifurcation equation”.
In Theorem 1.2 the existence and the non-degeneracy conditions are the first and the second inequality in (1.11)
respectively. Then the Lyapunov—Schmidt decomposition is used a second time in the inversion proof for the linearized
operator, in each step of the Nash—Moser scheme.

This method seems to be more complicated than the usual Lyapunov—Schmidt decomposition on the nonlinear
problem, at least at a first glance. However, it simplifies the analysis when working with changes of variables (namely
compositions with diffeomorphisms of the torus T2). In fact, changes of variables do not behave very well with respect
to the orthogonal projections onto subspaces of L2, because they are not “close to the identity” in the same way as
multiplications operators are (in the language of harmonic analysis, changes of variables are Fourier integral operators,
and not pseudo-differential operators. See also Remark 7.3). For this reason, it is simpler to work in the whole function
space H*(T?) instead of distinguishing bifurcation and orthogonal subspaces, at least for the first step of reducibility.

Nonetheless, in our setting (4.4) we keep track of the natural “different amount of smallness” between the bifurca-
tion and the orthogonal components of the problem. Thanks to this small change with respect to [21], we avoid factors
¢! in the Nash—-Moser scheme and simplify the measure estimate for the small divisors.

Regarding the Nash—Moser scheme, the recent and powerful abstract Nash—Moser theorem for PDEs that is con-
tained in [9] does not apply directly here, as it designed to be used with Galerkin approximations, while in our
Nash—Moser scheme, after the reduction to constant coefficients, it is natural to insert the smoothing operators in a
different position: see (9.5). Even if our iteration scheme is very close to the usual one, this small difference brings
our problem out of the field of applicability of the theorem in [9].

Going back to the “unperturbed bifurcation equation”, we point out that the restriction of the functional setting
to the subspace X of even functions (a restriction that can be made because of the reversible structure) eliminates
a degeneration and makes it possible to prove the non-degeneracy of the solution. Moreover, the solutions we find
in Theorem 1.2 are genuinely multimodal: for m = 1 the second inequality in (1.11) is never satisfied, whereas for
every m > 2 there exist suitable integers k1, ..., k;, that satisfy (1.11) and produce a non-degenerate solution. This is
a nonlinear effect: the solutions of Theorem 1.2 exist as a consequence of the nonlinear interaction of different modes.

Regarding the special structure (1.2),(1.3), the restriction of assuming (I) or (II), instead of considering the more
general case

M(u):g(x’us Huaux»HMX7”xx7Huxx)v (2'7)
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is due to a technical reason: when N (u) is of the type (I) or (I), in the process of reducing the linearized opera-
tor £ to constant coefficients we use simple transformations, namely changes of variables, multiplications, the Hilbert
transform H and negative powers of d, (which are Fourier multipliers). On the contrary, in the general case (2.7)
these special transformations are not sufficient to conjugate £ to a normal form, and one needs more general trans-
formations: changes of variables should be replaced by general Fourier integral operators. In the intermediate case in
which A} in (2.7) does not depend on u,, (but it does on Hu,), an additional term of the type b(t)d,H appears in
the transformed linearized operators after the changes of variables. This term could be removed by a simple Fourier
integral operator: see Remark 7.1.

Regarding the choice of the leading term 9, (u?) in (1.1) (which is the first natural case to study after the integrable
one 9, (u?)), we remark that the cubic power has no special reversibility property: 9, (u”) satisfy the reversibility
condition (2.6) for every (both even and odd) power p € N. The proof of this fact is the same as above: if f(u) =
Oy (u?), using (2.4) one proves that { f (Ru)}(—x) = —{f(@)}(x),then foR=—Ro f.

Finally, the coefficient 3 in the frequency—amplitude relation w = 1 + 3¢ could be replaced by any other positive
number: 3 is simply the most convenient choice to do when working with the cubic nonlinearity 3, («3). On the
contrary, what is determined by the nonlinearity in an essential way is the sign of that coefficient: for the equation

ur +Huyx — Bx(u3) 4+ Na(u) =0,

in which the cubic nonlinearity has opposite sign, Theorem 1.2 holds with @ = 1 — 3&2 (the only changes to do are in
the bifurcation analysis of Section 5).

The paper is organized as follows. In Section 3 the setting for the problem is introduced. In Section 4 the formal
Lyapunov—Schmidt reduction is performed up to order O(g*). In Section 5 non-degenerate solutions v of the “un-
perturbed bifurcation equation” are constructed. Here the non-homogeneous dispersion relation of the unperturbed
Benjamin—Ono linear part

[+ jlj1=0,

where [ is the Fourier index for the time and j the one for the space, is used in a crucial way. The basic properties of this
relation are proved in Appendix A. In Sections 6 and 7 the linearized operator is reduced to constant coefficients. Most
of the proofs of the related estimates are in Appendix C and use classical results of Sobolev spaces (tame estimates
for changes of variables, compositions and commutators with the Hilbert transform) that are listed in Appendix B. In
Section 8 the transformed linearized operator is inverted. In Section 9 the Nash—Moser induction is performed, and
the measure of the Cantor set of parameters is estimated.

3. Functional setting
Let
Fu,w) :=owu; +Huxe +N@), Nu):=20, (u3) + Na(u).

Let Z := L*(T?, R). Decompose
L*=T¢ + 15 + 2%, Zg={(0.0)}, 27 ={(,0): 1 #0}, Z} ={(l. j): j #0, [ € Z},

let
2 2
Zc =R, ZT::ueLZ(T):/u(t)dtzo}, ZE:{MEZ:/u(t,x)dx:O},
0 0

sothat Z=Zc ® Zr ® Zg, namely every u(t, x) € Z splits into three components
u(t,x) = (Z Y z)m,jefw+fx> oo+ Yo + 3 uj e,
7% 2 7k 10 j#0

and denote I1c, I17, I1g the projections onto Z¢, Z1, ZE. Let Zg be the space of zero-mean functions, and P the
projection onto Zy,

Zo:=21® Zg, P:=1—IHc=Mr+g. 3.1



40 P. Baldi / Ann. I. H. Poincaré — AN 30 (2013) 33-77

We define 3! as the Fourier multiplier

X X

.. 1 ..
- lelix = el W) £0, a-'1=0,
ij

and similarly 9, '. Note that 819, = I[Tg, HH = —I.
To eliminate a degeneration that appears in the bifurcation equation, as it was mentioned above where the reversible
structure was discussed, we consider the subspaces of even/odd functions with respect to the time—space vector (¢, x):

X = {u €eZ: u(—t,—x)= u(t,x)}, Y= {u €eZ u(—t,—x)= —u(t,x)}.

In terms of Fourier coefficients, every u € Z is u = ZkeZz urer with u_ = uy (because u is real-valued), namely
ur = ay + iby, with ar, by € R and a_; = ay, b_; = —by, therefore

X = {Lt: Zakek:ak eR, a_kzak}, Y= {M = Z ibgeg: by € R, b_kz—bk},
keZ? keZ?

and L2(’]I‘2, R) =Z = X @ Y. The usual rules for even/odd functions hold: uv € X if both u,v € X orbothu,v ey,
anduveY ifu € X, veY. Moreover H, dx, d; are all operators that change the parity, namely they map Y into X
and vice versa, because they are diagonal operators with respect to the basis {e} with purely imaginary eigenvalues.
Assumption (1.6) implies that the nonlinearity A" maps X N H? into Y, like the linear part wd, 4 8., H does, therefore
Fu,w)eY forallu e X N HZ.

Also, we denote

Xo:=XNZ,

while Y N Zg = Y. We set problem (1.9) in the space X of even functions with zero mean, namely we look for
solutions of the equation

Fu,w)=0, ueXo. (3.2)

Notation. To distinguish L?- and L*-based Sobolev spaces, in the whole paper the following notation is used: two
bars for L2-based Sobolev norms ||u||s (1.10), and one bar for L>-based Sobolev norms

luly = lullwseo = > sup|d® ju(t.x)|. seN.
0< ol <s ¥

4. Linearization at zero and formal Lyapunov-Schmidt reduction

Let

Li=8+duH,  L[VTO] =i+ jljpe' o).
Split ZZ=VUW,

Vi={Wl, ez’ 1+ jljl=0}={(-jljl.j): jeL}), W:=Z*\V
andZ=V oW,

V::{u:ZukekeZ}, W::{u:ZukekeZ}.

keV keW

V is the kernel of L and W is its range. Also, let Vo :=V N Zy, sothat Zg= Vo d W.
We write a finite number of terms of a formal power series expansion to obtain a good starting point for our
Nash—-Moser scheme. Let

a):l—i—Za)ksk, u:ZukskeZo, Up = vg +wg, vg € Vo, wry e W.
k>1 k=1

Then
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Fu,w)=Lu+ (w—1)0u+ Bx(u3) + Na(u)
=¢Luy + sz{Luz + w1011} +83{Lu3 + w10;ur + w2 0ru1 + Oy (u%)}
+ 84{Lu4 + w1 0;u3 + wrd;uy + w30;uq + 0y (3u%u2) + 874./\/’4(81/!1)} + 0(85)
=Z£k]-'k.
k>1

In general, Ny (gu1) also contains terms of higher order than &% in any case, Ny(u) — Ny(suy) = 0(sd).
Atorder e, F/1 = Lu; =0if w; =0 and u; = vy € V. Then F> becomes

Fr=Luy + w10:u; = Lwy + w10:v1.

Lw;y € W and w0;v1 € Vy. Since we look for v; # 0, we have F, =0if wy =0, w1 =0, up = v2 € V.
At order &3 the nonlinearity begins to give a contribution: /3 = Lw3 + wy9;v1 + 0y (vf). The “unperturbed bifur-
cation equation” is the equation /7y /3 = 0 in the unknown v, namely

wy0: V] +Hv8x(v%)=0. 4.1)

In the next section (see Proposition 5.3) we construct nontrivial, non-degenerate solutions vy of (4.1) with w, = 3.
A solution vy of (4.1) for any other value w, > 0 can be obtained by homogeneity by taking v; = Av1, A = (w2/3) /2.
Hence there is no loss of generality in fixing wp = 3. At order &4,

Fa=Lug + 30;,v2 + w30;v] + 0y (3v%v2) + S_4N4(8v1).

We fix w3 = 0. The “linearized unperturbed bifurcation equation” is the equation /Ty F4 = 0 in the unknown vy,
namely

3d,v2 + Ty 3, (3viv2) = —e Ty Na(evy), 4.2)

which has a unique solution v, (¢) because v is a non-degenerate solutions of (4.1). Thus, at u = ev| + e205(¢) and
w=1+3¢2,

F(ety + 202, 1+ 36%) = 3 My dy (07) + e* ITw 8, (307 02) + Na (01 + &202) — Na(ety)
+ MwNa(ety) +&20; (30197) + %0, (93). 4.3)

With these power of ¢, the sufficient accuracy is achieved to start the quadratic Nash—Moser scheme (see Section 9).
Hence, for ¢ > 0, let

F(u,e):= (e Iy + s‘zﬂw)]:(eﬁl +&%u, w)

=& 2P F(et) + &u, 1 + 3¢?) (4.4)
= Ty {38,u + 8, (301u + e301u* + e%u’) + e "Ny ety + &%u)}
+ My {Lu + £230,u + €0y [(v1 + 8u)3] + 8_2N4(8171 + ezu)}, 4.5)
w:=1+ 3¢, P, =&’y + My, Pl =7y + My

By (4.3), F(v2,¢) = O(e) (see Lemma 8.5 for precise estimates). For ¢ > 0, problem (3.2) becomes
F(u,e)=0, ucelXp. (4.6)
Like F does, F also maps X into Y.

5. Bifurcation

In this section we construct a solution v € Vy of (4.1) and prove its non-degeneracy. Recall that in V it is
I+ j|jl=0.Let
qj(t,x) = I ey, (5.1)

Note that gj,g;, = 1 =qo if j1 + j»=0.
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Lemma 5.1. 1) (Product of two terms). Let ji, jo € Z be both nonzero integers. Then Iy (qj,q,) =0 except the case
when j1 + j» =0.

2) (Product of three terms). Let ji, j2, j3 € Z be all nonzero integers. Then I1y(qj,qj,qj;) =0 except the case
when j1 + jo=0o0r ji + j3=0o0r jo+ j3 =0.

Proof. See Appendix A. O

Consider m positive distinct integers 0 < k) <ky <--- <ky,, m > 1, and let

]C = {k],kz, N ,km, —kl, —k2, ey —km}.

Consider three elements v, v’, v”" € Vy N X with only Fourier modes in /,
/
v=2) ajq;. V=) big. V=) ¢
jex jex jex
witha_; =a; € R, and similar for b;, c;. Then
r. 1 7.1
= 3 ajbicpanapds  Tv(ev) = Y abpeTv@q,q5)-
J12j2, J3EK jt1.j2.j3€lC

Develop the sum with respect to jj. Let k € K. For ji =k, I1y(q},q,9,) is nonzero only if:

lek j]Zk lek lek
2=k or jo=—k or Jo # Lk or #Exk . (5.2)
B3=—k BeK =k B=—h
Hence in the sum only these four cases give a nonzero contribution:
My (vv'v") = Zakbkcqu + Z akbicjq; + Z arbjcrqj + Z arbjciq. (5.3)
kelC k,jek kelC, j#+tk kelC, j#tk

Since D yeic jzak = 2ok jek — 2kek, jmk — 2_kek, j=—k> the third sumin (5.3) is

Z akbjckqj = Z agbjcrqj — Zakbkcmk - ZakbkaCI—k

kelC, j#+tk k,jekC kelC kel
= Y abjeeq;— Y axbecrgr — Y axbrcigr
k,jelkl kel kelC
(in the last equality we have made the change of summation variable k = —k’). Analogously, the fourth sum in (5.3)
is
> abjcigi="Y axbjcjqr— Y axbicrgr — Y axbrcigr.
kelC, j#+tk k,jelkC kelC kekC

Thus

My (v'v") = Z { —3agbycy + ak(

kelC

ijcj>+bk(2a,-c,»)+ck<2ajb,-)}qk. (5.4)

jek jek jek
The formula for ITy [0, (vv'v"”)] = 8, [Ty (vv'v”) simply has ikgy instead of g. For v=v"=v", (5.4) gives
m() =33 (-t + Lot Jasan
kelC jek
Then

30,0 + My [dx (v3)] =3 Z<—|k| —al+ Za?)akiqu.

kek jex
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This is zero if
(Zaf) —a}=1k| Vkek. (5.5)

Since ZJ-EK ajz = 2(61131 4+ 4 a,%m), (5.5) is equivalent to
alzl +20,%2 —G—Za,é —I—--'—G—Zafm =k,
2 2 2 2
2ak1 —i—ak2 + 2ak3 + 4 Zakm =k, (5.6)
2a +2a} +2a} +---+a} =kn,

which is a system of m equations in the m unknowns a,%l s e a,%m. Let M the m x m matrix that has 1 on the principal

diagonal and 2 everywhere else. M is invertible, and its inverse M ~! is the m x m matrix that has « on the principal
diagonal and 8 everywhere else, with

_ m—=3/2 _ 1
m—1/2" S om—=1/2"
Hence (5.6) is equivalent to
a,%l =pi1, a,%2 =p2, ..., a,%m = Om, 5.7

where (01, ..., pm) = MYk, ... k), namely

1 i .
pitzaki—i—ﬂij:m(ij)—ki, i=1,...,m. (5.8)
J#i j=1
(5.7) has solutions with all a; # 0 if all p; are positive. Note that p; > p;1, because f —a =1 and
pj—pjr1=akj+ ki1 — pkj —akjir =kji1 —k;>0.
Hence all p; > 0if p,, > 0, namely if
ki -+ km—1 > kn(m —3/2). (5.9)
When a; satisfy (5.7),

1 m
2 _~( 2 2 _ .

