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Abstract

We study the nodal solutions of the Lane–Emden–Dirichlet problem{
−�u = |u|p−1u, in Ω,

u = 0, on ∂Ω,

where Ω is a smooth bounded domain in R
2 and p > 1. We consider solutions up satisfying

p

∫
Ω

|∇up|2 → 16πe as p → +∞ (∗)

and we are interested in the shape and the asymptotic behavior as p → +∞.
First we prove that (∗) holds for least energy nodal solutions. Then we obtain some estimates and the asymptotic profile of this

kind of solutions. Finally, in some cases, we prove that pup can be characterized as the difference of two Green’s functions and
the nodal line intersects the boundary of Ω , for large p.
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1. Introduction

We consider the superlinear elliptic boundary value problem{−�u = |u|p−1u, in Ω,

u = 0, on ∂Ω,
(Pp)

where Ω is a smooth bounded domain in R
2 and p > 1.

By standard variational methods we know that problem (Pp) has a positive ground state solution. Moreover many
other results about the multiplicity and the qualitative properties of positive solutions in various types of domains have
been obtained in the last decades.

In this paper we are interested in studying sign changing solutions of (Pp). In contrast with the case of positive
solutions not much is known on nodal solutions of (Pp), in particular about their qualitative behavior. Let us therefore
recall some recent results. In the paper [10] A. Castro, J. Cossio and J.M. Neuberger proved the existence of a nodal
solution with least energy among nodal solutions, which is therefore referred to as the least energy nodal solution of
problem (Pp). T. Bartsch and T. Weth showed that these solutions possess exactly two nodal regions and have Morse
index two (see [3]). Since positive ground state solutions have the symmetries of the domain Ω , if Ω is convex, by
the classical result of [14], a natural question is whether least energy nodal solutions also inherit the symmetries of
the domain Ω . In [2] A. Aftalion and F. Pacella proved that, in a ball or in an annulus, a least energy nodal solution
cannot be radial. In fact, in dimension N , they cannot be even with respect to more than N − 1 orthogonal directions.
They also proved that the nodal set touches the boundary. On the other hand, T. Bartsch, T. Weth and M. Willem in [4]
and F. Pacella and T. Weth in [19], with different methods, obtained partial symmetry results: they showed that on
a radial domain, a least energy nodal solution u has the so-called foliated Schwarz symmetry, i.e. u can be written
as u(x) = ũ(|x|, ξ · x), where ξ ∈ R

N and ũ(r, ·) is nondecreasing for every r > 0. In fact, as they are not radial,
ũ(r, ·) is increasing. In dimension N , it implies that the least energy nodal solutions are even with respect to N − 1
orthogonal directions. Concerning the “last direction”, in [8,15], D. Bonheure, V. Bouchez, C. Grumiau, C. Troestler
and J. Van Schaftingen proved that for p close to 1 the least energy nodal solution must be odd with respect to this
direction. Moreover, it is unique up to a rotation. For general open bounded domains, they prove that least energy
nodal solutions must respect the symmetries of their orthogonal projection on the second eigenspace of −� when p

is close to 1.
In this paper we study the profile and other qualitative properties of low energy nodal solutions of problem (Pp)

as p → +∞ and Ω ⊆ R
2 is any bounded smooth domain. For ground state positive solutions the same analysis has

been done by X. Ren and J. Wei in [21] and [20], obtaining, in particular, L∞ estimates. This result has been improved
by Adimurthi and M. Grossi in [1] (see also [11]) who computed the exact value of the L∞-norm at the limit, by a
different approach.

Here by low energy we mean that we are interested in the families of nodal solutions (up)p>1 satisfying

p

∫
Ω

|∇up|2 → 16πe as p → +∞. (A)

Note that as a consequence of [21] and as it will be clear later, this kind of solutions cannot have more than 2 nodal
regions for p large.

Let us observe that there are nodal solutions of (Pp) satisfying (A). In fact least energy nodal solutions are among
those and we have:

Theorem 1. The condition (A) holds for any family of least energy nodal solutions.

To describe our results we need some notations. In H 1
0 (Ω), we use the scalar product (u, v) = ∫

Ω
∇u · ∇v and

denote by ‖ · ‖q the usual norm in Lq(Ω) and by d(x,D) the distance between a point x ∈R
2 and the set D ⊆R

2. Let
us consider a family of nodal solutions (up)p>1. Throughout the paper, we assume that up are low energy solutions,
i.e. (A) holds. The positive part u+

p (resp. negative part u−
p ) is defined as u+

p := max(up,0) (resp. u−
p := min(up,0)).

Let us define the families (x+
p )p>1 (resp. (x−

p )p>1) of maximum (resp. minimum) points in Ω of up , i.e. up(x+
p ) =

‖u+
p ‖∞ and up(x−

p ) = −‖u−
p ‖∞ and assume w.l.o.g. that up(x+

p ) = ‖up‖∞, i.e. up(x+
p ) � −up(x−

p ). To start with,
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we prove that x+
p cannot go “too fast” to the boundary of Ω which is the key point to make some rescaling around x+

p

and obtain a limit profile on R
2. More precisely we prove that

d(x+
p ,∂Ω)

εp
→ +∞ (see Proposition 3.1), where

ε−2
p := pup

(
x+
p

)p−1
.

Then we get the following result.

Theorem 2. The scaling of up around x+
p :

zp(x) := p

up(x+
p )

(
up

(
εpx + x+

p

) − up

(
x+
p

))

defined on Ω+(εp) := Ω−x+
p

εp
converges, as p → ∞ to a function z in C2

loc(R
2). Moreover z must solve the equation

−�z = ez on R
2, z � 0, z(0) = 0,

∫
R2 ez = 8π and z(x) = log

( 1
(1+ 1

8 |x|2)2

)
.

As a consequence of the previous theorem, we deduce that ε−1
p d(x+

p ,NLp) → +∞ as p → ∞, where NLp denotes
the nodal line of up . So, in some sense, the rescaled solution about x+

p ignores the other nodal domain of up . This im-

plies that we can repeat the same kind of rescaling argument in the positive nodal domain Ω̃+
p := {x ∈ Ω: up(x) > 0}

of up . Hence, defining Ω̃+(εp) := Ω̃+
p −x+

p

εp
, we get the analogous of Theorem 2:

Theorem 3. The function zp : Ω̃+(εp) → R converges, as p → +∞, to a function z in C2
loc(R

2) as p → ∞. Moreover
z must solve the equation −�z = ez on R

2, z � 0, z(0) = 0,
∫
R2 ez = 8π and z(x) = log

( 1
(1+ 1

8 |x|2)2

)
.

At this point, to the aim of studying the negative part u−
p , let us observe that we can have two types of families of

solutions satisfying the assumption (A), the ones which satisfy

(B) there exists K � 0 such that p(up(x+
p ) + up(x−

p )) → K ;

and the ones which satisfy

(B ′) p(up(x+
p ) + up(x−

p )) → ∞.

The meaning of (B) is that the speeds of convergence of the maximum and the minimum of up (multiplied by p) are
comparable. Instead the condition (B ′) implies that one of the two values converges faster than the other one.

Remark 4. It is easy to see that nodal solutions of type (B) exist. Indeed, if Ω is a ball, it is enough to consider the
antisymmetric, with respect to a diameter, solution with two nodal regions. We believe that also solution of type (B ′)
should exist and we conjecture that the radial solution in the ball, with two nodal regions, should be of type (B ′).
However, the complete characterization of low energy solutions in the ball will be analyzed in a subsequent paper.

