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Abstract

In this paper we study the existence and qualitative properties of traveling waves associated with a nonlinear flux limited par-
tial differential equation coupled to a Fisher–Kolmogorov–Petrovskii–Piskunov type reaction term. We prove the existence and
uniqueness of finite speed moving fronts of C2 classical regularity, but also the existence of discontinuous entropy traveling wave
solutions.
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1. Introduction and main results

The aim of this paper is to analyze the existence of traveling waves associated with a heterogeneous nonlinear
diffusion partial differential equation coupled to a reaction term of Fisher–Kolmogorov–Petrovskii–Piskunov type.
The nonlinear diffusion term has been motivated in different contexts and from different points of view (see the
pioneering work [31]). Also, it has been deduced in the Monge–Kantorovich’s optimal mass transport framework,
where it is usually called the relativistic heat equation [16], or in astrophysics [28]. The existence and uniqueness
of entropy solutions for the nonlinear parabolic flux diffusion was proved in [4], while in [5] the finite speed of
propagation was analyzed. The resulting reaction–flux-limited–diffusion system exhibits new properties compared
with the classical reaction term coupled to the linear diffusion equation, such as the existence of singular traveling
waves. This opens new research perspectives regarding its application to the biological or traffic flow frameworks.

Reaction–diffusion systems consist in mathematical models describing the dynamics of the concentration of one or
more populations distributed in space under the influence of two processes: Local reactions, in which the populations
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interact with each other; and diffusion, which provokes the populations to spread out in space. In the reaction–
diffusion context, the notion of population must be understood in a wide sense, say particles or concentrations in
chemical processes, cells, morphogens, among others or more recently in computer science or complex systems (see
for instance [18,20,23,26,27,29,32,34,36]). Much attention has been paid on these systems within a broad variety of
applications, starting from linear diffusion of type

∂u

∂t
= ν�u + f (u), u(t = 0, x) = u0(x), (1)

where ν is the diffusion coefficient and f represents the reaction term. Cooperative behavior has often been modeled
from diffusive coupling of nonlinear elements, and reaction–diffusion equations provide the prototypical description
of such systems. These systems have also attracted the researcher attention as archetypal models for pattern formation.
This is particularly connected with the study of traveling waves, i.e. solutions of the type u(t, x) = u(x − σ t).

In many applications (particularly in complex systems) reaction–diffusion equations often provide a natural math-
ematical description of these dynamical networks, whose elements are coupled through diffusion in many instances.
The correct description of reaction–diffusion phenomena requires a detailed knowledge of the interactions between
individuals and groups of individuals. This line of research motivates the study of nonlinear cooperative behavior in
complex systems [9,10], which is a subject interconnected with reaction–diffusion systems through hydrodynami-
cal limits of kinetic equations. There is a wide literature raising the universality of application of reaction–diffusion
systems. Nevertheless, there are limitations to the reaction–diffusion description.

In biochemical networks constituted by small cellular geometries, a macroscopic reaction–diffusion model may
be inappropriate. In some circumstances the coupling among elements is not diffusive or the diffusive processes
are nonlinear, which will strongly influence the dynamical behavior of the network. In [33] it is proposed a nonlinear
degenerate density-dependent diffusion motivated by the fact that there are biological (mating, attracting and repelling
substances, overcrowding, spatial distribution of food, social behavior, etc.) and physical (light, temperature, humidity,
etc.) factors entailing that the probability is no longer a space-symmetric function, i.e. it looses the homogeneity, so
that linear diffusion does not constitute a good approach. This heterogeneity property of the diffusion operator comes
from the heterogeneous character of the equation and/or from the underlying domain (we also refer to [11–14]). The
same sort of problems concerning the universality in the applicability occur when a mean-field interaction among
particles is not available (see for example [10]) or when particles are dilute or large with respect to the vessel or the
media where they are moving [6,32]. In these cases, the linear diffusion approach might not be the most appropriate.
From a modeling viewpoint, the above processes seem to require the incorporation of one or various phenomena
not included within linear diffusion theory, such as the finite speed of propagation of matter or the existence of
nonsmooth densities (singular traveling waves), for example. The mathematical argument justifying that even in case
that the solution has not compact support, its size (invoking mass or concentration according to the case dealt with)
is very small out of some ball with large radius, might be unrealistic. Indeed, in several applications in biology
(morphogenesis) [1,12,17,36,35], social sciences [9] or traffic flow [15], this kind of situations (solutions with large
queues) can activate other processes. This is the case, for example, of the biochemical processes inside the cells
whose activation depends on the time of exposure as well as on the received concentration of morphogen (see [1,17]).
Then, exploring or modeling new nonlinear transport/diffusion phenomena is an interesting subject not only from the
viewpoint of applications, but also from a mathematical perspective.