Zaj_z(akl+”'+akm)_m_l/2zk" (5.10)

jek i=l
Remark 5.2. ki, ..., k,, satisfy (5.9) if they are sufficiently close, as if they form a “packet” of integers. Note also
that if the smallest and the biggest integers satisfy the stronger condition

k -1

En M ’ (5.11)

ki m—=3/2
then ki, k2, ..., k;, satisfy (5.9) for every choice of the intermediate integers k», ..., k;,—1, because

ki+ky+---+kpn_1>m— 1Dk > (m—3/2)k,,.
(5.11) is meaningful because (m — 1)/(m —3/2) > 1.

Now we prove that for every f € VpNY there is a unique & € Vp N X such that
33,h + Ty 3, (3v°h) = f. (5.12)
Let feVNYandheVNX,

f:ZiijjEVﬂY, y_j=—yj€R, h:ZhjCIjEVﬂX, h_thjGR.
J#0 j#0
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Split
f=Mcf+Igf ef =Y iviq;. Ogf=Y iyjq;.
jex jeK

and similarly h = ITich + H,Jc-h. The formula for ITy 8, (v2[Txch) is obtained from (5.4) with bj=ajand cj =hj,
namely

My 3, (v (Tch)) = Z { —3athy + 2ay (Z ajhj) + hi (Z af) }iqu.

ke jek jek

Hence

33, (ITich) + My 3 (3v*Tch) =3 Z{—|k|hk —3ath; + 2ak(
kekC

Zajhj> +hk<2ajz~> }iqu

jeK jek
which is, replacing |k| by (5.5),

=3 Z{—za,fhk +2ak<

kelC

Zajhf) }iqu =6 Z{—akhk + Zajhj}akiqu.

jek kelC jek

Note that this sum has only Fourier modes in /C; in other words, the space of functions in V that are Fourier-supported
on /C is an invariant subspace for the operator 39, + ITy 0, (3v?-) (with, of course, the change of parity X — Y).
Thus, the equation 39; (I1xch) + ITy 0, (3v2(ITxch)) = Mx f is equivalent to

—gkhk-l-zajhj Tk —:y’ Vk e IC,

= =N
s 6kay,
namely to the system
ag, hy, yl/q
M : =] : (5.13)
ak,, ik, Vi

because y’, =y, for all k € K, where M is the m x m matrix defined above (1 on the principal diagonal and
2 everywhere else). Therefore there exists a unique solution of (5.13),

1
o= (ol + £, )
ki j#
Since a; solve (5.7),
2 2
D hi<C) oy
jeKk jex
where C > 0 depends only on ki, ..., k;, and m.
Now consider I7 ,Jc-h, I ,é f. In the product

2
v (HIJC_h) = Z ajajhj;qjiqj,qj
J1.72€eK, 3¢k
only the second case of (5.2) occurs, namely j; =k = —j € K, j3 ¢ K. Hence
ki+---+k
2 1 2 .. 2 .. 1 m 1
Mo, (REn) = 3 atniia; = (St ) S iinjas = ()
kek,j¢k kek jg¢k

by (5.10). Therefore

ki+-+k
39 (Mjch) + My 8, (3v* (Migh)) =3 ) (—Ijl + lm_il/z’"»jhm
jgK
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Analogously as above, note that this sum has only Fourier modes out of /C; in other words, the space of functions
in V that are Fourier-supported on the complementary of X is invariant for the operator 39; + ITy 9, (3 v2.) (with the
change of parity X — Y). The condition for the invertibility is
ki+---+k ; .
——2#£|jl Vj¢kK. (5.14)
m—1/2

When (5.9) holds, k1 + - - - +kp, > kyy, (im — 1/2), therefore (k1 + - - - + k) /(m — 1/2) is automatically out of K. Hence
(5.14) can be more easily written in this equivalent form:

ki 4.+ k

1+ + Km ¢ N. (5.15)
m—1/2
(5.15) implies that

. k4K . .
—ljl+ ———| = 8ljl Vj#0, (5.16)
m—1/2
where 6 > 0 depends only on k1, ..., k;, and m. Therefore the equation 30; (ch-h) + Iy 0y (3v2(17,éh)) = H,JC-g has

a unique solution /7 ,éh, with

C . .
|hj| < Wb’ﬂ Vji#0, j¢K.
Also, by (5.10) and Lemma 5.1, (k1 +--- + k) /(m — 1/2) = I (v?), therefore (5.16) can be written as |IT¢ (v?) —
[j11 = 81j| forall j #0.
We have proved the following result:

Proposition 5.3 (Bifurcation for cubic nonlinearities). Let m > 2. Let 0 < k| < kp < - -+ < ky,, be m positive integers

that satisfy (5.9) and (5.15). Then there exist m positive numbers pi, ..., pm > 0, given by (5.8), and constants
C, 8 > 0 that depend only on ki, . .., ky and have the following property.
Let K :={ky, ..., km,—ki1,..., —kn}. Every function v = Zjelc ajq; € Vo N X which is Fourier-supported on K
with
a;fl=,01, cees a}%m:/om

is a solution of the unperturbed bifurcation equation 30;v + Iy 9, (v3) =0.
For every f € Vo NY there exists a unique h € Vo N X such that 38,h + ITy 3, (3v>h) = f.
If fe H*, s >0, then h € H'' with ||h||s+1 < C|| fls. Moreover

| (v*) — 1jl| = 81jl YjeZ, j#0.
6. The linearized equation

Remember that

F(u,s)=8_2PS_1]:(817+82u,a)), a)=1+382, p! :8_21'[V+17W,

&

where v := v is a solution of the unperturbed bifurcation equation (4.1) as in Proposition 5.3. The linearized operator
F’(u, ¢) applied to i, namely the Fréchet derivative 9, F (i, ¢)[h] of F with respect to u in the direction £, is then

F'(u,e)h = 872P;1.7-'/(817 + &2u, a)) [szh] = P;lﬁ(u, &)h,
L(u,e)h:= f/(eﬁ + &%u, a))[h] =wdh+ (1 +a)Hoxxh + ayHorh + az0ch + agHh + ash

where the coefficients a; = a; (¢, x) = a; (u, €)(t, x) are periodic functions of (¢, x), depending on u, ¢, and are ob-
tained from 9, (U3) and the partial derivatives of g1, g or go evaluated at (x, U (¢, x), HU (¢, x),...), U :=¢ev + &2u.
For example, in case (I)

ai(t,x)= (Z)yzgz)(x, U(t,x), HU(t, x)), ax(t,x) = 0xai(t, x), (6.1)
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and in case (II)
ai(t,x)= (8y4g0)(x, U(t,x),?-[U(t,x),Ux(t,x),’HUxx(t,x)), ax(t,x)=0. (6.2)

NU) =3, (U3 + 0U*), and U = £ + £2u = O(¢), therefore ay, a», as = O(&%), a3, as = O(g%). More pre-
cisely: let §p € (0, 1) be a universal constant such that

|(U. HU, Us, HU, HU ) || ;oo <1 YU € HY(T?), |Ull4 < So. (6.3)
Proposition 6.1. Let K > 0. There exists gg € (0, 1), depending on K, with the following property: if € € (0, &9),
lulls <K, and

e +%ul, < eollilla + egllulla < So, 6.4)
then the coefficients a;(u, €)(t,x), i =1,...,5 satisfy

2752
laily + lazls + |a3 — e30

o laals +as — 2 (30%) |, <&*Cls, K (1 + lullsa), 0<s<r, (6.5)
a; is of class C' as a function of (u, €), with

> |0uai (. e)[h]|, + [duas(u. &)[h] — e360h| + |duas(u. &)[h] — & (6vh) |

i=1,2,4
<eC(s, K)(Ills+a + Nulls4alinlla), (6.6)
D |Beaiu. o)| + [0cas(u, &) — 67| + |deas(u. €) — £(60°) |, <e*Cs, K)(1+ [lulls1a). (6.7)

i=1,24

Jor 0 < s <r. The constant C(s, K) > 0 depend on s, K, and K, of (1.4). In these estimates the norm ||y ||s+4
appears like a constant C(s) depending on s.

Proof. In Appendix C. O

Remark 6.2. In general, the inequality ||Hu| Lo < C|lullp is false (see, for example, [24]), while it is trivially true
that ||Hu|ls < ||u||s for all s. Therefore to obtain the estimate ||Huyy||Lo < C|lull4 (which is used to prove (6.3)) the
right chain of inequalities is || Huyx ||z < Cl|[Huxxll2 < Clluxx|l2 < Cllull4.
Since v,u € X,
ai,az, a4 € X, ar,as €Y,

and L(u, &) maps X N H?> > Y.
As a pseudo-differential operator, we write

L= L, &) =wd + (1 +a1(t,x))Hdex +a2(t, )Hy +a3(t, x)dy + aa(t, x)H + as (1, x).

In this operator notation a function p(z, x) is identified with the multiplication operator 4 — p(¢, x)h, and the com-
position is understood: for example, 9, p is the operator pd, + py, because 9, (ph) = poh + pxh.
To emphasize that we are in the space of zero mean functions, write

L:=PLP,

where P = I — I1¢ is defined in (3.1). Since F maps Xo — Y, also F'(u, ¢) maps Xo — Y, therefore
Lh=Lh YheXo

because Ph=h and Pf = f forallh € Xo, f €Y.

7. Reduction to constant coefficients

In this section the linearized operator is conjugated to a linear operator with constant coefficients plus a regularizing
rest. The transformation is performed in several steps.
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7.1. Change of variables

As a first step in the reduction proof, we construct a change of variables that transforms £ into a new operator
with constant coefficients in the highest order derivatives d; and Hd,,. Since £ maps X into Y, we want that our
transformation maps X9 — Xoand ¥ — Y.

We consider diffeomorphisms of the torus (¢, x) € T? which are the composition of (i) a time-dependent change
of the space variable x — x + B(¢, x), and (ii) a change of the time variable + — ¢ + «/(#) that does not depend on
space. Diffeomorphisms of this type preserve the special role of the time variable as “a parameter” with respect to
pseudo-differential operators of the space variable like H.

Let

v T? > T2, Y(t,x) = (t+a@),x+ B x)=(t,y)
and let ¥ be the transformation ¥ : u +— Yu,
Pu)(t,x):= u(l//(t, x)) = u(t +a(t), x + B(t, x)) =u(t,y).

a(t) and B(¢, x) are periodic functions in Y to be determined.
The conjugate ¥ ~! p¥ of any multiplication operator p : h(t, x) — p(t, x)h(t, x) is the multiplication operator
(¥ ~1p) that maps v(t, y) — W@~ p)(T, y)v(z, ). By conjugation, the differential operators become

o w =1+ (v ') @]d: + (¥ '8) T, »dy, T =[1+ (T8 (T, )]dy,
Ul W =14+ (7B @ ) oy + (¢ B (1 )3y, W TIHY =H+ Ry,

where Ry is defined by the last equality, and it is regularizing in space, bounded in time, see Lemma B.5(iii).
Since o, B € Y, ¥ maps X — X and Y — Y. However, in general, ¥ does not map X into Xo.l To obtain a
transformation of X¢ onto itself, consider the projection onto Zj,

¥ :=PYP.
Since ¥~ [T = I, one has PY 1 [Te =PI =0, and
Py 'P=Py1( —c)=Pw . (7.1)

As a consequence,
(Po~'P)(PYP) =P¥ 'PYP =Py 'YyP =P,
therefore ¥ : Zy — Z is invertible, with inverse
W)~ = @eep) =Py P,

Thus ¥ is a linear bijective operator of Xo — Xo and ¥ — Y. Also,

[, Plh = [[Tc, ¥lh=c (& + By + & By)h = # / h(& + By +a'By)dr dy, (7.2)
™
where (7, y) — (t +@(7), y + B(t, y)) = ¥ !(z, y) is the inverse of ¥, and similarly
[w= ' P]=[fc, v~ "= Hc (o + Bs +/By).
These commutators are regularizing operators, both in space and time (by integrations by parts, any derivative applied

to the argument 2 moves to «, B or &, ).
By (7.1),

L1 =97 1L¥ =Py 'PLPYP =PY ! LPYP =PL,P,

I For example: let u(t,x) = cost € Xg, p =0 and « such that the inverse of t — t + «(t) is T +— 7 + (1/2)sin 7. Changing variable in the
integral, [0 (Wu)dtdx = (1/2) [p2 cos? tdr dy > 0, therefore Wu ¢ Xo.
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where

w
+1
+{o(W ' B) @ ) + (¥ a3) (@ [T+ (P78 (@, 0]y
+ (¢l aa) (@ H+ (P as)(z, ) + Ry,
Ri=[1+ (@ a) @ n][L+ (@7 8:) 0] oy R
H{[1+ (@ a) @] Bu) @) + (P a) @ [T+ (P B (@ ]} Ry

+ (¥ as) (r, )Ry — P(¥ as) (z, ), W] (7.3)
because LI1¢c = aslIc. We look for «, # such that the coefficients of d; and d,,H are proportional, namely
[1+ (@ )@ ][+ (@ 8) @ 0] = a1+ (¢7'¢) (@] (74)
for some u; € R. (7.4) is equivalent to
(1+a1(t,0)(1+ B (1, 0)) = o (1 + (1)) (7.5)
Take the square root of (7.5),
1+ Bt x) = b *(1+ @) P (1 + a1, x)) 7, (7.6)
and integrate in dx,
27
1=py(1 +a’(r))”%/(1 +a) P dx.
0
Take the square,
2 -2
pa(l+a'0) = (% /(1 +a1>—1/2dx) =1 p(0). (7.7)
0
Integrating in dt determines s € R,
27 27 -2
o= Me(p) = Zi/(i [a+ae dx) a,
b4 , 2w ,

then a(¢) € Y is also determined,
1, _
a(t) =—30, (ITrp)(0).
w2

Since a; € X, also p € X, therefore « € Y, as it was required. (7.6) gives

_ p HE(p) —1)2
Br=p?(1 +a) V- 1= —1= . pi=U4a) " (7.8)
* ! Mric(p) Mrc(py © :

therefore the Zg-component of g is determined,

_ 1 —1
(Hep) 0 = e T ey O TEP)):

Since a; € X, also p € X, and [IgB €Y, as it was required. The Z7-component of 8 will be determined later. With
this choice of «, B, (7.4) is satisfied. By (7.4),

L1 =MLy,
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where M is the multiplication operator of factor [1 + W la) ()],
Lo = wdr + pn20yyH + ae(t, y)oyH + az(z, y)dy +as(t, y)H +ay(z, y) + Ra,
1 T+ a1)Bex +ax(1+ By) _ a4
as(t.y) =" ( — =)@y, ag(ry)=w! (T.y).