In this paper we investigate the alternative (B) that we conjecture holding for the least energy nodal solutions.
First, we prove that, as for x+

p , the condition (B) implies that ε−1
p d(x−

p , ∂Ω) → +∞ as p → ∞. Then we get the
following result.

Theorem 5. If (B) holds then the scaling of up around x−
p

z−
p (x) := p

u (x+)

(−up

(
εpx + x−

p

) − up

(
x+
p

))

p p
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defined on Ω−(εp) := Ω−x−
p

εp
converges, as p → +∞, to a function z in C2

loc(R
2). Moreover z must solve the equation

−�z = ez on R
2, z � 0,

∫
R2 ez = 8π and z(x) = log

(
μ

(1+ μ
8 |x|2)2

)
for some 0 < μ � 1. When K = 0 in condition (B),

we get μ = 1.

As for the case of x+
p , as a consequence of Theorem 5, we get that ε−1

p d(x−
p ,NLp) → +∞, which allows to do the

same rescaling in the negative nodal domain Ω̃−
p := {x ∈ Ω: up(x) < 0}, obtaining the analogous of Theorem 5.

Theorem 6. If (B) holds, the function

z−
p (x) := p

‖up‖∞
(−u−

p

(
εpx + x−

p

) − ‖up‖∞
)

defined on Ω̃−(εp) := Ω̃−
p −x−

p

εp
converges, as p → +∞, to a function z in C2

loc(R
2). Moreover z must solve the

equation −�z = ez on R
2, z � 0,

∫
R2 ez = 8π and z(x) = log

(
μ

(1+ μ
8 |x|2)2

)
for some 0 < μ � 1. When K = 0 in

condition (B), we get μ = 1.

Remark 7. Another natural condition to make the rescaling in the negative nodal domain without assuming condi-
tion (B) could be to consider the parameter

ε̃−2
p = p

∣∣u−
p

(
x−
p

)∣∣p−1

which is now just related to the negative part of u (we are not using the L∞-norm of up but the L∞-norm of u−
p ) and

assume that ε̃−1
p d(x−

p ,NLp) → +∞ (as before NLp is the nodal line of up). This assumption is essentially equivalent

to condition (B) and allows to prove that ε̃−1
p d(x−

p , ∂Ω) → +∞ (see Proposition 3.3). Then one could repeat the
proof of Theorem 6 obtaining for zp(x) := p

up(x−
p )

(u−
p (ε̃px + x−

p ) − up(x−
p )) the same assertion as for z−

p .

If the positive part of u, i.e. u+
p , as a solution of (Pp) in Ω̃+(εp), has Morse index one then the previous results

allow to obtain the exact value of the limits of ‖u±
p ‖∞, as p → +∞.

Theorem 8. Let us assume that the Morse index of u+
p as a solution of (Pp) in Ω̃+

p is one. Then we have: ‖u+
p ‖∞ →

e1/2. If also (B) holds then ‖u−
p ‖∞ → e1/2.

The result of the previous statement is similar to the one obtained in [1] for the least energy positive solution
of (Pp).

Let us remark that the additional assumption on the Morse index of u+
p holds for any nodal solutions with Morse

index 2, hence, in particular, for least energy nodal solutions.
Our last result gives the asymptotic behavior of the nodal solutions in the whole domain Ω .
Let us denote by G(x,y) = − 1

2π
log |x −y|+H(x,y) the Green’s function of Ω and by H its regular part. Finally,

let x± be the limit point of x±
p as p → +∞.

Theorem 9. Under the same hypothesis of Theorem 8, pup converges, as p → +∞, to the function 8πe1/2(G(·, x+)−
G(·, x−)) in C 2

loc(Ω̄ \ {x−, x+}) and x+ 
= x− ∈ Ω . Moreover the limit points x+ and x− satisfy the system

⎧⎪⎪⎨
⎪⎪⎩

∂G

∂xi

(
x+, x−) − ∂H

∂xi

(
x+, x+) = 0,

∂G

∂xi

(
x−, x+) − ∂H

∂xi

(
x−, x−) = 0,

for i = 1,2. Finally, the nodal line of up intersects the boundary of Ω for p large.
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The result of Theorem 9 gives a very accurate description of the profile of the low energy solutions of type (B)

in terms of the Green function of Ω and of its regular part. It is also remarkable that the property that the nodal line
intersects ∂Ω holds for this kind of solutions in any bounded domain Ω , extending so the result proved in [2] for least
energy solutions in balls or annulus. It is also reminiscent of the property of the second eigenfunction of the laplacian
in planar convex domains (see [18]), though we are not analyzing the case of p close to 1 as in [8,15].

Let us remark that nodal solutions with this property have been constructed in [13,12].
Finally we would like to point out that our analysis is similar to the one carried out in [5–7] for low energy

nodal solutions of an almost critical problem or of the Brezis–Nirenberg problem in dimension N � 3. However, the
techniques and the proofs are completely different since in [5–7] the nodal solutions whose energy is close to 2SN

(SN is the best Sobolev constant in R
N ) can be written almost explicitly.

The outline of the paper is as follows. In Section 2, we recall the variational characterization of the problem and
we prove Theorem 1 and some useful asymptotic estimates. In Section 3, we show that x+

p cannot go too fast to the
boundary and then prove Theorem 2 and Theorem 5 using a rescaling argument on the whole domain Ω . Then, using
a rescaling argument on the nodal domains, we prove Theorem 3 and Theorem 6. In Section 4, we improve the bounds
given in Section 2 to obtain Theorem 8. Finally, in Section 5, we prove Theorem 9.

2. Variational setting and estimates

We recall that solutions of problem (Pp) are the critical points of the energy functional Ep defined on H 1
0 (Ω) by

Ep(u) = 1

2

∫
Ω

|∇u|2 − 1

p + 1

∫
Ω

|u|p+1.

The Nehari manifold Np and the nodal Nehari set Mp are defined by

Np := {
u ∈ H 1

0 (Ω) \ {0}: 〈
dEp(u),u

〉 = 0
}
, Mp := {

u ∈ H 1
0 (Ω): u± ∈ Np

}
,

where u+(x) := max(u(x),0) and u−(x) := min(u(x),0). If u ∈ H 1
0 (Ω), u+ 
= 0 and u− 
= 0 then u ∈ Mp if and

only if∫
Ω

∣∣∇u+∣∣2 =
∫
Ω

∣∣u+∣∣p+1 and
∫
Ω

∣∣∇u−∣∣2 =
∫
Ω

∣∣u−∣∣p+1
. (1)

For any u 
= 0 fixed, there exists a unique multiplicative factor α such that αu ∈ Np . If u changes sign then there
exists a unique couple (α+, α−) such that α+u+ + α−u− ∈ Mp .

The interest of Np (resp. Mp) comes from the fact that it contains all the non-zero (resp. sign-changing) critical
points of Ep . If u minimizes Ep on Np (resp. Mp) then u is a (resp. nodal) solution of problem (Pp) usually referred
to as the ground state solutions (resp. least energy nodal solutions). So, we need to solve

inf

{(
1

2
− 1

p + 1

)∫
Ω

|∇u|2
}

on
∫
Ω

∣∣∇u±∣∣2 =
∫
Ω

(
u±)p+1

to characterize the least energy nodal solutions.

Theorem 2.1. (See T. Bartsch, T. Weth [3].) There exists a least energy nodal solution of problem (Pp) which has
exactly two nodal domains and Morse index 2.

To start with, we show that each family of least energy nodal solutions for problem (Pp) is a family of low energy
nodal solutions, i.e. satisfies condition (A) of the Introduction. To this aim let us prove an upper bound and a control
on the energy.