Motivated by the above considerations, the objective of this paper consists in analyzing the existence of traveling
waves for the following one-dimensional, nonlinear flux limited reaction–diffusion equation

∂u

∂t
= ν∂x

(
u∂xu√

|u|2 + ν2

c2 |∂xu|2
)

+ f (u), u(t = 0, x) = u0(x), (2)

where ν is the viscosity and c is a constant velocity related to the internal properties of the particles. There are various
reasons that motivate this choice for the nonlinear diffusion term. First of all, the solutions to this system have finite
speed of propagation as opposite to the linear heat equation, i.e. for a compactly supported initial data, the growth
velocity of the support of the solution is bounded by c (see [2]). Furthermore, Eq. (2) is an extension of the heat
equation in the following sense: Rewrite the heat equation as

∂u = ν
∂

[
u

∂
lnu

]
= ν

∂ [uv], (3)

∂t ∂x ∂x ∂x
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where v is a microscopic velocity, in such a way that it can be seen as a transport kinetic equation. The velocity v is
determined by the entropy of the system, S(u) = u lnu, and by the concentration u, via the following formula

v = ∂

∂x

(
S(u)

u

)
. (4)

Note that S(u)
u

= lnu is known as the chemical potential.
We propose to modify the form of the flux in (3) by considering a new microscopic velocity averaged with respect to

the line element associated with the motion of the particle, so that the new velocity is given by ∂
∂v

√
1 + |v|2 = v√

1+|v|2 ,

that is

ṽ = ∂x(S(u)/u)√
1 + [∂x(S(u)/u)]2

, (5)

which leads us to (2). This implies that the chemical potential is now finite, that is not the case for the linear heat
equation. Thus, the velocity for which the concentration or density u is transported depends on the entropy of the
system (determining its disorder) as well as on its density under an appropriate measure.

For the reaction term we will consider a canonical model of Fisher [21] or KPP [25] (for Kolmogorov, Petrovsky
and Piskunov) type, to be denoted FKPP from now on. For the linear diffusion case, the properties associated with
this system are well understood in the homogeneous framework (see for example [7,8,21,25]).

The term f (u) is written as uK(u), where K is known in a biological setting as the growth rate of the population.
The main hypotheses about the FKPP reaction term K ∈ C1([0,1]) are typically written as

(i) K(1) = 0, (ii) K ′(s) < 0, s ∈ (0,1]. (6)

These assumptions have some consequences on f (u), such us f (0) = f (1) = 0, f ′(1) < 0, f ′(0) > 0, f > 0 in (0,1).
Hypothesis (i) in (6) is a normalization property of the carrying capacity, while (ii) represents a saturation of the media
when the concentration is increasing. Typical examples of such nonlinearities are K(s) = k(1−s) or K(s) = k(1−s2),
where k = K(0) = f ′(0) is a constant related to the growth rate of the (biological) particles, usually called intrinsic
growth rate. In [21,25] it was proved that, under the above assumptions, there is a threshold value σ ∗ = 2

√
νk for the

speed σ associated with the linear diffusion system (1). Namely, no fronts exist for σ < σ ∗, and there is a unique front
(up to space or time shifts) for all σ � σ ∗.