14+ 14+ o
-1 wp +az(1 + By) =1 as
ar(t,y) =¥ (—1 W )(f, ¥)s ag(z, y) =" (1 +a/>(f’ ¥,
1
We show that
ae¢(t,y) € ZE. (7.10)
For each fixed T =t 4 «(¢), changing variable y = x 4+ (¢, x), dy = (1 + B« (¢, x)) dx in the integral,
2 2
(1 +ai(t,x))Brx (t, x) + ax(t, x)(1 + B (1, x))
fa6(t, y)dy = ! e (14 Bc(t,x)) dx.
0 0
By (7.5),
(1 +a1)Bux +a2(1+/3x)(1+/3 ) = (1+al),3xx +ax(1+ By)
1 +a DI 0 Y an i+ By

In case (I) ap = (ay)y (see (6.1)), therefore

(1 +apBe +ax(1+ ) [ +aD(+ B0l ,
Trad0 4y~ (daniipy ~ xlleeld+and+polk
in case (II) a; = 0 (see (6.2)), therefore
(I +ap)Byx +ax(l + By) - Bux N Bx{log(l +/3x)}

A+an+8) 1+
Hence in both cases (I) and (II), by periodicity, foh aedy =0, which is (7.10).

Remark 7.1. The assumptions (I), (II) on the nonlinearity N4 () have been used to prove (7.10). In more general
situations, when (I), (II) are not satisfied, a term b(7)Hd, also appears, where b(t) € Z7 is the Z7-component of the
coefficient ag (which here is zero by (7.10)). This term can be removed by using the Fourier integral operator

u(t,y) = Zuj(f)eijy — Au(r,y) = Zuj(z—)ei./yﬂj\[?(f)’
jEZ jEZ

where p(t) = a;lb(t).

Now we choose the Zr-component of 8 so that I[Tra7; = 0. Denote y (¢) := (I17B8)(¢). As above,

2w
1 1 [ eBi ) a3, 00 + But,x)
T 0

This integral is equal to some constant p1 € R if and only if
1 2
2
oy’ ) +ot)=m(l+d' @), o) := 5 /(wﬁ,E(l +BE) +as(1+BE) ) ax, BF == Mgp. (7.11)
0
Hence an integration in d¢ on T determines w1 € Rand y € Zr,

_ e - 0, ' Mro)(t) c7
w

u1=1IIc(o), v(@)

(7.12)
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Thus

Mc(a7) =1, a7—p1 €Zg. (7.13)
o € X because a3 € X, therefore y € Y as it was required. Hence § =y + (ITg8) € Y. As a consequence,

ag,ag €Y, aj,ag € X. (7.14)
Since I =P+ ¢,

Ly =PLP=PMLP = (PMP)([PLP) — PMIIcLoP = ML,
where
M:=PMP,  L[3:=PLsP, L3=Lr— M '"McLs.
Thus

L3 =wdr + podyyH + ae(z, y)dyH + a7 (z, y)dy + as(z, Y)H + as(z, y) + R3,

R3:=Ry— M~ 'MIIcL,.

M is invertible, its inverse M1 maps Xg - Xpand Y — Y, and

~ 1, _m . 1
M™h=mh —Hc(m) IIc(mh), m(t):= T 0T T a0’ (7.15)
whence
-1 __(_Pm)
M7 MIle = (Hc(m)>nc

Formula (7.15) can be proved by a direct calculation: MM th=M""Mh=hforalhe Zy.
From Proposition 6.1 and the explicit formulae above, w2, 11, p, o, B, y all depend on (u, &) in a C! way, and the
following estimates hold.

Proposition 7.2. Let K > 0. There exists o € (0, 1), depending on K, such that, if ¢ € (0, &¢), ||lullg < K, and ||ull4, €o
satisfy (6.4), then all the following inequalities hold.
ua(u, e) and 1 (u, €) satisfy

2 — 11 <CK),  |dupalh]] Ke*'CK)IIAlla,  19epa] < £2C(K), (7.16)
w1 =2 Mc(30°)| <CK),  |umlh]l| <*CE)NRls,  |depr — el (69%)| < 2C(K).  (7.17)
VU(t,x) = (t +at), x + B(t,x)) and its inverse ¥~ (1, y) = (t + @(1), y + B(z, y)) are diffeomorphisms of T2, with
lali + 1Bl + &l + 1Bl <&C(K) <172, el +1Bls +1&ls + 1Bls <& Cls, K)(1+ [[ulls44).  (7.18)

foralll<s<r.a,B,a, 5 are C! functions of (u, €). For 1 <s <r — 1, their derivatives satisfy

|dualh]|, + [3.BLR1|, + |u@lh]], + |8, B101|, < e*C(sy K) (Ihllsra + lullyssllAlls). (7.19)

|8ects + 19 Bl + 18:@l5 + 18 Bls < £2C (s, K)(1+ lluell ). (7.20)
The operators W, ¥~ satisfy

1 flls + @7 £, < K(F s + luellsaall 1), 1€ Flo+ 27 o <20 £llo (7.21)

| —Df|, + (@ = 1) £, <EC6 K1 f 1 + lullsssl £ 1), (7.22)
forall 1 <s <r.(7.21), (7.22) also hold for U, U Moreover, for 1 <s<r,

W+ |7 | <Ca KL+ lullsral 1), ¥ flo=[¥"" |y =1flo, (7.23)

(@ =D f| 4+ =1)f], <ECE K)(1f 51+ lullsrs| £11). (7.24)
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The operators W, ¥~ depend on (u, €) via o, B. The derivatives of ¥ f, W~ f with respect to u in the direction h
and with respect to ¢ satisfy

|9 @ PR + [0 (& =" 1)), < e*Clss KOS st liBlls + 1L F 11 lsa + luellses) £ lRls), — (7.25)

10 flls + 02" £, <2Cls, K)(I 1 + Nuellsxsll £ 1), (7.26)
forall1 <s<r—1. (7 25) and (7.26) also hold with | |y instead of || ||s on the left-hand side and on f. (7.25) and
(7.26) also hold for U,

For2<s<r,
M =D, + | M =1)f, <C6 K115+ lulls+all £112)- (7.27)

The derivatives of M f M1 f with respect to u in the direction h and with respect to ¢ satisfy

oM AR, + [ 8 (M7 E)R|, < e*Cls. V(I fIslhlls + I Fll2lRllsrs + lullsroll £ll2llRls),  (7.28)

10 MFlls + 9 M7 ], <2CC K11y + lullsrsll £112). (7.29)
for2<s<r—2.
The coeﬁ‘iczents of L3 satisfy
lag|s + |a7 — 230°| + lasls + |ag — £2(30%) |, <&’ Cs, K)(1 + [|ulls46). (7.30)
|duaslhl]; + |duazlhl], + |duaslhl]; + [duaslh]], < e*C s, K)(Ihllsta + lulstslinls). (7.31)
|0cacls + |dea7 — e60%| + |eas|s + |dea0 — &(607) | < e2C s, K)(1 + llulls+6)- (7.32)
Fors,mi,my>20,m=mi+moy, m+s+1<r,
(kX s S eC(s,m, K)(I1f s (1 + lellmts) + llls-emesll £ ll0)- (7.33)
Form,s >0, m+s+3<r,
il <e 3C (s m K)Y(ILF s (L + Nllmr) + I fllollullsrms7),  i=1,2,3. (7.34)

Proof. In Appendix C. 0O

Remark 7.3. The loss of one derivative for the difference ¥ — I in (7.22), (7.24) is typical of any change of variables:
in general, if we want to estimate a difference h(x + p(x)) — h(x) with a factor of size p, we can do nothing but
making a derivative, h(x + p(x)) — h(x) >~ h'(x) p(x).

7.2. Descent method: conjugation with pseudo-differential operators
We construct an invertible linear operator @ = P@®P that maps Xo — X and ¥ — Y and conjugates L3 to a new
operator
Ly:=® "L3d =PLP, L4=D+R, (1.35)

where D has constant coefficients and the remainder R is regularizing in space, bounded in time. We look for D of
the form

D=0 + p2dyyH + 1119y + v+ voH + (vL; + v H) oy + (v, +v_oH)9;

where w2, 01 are the constants calculated in the previous section, vy, v,/(, k=0, —1, —2 are constants to be determined.
We look for @ such that (PL3P)(P@P) — (PP P)(PDP) is an operator of order < —3 in y. Write @ as

D=P)+ O+ D+ P, D= (® +1pP)o " k=0.1,23,

namely @ h = a® By_kh + H(ﬁ(k)ay_kh), where o® (z, ¥), ﬁ(k)(t, y) are functions to be determined. @ is close to
the identity if a© is close to 1 and all the other «®, ﬂ(k) are small.
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Calculate and write the terms of order 1,0, —1, —2 in y, and move all the “H’ on the left-hand side, introducing
the corresponding commutators (for example, write «H as Hao + [«, H]). Note that

H =HH=—Hg=—1+Mz, MHp:=I1—Mg=Ir+Ic.

I b% is regularizing in y because it is the operator that takes the mean of a function with respect to y. Therefore, up
to a regularizing rest, sums and products of terms of the type (¢ + HB) follow the same algebraic rules as those of
complex numbers, where the role of i is played by 7. As a consequence, to perform the calculations up to terms
containing /71 f or commutators with # it is comfortable to introduce the complex notation:

f®:=a® 1+ig®, L3 = w0y + u2idyy + azedy +aog +R3, aze:=a7+iae, asg:=ag+iag,

D = wd; + p2idyy + 19y +co + c_18y_1 + c_28;2, cok =V +iv_g,

where i means H.

We stress that this is only a notation, as H maps real-valued functions into real-valued functions, and therefore o +H
is real when «, § are real. Straightforward calculations (use P = I — I1¢ for ag) give

L3® — dD=P(T19y + To+ T-19; ' ++T-20, > + R4)P, (7.36)

where the coefficients T are

Ti=0f%  Ta=0f%+sf"—cif?®

To=Qf M +Sr%  To=0fV+5fP —coif® —caf?, (7.37)
0, S mean

Of :==2iuy fy + (a6 — v) f, Sf = (L3 —R3—co) f =wfr +inafyy +azsfy + (asg — co) f,
and the rest R4 is the sum R3P® — agll-® + terms of order By_ 3+ other regularizing terms that

(a) contain a commutator [g, H], where g € {a;, (x(k), ,B(k): j=6,7,8,9, k=0,1,2,3}; or
(b) contain I7 b%

The complete formula for R4 is in Appendix C. For example, typical terms are
mEp0a2,  aengpVeyt,  lae M, [0, H]a,.
Now we choose vi,a("), ,8(") such that all 7,,, n = 1,0, —1, —2, vanish. Every T}, is an operator of the form
T,h = pph + H(g,h) for some functions p, (z, y), g, (z, y). Thus T,, =0 if
pn=0, qn =0. (7.38)
To solve (7.38), which is a system of two equations in the real-valued unknowns a®, 8% we use complex notation
again. Consider the complex-valued unknown f® =a® +i8® where now i is the standard imaginary unit of C.
Then the real system (7.38) is equivalent to the complex ODE Qf© =0 for n = 1, and similar complex equations for
n =0, —1, -2, according to (7.37). Hence we look for complex-valued solutions f* of the four complex equations
7,=0,n=1,0,—-1, -2.
Reduction of Ty. Let
aze(t, y) 1= ae(T.y) — p1 = ar(t,y) — (11 +ias(z. ).
Remember that a7 — v, ag € Zg (see (7.10), (7.13)). T} =0 if

Of " =2iu /0 +agz(x, y) £ =0. (7.39)
The solutions of (7.39) are the exponentials f© = exp(¢), where ¢(z, y) satisfies
2ipagy +akg(t,y) =0. (7.40)

(7.40) determines the Z g-component of ¢,

_ b o E b N
(ITEp) (7, y)—%(ay aze)(T, y)——%(ay ae)(r,y)+12—M2(3y Mga7)(t,y).
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Reduction of Ty. Since f© =exp(p),

SFO =", g9 i=wpr +ina(p] +¢yy) + ar6py + (ass — o).

Moreover

. 2 i 2 i
i1y + arepy = @(a%) + 2—Mva§56

53

(7.41)

by (7.40) and because a7 = a% + v. Since Qf © =0, we solve the equation Ty = O by variation of constants:

FO =D £O s a solution of Ty = Qf D + SO =0 if V) solves
2ipan(V + ¢ =0.

(7.42) has a periodic solution n1 if g©@ e Zz. The condition

Uc(g(o)) = 4—17c((a76) )+ Hc(agg) —co=0

determines the constant co,

co= mnc((a%) ) + ¢ (agg) € C.

The condition

7 (89) = 0 (Tr¢), + — M1 ((ak)?) + Mr(asg) =0

i
4us
determines the Z7-component of ¢,
i —1 E\2 1
(ITrp) () = —w(af My (az)”)(x) — 5(3T Mrag)(t) € Z7.
So g(o) € ZEg, (7.42) can be solved, and the Zg-component of n(l) is determined,

(TenV)(z, y) = 7(8 §O)(z,y) e Z.

Reduction of T_y. Since f( =y O g0 = 04O 1y (7.40) and the definition of S,
SFD — e i fO =W §FO 4y 2ipi £ + ars O] + FOLom® +ipanl) — 1] = f@gD,
where
g™ :=nDg® £ on® 4 iV 4 uind —c_y.
By variation of constants, f® =n® f© isasolutionof 71 = Qf @ + SfD —c_| O =0 if @ solves
2iu2n(,2) +g¢P=o0.
(7.45) has a periodic solution n® if gV € Zr. By (7.42), g©@ = —21,u217 , therefore

n g @ = —2ipan Wy = —ipady {(11)’} € Z.

As a consequence, the condition g(l) € Z g determines
mr (M) =0, c_1=0.
Thus (7.45) can be solved, and the Z g-component of 77(2) is determined,

(MTgn@)(r,y) = ZZ—M(B g, y).

Reduction of T_». Since c_1 =0, T_» = Qf ®4+s f @ _c, f © . By the same calculations as above,
Sf(2) . 2f(O) _ Tl(z)Sf(O) + 77(2) [21M2f(0) +a76f(0)] + f(O) [wn(Z) + mm(Z) ] _ f(O)g(2)7

(7.42)

(7.43)

(7.44)

(7.45)

(7.46)

(7.47)
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where
g? i=nPg® +on? +ipomG) + win? —co. (7.48)
By variation of constants, £ =n® £ jsa solution of T_ = Qf P + SF@ —c_», fO =0if @ solves
2ipanY +g? =0. (7.49)

(7.49) has a periodic solution n(3) if g(z) € Zg.Both ([Tt n(z)) g(o) and (ch(z)) g(o) belongs to Zg because g(o) eZkg.
Hence

Ir (,7(2)g(0)) =y [(ch@))g(O) + (nTn(2))g(0) + (HEU(Z))g(O)] — Iy [(HE,?(Z))g(O)],
and the same for [T (@ g©). Mgn®@ is given by (7.47). The condition I1t ¢® =0 determines
1
rn® = ——8;117T[(17En(2))g(0)], (7.50)
w
the condition IT¢ g'® = 0 determines
coa=Me[(Men®)g®].
Thus g(2) € Zg, (7.49) can be solved, and the Zg-component of n(3) is determined,

i

(Men) (e, y) = Z—M(By‘lg(z))(f, ). (7.51)

The only terms that have not been determined by the four equations 71 =0, ..., T—» =0 are I1c(¢), IIc (n(l)),
Hc(n(z)), Hc(n(3)), and 11 (n(3)). Fix all of them to be 0. Split real and imaginary part,

1 —1 1 —1 1 -1
Re(p) = maf HT[(HEa7)616] - 531 Il (ag) — 2_,u2(8y Clﬁ), (7.52)
L 2 2 Lo Lo
I =——3 ‘[T - — =o' — (80" Mgay), 7.53
m(¢p) LT r[(Tga7)” — (a6)”] o0 r(as) + 2M( . Mgaz) (7.53)
@@ = eRe@ cos(Im(p)), B = eRe@ sin(Im(p)). (7.54)
By (7.14),

Re(p) € X, Im(g) €Y, a® e x, BO ev.
As a consequence, g(o), 77(1), g(z), n(3) ceY+iX, g(l), r](z) e X+1iY,and
aWVey, gV ex, a? e X, @ ey, a@ ey, B e x.