Lemma 2.2. Let (up)p>1 be a family of least energy nodal solutions of problem (Pp). For any ε > 0, there exists pε

such that, for any p � pε ,

pEp(up) = p

(
1

2
− 1

p + 1

)∫
Ω

|∇up|2 � 8πe + ε.
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Proof. Let a, b ∈ Ω . Let us consider 0 < r < 1 such that B(a, r),B(b, r) ⊆ Ω and B(a, r) ∩ B(b, r) = ∅. Then, we
define a cut-off function ϕ : Ω → [0,1] in C ∞

0 (Ω) such that

ϕ(x) :=
{

1 if |x − a| < r/2,

0 if |x − a|� r.

First we introduce the family of functions W̄p : Ω →R which are defined on B(a, r) as

W̄p(x) := ϕ(x)
√

e

(
1 +

z(x−a
εp

)

p

)

where z(x) = −2 log(1 + |x|2
8 ) and ε2

p := 1
p
√

e
p−1 . The functions W̄p vanish outside the ball B(a, r). We claim that

∫
Ω

|W̄p|p+1 = 8πe

p
+ o(1/p),

∫
Ω

|∇W̄p|2 = 8πe

p
+ o(1/p).

Indeed, setting x−a
εp

= ψ and using the fact that
∫
R2 ez = 8π ,

∫
Ω

|W̄p|p+1 = (
√

e )p+1ε2
p

∫
Ω−a
εp

ϕ(εψ + a)p+1
(

1 + z(ψ)

p

)p+1

dψ

= e

p

( ∫
R2

ez + o(1)

)

= 8πe

p
+ o(1/p).

Concerning
∫
Ω

|∇W̄p|2, we get that

∫
Ω

|∇W̄p|2 =
∫
Ω

ϕ2(x)

∣∣∣∣∇
(√

e

(
1 + z((x − a)/εp)

p

))∣∣∣∣
2

+
∫
Ω

∣∣∇ϕ(x)
∣∣2

(√
e

(
1 + z((x − a)/εp)

p

))2

+ 2
∫
Ω

ϕ(x)
√

e

(
1 + z((x − a)/εp)

p

)
∇ϕ(x) · ∇

(√
e

(
1 + z((x − a)/εp)

p

))
.

The first term gives

∫
Ω

ϕ2(x)

∣∣∣∣∇
(√

e

(
1 + z((x − a)/εp)

p

))∣∣∣∣
2

= e

p2

∫
Ω

16ϕ2(x)
|x − a|2

(8ε2
p + |x − a|2)2

= 16e

p2

{ ∫
B(a,r/2)

|x − a|2
(8ε2

p + |x − a|2)2
+

∫
Ω\B(a,r/2)

ϕ2(x)
|x − a|2

(8ε2
p + |x − a|2)2

}

= 16e

p2

(
2π

r/2∫
ψ3

(8ε2
p + ψ2)2

+ O(1)

)
.

0
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Setting ψ2 = t and integrating, we get

r/2∫
0

ψ3

(8ε2
p + ψ2)2

= 1

2
log

∣∣∣∣
r
2 + 8ε2

p

8ε2
p

∣∣∣∣ + 1

2

(
8ε2

p

8ε2
p + r

2

− 1

)
= − log |εp| + O(1).

So, we get∫
Ω

ϕ2(x)

∣∣∣∣∇
(√

e

(
1 + z((x − a)/εp)

p

))∣∣∣∣
2

= −32πe

p2

(
log εp + O(1)

)

= −32eπ

p2

(
−p − 1

4
+ o(p) + O(1)

)

= 8πe

p
+ o(1/p).

The second term gives the existence of a constant K > 0 such that∫
Ω

∣∣∇ϕ(x)
∣∣2

(√
e

(
1 + z((x − a)/εp)

p

))2

=
∫

B(a,r)\B(a,r/2)

∣∣∇ϕ(x)
∣∣2

(√
e

(
1 + z((x − a)/εp)

p

))2

� K
(1 + 2 maxx∈Ω\B(a,1/p) | log(

|x−a|2p
8 )| + K)2

p2

= o(1/p).

The third term can be treated with similar techniques. So, finally, we get∫
Ω

|∇W̄p|2 = 8πe

p
+ o(1/p)

which proves the claim.
Then, we define the family of test functions Wp : Ω → R which are defined on B(a, r) as W̄p and on B(b, r) as

the odd reflection of W̄p . The functions Wp vanish outside the two balls B(a, r) and B(b, r). So, ‖∇W±
p ‖2

2 = 8πe
p

+
o(1/p) and ‖W±

p ‖p+1
p+1 = 8πe

p
+ o(1/p). Clearly, the unique multiplicative factor αp := α+

p such that α+
p W+

p ∈ Np

equals the unique multiplicative factor α−
p such that α−

p W−
p ∈ Np . To characterize it, we need to solve

α2
p

∥∥∇W±
p

∥∥2
2 = α

p+1
p

∥∥W±
p

∥∥p+1
p+1.

It implies that

αp =
( ∫

Ω
|∇W±

p |2∫
Ω

|W±
p |p+1

) 1
p−1 → 1. (2)

So, as up is a minimum for the H 1
0 -norm on Mp and

∫
Ω

|∇up|2 = ∫
Ω

|∇u+
p |2 + ∫

Ω
|∇u−

p |2, we conclude that

p

(
1

2
− 1

p + 1

)
‖∇up‖2

2 � p

(
1

2
− 1

p + 1

)
2(αp)2

∫
Ω

∣∣∇W+
p

∣∣2
.

As the right-hand side converges to 8πe, we get the assertion. �
Lemma 2.3. Let (up)p>1 be a family of least energy nodal solutions of problem (Pp). For any ε > 0, there exists pε

such that, for any p � pε ,

pEp(up) = p

(
1

2
− 1

p + 1

)∫
Ω

|∇up|2 � 8πe − ε.
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Proof. To do this, we prove that for any sequence pn → +∞ lim infn→+∞ pn(
1
2 − 1

pn+1 )
∫
Ω

|∇u±
pn

|2 � 4πe. On one

hand, 1 =
∫
Ω(u±

pn
)pn+1∫

Ω |∇u±
pn |2 . On the other hand, in [21, p. 752], it is proved that, for any t > 1, ‖u‖t � Dt t

1/2‖∇u‖2 where

Dt → (8πe)−1/2 is independent of u in H 1
0 (Ω).

So, we obtain

1 � D
pn+1
pn+1(pn + 1)

pn+1
2

( ∫
Ω

∣∣∇u±
pn

∣∣2
) pn−1

2

,

i.e.
∫
Ω

|∇u±
pn

|2 �D
−2 pn+1

pn−1
pn+1 (pn + 1)

− pn+1
pn−1 . Thus,(

1

2
− 1

pn + 1

)
(pn + 1)

pn+1
pn−1

∫
Ω

∣∣∇u±
pn

∣∣2 �
(

1

2
− 1

pn + 1

)
D

−2 pn+1
pn−1

pn+1 .

As pn

(pn+1)
pn+1
pn−1

converges to 1 and the right-hand side converges to 4πe, we get the assertion. �
Proof of Theorem 1. It follows from Lemma 2.2 and Lemma 2.3. �
Remark 2.4. The proof of Lemma 2.3 does not depend on the fact that upn is a least energy nodal solution. Indeed,
for any (up)p>1 verifying (A), as p → +∞, we get

• p( 1
2 − 1

p
)
∫
Ω

|∇u±
p |2 → 4πe, p

∫
Ω

|∇u±
p |2 → 8πe and p

∫
Ω

|∇up|2 → 16πe.