The existence and uniqueness theory for solutions to the flux limited reaction–diffusion equation (2) was done
in [2] (see also the references therein for a complete study of the relativistic heat equation). The natural concept of
solution for this problem implies the use of Kruzkov’s entropy solutions. In fact, in [2] it is proved that for any initial
datum 0 � u0 ∈ L1(RN) ∩ L∞(RN), there exists a unique entropy solution u of (2) in [0, T ) ×R

N , for every T > 0,
such that u(t = 0) = u0. These solutions live in a subspace of Bounded Variation functions. Moreover, if u(t), ū(t)

are the entropy solutions corresponding to the initial data u0, ū0 ∈ (L∞(RN) ∩ L1(RN))+, respectively, then∥∥u(t) − ū(t)
∥∥

L1(RN)
� et‖f ‖Lip‖u0 − ū0‖L1(RN), ∀t � 0,

where ‖f ‖Lip denotes the Lipschitz constant for f in [0,1]. The existence of entropy solutions with initial data in L∞
was extended in [2, Proposition 3.14].

One of the most important differences between the linear and the nonlinear diffusion models (1) and (2) emerges
when traveling waves are studied. A traveling wave is a solution having a constant profile which moves with constant
speed, i.e. a solution of the form u(t, x) = u(ξ) with ξ = x −σ t , for some constant σ . The function u is usually called
the wave profile and the constant σ is the wave speed. Let us give a simple example, that may be useful to illustrate
the results obtained in this paper for Eq. (2), by means of the following simplified reaction–flux-limited–diffusion
equation

∂tu = ∂x

(
u

∂xu

|∂xu|
)

+ u(1 − u), (7)

which allows to compute explicit traveling waves. Indeed, the equation satisfied by a decreasing wave front profile
u(ξ) = u(x − σ t) is

−σ u̇ = −u̇ + u(1 − u).
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Fig. 1. Different regions determining the existence of classical or entropy traveling waves. The non-constant part of the curve defining σ∗ stems
from a cubic function involved in the planar dynamical system associated with the traveling wave equation (see (24)–(26) below).

Fig. 2. Different types of traveling waves: (A) classical and (B) entropy wave fronts.

Then, it can be easily proved the existence of a unique, global classical solution given by

uσ (ξ) = 1

e
1

σ−1 ξ + 1
, ξ ∈ R,

only if σ > 1 (up to space or time shifts). Furthermore, u = χ{ξ<0} stands for the traveling wave profile of an entropy
solution to Eq. (7) with σ = 1, where χA denotes the characteristic function of the set A. Let us observe how regular
and discontinuous solutions coexist for this simplified model. To see the details of the above results the interested
reader can consult [2].

As in the previous case, singular profiles are found when looking for traveling waves of Eq. (2), which to a certain
extent constitute the equivalent notion of shock waves in hyperbolic models for traffic flow. On the other hand, there
exist significant differences regarding σ between the traveling waves of the nonlinear reaction–diffusion equation (2)
and those of Eq. (1).

In this paper, we look for a particular kind of traveling waves called wave fronts, determined by a decreasing wave
profile u ∈ (0,1) such that limξ→−∞ u(ξ) = 1 and limξ→∞ u(ξ) = 0, satisfying (2) in a sense to be specified later.
According to the degenerate character of the flux limiter at u ≡ 0, we split the analysis of wave fronts into two steps.
For the positive part u(ξ) > 0, ∀ξ ∈ (−∞, ξ0), we impose that u ∈ C2 solves the equation in a classical sense. Thus,
if ξ0 = ∞ we will have a classical solution verifying the equation everywhere in the domain of definition. If ξ0 < ∞,
we will see that the null extension of the positive part can be an entropy solution under certain conditions, these
solutions being discontinuous. The entropy criterium is necessary within this problem, since it selects traveling waves
of discontinuous type.

Our main result is the following (see Figs. 1 and 2).

Theorem 1.1. Given σ ∗ � c, depending on ν, c, and k = K(0), there exists a wave front fulfilling one of the following
properties:

(i) If the wave speed satisfies σ > σ ∗ or σ = σ ∗ < c, then the traveling wave is a classical solution to (2).
(ii) If the wave speed satisfies σ = σ ∗ = c, then the traveling wave is a discontinuous entropy solution to (2).
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Remark 1. The existence of nonclassical traveling waves solutions in the case σ < σ ∗ is an open problem. Also, the
existence of other kind of traveling waves such as those with pulses or soliton-type shapes constitutes an interesting
problem to be explored (see for example [30] or [19] in another context).