Hence @ preserves the parity, namely @ maps X —- X and Y — Y.
By (7.14), (IIga7)asc € Y, ag € Y, therefore

1

vy =Re(co) =0,  vp=Im(cy) = wc [(ITgar)* — ag] + Mc(as). (7.55)
v_1=v",=0,and

v, =Re(c2) =0,  v_p=Im(c_,) =Im{Mc[(ITgn®)gP]}. (1.56)
Put

Mo ==V, H—2:=V_2.
Since Ty, To, T—1, T—> vanish, (7.36) becomes £3® — &D = PR4P, and (7.35) holds with

Ls=D+R, D=wd+purHdyy +p1dy +poH +pnoHd; >, R:=& 'PRy. (7.57)

If & is invertible, we have transformed £ into £~4, namely
L=UMPLd 'O L= M WWILF. (7.58)

From the formulae above, (g, 1_7, a®, ,B(k) are C! functions of (u, €), and the following estimates hold.
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Proposition 7.4. Let K > 0. There exists o € (0, 1), depending on K, such that, if ¢ € (0, &p), ||ull19 < K, and
llulla, 0 satisfy (6.4), then all the following inequalities hold.

ol S3CK),  |dupolhl| e*CKIIhls, 1810l < *C(K), (7.59)

lu—al S*CK), [dup—alh]| <°CE)IAlh2,  18ep—2] <& C(K). (7.60)
The operator b Zy — Zy is invertible, and maps Xo — Xoand Y — Y. b, d! satisfy

l@—=Df|,+ (@ =1)f], <e*Cls. K)(Iflls + lulls412ll fll2) VS € Zo, (7.61)
forall 2 < s <r — 1. The derivatives of(if, o1 f with respect to u in the direction h and with respect to € satisfy

|8, @ ORI + |8 (27" £) IR, <e*Cls, KN flIsNlla + I Fll2lAll a2 + lullsiazll £ll2llklha),  (7.62)

19:B f s + |02~ £, <eCls. KI5 + lullss12]l £1I2).- (7.63)
Moreover

|9:(@ — D f[[, <e2CGs, K) (192 flls + 1 Flls + Nulls13 (192 fll2 + 1 £112)). (7.64)

|9%@ — D £, <eCls. K)ok £, + 1 1s + Nullsra([oE £, +1£12). k=12, (7.65)

for2<s<r—9, for: alg f~e~Zo.~ ~ ~ o
The operators ¥ @, Y M®, d~ 101 @I M=~ are all of the type I + S, where S satisfies

1SF1ls <2CCs, K)(1f N1 + Nullsraall fll2), 2<s<r—7. (7.66)
The rest R satisfies
R £, <*Cls. KY(Iflls + lullstazll fll2), 0<m <3, 2<s<r—12. (7.67)

Proof. The proofisin Appendix C. O
8. Inversion of the transformed linearized operator

In view of the Nash—Moser iteration, we invert £~4 =D+Rona subspace of Fourier-truncated functions. Let

2 ¢={“= 2 ukek}cz, k=) €22 [l =Vl +1jl, Zoy i=ZoN Zw,
[kI<N

with N > 0 sufficiently large to have v € Zy, namely K C [—N, N], where K is defined in Section 5 (see Proposi-
tion 5.3). Let [Ty, I1 /{; denote the orthogonal projections onto Zy and Z ]JV- respectively. Let

Xon :=XoNZy, Yn:=YNZy, Von :=VoNZy, Wy =WnN~Zy.
HNE41'[N maps Xoy — Yn because £~4 : Xo — Y. Since Zoy = Vony © Wy, to prove that HN£~4HN : Xov = Yn
is invertible, we project on the subspaces Voy and Wy (Lyapunov—Schmidt decomposition, like in Section 4): given
fEYN,

HV0N£~4HV0Nh + HVON[:4HWNh =y, f,

MNLallyh = f N ~ (8.1)
My, LaITyyy h + My, LaIlw, h = My, f.
Since D is diagonal, D maps V — V and W — W, therefore
Iy L4y = Ty Ry, Iy L4y = My RITy. (8.2)

Lemma 8.1 (Inversion on Vo). Let K > 0. There exists o € (0, 1), depending on K, such that, if ¢ € (0, o),
lullio < K, and ||u|4, &9 satisfy (6.4), then

HVON‘C~4HVON VonNXg— Von NY

is invertible, with
C(s, K)
52

| Ty LaTTypy) ™" |, < (12lls—1 + lullss13llalz), 3<s<r—S8. (8.3)
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Proof. L4 =® L3 (see (7.35)). Split £3 = L + &>A + &3 B, where

L=03;+3,H,  Ah=3dh+23,(30%h),

B =& (2 — DdyyH +agdyH + (a7 — £730%) 9y + agH + (ag — £*(39%),) + R3 ).
By (7.16),(7.30),(7.34),

IBRlls < C(s, K)(Ilhyylls + Iylls + Nalls 4+ lluwlls7 (B lo + Ihllo)), 2<s<r—3. (8:4)
Let S;: Zo— Zo, S1:=e 2(® — 1), S» ;=& 2(® " — I (recall that P = I on Zy). Since [Ty L = LITy =0,

Mgy Lallvyy = My @ L3D My, = My, (1 + 6282)P(L + &2 A+ &3 B)P(1 + £281) Iy,

= &2 [Ty, (A + e B) y,y, (8.5)

where

B = £SHPLPS; + £$5PA 4+ e APS| + ¢3S, PAPS| + &~ 'PBPD.
By Proposition 5.3, ITy,, Aly,, : Von N Xo — Voy NY is invertible, with

|(Tyoy ATy )|, < Cllhlls—1  Yh e VoxyNY, ¥s >0, (8.6)
where C > 0 depends only on the set /. By (7.61),(7.64),(7.65), for2 <s <r —9,

IS1Alls + 1S2hlls < C (s, K)(IAlls + llulls+1211R112),

18.814lls < C (s, K)(13.hlls + 12lls + lulls+1a(18.2l12 4 112112)), 8. =8z, By, dyy,
for all 1 € Zo. Then, since L = 3 + 193, Ah =30:h 4 30%9,h + (30%)h, and by (8.4),

[1Tvoy BilTyyyhlls < C s, K)(I1hlls+1 + Nullsrallallz), 2<s<r =9, (8.7)
because [|07h|s = |HoZhlls = [|19:hlls < 541 for all h € V. Thus, by (8.6), (8.7),

| (ITyyy BTy ) vy ATy )"0 < Cls. K (Ils + llullsriallnll2), 2<s<r—9,

for all h € Voy NY. Since By maps X into Y, By := (I1y,, Bll'[vw)(I'IV(WAHVON)_1 maps Y into Y. By standard
Neumann series with tame estimates (see Lemma B.2), I + ¢ B> is invertible as an operator of Vo N Y onto itself,
with

|7 +eB) '), < Cls, K)(IR]ls + lulls1allhlz), 2<s<r =09, (8.8)

provided that eC(K) < 1/2, for some C(K) > 0 depending on K, K¢ ,, [|[0]l19. By (8.6) and (8.8), ITy,, (A +
eB) 1y, = +eBy)! (ITy,y Ally,y,) : Xo N Voy — Y N Vyy is invertible, with

—1
H{Tvoy (A+eB) Iy, ) k|, < Cls. K)(Ihlls—1 + llullsisllhll2), 3<s<r—8.
By (8.5) the thesis is proved. 0O

By Lemma 8.1, the Vyy-equation of system (8.1) can be solved for ITy,, h,

My h = (Tvyy, Lallvey) ™ (Mvey f — Mvoy LalTwyhl. (8.9)
Substituting Iy, &, and using (8.2), the Wy-equation of system (8.1) becomes

AlTwyh) = fi, (8.10)
where

A= Iy, LalTwy — (Twy RITye) Ty LalTyy) ™" (Myyy RITwy). (8.11)

fr:= My, f — (Twy Ry ) Ty, LalTyyy,) ™ vy f. (8.12)
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L4 =D+ R, where D = wd; + naHdyy + w1dy + poH + n—2Hd; 2, which is (7.57). In the basis {/(T+/M}, ;. D
is diagonal with eigenvalues

A=, e) =i (ol + pojljl+ 11 j — posign(j) — p— sign()(ij)~?), (8.13)
where w = 1 4 3¢2 and ; (u, €) are C! functions of (u, €). By (7.16), (7.17), (7.59), (7.60),
lo — 1]+ p2 = 1 + [ ] + |pol + [u—2| < 1/2 (8.14)

for ¢ < gg sufficiently small. Remember the notation (j) = max{l1, |j|}.

Lemma 8.2 (Inversion on Wy ). Let K > 0. There exists o € (0, 1), depending on K, with the following property. Let
e €(0,¢e0), lull19 < K, and assume that ||ul|4, o satisfy (6.4). Let

A, €)] > V(. j) € Wy, (8.15)

1
2
where

Wy = {(l, j) e W: || <N}={(l,j)€Z2:l+j|j|7é07 il < NJ.
Then A: XoN Wy — Y N Wy is invertible, with
| A R||, < CGs. K)(Ihllsr3/2 + Nullsrie43/2002).  3/2<s <r—12-3/2. (8.16)

Proof. Since L4 =D + R, we have A = Dwy + Rwy, where
Dy, = HwyDMwy,,  Rwy = MwyRIDwy — (Mwy Ry, ) (Tvyy Lallvyy )~ My, RITwy).
Like A, also Dy, and Ry, map X into Y. Dy, : Wy — Wy is invertible because A; ; # 0 for all (/, j) € Wy. Let
U=+ T+, UL =15/ TH 1y = (i) Vi #0, Up=1.
|As,j11U;| > 1/2 for every (I, j) € Wy because |U;| = (j /)3. As a consequence,
|~ Dyt h|| <20kl Yhe Wy, Vs >0.
By (7.67) and (8.3),
RwyUhlls < ||RWN8 |+ |RwyUTr + Ho)h|, < <& C s, K) (Il + lulls+16l712)
for 3 <s <r — 12, whence
|Rwy Db ] = [ Ry (U™ Dy) )R] <eCls, K) (Il + lullsrislhlla), 3<s <r—12.
For s =3, ||RWND@}Vh||3 < 2C(K) ||| By Lemma B.2, I + RWND;V,IV is invertible on Wy, with
1y~
(T +Rwy DL )" k|, < Cls. K)(IRls + lullsrislBllz),  3<s <r—12,

if 2C(K) < 1/2. Therefore A= (I + RWND@}V)DWN is also invertible. Now ||D17V}Vh||s < CJlh|ls+3/2 because, for

indices (I, j) € W such that |A; ;| < 1, one has 11> <l by the triangular inequality and (8.14), so that 1/]A; ;| <
2(j)3 < C(1)3/?. Hence (8.16) follows. O

Remember the definition P, := 2Ty + My .

Lemma 8.3 (Inversion of I1 NL4Iy). Assume the hypotheses of Lemmata 8.1 and 8.2. Then for every f € Yy there
exists a unique h € Xon such that HN£417Nh f. The inverse operator (HN£417N) 1 maps Yy — Xon, with

Iy LatIy) 7 f|, < e72C G, K (I f Nlsw3/2 + Nullsr17+3/20 £ 112), (8.17)
[ s

| TN LarIn) T P f || + | Pe(InLaTIn) ' £, < Clsy K (1 f Nls432 + Nulls 417437211 £ 112), (8.18)
3/2<s<r—12-3/2.
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Proof. Use (8.1), (8.9), (8.10), (8.11), (8.12), (8.3) and (8.16). O

Lemma 8.4 (Derivatives of (IINL4IIy) ™). Let K > 0. There exists o € (0, 1), depending on 4K, with the following

property.
Let ¢ € (0, &9), |lull22 < K, assume that ||u||4, €9 satisfy (6.4), and that (8.15) holds. Then, for2 <s <r — 18,

|8 (T LatTn) " RS ||, <e7'Clss KY(Lf Istsl a4+ 1 £ lls (1 llsr16 + lulls23l2 1)),
|0e (TN LalIn) ™" £, < e Clsu K (I f lls6 + lull 423 £1Is).
|8 (T LaTIN) " RIPe f || + || Pedu (T LaTTn) ™~ TR £
<eC(s. K) (I fllsrelnlla + 1L £ Is(I12llss16 + lullss23llAl14)).
[{0e (TTy LaTn) T} Po £ ||, + || Pe{ 0 (TN LalTn) 7'} £ ||, < 671 C G0 K (11 f st + lluell 231 £ 11s).

Proof. By Proposition 6.1, forall 0 <s < r,

1L f1ls < Cls, K1 D542 + lullsall £112),
|9 L1n1f ||, < &CCs, KIS Nsxaliblla+ 1S T2 (Ihllsra + lullsrallhlla)),
19: L f1ls < eC (s, K)(I1f -2 + luell44ll £112)-

Hence, from formula (7.58), using the estimates (7.25), (7.26), (7.28), (7.29), (7.62), (7.63) for b, W, M and their
inverse,

1£aflls < CCs, K)(I1f stz + lullstrall £112)
|uLath) £ ||, < & C s K)(ILf Nswallhlla + 1£ 15 (I1Alss14 + luellsrislRlia)).
19:Laflls <eCls, K)(I fllst3 + Nulls4151l £1ls),

for 2 <s <r — 10. The Lemma follows from formula (B.9) and Lemma 8.3. O

8.1. Further estimates
In this section we collect some tame estimates that will be used in the Nash—Moser iteration.

Lemma 8.5 (Tame estimates for F ). (i) There exists g9 € (0, 1), depending only on ||v1||5, such that
elvilla+e2oalla <80, [2200)], <C6), g2, <e7'Cl), (8.19)
|F(va(e).e) |, <eCs),  ||oe{F(va(e).e)}|, < C(s), (8.20)

foreverye e (0,69),2<s<r.
(i) Assume that &g, u, h satisfy &o| 014 + 86(”” ll4 + I2]l4) < 8¢ (8¢ is the universal constant of (6.4)), and ||ull4 +
7)la < K. Let

Q(w,h,e):=Fu+h,e)— F(u,&) — 98, F(u, &)[h]. (8.21)
Then, for 2 <s <r, € € (0, g9),
Q. h )] < CGs. K)lRlla(liBlls+2 + llulsallla)- (8.22)
(iii) Assume that go||v1 |4 + 8(2)||u||4 < 80, namely (6.4), and ||ull4 < K. Then
|Fu.e)|, <Cls. K)(1+ llullss2), (8.23)
|8 F (e, )[R, < C s, K)(Ihlls+2 + llulls+2lBlla), (8.24)
|0 F (. &)[h]||, <e™'Cls, K) (14 [lulls42). (8.25)

forall2 <s <r, e€(0,e&).
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Proof. In Appendix C. O

Remark 8.6. Estimate (8.22) actually holds with an additional factor ¢ on the right-hand side. However, this makes
no essential difference in our iteration proof below.
Lemma 8.7. Assume the hypotheses of Lemma 8.4. Then

| @SN LatT) ™ NS~ M P f | < Clss KD (I f llsts/2 + Nellsa7s211 £ 112) (8.26)
for2<s<r—12-3/2.