• Ep(up) → 0,
∫
Ω

|∇up|2 → 0,
∫
Ω

|∇u−
p |2 → 0 and

∫
Ω

|∇u+
p |2 → 0.

Moreover the proof of Lemma 2.3 implies, as corollary, that up has 2 nodal domains for p large.

From now on, throughout the paper, we consider a family (up)p>1 of nodal solutions for which (A) holds. The
following result shows an asymptotic lower bound for the L∞-norms of u+

p and u−
p . We denote by λ1(D) the first

eigenvalue of −� with Dirichlet boundary conditions in a domain D and by x±
p both the maximum or the minimum

point of up , as defined in the Introduction.

Proposition 2.5. For any p > 1 we have that |up(x±
p )| � λ

1
p−1
1 where λ1 := λ1(Ω).

Proof. Using Poincaré’s inequality, we get

1 =
∫
Ω

|u±
p |p+1∫

Ω
|∇u±

p |2 �
|up(x±

p )|p−1
∫
Ω

(u±
p )2∫

Ω
|∇u±

p |2
�

∣∣up

(
x±
p

)∣∣p−1
λ−1

1

(
Ω̃±

p

)
,

where Ω̃±
p are the nodal domains of up . As Ω̃±

p ⊆ Ω , we have λ1(Ω̃
±
p )� λ1 which ends the proof. �

Remark 2.6. We have:

• For any ε > 0, |up(x±
p )| � 1 − ε for p large. In particular this holds for ‖up‖L+∞ .

• By Remark 2.4, as |up(x±
p )|p−1 is bounded from below,

|up(x±
p )|p−1∫

Ω |∇u±
p |2 and

|up(x±
p )|p−1∫

Ω |∇up |2 converge to +∞ when p →
+∞.

The next result gives a direct argument to prove that the L∞-norms of u+
p and u−

p are bounded. It will be improved
in the next sections.
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Proposition 2.7. We have that up(x±
p ) is bounded as p → +∞.

Proof. Let us make the proof for the positive case. By Proposition 2.5, we only have to prove that up(x+
p ) is bounded

from above. Let us denote by G the Green’s function on Ω . As |G(x,y)| � C| log |x − y|| for any x, y ∈ Ω and some
independent constant C > 0, using the Hölder inequality we have

up

(
x+
p

) =
∫
Ω

G
(
x+
p , y

)∣∣up(y)p−1
∣∣up(y)dy

� C

∫
Ω

∣∣log
∣∣x+

p − y
∣∣∣∣∣∣up(y)p

∣∣dy

� C

(∫
Ω

∣∣log
∣∣x+

p − y
∣∣∣∣p+1 dy

) 1
p+1

(∫
Ω

|up|p+1
) p

p+1

.

Since p
∫
Ω

|up|p+1 → 16πe as p → +∞ (see Remark 2.4), it is enough to show the existence of a constant C > 0
such that∫

Ω

∣∣log
∣∣x+

p − y
∣∣∣∣p+1 dy � C(p + 1)p+2.

Let us consider R > 0 such that Ω ⊆ B(xp,R) for all n. Then there exists a constant K > 0 such that

∫
Ω

∣∣log
∣∣x+

p − y
∣∣∣∣p+1 dy �

∫
B(xp,R)

∣∣log
∣∣x+

p − y
∣∣∣∣p+1 dy = K

R∫
0

| log r|p+1r dr.

Integrating ([p] + 1)-times by parts, we get∫
Ω

∣∣log
∣∣x+

p − y
∣∣∣∣p+1 dy � K

{∣∣log(R)
∣∣p+1 + (p + 1)

∣∣log(R)
∣∣p + · · · + (p + 1) · · · (p − [p] + 2

)

× ∣∣log(R)
∣∣p−[p]+1} + K(p + 1)p · · · (p − [p] + 1

) R∫
0

| log r|p−[p]r dr.

Thus, there exists C such that for large n∫
Ω

∣∣log
∣∣x+

p − y
∣∣∣∣p+1 dy � C(p + 1)p+2,

which ends the proof. �
3. Asymptotic behavior

For the rest of the paper, w.l.o.g., let us assume that ‖up‖∞ = up(x+
p ) for any p > 1.

In this section we use several rescaling arguments to characterize the asymptotic behavior of u±
p .

Let us define ε2
p := 1

pup(x+
p )p−1 → 0 by Remark 2.6.

3.1. Control close to the boundary

We prove that x+
p cannot go to the boundary of Ω too fast.
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Proposition 3.1. We have

d(x+
p , ∂Ω)

εp

→ +∞ (3)

as p → +∞.

Proof. Let us argue by contradiction and assume that, for a sequence pn → +∞,
d(x+

pn
,∂Ω)

εpn
→ l � 0 and that x+

pn
→

x∗ ∈ ∂Ω (i.e.
d(x+

pn
,x∗)

εpn
→ l).

First, we treat the case when ∂Ω is flat around x∗. We consider a semi-ball D centered in x∗ with radius R such
that D ⊆ Ω and the diameter of D belongs to ∂Ω . For large n, let us remark that x+

pn
belongs to D. Then, on

A := B(x∗,R), we consider the function u∗
pn

which is defined as upn on D and as the odd reflection of upn on A \ D.

It is a solution of −�u = |u|pn−1u on A. For large n, we consider

z∗
pn

(x) := pn

u∗
pn

(x+
pn

)

(
u∗

pn

(
εpnx + x+

pn

) − u∗
pn

(
x+
pn

))
(4)

on Ω∗
pn

:= A−x+
pn

εpn
→ R

2. On Ω∗
pn

, we get from (4)⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−�z∗
pn

=
∣∣∣∣1 + z∗

pn

pn

∣∣∣∣
pn−1(

1 + z∗
pn

pn

)
,

∣∣∣∣1 + z∗
pn

pn

∣∣∣∣ � 1.

Let us fix R > 0. For large n, B(0,R) ⊆ Ω∗
pn

and we consider the problem⎧⎪⎨
⎪⎩

−�wpn =
∣∣∣∣1 + z∗

pn

pn

∣∣∣∣
pn−1(

1 + z∗
pn

pn

)
, in B(0,R),

wpn = 0, on ∂B(0,R).

Since, by (4), |1 + z∗
pn

pn
| � 1, we have that |wpn | is uniformly bounded by a constant C independent of n by the

maximum principle and the regularity theory. Moreover, because zpn � 0, we have that ψpn = zpn −wpn is a harmonic
function which is uniformly bounded above. By Harnack’s inequality, ψpn is bounded in L∞(B(0,R)) or tends to −∞
on each compact set of B(0,R). As ψpn(0) = zpn(0)−wpn(0) � −C, we get that ψpn and zpn are uniformly bounded
on each compact set of B(0,R).

Since we are assuming that d(xpn ,x∗)
εpn

→ l we get that yn := x∗−x+
pn

εpn
∈ B[0, l + 1] for large n and zpn(yn) = −pn →

−∞ which is a contradiction.
Next, we treat the case when ∂Ω is not locally flat around x∗ but is a C 1-curve. We consider a C 1-domain D

which is the intersection of a fixed neighborhood of x∗ and Ω . Let us define the square Q := (−1,1)2, Q+ :=
(−1,1) × (0,1) ⊆ Q and S := (−1,1) × {0}.

We consider the change of variables ϕ : D → Q+ and ϕ(D ∩ ∂Ω) = S (see [9] to get that ϕ is well-defined and
can be assumed to be C 1(D̄)). Moreover ϕ−1 ∈ C 1(Q̄+).