In Section 2 we will determine σ ∗ in terms of the parameters ν, c, and k. The analytical theory dealing with
the existence of a solution-set-structure follows from the associated asymptotic initial value problem satisfied by the
traveling wave profile. This problem is framed in the theory of planar dynamical systems, where the wave speed σ is
a parameter.

Another fundamental property of Eq. (1) concerns the asymptotic speed of spreading and was established in [8]:
If u0 � 0 is a continuous, compactly supported function in R

N and u0 �≡ 0, then the solution u(t, x) with initial
data u(t = 0, x) = u0(x) spreads out with speed σ ∗ in all directions as t → +∞, i.e. max|x|�σ t |u(t, x) − 1| → 0
for each σ ∈ [0, σ ∗), and max|x|�σ t u(t, x) → 0 for each σ > σ ∗. A similar result is expected in our context via the
control of the entropy solution in the set {x > σ t} by means of an exponential function with negative exponent (see
Proposition 3.4 below).

The paper is organized as follows. In Section 2 we introduce the asymptotic second-order initial value problem
associated with the detection of traveling wave solutions, as well as the equivalent first-order planar system linked
to the traveling waves equation. Then, we deal with the existence and uniqueness of regular traveling waves. Finally,
Section 3 is devoted to analyze the singular wave profiles that can be identified as entropy solutions.

2. An equivalent problem for classical traveling waves

As mentioned before, the aim of this section is to analyze the wave front solutions to Eq. (2).

2.1. Traveling wave equations

The existence of a regular traveling wave u(x − σ t) solving Eq. (2) leads to the problem consisting of finding
a solution to the following equation

ν

(
uu′√

|u|2 + ν2

c2 |u′|2
)′

+ σu′ + f (u) = 0, (8)

which is defined on (−∞, ξ0) and satisfies

lim
ξ→−∞u(ξ) = 1 (9)

and

u′(ξ) < 0 for any ξ ∈ (−∞, ξ0). (10)

The constant σ is a further unknown of the problem. Let us analyze this asymptotic initial value problem where
f (u) = uK(u) and K fulfills (6). The following result contributes to the determination of the asymptotic value of the
derivative of u.

Lemma 2.1. Let u : (−∞, ξ0) → (0,1) be a solution of (8) that satisfies (9)–(10). Then,

lim
ξ→−∞u′(ξ) = 0. (11)

Proof. Take ξn → −∞ with ξn < ξ0. For any fixed n ∈ N we use the mean value theorem in the interval [ξn − 1, ξn]
to obtain the existence of a sequence sn ∈ [ξn − 1, ξn] satisfying

u′(sn) = u(ξn) − u(ξn − 1) → 0.

Then, we integrate (8) over [sn, ξn] and analyze the terms of the following identity

ξn∫
s

ν

(
u(δ)u′(δ)√

|u(δ)|2 + ν2

2 |u′(δ)|2
)′

dδ +
ξn∫

s

σu′(δ) dδ +
ξn∫

s

f
(
u(δ)

)
dδ = 0.
n c n n
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The third term satisfies

ξn∫
sn

f
(
u(δ)

)
dδ → 0,

as the interval is bounded and the integrand converges uniformly to zero. The second term clearly (Leibnitz’s rule)
equals

σ
(
u(ξn) − u(sn)

)
,

that tends to zero because of (9). Finally, the first term takes the form

ν
u(ξn)u

′(ξn)√
|u(ξn)|2 + ν2

c2 |u′(ξn)|2
− ν

u(sn)u
′(sn)√

|u(sn)|2 + ν2

c2 |u′(sn)|2
,

which also converges to zero as n goes to infinity. Therefore, using that u′(sn) → 0 we have

ν
u(ξn)u

′(ξn)√
|u(ξn)|2 + ν2

c2 |u′(ξn)|2
→ 0.