Proof. By (7.21) and (7.61), the term on the left-hand side in (8.26) is

<CG K (|UTTnLalTy) T Iy @' MW P f|| + Hlullsrin | (TN LaIy) " Ty @' MW P £ )
for2 <s <r —7. Write S IM I las T+ S, where S satisfies (7.66). Since [Ty P, = P.I1y,

(TN LaTTy) " Ty~ MT TP f = (ITy LaTTn) ™ PedIn f + Ty LaTIN) " TINSP; f,
then use (8.18) for (ITy L4ITy) "' P. My f, and use (8.17), (7.66) for (ITy L4My) ' MINSP: f. O

9. Nash—Moser iteration and Cantor set of parameters

Let
X :=3/2, a>0, N, = exp(&x”), neN, 9.1
with No = exp(a) sufficiently large to have C C [—Ny, No] (K is defined in Section 5). Consider the correspond-
ing increasing sequence of finite-dimensional subspaces Z,, := Zy,, with respective projections I, := I1y, . For all
s,a = 0, IT, enjoys the smoothing properties
[ Tnutlls+a < Ny llulls  Yue H®, 9.2)
|Thu)|, < NyNullssa Yu e H, (9.3)

where H,f- = [ — IT,,. Note that (9.2), (9.3) hold even if N,, > 0 is not an integer number.
In the previous sections we have proved the transformation

F'u,e)=P "L, e) =P " L(u,e) = PO MP Ly ! (9.4)
where lf/, /\;l, (5, £~4 all depend on (u, ¢). Following a suitable Nash—Moser scheme, we construct a sequence (u,) C
C>(T?) of e-dependent trigonometric polynomials by setting ug := > as defined in Section 5, g := 0, and

Uil = U+ hot 1y Pyt = =Ty 19 B (M1 Lo g M) ™ 1 7 M P F (), 9.5)
provided that the inverse operator Z, := (IT,+1 E4 (un) Iy 11 y~! is well-defined on Zn+1. The notation in (9.5) means

54,}1 = E4(”n) = [:4(1471(8), 8)7 ¥, =V (uy) = lI/(un(g), 8),

and similarly for M, &. Also, L4y =Dy + R,. We omit to write explicitly the dependence on ¢ only to shorten the
notation. At a first glance, (9.5) could seem an unusual and excessively complicated Nash—Moser scheme. However,
in some sense it is “the most natural” for the present problem, as the “normal form” for the linearized operator is given
by L4, =D, + R, therefore it is natural to impose Diophantine conditions on the eigenvalues of D,, and to insert
smoothing operators I1, before and after it.
With /41 defined by (9.5), one has h, 11 = — I, 41 ¥, P, T [,y 4 1Cn,
F(uy) + F/(un)thrl =In = Pg_l"i/n-/\;lni)n{nj;lcn - H:_+17énnn+11nnn+lcn + [:4,nbn} (9.6)

where

Cp = QBJIA;I,TI@”*]PEF(M,,), by == <1~>,;1117;117;‘4_147,,95,,1'”17,,4_1%.
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(9.6) follows directly from (9.5), and is proved in Appendix C. Hence

Fupt1) =rn + Qun, hut1), 9.7

where Q is defined in (8.21).

By Lemma 8.3, Hn+1£~4(u,,)17n+1 is invertible if the eigenvalues A; j(u,, ¢) of D, satisfy the Diophantine condi-
tion (8.15) for u = u, and N = N,41. Let W, := Wy, . Define recursively the set of the “good” parameters ¢, those
for which (8.15) holds: let Gy := (0, &p), and define

Gny1 = {eeg,,: A1, j(un, &)| > V(l,j)eWn+1}, n>0. 9.8)

1
2(j»°
G is the set of the parameters ¢ for which (ux, hx, Ak, Gi) can be defined recursively for k =0, ..., n. On the contrary,
after constructing (ug, hy, Ag, Gi) for k <n,

Bn+1 =Gy \ gn—H

is the set of the “bad” parameters ¢ for which the Diophantine condition (8.15) on the eigenvalues A; ;(u,, €) is
violated on |/| + |j| < Ny+1, the inverse of (11,41 L4(u,)I1,+1) is not well-defined, &, cannot be defined by (9.5),
and the recursive construction stops. Therefore at the n-th step we eliminate the bad set 3,11, and restrict the parameter
set to the subset G,+1 € G,. For convenience, put By := .

Proposition 9.1 (Nash—Moser induction and measure estimate for the parameter set). There exist universal constants
ro, o > 0 and constants C, C’, ¢, a, b, 83 > 0 depending only on vy, K », such that if Go = (0, &9), €0 < 83, r = ro,
and a defines N,, in (9.1), then the following induction hold.

Let (P,) = {(Py)(), (P,) (1)}, n > 1, be the following set of statements.

e (P,)(). Gy, is an open set. The Lebesgue measure of B, satisfies |B,| < angn, where the sequence (by,) satisfies
Yool obn=C" < oo
e (P,)(ii). For every ¢ € Gy, h,(e) € Z, is well-defined. hy, : G, — Z,, € — h, (¢) is of class Clas a function of ¢,
with
”h,, (e) ||X0 < exp(—l;)("), || 0:hy (€) ||S0 <e™! exp(—l;)(”). 9.9)

(Py) holds. If (P,) holds, then, using (9.5), (9.8) to define hy,+1 and Gy+1, (Py+1) also holds.
As a consequence, the Cantor set Goo := ﬂn>0 G, C (0, g9) has Lebesgue measure
|Gool = €0(1 — £9C).
For every ¢ € G, the sequence (u, (g)) converges in H* (T2) to a limit uss(€), which solves
F(uso(e),€) =0.

Moreover, us(¢) € HS (']I‘z)for every s in the interval so < s < (r +¢p)/2.
Ifgi,i=0,1,2in(1.2), (1.3) is of class C*, then also us(g) € C*(T?).
50, 1o and cqo can be explicitly calculated: so = 22, co = 28; for ro see (9.22) and below.

We split the proof of Proposition 9.1 into two parts: the Nash—-Moser sequence (P,)(ii) with its regularity in
Section 9.1, then the measure estimate (P, )(i) for the parameter set in Section 9.2

9.1. Proof of the Nash—Moser iteration

First step. Let us prove (Py)(ii). For € € Gy, (9.5) defines h; = hy(e). By (8.19), the condition (6.4) holds. By (8.19),
if 22 < r, then ||v2(g)]l22 < C for all ¢ € (0, g9), for some constant C. Take this constant C as the “K” in all the
lemmata of the previous sections, so that the assumption K > ||u||22 is satisfied for u = ug = v2(¢), for all € € (0, &¢).
In this way, to indicate the dependence on K in all the constants C (s, K) is redundant, and we simply write C (s, K) =
C(s). By (9.5), (8.26), (8.19) and (8.20),

11l = 1¥o@oZoMicolls < C) (|| F o) | ;s 5 + Nutolls 174572 Fwo) |,) < eCs)
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if s + 17 4+ 5/2 < r. Hence the first inequality in (P)(ii) holds if
g0C(s) <exp(—hy). (9.10)

dgh is obtained by differentiating every term in formula (9.5) with respect to ¢ and applying the estimates for 9, ¥,
0. P, 0. {(IT1 L4(uo(e), 8)171)’1}, etc.; using (8.19) for 9. v, and (8.20) for d.{ F (va2(e), €)}, we get

l8chi(e)], < C(s)

for ¢ € (0, &p), s + 17 4+ 5/2 < r. Therefore the second inequality in (P;)(ii) holds if (9.10) holds (with a possibly
different constant C(s), as usual).
Inductive step. Now assume that (P,) holds, n > 1, and prove (P,+1)(ii). By (9.9),

n o
lunlls < lluolls + Y Mells < I02lls + CB),  C(b):=)_exp(—bx*). ©.11)
k=1 k=1

Note that C (b) is indep_endent on n, it is decreasing as a function of b, and C(b) — 0 as b — +o0. Hence, for s > 22,
lunll2z < llv2ll22 + C(b) < 2||v2]l22 = C for all ¢ € (0, o) if

bh>cC, 9.12)

for some C > 0. As in the previous step, take this constant C as the “K”, and replace C(s, K) with C(s) in all the
lemmata of the previous sections. Moreover, (6.4) is satisfied for u = u, if ¢¢ is sufficiently small, independently on
the parameters. Also, ||u|ls < C(s).

By (9.5), (9.2) and (8.26), fora > 0,2 <s —a <r —12-3/2,

nsills < Ny 1% BuZo Ty 1cnls—a
<N Cs—a)(| F(un)HS_aJrS/z + lnlls—as17+5/2 || F (@n) | ,)- (9.13)
Take o := 17 + 5/2, and denote s" := s — 17. Since s’ > 2,
B lls < 913) S Ny C (| Fwn) ||y 4 Nltnlls | F@n)|5) < Nity y C () | F(un)
because ||u,|ls < C(s) by (9.11). By (9.7), F(u,) =ry—1 + Qy—1, hy). Therefore

s/

lhntills SAr+Ag, A =Ny C®)lrn=illy, Ag =N C(s)|Qun—1,hn)
By (9.6), r,,—1 is the sum of 3 terms, say (I) 4+ (II) 4 (IIT). The first one is

9.14)

|s"
N - Lg—1 -1 g1
0= PE lIln—lj\/ln—l(pn—117n ¢n—1M L4 P F(up—1).

n—1"n—1

Using (7.66), like in the proof of Lemma 8.7, no negative power of ¢ appears in the estimate of (I). Using (9.3) to deal
withﬂ,f,forﬂ >0,2<s" + B <r—_8,onehas

||, < CGs+ BN, P (| Flun—)|

sapr2 T ln—1llyp413 |F(un-1)],)-
The same argument applies to (IT) and (III), whence
lra—tlly < C (" + B)YN, P (I F n=0)| o o + ltn—1ll54 410 F@tn-1) ).
2 <s'+ B <r—16. Applying (8.23),
lrn—illy < C(s" 4+ BN, P (14 lun—illy1pt10) = Cls + BN, P (14 lun—1lls+842)- (9.15)

Now estimate the “high norm” By := ||hi||ls+p+2. Toeach k=0, ..., n, apply (9.13) with s + B + 2 instead of s, and
use (8.23):for2 < (s+B8+2) —a<r—12-3/2,

ks illspr2 S NEGCG +B+2 = (| F@i) | prngrsyp + 1ukllstpra-atires2 | F@o],)
SNEAC+ B (1 + llullsrpi2) (9.16)



62 P. Baldi / Ann. I. H. Poincaré — AN 30 (2013) 33-77

where, as above, o := 17 + 5/2. For (8.19), |luglls+p+2 < C(s + B) if s + B + 2 < r. Then, by (9.16), By =
2115442 < NYC(s + B), and

k k
Bt < NE CGs +B) (1 + lluolly+p2+ Y I1A ||s+,3+2> <N CGs + B) (1 +y B,-) 9.17)
j=1 j=1
for 1 <k < n.By (9.1), this implies that
1hlls+p+2 = B < exp(bx"), (9.18)
k=1,...,n+ 1. For, by induction: (9.18) holds for k =1 if C(s 4+ B)exp[(ax — b)x] < 1, namely if (b — a) is
larger than some constant depending on (s + 8). Suppose that (9.18) holds for all j € [1,k], k> 1. For b > 1,

k
1+ Zexp(l;xj) < Cexp(l;xk), Vk e N,
j=1

for some universal constant C. Then, by (9.17), (9.18) also holds for k + 1 if C(s + ) exp[xk(aax —bx+b)1<1,
namely if

b—3aa>C(s+p) (9.19)
for some C(s + B) > 0, and (9.18) is proved. Thus |[up—1|ls+g+2 < C(s + B) exp(bx™~ 1), and, by (9.15),

lra-illy < CGs +Byexp[x" (b~ pax)]. A <C(s+pexp[x" (b+aax® - pax)].
As a consequence, A, < %exp(—l;x”“) if

a(Bx —ax?) —b(1+x*) =Cs+p) (9.20)
for some C(s + ) > 0.
Estimate Ag. Since |[uy—1lly4+2 = llun—1lls—15 < C(s), by (8.22) we have Ag < Nr‘l"+1C(s)||h,,||32,. This is
< Jexp(—bx"hyif
b—3aa>C(s) (9.21)
for some C(s) > 0. Now fix
bi=Q@a+Da,  Bi=[ax*+(1+x})Ca+D]x~" (9.22)

Since x =3/2 and ¢ = 17 4+ 5/2, B is a universal constant, and the constants C(s 4+ 8) can be written as C(s). Fix
a > C(s) sufficiently large to satisfy (9.19), (9.20), (9.21) and (9.12). Then fix g9 < C(s) sufficiently small to satisfy
(9.10). All the above conditions on s hold if

2<s<r—2—-4.

Hence the minimal value for r is rg := 24 + B. Put 5o := 22. For s = 59 = 22 and r = rg, all the above constants that
depend on s and K , become constants depending only on K ,,. With this choice of parameters, the first estimate of
(Py+1) (i) is proved.

The second estimate of (P,4+1)(ii) can be proved by the same arguments. Observe that in every estimate for o,
there is an additional factor 1/e: indeed, terms like ¢” or P, after being differentiated, have one degree less as
powers of ¢. Terms like F(u,, €), lf/(un, €), ..., after being differentiated with respect to ¢, contain also terms like
0 F(uy, &)[0:upl, 8ul1~/(u,,, &)[0:unl, - .., and the loss of one degree as a power of ¢ comes from (9.9). The estimates
for 9, and 9, of all the terms are given in the previous sections (and remind formula (4.5) for F(u, €)).