We fix a positive function θ ∈ C2 such that θ ◦ ϕ−1 : Q̄+ → R equals 0 on ∂Q+ \ S and ∂νθ ◦ ϕ−1 = 0 on S where
∂ν denotes the normal derivative. We extend θ ◦ ϕ−1 on Q by even symmetry with respect to S.

On Q, we define ũpn as θ(ϕ−1(·))upn(ϕ
−1(·)) on Q+ and the odd symmetric function on Q \ Q+. Since θupn

solves

−�u = θ |upn |pn−1upn − 2∇θ∇upn − (�θ)upn =: gpn (5)

with Dirichlet boundary conditions on D, by the change of variables y = ϕ(x), we get that ũpn solves for some
matrix Apn

−div(Apn∇u) = hpn
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with Dirichlet boundary conditions on Q and where hpn is gpn ◦ ϕ−1 on Q+ and the antisymmetric on Q \ Q+.
Coming back to Ω by the change of variables x = ϕ−1(y) we get that θu∗

pn
= ũpn(ϕ(·)) solves −�u = hpn ◦ ϕ on

A := ϕ−1(Q).
As θ is positive, it implies that u∗

pn
solves −�u = |u|pn−1u on A.

We conclude by working in the same way as in the first case. �
3.2. Rescaling argument in Ω around x+

p : limit equation in R
2

The idea is inspired by [1]. Let us consider Ω+(εp) := Ω−x+
p

εp
and zp : Ω+(εp) →R the scaling of up around x+

p :

zp(x) := p

up(x+
p )

(
up

(
εpx + x+

p

) − up

(
x+
p

))
. (6)

Proof of Theorem 2. Let pn be a sequence, pn → +∞. As in the previous proof, we have that zpn solves the equation⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−�zpn =
∣∣∣∣1 + zpn

pn

∣∣∣∣
pn−1(

1 + zpn

pn

)
, in Ω+(εpn),∣∣∣∣1 + zpn

pn

∣∣∣∣� 1,

zpn = −pn, on ∂Ω+(εpn).

Let us fix R > 0. By Proposition 3.1, we know that
d(x+

pn
,∂Ω)

εpn
→ +∞. So, Ω+(εpn) “converges” to R

2 as pn →
+∞, i.e. B(0,R) ⊆ Ω+(εpn) for large n. Let us consider the problem⎧⎪⎨

⎪⎩
−�wpn =

∣∣∣∣1 + zpn

pn

∣∣∣∣
pn−1(

1 + zpn

pn

)
, in B(0,R),

wpn = 0, on ∂B(0,R).

Since, by (6), |1 + zpn

pn
| � 1, we get that |wpn | � C independent of n. By arguing as before, we get that ψpn and zpn

are bounded up to a subsequence in L∞(B(0,R)) for any R.
Thus, by the standard regularity theory, zpn is bounded in C2

loc(R
2) and, on each ball, 1 + zpn

pn
> 0 for large n. We

have that zpn → z in C2
loc(R

2) and −�z = ez.
To finish, we prove that

∫
R2 ez < +∞. We have that zpn +pn(log |1+ zpn

pn
|− zpn

pn
) converges pointwisely to z in R

2.
By Fatou’s lemma, we deduce∫

R2

ez � lim
n

∫
Ω+(εpn )

e
zpn+pn(log |1+ zpn

pn
|− zpn

pn
)

= lim
n

∫
Ω+(εpn )

∣∣∣∣1 + zpn

pn

∣∣∣∣
pn

� lim
n

∫
Ω

|upn |pn

ε2
pn

|upn(x
+
pn

)|pn

= lim
n

∫
Ω

pn

|upn(x
+
pn

)| |upn |pn

� lim
n

pn

|upn(x
+
pn

)| |Ω| 1
pn+1

(∫
|upn |pn+1

)pn/(pn+1)

.

Ω
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By Proposition 2.5 and Remark 2.4, we deduce that
∫
R2 ez � 16πe. The solutions of −�z = ez with

∫
R2 ez < +∞

are given by z(x) = log
(

μ

(1+ μ
8 |x−x0|2)2

)
for some μ > 0.

As z(x) � z(0) = 0 for any x, we have that μ = 1 and x0 = 0. Finally,
∫
R2 ez = 8π . �

3.3. Rescaling argument in the positive nodal domain

Theorem 2 implies directly a control on d(x+
p ,NLp) where NLp denotes the nodal line of up .

Proposition 3.2. We have

d(x+
p ,NLpn)

εp

→ +∞ (7)

as p → +∞.

Proof. If the assertion is not true then, for a sequence pn → +∞ the level curve Cpn(zpn) = {x ∈ Ω+(εpn), zpn(x) =
−pn} intersects B(0,R) for some large R > 0. This is a contradiction since zpn is uniformly bounded in all balls. �
Proof of Theorem 3. By Proposition 3.2, we can repeat the proof of Theorem 2 for the rescaled function zp(x)

in Ω̃+
p . �

3.4. Rescaling argument on Ω around x−
p

Let us consider Ω−(εp) := Ω−x−
p

εp
and z−

p : Ω−(εp) →R the scaling of up around x−
p :

z−
p (x) := p

up(x+
p )

(−up

(
εpx + x−

p

) − up

(
x+
p

))
. (8)

To obtain the same kind of result as that of Theorem 2, we need

d(x−
p , ∂Ω)

εp

→ +∞ (9)

as p → +∞. To get (9) we can repeat step by step the proof of Proposition 3.1. The only delicate point is the use
of Harnack’s inequality when we need that ψp(0) is bounded from below. Nevertheless, requiring that p(up(x+

p ) +
up(x−

p )) is bounded (alternative (B) in the Introduction) we get the boundness of ψp(0) and so (9) holds. This explains
the role of condition (B) in getting Theorem 5.

Proof of Theorem 5. It is obtained following step by step the proof of Theorem 2. The constant μ in the limit
function z can be different from 1 because

z(0) = lim
p→+∞ z−

p (0) = lim
p→+∞

p

up(x+
p )

(−up

(
x−
p

) − up

(
x+
p

)) 
= 0

whenever K (in condition (B)) is not zero. �
3.5. Rescaling argument in the negative nodal domain

We would like to obtain a result similar to that of Theorem 3 for the function u−
p defined in the negative nodal

domain Ω̃−
p . We consider solutions satisfying condition (B). By Theorem 5, working in the same way as in the proof

of Proposition 3.2, we get that ε−1
p d(x−

p ,NLp) → +∞.

Proof of Theorem 6. As (9) is satisfied when (B) holds, we can repeat the proof of Theorem 3, taking into account
the remark in the proof of Theorem 5. �
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We conclude this section by explaining Remark 7 of the Introduction. Let us now consider the “natural” rescaling
coefficient

ε̃2
p := 1

p|u−
p (x−

p )|p−1
→ 0

since lim infp→+∞ |up(x−
p )|p−1 � 1 (see Remark 2.6). We would like to control the rescaling of u−

p around x−
p

zp(x) := p

up(x−
p )

(
u−

p

(
ε̃px + x−

p

) − up

(
x−
p

))
.

The same argument as in the proof of Proposition 3.1 and Theorem 2 does not work as we might loose the es-
sential estimate |1 + zp

p
| � 1 in the proof. So, we do not get Proposition 3.2 for x−

p and we need to assume that

ε̃−1
p d(x−

p ,NLp) → +∞.

Proposition 3.3. Assume that ε̃−1
p d(x−

p ,NLp) → +∞ as p → +∞, with ε̃p defined as ε̃2
p := 1

p|u−
p (x−

p )|p−1 . Then

ε̃−1
p d(x−

p , ∂Ω) → +∞ as p → +∞.