Now, thanks to (10) one gets

u(ξn)u
′(ξn)√

|u(ξn)|2 + ν2

c2 |u′(ξn)|2
= −1√

1
|u′(ξn)|2 + ν2

c2
1

|u(ξn)|2
,

hence

1

|u′(ξn)|2 + ν2

c2

1

|u(ξn)|2 → ∞.

As the second term tends to ν2

c2 , then 1
|u′(ξn)|2 → ∞, and thus u′(ξn) → 0. As consequence, we have shown that

u′(ξn) → 0 for any ξn → −∞. This proves (11). �
In a classical framework, looking for traveling wave solutions is equivalent to finding heteroclinic trajectories of

a planar system of ODEs which arises after transforming the original problem into traveling wave coordinates (see [21,
25,33]). By applying the same ideas when searching for traveling waves of Eq. (2), one is led to a system that is non-
unique in the sense that it strongly depends upon the change of variables chosen. For example, the usual change r = u′
is not adequate to remove the singularity. Hence, a more detailed analysis of the phase diagram of the planar system
of ODEs is required. To this aim, define

r(ξ) = −ν

c

u′(ξ)√
|u(ξ)|2 + ν2

c2 |u′(ξ)|2
, (12)

where u is a positive solution of (8), (9), (10). Then, (u, r) satisfies the first-order differential system

u′ = − c

ν

ur√
1 − r2

,

r ′ = c

ν

r(r − σ
c
)√

1 − r2
+ 1

c
K(u).

⎫⎪⎪⎬
⎪⎪⎭ (13)

By using that u′ < 0, (12) yields r ∈ (0,1). Also, Lemma 2.1 implies limξ→−∞ r(ξ) = 0. As consequence, the problem
consisting of finding a maximal solution to (8)–(10) is equivalent to searching for a solution (u, r) : (−∞, ξ0) →
(0,1)2 to (13), maximal in (0,1)2, that satisfies

lim u(ξ) = 1, lim r(ξ) = 0. (14)

ξ→−∞ ξ→−∞
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We now analyze the equilibrium points of the system (13), given by (1,0) and (0, r∗), where r∗ ∈ (0,1) is a root
of

c

ν

r(r − σ
c
)√

1 − r2
+ 1

c
k = 0, (15)

with k = K(0) = f ′(0). The existence of equilibrium points (u, r) = (0, r∗) will determine the behavior of the solution
to (13)–(14), and consequently of the solution to (8)–(10). More precisely, the following result is obtained.

Proposition 2.1. There always exists a solution u to Eq. (8) that satisfies (9) and (10). This solution is unique (up to
a translation) and fulfills the following properties:

(i) If there exist no roots r∗ ∈ (0,1) of (15), then the existence interval for u can be extended to (−∞, ξ0), with
ξ0 < ∞, and

lim
ξ→ξ0

u(ξ) > 0, lim
ξ→ξ0

u′(ξ) = −∞. (16)

(ii) If there exist roots of (15), then ξ0 = ∞ and u satisfies

lim
ξ→∞u(ξ) = 0. (17)

As a consequence, this solution is maximal in R× (−1,1) and is located in (0,1)2.

To prove Proposition 2.1 we will need two preliminary results describing some properties of r and u.

Lemma 2.2. Let −∞ < ξ0 � ∞ and (u, r) : (−∞, ξ0) → (0,1)2 be a solution to (13) that satisfies (14). Then,
r ′(ξ) > 0. The same holds true for any extension of (u, r). In particular, the maximal solution (uM, rM) associated
with (u, r) remains in (0,1)2 and verifies r ′

M(ξ) > 0.

We will give the proof of this result at the end of this section by analyzing in detail the zeros of r ′ in (13) and
describing the phase diagram associated with (13)–(14).

The following result concerns with the strict positivity of u.

Lemma 2.3. Let (u, r) : (ξ1, ξ0) → (0,1)2 be a solution to (13), where −∞ � ξ1 < ξ0 � ∞ are such that

lim
ξ→ξ0

r(ξ) = 1, r ′(ξ) > 0.

Then

lim
ξ→ξ0

u(ξ) > 0.