For each ¢ for which the sequence (u; (¢)) can be constructed, by (9.9) u, = ug + ZZ: 1 hi is a Cauchy sequence
in H*0(T?), therefore u, (&) converges in H*0 to some limit u,(¢) € H* as n — oo. Since the map H* — H%~2
u > F(u,e¢) is continuous, || F(u, &) — F (o, €)lls,—2 — 0. On the other hand, we have proved that

o <lr—tlly + [ Qa1 hn)

as n — 0o, where s’ =sg — 17 =5. Thus F (4o, ) =0.

| F un, &)

= C(SO)Nn_-l(—xl (Ar + AQ) < C(S())Nn__gl exp(_EXI’hFI) =0
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Now let 22 =59 < 51 < 2, With s = Asg+ (1 — A)s2, and A € (1/2, 1). Apply (9.16) with s, instead of s + 8 + 2:
forso —a <r —12—3/2 we get

1t llsy < NE Cls2) (1 + lluglls,)  Vk >0,

for some constant C(s>) depending on s;. For (8.19), [luglls, < C(s2) if s < r. Then the “very high norms” B/ :
7k s, satisfy Bj = ||h1lls, < NYC(s2), and

k
Biyi < ng+]C(52)<1 + ZB}) k>1.

j=1
Therefore there is a constant K (s) such that

lklls, = By < K (s2)exp(bx*), k=1 (9.23)

Let us prove (9.23). Since b —3aa > 0, where a, b have been fixed above, the inductive step (k = k + 1) holds for all
k > ko(s2), for some ko(s2) depending on s, which is sufficiently large. Note that the constant K (s2) have no role in
the inductive step. Then choose K (s7) := max{|| /s, exp(—bx*): 1 <k < ko(s2)}, so that (9.23) holds for all k > 1.
Now, by (B.1), (9.23) and (9.9)

icllsy < 2MAill, Akl < 2K (s2)' ™ exp(=abx*) exp((1 — 2)bx*) = C(s2, 1) exp((1 — 21)bx "),
and the series Zk>1 exp((1 — 2)»)5)(") converges because (1 — 21) < 0. This implies that |[uolls, < lluolls, +
Zk>1 lhklls, < oo. Since s1 < (so+s2)/2and s <r — 12 —-3/2 4+ «, o =17 4 5/2, this argument holds if

r+28
7

If g;, i =0, 1, 2 that defines the nonlinearity N is of class C®°, then there is no upper bound for s1, and the argument
applies for every s; > 59, whence uy, € C*.

s <

9.2. Proof of the measure estimate

Go = (0, &), Bo = 0. Let us estimate G, 1, By+1,n > 0.
The set Gy,+1 is defined by (9.8). u,(¢) is a C! function of &, and i, e), k=2,1,0,-21is a C! function of
(u, ). Therefore each eigenvalue A; j(u,(¢), €) is Cline. B, 41 is the union

1
Bui1 = U QL Q= {s € Gut |, j(un, )| < W} (9.24)
@)W1 J
Write the eigenvalues A; ;(u,(¢), €) as
M j(un(e), €) =io(l + pj(e)),

Pie) = m2(uy(e),€) . il + mwi(uy(e),e) . —pouu(e),e) . n(j) + n—2(uy(e), &) sign(j)
14322 7V 14322 7 1432 et 1432 2

(where we mean sign(j)j~ -2 =0for j =0).Sincew=1 +3e2>1, |Ar,j(un(e), e)| = |l+p;?(£)|, and

Q,Jgszl] {eeg,, L+ pie)] < } Y, j) € Whit. (9.25)

2(j)?
For j =0, p; (&) = po " () = 0, therefore .Q”O = ) for all [ # 0. The pair (I, j) = (0,0) does not belong to W41,
hence the case j = 0 gives no contribution to the union (9.24). So let j # 0.

w2 (uy (), &)
1+ 3g2

Mk(un(8)$8) _ 3
14382 O(e )’

w1 (un(e), €)

1 _ 1.2 3
=1-3¢ +0(8 ) 1 3:2

=3be? + 0(83),
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where b .= Hc(f)f), and the precise meaning of 0% is given by (7.16), (7.17), (7.59), (7.60). Therefore

p'i(e) 3b
P = jlil(1+&r (), rie):= ( J’m — 1) =—3+m+0(8)-

|r (e)] < C for some C > 0 independent of j, n, €. Also, by Proposition 5.3,

3b
b= 1j1] = 8ljl, ‘3+ﬂ >35 VjeN, j#0.

As a consequence,
28<|rie)| <C

for ¢ < gp sufficiently small to have |r”(s) + 3 —3b/]j|| < 4. Suppose that ¢ € S? ;é ). Then, by the triangular
inequality,

+ ce?|j. (9.26)

1

()
|l + jljll = 1 because [ + j|j| is a nonzero integer. Thus we have a “cut-off™: if f)l'fj #@, then 1 < 1/2 + Ce2|j|%,
and

1+l < |+ i @]+ |=pj@ + il < 5

C<eljl<eoljls (9.27)
for some C > 0. Moreover, by (9.26), [ belongs to the interval
—jlil=1/2 = CedljP <1< —jljl+1/2+ Ce| I (9.28)

As a consequence, for any fixed j with |j| > C/eo, the number of integers / such that S~21” j # () does not exceed the
number of integers [ in the interval (9.28), namely

#{l: 2 #0} <2(1/2+ Ceglil?) + 1< C'egljI? (9.29)

because 2 < C80|] |2 by (9.27) (and the number of integers in an interval [a, b] is at most (b — a + 1)). By (9.25),
(9.29) implies that 3,1 is the union of a finite number of closed sets, hence G, 1 is open.
From the chain rule, (7.16), (7.17), (7.59), (7.60), and || 0.1, ()12 < ¢~1C (which follows from (9.9)),

- 6b
d:p'i(e) = JIJI8< 6+ T 0(8))
Hence, for any fixed j, the sign of 9; p;? (e) is the sign of j(—14b/|j|), which is constant with respect to €. By (9.27),

6b 2
6+—+0(8) |jlced = C|j|

if gg is sufficiently small. So p” f is strictly monotone as a function of ¢, and, as a consequence, .Q 1s an interval, say
[e1, &2]. If p* f is increasing, then

0. P} ()| = 1j e

&2

> pie) — pier) = / 8 Pl (e)de > C|j|(e2 — £1) = C1j1| 2]

€1

1
1jI?

’

and analogous calculation if p;? is decreasing. Thus
C
1+

Also, |‘an,j < |52 | because Q . C .Q"

(9.30)

|27,] <
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Now split the union (9.24) into two parts, the union over the “old” indices (I, j) € W,+1 N W,, = W, and the one
over the “new” indices (/, j) € W, 11 \ W,. By (9.29) and (9.30), the Lebesgue measure of the union over the new
indices is

U«

new

1
112

2
= C806n+1,
lJ

<Ylels ¥ paedif=cd X

new Nn<‘j‘<Nn+l Nn<|j|<Nn+l
where

Z HE Crat = Z —>, and Z Z ot =C < o0.
NV n=0 I=1

Ny <l T2y V]

For old indices, let ¢ € f?l'fj, with ([, j) € W,. By the triangular inequality, u,, = u,—1 + h,, and estimates (7.16),
(7.17), (7.59), (7.60) for 9, i (u, &),

1+t @) < |1+ pj@|+|pjEe) - Pl @)] < +Ce*| 12| hn (@) 1,-

2|j I3
Since an,j C Gy, and (I, j) €Wy,

|1+p (£)|\ +Ce*lj)? |7 (3)”12}

2|j |3
As above, p’;fl
Hence '

- 1
|~anj| C80|]|26Xp( bx" )| T

because |j| < N,. By (9.29) and (9.1), the Lebesgue measure of the union over the old indices is then

U«

old

is strictly monotone as a function of ¢, |88p’;71(8)| > C|j|, and ||k, (&) |l12 < exp(—bx™) by (9.9).

< CegNyexp(—bx™)

<Y |2 <Cey > N, exp(—bx") < CegN,y exp(—bx") = Cegexp[x" (=b + 4a)].
old [J1<Nn

Sinceb—4a>a>1 by (9.22), Zn oexplx"(— b+ 4a)] = C < co. We have proved that

|Buy1] < Cegbus, an =C <.
n=0

Therefore | Un>1 Bl < séC, whence |Goo| = o(1 — g9C).
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Appendix A. Kernel properties

Proof of Lemma 5.1. 1) Let ji, j> be nonzero. gj,qj, = ¢qj; € V for some j3 € Z if and only if
1+ j2=Js, —Jjilil = j2li2l = = jalj3l-
Let ng := | ji| and jx = oxng, or € {1, —1}, k =1, 2. If 01 = 07, then

B=ji+ =0 +n),  jljil=jlil+ jlpl =01 (nd +n3),
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therefore |j3|2 = +n)?= (n% + n%), and this is impossible because nyny > 0. If 01 = —o73, then

B=jit =01 —n2),  jsljsl=jiljil+ palial =01 (n] = n3),
whence |ny —ny|(ny +ny — |n2 — ny]) = 0. This holds only for ny =n;.
2) Let j1, j2, j3 all nonzero. gj,q,qj; =qj, € V for some js € Z if and only if
Ji+ 2+ 3= Ja, —Jjiljil = j2lj2l = j3lj3l = —jal jal-
Let ng := | jkl, jx = oxnk, k=1,2,3,4, with 01, 02,03 € {1, —1} and 04 € {1, 0, —1}. If 01 = 02 = 03, then
—ni —n3 —n3+ (m +n2+n3)* =0,

which is impossible because n1, ny, n3 > 0. If o1, 02, 03 are not all equal, say o1 = 0» = —03, then

o4hs = ja = j1 + o+ j3 =o01(n1 +ny —n3),

aang = jaljal = jilj1l + 2l j2l + j3lj3l = o1 (nf + n3 = n3).
If j4 =0, then

ny +ny=ns, n%—i—n%:n%,

which is impossible because njny > 0. Thus j4 # 0, 04 # 0. As a consequence,

ny+ny —n3=ony, n%+n%—n%:oni, o:=o04 €{1,—1}
If o = —1, then
ny+ny 4 ng =ns, n%—i—n%—i—nﬁ:n%,

which is impossible, as already observed. Thus o =1 and
niy—n3=n4—ny, (n1 —n3)(n1 +n3) = (ng — n2)(ng +n2).
If n1 # n3, then the second equality implies n] + n3 = na4 + ny. Therefore the sum of the two equalities gives

ny =ng, n3 =ny,

hence j, + j3 = 0 because oo = —o3. If, instead, n| = n3, then also ny = n4, and j; 4+ j3 = 0 because o1 = —o03.

Appendix B. Tame estimates

O

In this appendix we remind classical tame estimates for changes of variables, composition of functions and the
Hilbert transform, in Sobolev class on the torus, which are used in the paper. For these classical estimates see also,
for example: [21, Appendix G]; [16, Appendix]; [8, Section 2]; [17]. Before that, remind standard Sobolev norms

properties (Lemma B.1) and tame estimates for operators (Lemma B.2).

Lemma B.1. Letd € N, d > 1, and 5o > d /2. There exists an increasing function C(s) > 0, s > so, with the following

properties.

(1) Embedding. ||ullp~ < C(so)llulls, for all u € H%(T4, C).
(i) Algebra. |luvl|s, < C(s0)llullsyllvllsy for all u, v € H*(T?, C).
(iii) Interpolation. For 0 <s1 < s <52, s =As1 + (1 — X)sy,

luells < 20l lull; ™ Vu € H(T, C).
For0<s; <oy <o <5,
lulloy llulloy < 4llulls, lulls, Vu € H?(T?, C).
(B.1), (B.2) also hold with all ||u||s replaced by |u|y, u € WS (T?), s € N.

(B.1)

(B.2)
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(iv) Asymmetric tame product. For s 2 s,

luvlls < C@)lullsllvlls + Co)lullslvlls  Vu,ve H(T?). (B.3)
(V) Mixed norms tame product. For s >0, s € N,

luvlls < C)(llullslvlo + llullolvly)  VYu € HY(T?), ve WH(T9). (B.4)

Proof. (iii): see [31, p. 269]. (iv): see the appendix of [9]. (v): write D* (uv) = Zﬂ+y:a(Dﬂu)(DV v), use the ele-
mentary inequality ||(Dfu)(D?v)|lo < ||DPullo| DY v|o, then the interpolation (iii). O

Lemma B.2. Ler 0 < sg < s, and cg,cs > 0. Let S be a closed linear subspace of Z (for example, S = Zg or S =
ZonNY). Let T : SN H* — SN H* be a linear operator.

(i) Tame Neumann series. Let co < 1/2. Assume that

(T =D f|, <coll £lls +esll £llso I =D, <coll flis (B.5)
forall f e SNH*. Then T : SN H — SN H* js invertible, with
[T~ = D) £, <2e0l £lls +4esl fllsgs 1T = 1) F ], <2¢0ll Fllso- (B.6)
(ii) Tame derivative of the inverse with respect to a parameter. Let
|77 f <ol Flls + el fllsor 1T, < coll Fllsg (B.7)

forall f e SO H . Assume that T depends in a C' way on a parameter A in a Banach space, and the derivative
(0, T)[A] f of Tf with respect to A in the direction A satisfies

@D, <boll Fls + Dl Fllsos— [@DIAIS |, < boll fllsy (B.8)
forall f €SN H®, for some constants by, by > 0. Then T~ is also a C' function of A,

T ' =-T""(3:Th)T ", (B.9)

[T TR f ] < (4cgbo) I £ lls + (16cobocs +4cgbs) fllsgs [T TRIF ], < cboll fllsy-  (B.10)

Proof. (i). Let A :=1 — T. By induction,
A" £]|, < gl £lls + esncg ™ I £llso HA”fH <ol fllsgs m>1,

where A2 f means A(Af) and so on. Since co < 1/2,

Z||A"f|| < co(Zco) I£1s +cv<2nc” 1) 1f llsp < 2¢oll £lls + 4l £llso -

Hence, by Neumann series, T is invertible, and T-1—-1= ZZO: | A" satisfies (B.6).
(ii) Formula (B.9) follows from differentiating the equality 77~ f = f with respect to the parameter A. (B.7),
(B.8), (B.9) give (B.10). O

Lemma B.3 (Composition of functions). (i) Let f(x,y) be defined for y = (y1, ..., ym) in the ball By = {y € R™:
ly|> = Yo lyil? < 1} and all x = (x1,...,xq) € RY, and let f be 27 periodic in x1, ..., xq. Assume that f has
continuous derivatives up to order r > 0 which are bounded by || f||cr < oo. Let u € H" (T4, R™), with u(x) € By for
all x. Let fu)(x) = f(x,u(x)). Then

| fa |, < Cliflicr(lully +1).

The constant Q depends onr,d, m. ~
(ii) Let f, f be like in (i), and assume that ||8;‘f||cr < K, for all o) < N + 1. Let f™ w)[h]" denote the n-

th Fréchet derivative of f at u in the direction [h]" = [h, ..., h). (f (u)(x) is simply the n-th Fréchet derivative
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of f(x,y) with respect to the variable y, evaluated at the point (x,y) = (x,u(x)).) If u,h € H" (T4, R™), with
u(x), u(x) + h(x) € By for all x, then

Vo

Hf(u +h) =3 — TR | < CKARIo (Il + Il lul,)-

n=0 "

r

C depends onr,d,m,N. y
(iii) Let u € H™P(T%,R). Let D*u(x) be the list of all partial derivatives 0%u(x) of order |o| = k. Let f(u)(x) =
f(x,u(x), Du(x), ..., DPu(x)), where f is like in (i) for a suitable m. Then

| Fa]l, < Clifller (lulrsp +1)

provided (u(x), Du(x), ..., DPu(x)) € By for all x. C depends onr,d, p.
If, in addition, ||8;‘f||cr < K, forall |a| < N + 1, then

N
~ 1 -
Hf(u + 1) =Y — IR < CK A poo (llrgp + Wllwroo ). (B.11)

n=0

,
C dependsonr,d, p, N.