Proof. Let us work by contradiction and assume that, for a sequence pn → +∞,
d(x−

pn
,∂Ω)

ε̃pn
→ l � 0. Let us also

assume w.l.o.g. that x−
pn

→ x∗ ∈ ∂Ω (i.e.
d(x−

pn
,x∗)

ε̃pn
→ l).

As ε̃−1
pn

d(x−
pn

,NLpn) → +∞, we can construct a sequence of C 1-domains Dpn which are the intersection between

a neighborhood Vpn of x∗ and Ω̃−
pn

such that

ε̃−1
pn

d(x∗, ∂Dpn \ ∂Ω) → +∞.

For large n, we have that x−
pn

belongs to Dpn . So, as upn stays negative in Dpn , we can argue in the same way as in
Proposition 3.1 to conclude the proof. �

By working in the same way as in Theorem 2 or Theorem 3, Proposition 3.3 allows to make the rescaling in
the negative nodal domain Ω̃−

p , so to obtain for p

up(x−
p )

(u−
p (ε̃px + x−

p ) − up(x−
p )) the same assertion as for zp in

Theorem 3.

4. L∞-estimates

In the last two sections, we will work in the positive and negative nodal domains. While dealing with the positive
nodal domain, zp will always denote the rescaled function used in Theorem 2. For the negative one, the expression
of zp can be defined as in Theorem 6 when (B) holds (and so with ε−2

p = p|up(x+
p )|p−1).

Let us point out that some proofs will be given just for the positive case, the negative one being similar.

Proposition 4.1. For any sequence pn → +∞ we have lim supn→+∞ |u±
pn

(x±
pn

)| � e1/2.

Proof. Let us prove the assertion for the positive case. By Fatou’s lemma, we have

1 =
∫
Ω

|u+
pn

|pn+1

‖u+
pn

‖pn+1
pn+1

=
( |u+

pn
(x+

pn
)|

‖u+
pn

‖pn+1

)pn+1

ε2
pn

∫
Ω̃+(εpn )

∣∣∣∣1 + zpn

pn

∣∣∣∣
pn+1

= |u+
pn

(x+
pn

)|2
pn‖u+

pn
‖pn+1
pn+1

∫
Ω̃+(εpn )

∣∣∣∣1 + zpn

pn

∣∣∣∣
pn+1

�
lim supn→+∞ |u+

pn
(x+

pn
)2|

8πe

∫
R2

ez.

As
∫

2 ez = 8π , the proof is complete. �

R
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Now, we study the equality in the last statement. We will show that
∫
Ω̃±(εpn )

|1 + zpn

pn
|pn+1 converges to

∫
R2 ez with

no mass lost at infinity.
Let us consider the linearized operators

L+
p (v) = −�v − p

∣∣u+
p

∣∣p−1
v

for v : Ω̃+
p →R and let us denote by λi(L

+
p ) the eigenvalues of L+

p with homogeneous Dirichlet boundary conditions.
Our aim is to prove Theorem 9, therefore we assume that the Morse index of u+

p in Ω+ is 1. Hence we have

λ1
(
L+

p

)
< 0 and λ2

(
L+

p

)
� 0 in Ω̃+

p .

Then, for D ⊆ Ω̃+(εp), let us consider L+
p,D(v) = −�v− |u+

p (εpx+x+
p )|p−1

|u+
p (x+

p )|p−1 v and denote by λi(L
+
p,D) the corresponding

Dirichlet eigenvalues. By scaling, we get

Lemma 4.2. λ1(L
+
p,Ω̃+(εp)

) < 0 and λ2(L
+
p,Ω̃+(εp)

)� 0.

Lemma 4.3. Let p → +∞, then there exists r > 0 such that λ1(L
+
p,B(0,r)) < 0 for large p.

Proof. Let us consider wp = x.∇zp + 2
p−1zp + 2p

p−1 . We have that wp satisfies −�w = |u+
p (εpx+x+

p )|p−1

|u+
p (x+

p )|p−1 w.

We also have wp(0) → 2. As zp → z = log
( 1

(1+ |x|2
8 )2

)
, for |x| = r , we get

wp(x) → − 4r2

8 + r2
+ 2

as p → +∞. So, for large r , wp → α < 0 on ∂B[0, r].
Let us fix such an r . By considering Ap := {x ∈ B(0, r): wp > 0} and the function w̄p equals to wp on Ap

(0 otherwise), we get∫
B(0,r)

|∇w̄p|2 −
∫

B(0,r)

|u+
p (εpx + x+

p )|p−1

|u+
p (x+

p )|p−1
w̄2

p = 0,

which implies our statement. �
Lemma 4.4. For p large, λ1(L

+
p,Ω̃+(εp)\B(0,r)

) > 0, where r is given by Lemma 4.3.

Proof. If λ1(L
+
p,Ω̃+(εp)\B(0,r)

) was negative then, by Lemma 4.3 we would have λ2(L
+
p,Ω̃+(εp)

) < 0 which contradicts

Lemma 4.2. �
Proof of Theorem 8. Since we are analyzing nodal solutions which satisfy condition (B), it is enough to prove
that ‖u+

p ‖∞ → √
e as p → +∞. Let us argue by contradiction and assume that for a sequence pn → +∞, by

Proposition 4.1, limn→∞ |u+
pn

(x+
pn

)| = limn→∞ ‖u+
pn

‖∞ < e1/2. We claim that this implies zpn(x) − z(x) � C on

Ω̃+(εpn) uniformly.
Indeed, zpn converges to z on each compact set. In particular, on B(0, r), where r is given by Lemma 4.3. So, it is

enough to check what happens in Ω̃+(εpn) \ B(0, r).
On one hand, −�z = ez � |1+ z

p
|p for any p > 1. On the other hand, by computing zpn −z on ∂Ω̃+(εpn)\B[0, r],

we get for some uniform constant C

zpn(x) − z(x) = −pn − log

(
1

(1 + |x|2
)2

)

8
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� −pn − log

(
C

ε4
pn

d(x+
pn

, ∂Ω)4

)

� −pn + 2 log
(
pn

∣∣u+
pn

(
x+
pn

)∣∣pn−1) + 4 log
(
d
(
x+
pn

, ∂Ω
)) + C

� −pn + 2 log
(
pn

∣∣u+
pn

(
x+
pn

)∣∣pn−1) + C

� −pn + 2 log
(∣∣u+

pn

(
x+
pn

)∣∣pn−1) + C � C

where we used that |u+
pn

(x+
pn

)| < e1/2 and d(x+
pn

, ∂Ω) � C for large n (by contradiction).
We also have the estimate on ∂B(0, r) because we have the convergence on each compact set.
Finally, by convexity, we have

−�zpn + �z �
∣∣∣∣1 + zpn

pn

∣∣∣∣
pn−1

(zpn − z) = |u+
pn

(εpnx + x+
pn

)|pn−1

|upn(x
+
pn

)|pn−1
(zpn − z).

Since the maximum principle holds in Ω̃+(εpn) \ B(0, r) for L+
pn,Ω̃+(εpn )\B(0,r)

(see Lemma 4.4), we deduce our

claim.
From this claim, we obtain that

∫
Ω̃+(εpn )

|1 + zpn

pn
|pn+1 converges to

∫
R2 ez. So,

1 =
∫
Ω

|u+
pn

|pn+1

‖u+
pn

‖pn+1
pn+1

= |u+
pn

(x+
pn

)|pn+1

‖u+
pn

‖pn+1
pn+1

ε2
pn

∫
Ω̃+(εpn )

∣∣∣∣1 + zpn

pn

∣∣∣∣
pn+1

= ‖u+
pn

‖2∞
8πe + o(1)

(
8π + o(1)

)
,

which proves that limn→∞ ‖u+
pn

‖∞ = e1/2, which is a contradiction. �
5. Green’s characterizations

To start with, we observe that Theorem 8 gives a direct way to prove the convergence of
∫
Ω̃±(εp)

|1 + zp

p
|p+1, as

p → +∞.