Proof. We will follow a reductio ad absurdum argument by considering a particular solution (ū, r̄) to the system (13)
such that limξ→ξ0 r̄(ξ ) = 1, r̄ ′(ξ) > 0, and limξ→ξ0 ū(ξ) = 0. This solution allows to define ũ(r) := ū(r̄−1(r)) in an
interval (1 − ε,1) that satisfies

z′ = −zr

r(r − σ
c
) + ν

c2 K(ũ(r))
√

1 − r2
, z(1) = 0.

If σ
c

�= 1, this equation is locally Lipschitz-continuous in z and the point (1,0) is regular. Then, by using the uniqueness
of the initial value problem z must vanish identically, which is a contradiction. If σ

c
= 1, then the differential equation

is singular. However, ũ is a solution of the differential equation

z′ = −z
h(r)√

1 − r
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with

h(r) = r

−r
√

1 − r + ν

c2 K(ũ(r))
√

1 + r
.

The term h(r)√
1−r

is singular but improperly integrable, thus the associated differential equation has again a unique
solution as deduced from standard ODEs theory. �

We are now in a position to prove Proposition 2.1.

2.2. Proof of Proposition 2.1

A local analysis of (13) gives the following Jacobian matrix in (u, r)

J [u, r] =
⎛
⎝− c

ν
r√

1−r2
− c

ν
u

(1−r2)3/2

K ′(u)
c

− c
ν

σ
c
−2r+r3

(1−r2)3/2

⎞
⎠ .

Clearly,

J [1,0] =
( 0 − c

ν

K ′(1)
c

−σ
ν

)

has two eigenvalues λ− < 0 < λ+ (because K ′(1) < 0) which are given by λ± = − σ
2ν

±
√

( σ
2ν

)2 − K ′(1)
ν

. The local
unstable manifold theorem (see [22,24]) then guarantees the existence of a curve γ for which the corresponding
solution satisfies (14). As the slope of the eigenvector associated with λ+ is negative (see Remark 2, where it is
explicitly computed), only one branch of γ − {(1,0)} is locally contained in (0,1)2. Let us take γ maximal (in the
sense of forward prolongation) in (0,1)2. Then, there exist solutions of (13) satisfying (14). Uniqueness (up to time
translation) comes up from the local uniqueness of the branch γ . Now, Lemmata 2.2 and 2.3 can be applied.

From the fact that u′ has opposite sign to r , we can deduce that u satisfies (9) and (10). According to the existence
or not of roots to Eq. (15) we will prove the statements (ii) or (i) of Proposition 2.1, respectively. Let us choose
(u, r) : (−∞, ξ0) → (0,1)2 to be a particular solution of (13) satisfying (14). Then, Lemma 2.2 implies that the
following limit exists:

lim
ξ→ξ0

r(ξ) = rL.

Let us prove that rL is a lower bound for any (possible) root r∗ of (15), i.e. rL � r∗. As a matter of fact, if r(ξ̄ ) = r∗
for ξ̄ ∈ (−∞, ξ0), then (6) leads to

r ′(ξ̄ ) = c

ν

r(ξ̄ )(r(ξ̄ ) − σ
c
)√

1 − r2(ξ̄ )
+ 1

c
K

(
u(ξ̄ )

)
<

c

ν

r(ξ̄ )(r(ξ̄ ) − σ
c
)√

1 − r2(ξ̄ )
+ 1

c
k = 0,

which contradicts Lemma 2.2. We now discuss the case in which there exists a root r∗ of (15). Then, we have u < 1
and r(ξ) < r∗ for any ξ ∈ (−∞, ξ0). Thus, 0 < r(ξ) < rL < 1 and the pair (u(ξ), r(ξ)) lives in a compact set for ξ

near ξ0, away from r = 0, r = 1, and also maximal in R× (−1,1). Global continuation theorems imply ξ0 = ∞.
To prove (17) we observe that

lim
ξ→∞

u′(ξ)

u(ξ)
= − c

ν
lim

ξ→∞
r(ξ)√

1 − (r(ξ))2
= − c

ν

rL√
1 − r2

L

< 0. (18)