(iv) The previous statements also hold when all the L?-based Sobolev norms ||u||, are replaced by the L>-based
Sobolev norms |u|, = ||u||wre = Zkgr | D¥ul| .

Proof. (i) See [31, Section 2, pp. 272-275]. (ii) Use Taylor’s formula with integral rest and the inequality
I fol u(h, ) dr|? < fol llu(x, -)|I2 dx, which holds for u(x, x) € H"(T%), depending on the parameter A, by Holder’s
inequality. As an alternative, see [33, Lemma 7 in Appendix, pp. 202-203]. (iii) Consider & = (u, Du, ..., DPu) and
apply (i), (ii). See also [31, p. 275]. (iv) See [15, Lemma 2.3.4, p. 147], for (i) in the W"*° case. (ii), (iii) can be
adapted with no difficulty (the W"* norms satisfy the algebra and interpolation properties, which are the core of the
proofs). O

(iii) of Lemma B.3 is used for the nonlinearity N (). (ii) is also used for N = 0, u = 0, mainly for f(y) = ¢”,
fy)=cos(y), f(y) =1+ y)P, pek:
| f(h) = f(O)|, <Clhly Yhe W (T2 R), |hlo <1, (B.12)
where C depends on f and s.
The next lemma is also classical, see for example [16, Appendix], and [21, Appendix G]. However, in those papers

it is stated slightly differently than in Lemma B.4, especially part (i), therefore we prove it, adapting Lemma 2.3.6 on
p. 149 of [15].

Lemma B.4 (Change of variable). Let p : R — R? be a 27 -periodic function in W™, m > 1, with |Dplo < 1/2.
Let f(x) =x + p(x). Then:

() f is invertible, its inverse is f~1(y) = g(y) =y + q(y), where q is periodic, g € W™ (T, R), and |q|n <
C|plm. More precisely,

lglo=Iplo. |Dglo < 2|Dplo < 1, |Dglm—1 < CIDplm—1.

The constant C depends on d, m.
(i) If u € H™(T?,C), then u o f(x) = u(x + p(x)) is also in H™, and, with the same C as in (i),

luo fllm < C(Iullm + Dpln—1llul).-
(>iii) Part (ii) also holds with || ||x replaced by | i, namely |u o |, < C(lulm + |Dplm—1lul1).
Proof. (i) For every y € R?, the map Gy: RY — R4, Gy(x) =y — p(x) is a contraction because |Dplo < 1/2,

therefore Gy has a unique fixed point x = G (x) in R?, and the inverse function g = f~! : R? — R? is globally
defined. Let g (y) :=g(y) — y.
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Since p is periodic, f(x 4+ 2mwm) = f(x) + 27wm for all m € Z¢. Applying g to this equality gives x + 2wm =
g(f(x) + 2mm), namely g(y) 4+ 2nm = g(y + 2nm) where y = f(x), and this means that g is periodic. Hence g,
like f, is also a bijection of T4 onto itself.

The identity f(g(y)) =y gives

g +p(y+q(»)=0,  g(x+px)+px)=0 Vx,yeR’ (B.13)

(B.13) implies that |g|o = |plo. By Neumann series, the matrix Df(x) = I 4+ Dp(x) is invertible for a.e. x,
(Df ()~ =32 ,(—=Dp(x))", and [(Df)~ '] < 2. Differentiating (B.13),

Dq(y)=—[Df (y +9)] ' Dp(y +9(») = Z ~Dp(g(»)] (B.14)

whence |Dq|o < 2|Dp|o < 1. Differentiating (B.14),

(D%q)(y) = —[(DF)(g)] ' (D*p)(2(»)) Dg(») Dg(»),

and |D?q|o < 8|D?plo. (i) is proved for m = 1 and m = 2.
In general, by the “chain rule”, the m-th Fréchet derivative of the composition of functions u o v is

D"wov)(x)=Y_ Y C(Du)(v®)[D/v(x), ..., DFv(x)], (B.15)

k=1 ji-+...+je=m

where ji,..., jx = 1, and Cy; are constants depending on k, ji, ..., jr [15, p. 147]. Apply (B.15) to f o g: since
fe) =y, D"(f og)=0forall m > 2. Separate k = 1 from k > 2 in the sum (B.15) and solve for D" g,

D’”g(y)=—Dg(y)Z > Cy(DFF)(g) [P g (), ... DFg(y)].

k=2 ji+..tjx=m

D"g = D™q and DX f = D*p because k,m > 2. Since k > 2, itis 1 < j; <m — 1 forall i = 1,...,k, because
there are at least two ji, jo, each of them > 1, and ) _ j; = m. For k = m one has j; = 1 for all i = 1, ...,m, and the
corresponding term in the sum is estimated

|(D™p)oglDg. ..., Dgl|, < |D"p|,|Dglf < C|Dplm-1.

because |Dglo = |I + Dqlo < 2. For 2 <k <m — 1, at least one among ji, ..., jx is > 2 (otherwise k = m). Let £ be
the number of indices j; that are > 2, so that 1 < £ < k. It remains to estimate

m—1 k
3 Y (D) (g0 [De] D g ). ... D], (B.16)

k=2 =101+ +op=m—k+¢L

where indices j; > 2 have been renamed o1, .. .oy, the number of indices j; =1 is k — £, and D% g = D% g because
o; > 2. Every factor Dg in (B.16) is estimated by | Dg|o < 2. For the remaining factors use the interpolation between
0 and m — 2, which is possible because 1 < 0; — 1 <m — 2, and use the formulao) +---+ 0, =m —k + ¢,

(D" p) 0g(D7q) -+ (D7q)|, < |D*~ ZDZP! ID‘” IDCII !D‘”‘IDCI!
m—2—(o; —1) o —1 1
C|D2p|0 |D2 m— 2 1_[|DC]|0 m=2 |D |m m=2

k=2

= C1Dgl;™ (|0 plyI Dgln-2) *%(Iszlm_ﬂDmo)w
< CIDqlg~ " (|D?ply|Dglm—2+ |D*p|,, ,1Dqlo)
C(IDglm—2 + |Dplm—1)-
Collecting all the terms in the sum, we have proved that

|D"ql, < C(IDplm-1 + |Dqlm—2). (B.17)
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Now use the induction on m. We have already proved (Py,) |Dq|m—-1 < C|Dp|n—1 for m = 2. Assume that (P,,_1)
holds. Then (P,,) follows from (B.17).

(iii) follows a similar argument, using formula (B.15) and interpolation for W% norms; see [15, Lemma 2.3.4,
p. 147].

(i) |lu o fllo < Cllullo, because, changing variable x = g(y) in the integral,

luo fI2 = /|u(f(x))|2dx _ /|u<y>|2|det Dg(y)|dy < || det Dgll /|u(y>|2dy <Clull. (B.18)
d d d

The m-th derivative of u o f, m > 1, is given by formula (B.15). The L? norm of a typical term of the sum is estimated
by

| D*u(r ) [D) f ), ..., DR FO]|g < [(D*u) o f oD/ £ oo -+ [ D F ] oo

(D*u) o fllo < C||ID*ullo < C||Dullp—1 by (B.18). Use interpolation (B.1) for || Dul|x—; and interpolation with
W% norms for all D#~!Df between 0 and m — 1, which is possible because k — 1, j; — 1 are all in the interval
[0, m — 1]. (Remember that Df is periodic, while f is not.) We get

ID U | DI F oo - [ D% £ oo < CUDLNs (1DUNm—1 1D NIz + | Dullo D lyym-1.00)-
Now || Df||p <2, and || Df |lyym-1,00 < C(1 + | Dp|lyym-1.00). The sum gives the thesis. O

The next lemma estimates the commutator of A with multiplication operators and changes of variables that are
used in the paper. See also [21, Appendices H and I].

Lemma B.5 (Commutators of H). 1) Let s,m1,my € N, with s > 2, my,mp >0, m =m| + my. Let f(t,x) €
HSTM (T2, C). Then [ f, Hlu = fHu — H(fu) satisfies

|y Lf H19y2u | o < C) (latllsllf lm2 + Neell2ll £ lmes)-

2) Let a : T — T a function, and Au(t, x) =u(a(t), x). Then [A, H] =
3) There exists a universal constant § € (0, 1) with the following property. Let s,mi,m> € N, m = my + my,
B(t,x) € WSHmHLoo(T2 R) with |B|1 < 8. Let Bh(t, x) = h(t, x + B(t, x)), h € H* (T2, C). Then

o (B='"HB — H)ah||, < C(s,m)(|Blm+111E]ls + |Bls+m+1lhllo)-

Proof. 1) Letu(t,x) =Y pur()e*, f(t,x) =y fi(t)e**, and
={(k, j) € Z*: sign(k) — sign(j) # 0}, Stky=1{jeZ: (k, j) €S}
Since H(e**) = —i sign(k)e'**,
LA HI U =Y fik@ur )8k, ()™ (k)€ = Y (the same),
k,jeZ (k,j)eS
where §(k, j) := —i(sign(k) — sign(j)). If (k, j) € S, then
lk—jl=1kl+1jl, 1jI<1j—kl, [kI<I|j—kl

Therefore | j™1k™2| < |k — j|™. If j, k are Fourier indices for the space and n, [ for the time,

<2 (Tl fab||ub|)

acZ? " beZ?

oz f. H](%’Z”MH? < Z(Z | fon—t1,j—11J _k|m|u(l,k)|> ((n, J)

1,k

and this gives the usual tame estimate for the product (3} f)u. The estimate holds with || ||5, with sg > d/2=2/2 =1,
so we fix so = 2. .
2) Trivially AHu(t, x) =Y, ur(a(t))(—i signk)et™ = HAu(t, x).
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3) Following [21, Appendix I], it is convenient to use the representation of H as a principal value integral,

x+
-1 u(t,x") , "’ i u(t,x’) ,
Hu(t,x) = p /—1 dx' = f / ———dx’. (B.19)
tan 5 (x — x’) 2 £—>0+ tan 2(x —x')

Let I + f8 be the inverse of [ + B, namely x + B(7,x) =y if and only if x =y + B(t,y). Changing variable
x'+ B, x")=y,dx' =1+ By(t,y))dy in the integral,

1 T _
B17—[Bu(t,y)=;p.v./u(t,y/)ayr{logsin<§[y+ﬁ(t,y)—y’—ﬁ(t,y/)])}dy’,

therefore

(B~'HB —H)u(r,y)=/u(r,y’)K(t,y,y/) dy', (B.20)
T

where the kernel K is
1 sin 1 + 8 t,y) — t,
K(t’y’y/):_ay/log< sy + B, y) — B( y)])
7 sin 4 (y — y’)

If B is sufficiently regular, then K is bounded, and the integral in (B.20) is no longer a singular one. Denote R =
B~'"1B — H. Then
R u(t, y) = /(a’y’fzu)(t, Y)Y K (1,y,y')dy' = / u(t, y') (D" K (1, v, ¥") dy',
T T
every space derivative goes on K and does not affect u. Hence

2
IRul3 = /‘/ u(t.y)K(1.y.Y) dy” dydr <C [Ju(e )& (o33 dy' dydo < CIKFlulf,
3

for (|83 (3y" R3yu)lo replace K with B;er'a;'le( and for |0 (3y'' Ry u)llo calculate the usual derivatives of a
product Thus

||8;”‘R8;”2u||s S C(llulls|K lm + lullol K ls+m)-
Now write K = (1/m)d,log(1 + f), where

singly + B, y) =y = B,y —sin 3 (y — )

f(t,y,y/):
51n2(y y)
and decompose f = abc,
1 / . _ .
’ sy =) , t — B(t. ’ ; /
o )Z%’ b(t’y’y)zw=/ﬁy(r,xy+(1—x)y)dx
2=y J
1 ~ ~
C(f,y,y’)=/cos<y‘y Jrk[ﬂ(tz,y)—;B(I,y)])dA
0

a € C™ for |y’ — y| < 7 (by periodicity, take T = [y — 7, y + 7] when | integrating in dy"). |bls < C|Bls+1 < ClBls+1
by Lemma B.4(i). All the derivatives of ¢ of order < s are bounded if B € W5, with tame estimate

lels < C(s, 1Blo) (1 + 1Bl5) < C (s, 1Blo) (1 +18ls)-
As a consequence | flo < 1/2if | 8|1 < 6 for some universal § € (0, 1), and |K|; < C(s)|Bls+1- O

Remark B.6. Inequality 1) of Lemma B.5 can also be proved in a simple way using (B.19), see [21, Appendix H].
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Appendix C. Proofs

Proof of Proposition 6.1. Apply Lemma B.3(iv): let f(x, y) = dygi(x, y), le| = 1. By (1.5), Bff(x, 0) =0 for all
|B| < 2, and, by Taylor’s formula (B.11) for N =2 (with f defined as in Lemma B.3),

2
~ ~ 1 -
[F O], =|f W) =3 —FPOW| <COWUEIUIs2 < COIUIZIU s (C.1)

n=0 K

Suppose that a; = (8;‘gi)(x, UHU,..)= f(U), where U = &7 + ¢2u. Then (C.1) gives

<) (1514 +K) (I15lls1a + elluells4)

jaily < C(s)|| et + &2 3 5 + 2],
<

e3C (s, K)(1+ llulls+4)

because ||u|l4 < K and ||v]|s44 is a certain constant C(s) depending on s. Also ap, as, a3 — 3U% and a5 — 3(U?),
are of the type (8‘; gi)(x,U, HU, ...), therefore they satisfy the same estimate as aj. The additional part in a3 and as

comes from the cubic term 3, (U?) of the nonlinearity A/(U). One has
(U? — &207| = &|20u + eu?|, < 3C (s, K)luls <& C(s, K)|lulls42
because U = e¥ + £2u, and the estimate for a3 — £232 follows. Similarly for as.

The derivatives d,a; and dga are obtained differentiating the equality a; = (8;‘ gi)(x,U, HU,...), therefore they
involve 85 gi with |8]| = 2. Then apply Taylor’s formula (B.11) with N =1 and evaluate at U, as above. 0O

Remark C.1. In the estimate for 9,,a; there is a factor £2 more than in the one for 9,a; because 9, U[h] = £2h = O (&?),
while 0. U = v 4 2eu = O(1). The point becomes very evident in the simplest case g(x, U, ...) = U,

Proof of Proposition 7.2. By Proposition 6.1, for s =0 and ¢ < &g, |a;|p < &3C(K) < SSC(K) < 1/2 if gg is small
enough. |fadx|s < 2m|alg for all a(t, x). Applying (B.12) with f(y) = (1 + y)?, p=—1/2, —2 gives

o =11, < Cs. K)larls <£3C6s, K)(1+ ullia). 0<s<r (C2)
Differentiating the formula for p(u, €), and using estimates on aj,
|00, )R], < Cls, K)(|duarlhl], + larls|duar [h]]) < 6*C (s, K)(Ihllssa + luellsrallRlla), (C3)

and similarly [0 o (u, &)|s < e2C (s, K)Y( + JJulls+4), forall 0 < s < 7.

12 = Ic (p), therefore, using (C.2) with s =0, |u2 — 1| = [Hc(p — DI < [p— 1o < ’C(0, K)Julls = £’ C(K) <
1/2. Also, |9, ua(u, e)[h]| = |TTc 3y p (1, €)[h])| < |0y p(u, )[1]|o, then use (C.3) with s = 0. Similarly for 9, u5.