Proposition 5.1. As p → +∞ ∫
Ω̃±(εp)

|1 + zp

p
|p+1 → ∫

R2 ez = 8π .

Proof. Let us give the proof for the positive case. For any n ∈ N, we have∫
Ω̃+(εp)

∣∣∣∣1 + zp

p

∣∣∣∣
p+1

= p
∫
Ω

|u+
p |p+1

|u+
p (x+

p )|2 .

As the right-hand side converges to 8π , we obtain our statement. �
The previous result implies a similar statement where the exponent p + 1 is replaced by p.

Proposition 5.2. We have∫
Ω̃±(εpn )

∣∣∣∣1 + zp

p

∣∣∣∣
p

→ 8π

as p → +∞.

Proof. Let us give the proof for the positive case. On one hand, as |1 + zp

p
| � 1, we have

∫
Ω̃+(εp)

|1 + zp

p
|p+1 �∫

˜ + |1 + zp |p . By Proposition 5.1, we get 8π � lim infp→+∞
∫

˜ + |1 + zp |p .

Ω (εp) p Ω (εp) p
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On the other hand, as
∫
Ω̃+(εp)

|1 + zp

p
|p+1 → 8π and |1 + zp

p
|p+1 → ez with

∫
R2 ez = 8π (see Theorem 3 and

Theorem 6), we have

∀ε > 0, ∃Rε > 0 and pε: ∀p > pε and R > Rε,

∫
Ω̃+(εp)∩{|x|>R}

∣∣∣∣1 + zp

p

∣∣∣∣
p+1

� ε. (10)

By interpolation, we get for any ε > 0 that∫
Ω̃+(εp)

∣∣∣∣1 + zp

p

∣∣∣∣
p

=
∫

Ω̃+(εp)∩{|x|�Rε}

∣∣∣∣1 + zp

p

∣∣∣∣
p

+
∫

Ω̃+(εp)∩{|x|>Rε}

∣∣∣∣1 + zp

p

∣∣∣∣
p

�
∫

Ω̃+(εp)∩{|x|�Rε}

∣∣∣∣1 + zp

p

∣∣∣∣
p

+
( ∫

Ω̃+(εp)∩{|x|>Rε}

∣∣∣∣1 + zp

p

∣∣∣∣
p+1) p

p+1 ∣∣Ω̃+(εp)
∣∣ 1

p+1

�
∫

Ω̃+(εp)∩{|x|�Rε}

∣∣∣∣1 + zp

p

∣∣∣∣
p

+
( ∫

Ω̃+(εp)∩{|x|>Rε}

∣∣∣∣1 + zp

p

∣∣∣∣
p+1) p

p+1 |Ω| 1
p+1 ε

−1
p+1
p .

As
∫
Ω̃+(εp)∩{|x|�Rε} |1 + zp

p
|p → C � 8π and ε

−1
p+1
p → e1/4 as p → +∞, we get by (10) that, for any ε > 0, there

exists p̄ > 0 such that if p > p̄ then∫
Ω̃+(εp)

∣∣∣∣1 + zp

p

∣∣∣∣
p

� (8π + ε) + ε
p

p+1
(
e

1
4 + ε

)
,

which implies our statement. �
Let us denote by G the Green’s function of Ω and by x± ∈ Ω̄ the limit points of x±

p as p → +∞.

Lemma 5.3. Let x 
= x±. We have∫
Ω̃±(εp)

G
(
x, εpψ + x±

p

)∣∣∣∣1 + zp

p

∣∣∣∣
p

dψ → 8πG
(
x, x±)

.

Proof. Let us make the proof for the positive case. Let us fix x 
= x+ and consider α > 0 such that B(x,α) ⊆ Ω and
d(x+,B(x,α)) = β > 0. We have∫

Ω̃+(εp)

G
(
x, εpψ + x+

p

)∣∣∣∣1 + zp

p

∣∣∣∣
p

dψ =
∫

Ω̃+(εp)\ B(x,α)−x
+
p

εp

G
(
x, εpψ + x+

p

)∣∣∣∣1 + zp

p

∣∣∣∣
p

dψ

+
∫

B(x,α)−x
+
p

εp

G
(
x, εpψ + x+

p

)∣∣∣∣1 + zp

p

∣∣∣∣
p

dψ.

Arguing as in Proposition 5.2, since G(x, εpψ + x+
p ) converges uniformly to G(x,x+) on each compact set of R2,

G(x, ·) is bounded on Ω \B(x,α) and d(
B(x,α)−x+

p

εp
,0) → +∞, we get that the first integral converges to 8πG(x, x+).

Concerning the second integral, since x+ /∈ B(x,α), we derive that
∫

B(x,α)−x
+
p

εp

|1 + zp

p
|p = p

∫
B(x,α)

|u+
p |p → 0. From

the last statement we deduce that we can apply Lemma 3.5 in [20] and obtain that up

p
∫
B(x,α) |u+

p |p is bounded in B(x,α)

and hence up(x) < 1 in B(x,α). Then
2
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∫
B(x,α)−x

+
p

εp

G
(
x, εpψ + x+

p

)∣∣∣∣1 + zp

p

∣∣∣∣
p

= p

∫
B(x,α)

G(x, y)
∣∣u+

p (y)
∣∣p dy

� p

(
1

2

)p ∫
B(x,α)

G(x, y) = o(1),

which gives our claim. �
Let us remark that the convergence in Lemma 5.3 is uniform in x in C 0

loc(Ω \ {x+}).

Proposition 5.4. Under the same assumptions as in Theorem 8, the following alternatives hold:

(1) d(x+
p , ∂Ω) → 0 and d(x−

p , ∂Ω) 
→ 0. Then the function pup converges, up to a subsequence, to the negative

function −8πe1/2G(·, x−) in C 1
loc(Ω̄ \ {x−});

(2) d(x−
p , ∂Ω) → 0 and d(x+

p , ∂Ω) 
→ 0. Then the function pup converges, up to a subsequence, to the positive

function 8πe1/2G(·, x+) in C 1
loc(Ω̄ \ {x+});

(3) d(x+
p , ∂Ω) and d(x−

p , ∂Ω) 
→ 0. Then pup converges, up to a subsequence, to 8πe1/2(G(·, x+) − G(·, x−)) in

C 1
loc(Ω̄ \ {x−, x+}) with x+ 
= x−, x+, x− ∈ Ω ;

(4) d(x+
p , ∂Ω) → 0 and d(x−

p , ∂Ω) → 0. Then pup → 0 in C 1
loc(Ω̄ \ {x−, x+}).

In the case (3), the limit points x+ and x− satisfy the system⎧⎪⎪⎨
⎪⎪⎩

∂G

∂xi

(
x+, x−) − ∂H

∂xi

(
x+, x+) = 0,

∂G

∂xi

(
x−, x+) − ∂H

∂xi

(
x−, x−) = 0,

(11)

for i = 1,2, where, as in the Introduction, H(x,y) is the regular part of the Green function. Moreover the nodal line
of up intersects the boundary ∂Ω for p large.

Proof. We have

up(x) =
∫
Ω

G(x, y)
∣∣up(y)

∣∣p−1
up(y)dy

=
∫

Ω̃+
p

G(x, y)
∣∣up(y)

∣∣p dy −
∫

Ω̃−
p

G(x, y)
∣∣up(y)

∣∣p dy.