«a satisfies (7.7), namely po(14+a’) = p. Thus o’ = “2_] [(o—1)+ (1 —pu2)], whence |&'|s < 2(Jp — 1|s + |2 —1]).
Moreover |a|s+1 < Cla'|s because @ € ¥, a(0) =0, and |a(7)| = |a(t) — a(0)| < w|a'|p for all |¢| < 7 (Poincaré
inequality for odd functions). The derivatives of « are obtained differentiating the equality po(1 + «’) = p. Similar
argument for I1g 8 using (B.12), because ITg 8, = p2(14+a)~ V2 -1 by (7.8). Thus a(u, €) and I1g B (u, €) satisfy

lotlss1 + [TEBls + [ TEPxls < &2 C (s, K) (14 [lullyra), (C4)
|dualhl,,, + [0 (Tep)IR]|, < e*Cls, K)(Ihllsra + lullsrallhlla), 0<s<r, (C.5)
|9e0tls 1 + 18 TE By < 2C (s, K) (1 + llulls44). (C.6)

o is defined in (7.11), namely o = Hr4c{w(ITgB); (1 4+ Mg By) +a3(1 4+ ITg By)?}). Since [T B = O(&3), the only
term of order &2 in o comes from a3 and it is 821_[7"+C (392). ¥ is a finite sum of qj (5.1), therefore MTr (3% =0. As a
consequence,

o — &M (30%) = Mric{oTE ) (1 + HgPy) +az(ITefe) 2 + MEPy) + (a3 — e230%) ).

Then, using the estimates for ITg S, (a3 — 8231_)2) and their derivatives,
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o — &’ (30%)],_, <&’ Cls, K)(1+ [lulls44). (C.7)
040 (u, )[h1]_; <*Cls, K)(hlly4a + lullssallilla), 1<s<r, (C3)
|90 (u, &) — eIl (60%)],_, < &2C(s, K)(1 + llulls44) (C.9)

(s — 1 because |[[TgBls—1 < [HTEBs.)

By (7.12), 1 = I1c(0), and the estimates for p| follow from (C.7), (C.8), (C.9) with s = 1.

Sinceo — 1 =0 — (o) =7 (o), by (7.11) wy’ = u1(1 + ') — 0 = p1a’ — My (o). By Poincaré inequality,
l¥ls < Cly'|s—1 because y € Y. The estimates for y = ITr B follow from those for o, a, u1 and their derivatives,
using the fact that o =1 + 3¢2. Hence (C.4), (C.5), (C.6) hold not only for ITg B, but also for y = I1r S, and, as a
consequence, for B too, for 1 <s <r.

By Lemma B.4(), |&|s + |,5|S < C(s)(lals + 1Bs)- Choose a smaller g, if necessary, to have ESC(K) < 1/2
in (7.18). (7.21), (7.23) hold by Lemma B.4. Since

a(t) +a(t +a@) =0, B(t,x)+ Bt +a@),x +B(t,x)) =0 Y(t,x) € T2, (C.10)

the derivatives of @, 8 with respect to the parameters (u, &) are obtained by differentiating (C.10) with respect to u
or ¢, whence

dualhl = -1 +a)w Hdalhl},  aBlhl=—1+B¥ Ha.plh1} — ¥~ {dualhl},

and similarly for 9,@, 9, 8. (Given a diffeomorphism depending on a parameter, this is nothing but the formula for the
derivative of the inverse diffeomorphism with respect to the parameter.) Using (C.5), (C.6) and (7.23), for s + 1 < r
we get

|0 BRY|, < &*C(s. K)(Ihllgra + NullsesliBlls).  10:Bls <e2Cls. K)(1+ llullsts).
and the same for &. These inequalities also hold for «, 8 (actually, «, B satisfy (C.5), (C.6), which are stronger).

To prove (7.22), consider the one-parameter family of changes of variables

W), x) = f(Ya(t, %)), Yot x) = (t + ra(t), x + 2B(1,x)), 0K A< L.

One has
1
@ = Df@,x)=f(Y1,0)~ (Yo, x) = / (VAW 0) - (@), B, X)) dh.
0

Use Lemma B.4 to estimate ||, f; ||s and [|¥;, fx|ls, then use (B.4). The same holds for ¥ ~!. The estimate for 7"

hold because ||Ph||s < ||h]|s for all s. Repeat the same argument with norms | | to prove (7.24). By the chain rule, the
derivative of ¥ f with respect to u in the direction 4 is

du(WHIR] =3, {f(t + @), x + B(1,x)) }[h] = (W f1)dua[h] + (¥ f2) 0. BLh],
therefore (7.25) follows using the interpolation (B.4) for products. Similarly for (7.26).
Since
[1+ (v ') @)1 +& (D) =1,

(M — I) is the multiplication by the factor (¥ ~'a’) = —&@’/(1 + &) =: p. Hence (M —I) f = P(M —I) f = P(pf)
for all f € Zg, because P = I on Zy. By Lemma B.3, p satisfies the same estimate as &', and |&'|; < C(s)]|o/|s <
C(s)|e|g+1, then use (C.4) and apply (B.3) to get

Ipflls <& CEflls +Cls, K)(L+ Nlullsra)l fll2, 2<s <

For the derivatives 9, M][h], ;. M use (7.19), (7.20). Apply Lemma B.2 to obtain the estimates for (M~ —1)and
its derivatives.

The estimates for a;, i =6, ..., 9 follow from formulae (7.9) and the estimates for 1 In a7 put the term £2372
in evidence, namely write

P +a3(1+ By)
1+o

_ @B+ (a3 —b)A +B) +b(Br — )

=b+gq, b:=¢30°
+q &£°3v°, q T

’
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estimate ¥ ~! () using (7.23), the inequalities for o, 8, (a3 — b), and |b|; = C(s). For ¥ 1 (b) = b+ (¥ ~' — )b, use
(7.22). Similarly for ag. Similar calculations for the derivatives d,a;[h], d.a;.
To prove (7.33), write ¥ as the composition of the two changes of variables A, B,

W =AB,  Ah(t,x)=h(t+a(),x),  Bh(t,x)=h(t,x+Bi(t,x)),

where 81 := A1 (B), namely B (t + a(r), x) = B(t, x). By Lemma B.5(ii), ¥ "'H¥ = B~"'A~"'"HAB = B~'}B.
By the inequality (7.23) for the change of variable A, |B1]s < e3C(s, K)(1 + ||u ls+4). Then apply Lemma B.5(iii).

In Ry (see (7.3)) the coefficients of afRH, k=0,1,2, are functions f; that satisfy | fx|s < C(s, K)(1 + |lu|ls+5)
for s + 1 < r (two of them are ag, ag without the denominator (1 + o), the other one is (7.4)). By (B.4), (B.2),
and (7.33),

| fidsRadh |, < &3C(s.m, K)(I1Als(1+ lullms7) + IBlolullsrmr7). k=0,1,2,

form >0, s +m+3 < r. For the last term in R use (7.2), the estimate for & ~as, integration by parts |Hc(f8’"h)| =
|1'[c[(3;”f)h]|, the inequality |ITc (fh)| < C|flollh]lo, Lemma B.4(i) to pass from ¢, ,B to «, B, and (B.2):

|P(¥as) [T, w19y k|| = ¥ as | | [T, w195 h| < & C (s, m)(1 + lulls+me4) 12 llo- (C.11)

The estimate for R follows. R, satisfies the same estimate as R | because Ry = M~ IR. For R, note that I[Tc L, =
ITe(ag + Ro). Use (7.27) for M ™!, then the same arguments as for (C.11). O

Formula for R4.

R4 = R3P¢ - ‘19HC4)

+ Z{HI%MZ /3)(1;)8), k +2ﬁ(,k)8;k+l + ﬂ(k)a;k+2) +a617§(ﬁ;k)3;k + ﬂ(k)a;k+l)
k=0

_i_agnéﬁ(k)a;k ( ﬂ(k)a k+2+’u0ﬂ(k)a k+l/’« 2ﬂ(k)3 k— 2)HL}

+ (—H(2uaer + aca V) = (a7 — ) V) Mg + (2128 + aspV) — Har — n1) ) M

3
+ ) {las. Hi(aPa* +a®@a 54 + (a7, HI(BP 0% + BP9 FH) + [ag, HIe® 0
k=0
3
+lag, H1BW 0} + D [BY — o™ 1] (120,572 + 100, + 11297 7)
k=0

3
+ (wa?’ — 2By — asBy +ara) — (as — po)BY +asa® + 2y ﬂ<"’a;"‘2> 8,
k=1

3
+ ’H(cuﬂf) + ,LLQ(XS,) + a6a§3) + a7,3§3) + (ag — ,uo)otG) +a9,8(3) ) Za(k)ay_k_z) 8;3.
k=1

Proof of Proposition 7.4. From the estimates for uy, w1, ag, a7, ag, ag of Proposition 7.2 and formulae (7.52), (7.53)
for ¢ it follows that

IRe(@)|, + [Im(p) ||, < 2C s, K)(1 + llulls+c) (C.12)
0. Re(e) (A1, < Cls, K)(I1llsse + Nlullsrellilla), (C.13)
|6: Re() | +||aglm(go>|| sC<s K)(1+ l[ulls+e), (C.14)

for 2 < s <r — 1, where ¢ = 6 (in this proof we use (B.3) to estimate any product). As a consequence, by Lemma B.3
and (7.54), «® — 1 and B ©) and their derivatives satisfy the same estimates (C.12), (C.13), (C.14), with ¢ = 6.

g is given by (7.41), therefore its real and imaginary part satisfy (C.12), (C.13), (C.14), with ¢ = 8, for 2 <
s <r — 3. The same for n!) because of (7.43), (7.46). By formulae (7.44), (7.47), (7.50), (7.48), (7.51), the same
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holds for gV, n®, with ¢ = 10,2 <s <r — 5, and for g@, n®, with c =12, 2 <5 <r — 7. Since f® = n® O,
k=1,2,3, all coefficients «®, % k =1,2,3 and their derivatives satisfy (C.12), (C.13), (C.14), with ¢ = 12, for
all2<s <r—"7.By(B.3),

[(@ — D) f], < Clicoeftll2]l £1Is + C(s)llcoeft]s || f 12,
where ‘coeff’ are (04(0) —1), ,3(0), oz(k), ﬂ(k), k=1,2,3, and C does not depend on s. Therefore
l@—Df|, <CE)flls +&*Cls, K)(1+ llullsr12) I fl2-

The estimates for d,@[h] and 9. @ are obtained in the same way, using the estimates for the derivatives of the co-
efficients. Similarly, (7.64), (7.65) follow because 0, (® — I) f = (® — I)d, f + @, f, where @, is the operator of
the same type as @ that has coefficients a( ) § ) instead of a® po k=0,..., 3. Since ||]P’f||Y < I f1ls, all the
estimate for @ — I also hold for @ — P = IE”(CD — DP. (7.61), (7.62) and (7.63) also hold for &~ ! by Lemma B.2.

To prove (7.66) for @ ' M~ write

M =148, S=@ T - +MT -DF (@ - )M,

then apply (7.22), (7.21), (7.27) and (7.61). Similarly for the other operators.

The estimates for (g, —2 and their derivatives follow from formulae (7.55), (7.56) and the estimates for w7, ag,
a77 ag, 619, rl(z)a g(O)

Now study the rest R. By (7.34), for2 <s <r — 6,

|Rad" £, <& Cls. YIS Ils + I flollullyr10),  O<m <3. (C.15)

By definition, @ is a combination of multiplications and H, d;° ! Every dy can be moved from the right to the left of
any multiplication operator with elementary calculus: [a, dy] = —ay, namely, for every a, f,

ad,f=dy(af) —ayf,  adyf=0;(af) —2dy(ayf)+ayf,
ad; f =0 (af) — 393 (ayh) + 30y (ayy ) — ayyy f-
Recall that the coefficients a®, 8% satisfy (C.12), (C.13), (C.14), with ¢ = 12,2 < s <r — 7. Moving 33" to the left
of ®, m=0, 1,2, 3, the coefficients «®, 8% are subject to up to 3 derivatives in y. So applying (C.15) gives
|RsP@a) £, <&Cls, K)(IIf lls + lulls+10ll fll2). 0<m <3, 2<s <r —10.

Each term R, of type (a) containing [b, H] can be estimated by Lemma B.5(i), whence
[R@ 3y fll, <2Cls, KI(IFIls + Nullsrzll fll2), 0<m <3, 2<s <r—12,

and the same inequality also holds for each term Ry of type (b) that contains ITj L. Thus it holds for ||R48 flls-
Since R := @ 'PR4 by (7.57), the estimate for Ragl follows from (7.61). O

Proof of (9.6). (The meaning of A, B, a, b, c in the following proof is independent on the rest of the paper.) By (9.4),

F(un) + F'(un)hny1 = F(uy) + P10, M, d, £~4(un)<15_1l1~/_1hn+1

=P 0 M@, (D, M PF () + Laun) @y By g ) (C.16)

Let p ={...} be the quantity in parentheses in (C.16). Let

c=9 1/\/l llI/ P.F(uy)=1IIy1c+ 11 _Hc

24(un> =A+B, A= Laun)Tasr. B =TT La(u) Tyt + La(ua) T,
With these abbreviations, by the definition (9.5) hj,41 = — 1,41 if CIS,,A_IHan whence

&, 'O 1 =a+b, a=—A""c, b=, U T B,y AT T, c
Now p=c+ (A+ B)(a +b), and Aa + I1,41¢ = 0. Therefore

=11 +1c+Ba—i—(A+B)b
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H:—+1L~Z4(un)1'[n+1 = Hlﬁrﬂél’[nﬂ because £~4(un) =D+RandDis diagonal. Moreover [14(14,1)17nl+la = 0 because
a € Z,. Thus (9.6) follows. 0O

Proof of Lemma 8.5. (i) Lemma (8.5) simply follows from Lemma B.3. In particular, v, (¢) satisfies (4.2). By Propo-
sition 5.3, (ITyAIly) : VNX —->VNY, h— 30,h + HV8X(3612h) is invertible, with

|1y Amy)~'h| < Clhlls-1 YheVNY, s>1, (C.17)

where C depends only on the set K, like in (8.6). By (1.5) and (B.11), [|Na(h)|s < C(s)||h||43‘||h||x+2 forO<s<r.
Hence

|5200) |, < Ce™*|Natein)],_, < CONI1 13151 541 = C'(5) (C.18)

where C’(s) depends on s and || 1 ||s+1. (C.18) for s = 4 implies that || 0|4 + 2| U214 < 8¢ for all & < &g, for some
&o depending on ||vy||5.
To complete the proof of (8.19), differentiate (4.2) with respect to €, then use (C.17),

|0ev2(e) |, < C(4e™>| Ty Natevn) |, + & *| Ty Nieopluil],_,) <& 'Cs).

(8.20) follows from formula (4.3) and estimates (8.19). To prove (ii), observe that

QG h, &) = 2P (0:{3 (01 + %) (2h)” + (£2h)’} + Na(e01 + &2 + €2h) — Na(ed1 + £%u)
— N (ev1 + 8214)[82/’1]),

then apply (B.11) to NVj.
(iii) follows from (4.5) by the usual tame estimates. O
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