Let us just treat the first member of the sum. The second one can be treated in the same way. With the change of
variables y = εpψ + x+

p , we get∫
Ω̃+

p

G(x, y)
∣∣up(y)

∣∣p dy =
∫

Ω̃+(εp)

1

p|u+
p (x+

p )|p−1
G

(
x, εpψ + x+

p

)∣∣u+
p

(
εpψ + x+

p

)∣∣p dψ

=
∫

Ω̃+(εp)

G
(
x, εpψ + x+

p

) ||u+
p (εpψ + x+

p )| − ‖u+
p ‖∞ + ‖u+

p ‖∞|p
p‖u+

p ‖p−1∞
dψ

=
∫

Ω̃+(ε )

G
(
x, εpψ + x+

p

) | ‖u+
p ‖∞zp

p
+ ‖u+

p ‖∞|p
p‖u+

p ‖p−1∞
dψ
p
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= ‖u+
p ‖∞
p

∫
Ω̃+(εp)

G
(
x, εpψ + x+

p

)∣∣∣∣1 + zp

p

∣∣∣∣
p

dψ.

As ‖u+
p ‖∞ → e1/2 and

∫
Ω̃+(εp)

G(x, εpψ +x+
p )|1 + zp

p
|p dψ converges to 8πG(x, x+) (see Lemma 5.3), by working

in the same way with the second part of the sum, we have

pup → 8πe1/2(G(
., x+) − G

(
., x−))

(12)

in C 0
loc(Ω \ {x+, x−}), up to a subsequence. By regularity, it implies the convergence in C 1

loc(Ω \ {x+}) (see [16]).
Observing that G(., x+) = 0 when x+ ∈ ∂Ω , we get the alternatives. In the third case, we prove that x+ 
= x− as

follows. Indeed, arguing by contradiction, we have that x+ = x−. Then, pup → 0 in C 1(ω̄) where ω is a neighborhood
of the boundary ∂Ω . By the Pohozaev identity, multiplying by p2, we get

p2

p + 1

∫
Ω

|up|p+1 = 1

4

∫
∂Ω

(x · ν)
(
∂ν(pup)

)2
.

As the left-hand side converges to 16πe (see Remark 2.4) and the right-hand side converges to 0 (since pup → 0
in C 1(ω̄)), we get a contradiction.

Now, we prove that x+ and x− solve the system (11). Concerning the location of x+ and x−, we use a Pohozaev-
type identity. For i = 1,2 let us multiply Eq. (Pp) by ∂up

∂xi
and integrate on BR(x+) ⊆ Ω , the ball centered at x+ and

radius R. We have that,

0 = 2

p + 1

∫
∂BR(x+)

|up|p+1νi +
∫

∂BR(x+)

∂up

∂xi

∂up

∂ν
− 1

2

∫
∂BR(x+)

|∇up|2νi = I1 + I2 + I3 (13)

where νi are the components of the normal direction.
From (12) we get that

p2I1 = O

(
1

2

)p

as p → +∞. (14)

Multiplying (13) by p2 and using (12) and (14) we deduce∫
∂BR(x+)

∂(G(., x+) − G(., x−))

∂xi

∂(G(., x+) − G(., x−))

∂ν
− 1

2

∫
∂BR(x+)

∣∣∇(
G

(
., x+) − G

(
., x−))∣∣2

νi = 0. (15)

The last integral was computed in [17, pp. 511–512] which gives

∇(
G

(
x+, x−) − H

(
x+, x+)) = 0. (16)

Repeating the same procedure in BR(x−) we derive that

∇(
G

(
x−, x+) − H

(
x−, x−)) = 0 (17)

which gives the claim.
To conclude the proof, we show that the nodal line of up intersects the boundary ∂Ω for p large. If not, up is a

one-signed function in a neighborhood of ∂Ω , which, by Höpf’s lemma, implies that ∂νpup is one-signed on ∂Ω

for large p. On the other hand, as x+ 
= x− and
∫
∂Ω

∂ν(G(·, x+) − G(·, x−)) = 0, the normal derivative of the limit
function changes its sign along ∂Ω . It contradicts the C 1-convergence of pup to 8π

√
e(G(·, x+) − G(·, x−)) in a

compact neighborhood of ∂Ω . �
Proof of Theorem 9. We need to prove that the cases (1), (2) and (4) in Proposition 5.4 cannot happen. To start with,
we focus on the case (4). Arguing by contradiction, let us assume that x+ and x− belong to ∂Ω . Let D ⊆ Ω be an
open domain which is the intersection between a neighborhood of x+ and Ω . We assume w.l.o.g. that x− /∈ D̄ when
x+ 
= x− and x− /∈ ∂D̄ when x+ = x−. We have that pup → 0 in C 1 (D̄ \ {x+}). Using the same notations as in the
loc
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proof of Proposition 3.1 (for Q,Q+, S, . . .), we consider the change of variables ϕ : D → Q+ and ϕ(D ∩ ∂Ω) = S.
Moreover ϕ−1 ∈ C 1. Then, we define D∗ := ϕ−1(Q) and u∗

p which is up on D and the odd tubular reflection on

D∗ \ D (as in the proof of Proposition 3.1). We get that u∗
p solves −�u = |u|p−1u on D∗ and pu∗

p → 0 in C 1(ω̄∗)
where ω∗ ⊆ D∗ is a neighborhood of the boundary ∂D∗ avoiding x+. Using the Pohozaev identity and multiplying
by p2, we get the existence of constants K,K∗ and K∗∗ such that

p2

p + 1

∫
D∗

∣∣u∗
p

∣∣p+1 = K

∫
∂D∗

(x · ν)
(
∂ν

(
pu∗

p

))2 dτ + K∗
∫

∂D∗
(x · ν)

(
∂τ

(
pu∗

p

))2 dτ + K∗∗ p2

p + 1

∫
∂D∗

∣∣u∗
p

∣∣p+1
. (18)

As pu∗
p → 0 in C 1(D̄∗ \ {x+}), the right-hand side is converging to zero. To get a contradiction, we prove that

the left-hand side is not converging to zero. For this, we claim that p
∫
D∗ |u∗

p|p+1 converges to C � 8πe. If not, as

p
∫
Ω

|u−
p |p+1 → 8πe and p

∫
Ω

|up|p+1 → 16πe, we get the existence of a positive constant ψ such that∫
Ω\(D∗∪B(x−,δ))

p|up||up|p > ψ

for any δ > 0 and large p. It contradicts pup → 0 in C 1(Ω̄ \ {x+}).
To finish, let us prove that the case (1) cannot happen (the case (2) is similar). Working in the same way, we

construct an open domain x+ ∈ D∗ such that u∗
p solves −�u = |u|p−1u on D∗ and pu∗

p → G(·, x−) in C 1(ω̄∗)
where ω∗ is any compact set in D̄∗ \ {x+}. Using again the Pohozaev identity and multiplying by p2, we get Eq. (18).
Working as previously, as pup → G(., x−) and up → 0 in C 1

loc(Ω \ {x+}), the left-hand side converges to C � 8πe.
Concerning the right-hand side, as G(., x−) ∈ C 1(Ω̄) and G(·, x−) = 0 on ∂Ω , we can consider D∗ small enough
such that the two last terms converge to constants less than 8πe/3. For the first one, as there exists a constant K > 0
such that |∇G(x,y)| � K

|x−y| , we get that (∂νG(·, x−))2 is bounded in a neighborhood of x+. Taking D∗ small enough,
we also get that the first term converges to a constant less than 8πe/3 which is a contradiction. �
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