Hence, we can use a Gronwall-type estimate in an interval (ξ∗,+∞), with ξ∗ large enough so that u′(ξ) � −αu(ξ)

holds, where α is a positive constant and ξ > ξ∗.
In case that Eq. (15) has no roots, we first prove that rL = 1. Arguing again by reductio ad absurdum (that is,

assuming rL < 1), we can use a similar argument as in the previous case by using rL instead of r∗. In this way, we find
that ξ0 = +∞ (because limξ→ξ0 u(ξ) �= 0 except if ξ0 = ∞) along with (17). On the other hand, since r has a limit
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as ξ goes to +∞, it is clear that r ′(ξn) → 0 up to a subsequence. Using this fact in the second equation of (13) we
obtain that rL is a root of (15), which contradicts our assumption. Hence, rL = 1 holds and the first equation of (13)
leads to

lim
ξ→ξ0

u′(ξ)

u(ξ)
= −∞. (19)

Now, we use Lemma 2.3 to show the first part of (16). There only remains to prove that ξ0 < ∞. This can be
achieved by means of another reductio ad absurdum argument. Actually, if ξ0 = +∞ we get a sequence ξn for which
u′(ξn) → 0, which contradicts (19). �
Remark 2. It is possible to follow the track of the solution to (13) starting from the point (u, r) = (0,1). Denote
r = r̃(u) the smallest root of

1

K(u)

c2

ν

(
σ

c
− r̃(u)

)
=

√
1 − (r̃(u))2

r̃(u)
, u ∈ (0,1).

The eigenfunction associated with the eigenvalue λ+ = − σ
2ν

+
√

( σ
2ν

)2 − K ′(1)
ν

, defined at the beginning of the proof

of Proposition 2.1, determines the local unstable manifold and is defined by (c
σ+

√
−4K ′(1)ν+σ 2

2K ′(1)ν
,1). On the other hand,

it is easy to check that the following identity

lim
u→1

r̃(u) = ν

cσ
K ′(1)

holds. Then, (1, ν
cσ

K ′(1)) is the tangent vector to the solution curve r = r̃(u). Comparing the slopes of the above
vectors each other leads to the following unrestricted inequality

2K ′(1)ν

c(σ + √−4K ′(1)ν + σ 2 )
>

ν

cσ
K ′(1).

Therefore, the curve r = r̃(u) starting at u = 1 verifies that r ′|u=1 < 0.

2.3. Existence of roots to Eq. (15)

To conclude the proof we describe the existence of roots to Eq. (15) in function of the parameters σ , c, ν and
k = K(0). This problem is equivalent to find the zeros of the equation

c2

νk

(
σ

c
− r

)
= g(r), r ∈ (0,1), (20)

where g is defined as

g(r) =
√

1 − r2

r
,

which is a decreasing function with a pole at r = 0. The left-hand side is a decreasing linear function that touches the

r-axis at σ
c

with slope − 1
k

c2

ν
. Then, when

σ

c
> 1 (21)

there exists at least one root of Eq. (20) (see the first two cases in Fig. 3). Define r̃ as the smallest root of (20) in (0,1).
Let us now focus our attention on the case

σ

c
� 1. (22)

Now, the existence of roots to Eq. (20) depends on σ
c

as well as on the slope − c2

ν
1
k

of the straight line in the left-hand

side of (20). Let us prove that, for a range of values of σ determined by m = c2 1 , there exists a root of (20). Note that

c ν k
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Fig. 3. The curved lines represent the function g(r), while the straight lines do the job for c2

νK(u)
( σ

c − r), for different values u.

g′(r) has a unique maximum in (0,1) verifying g′(r) � − 3
√

3
2 = g′(

√
2/3 ) and limr→0 g′(r) = limr→1 g′(r) = −∞.

Then, if −m � − 3
√

3
2 , we can claim that there exist roots in (0,1) to the equation

g′(r) = −m. (23)

In fact, when the inequality is strict, i.e. −m < − 3
√

3
2 , there are two roots in (0,1) while there is only one if the equality

is fulfilled (see Fig. 3). Denote now r̃ the smallest real root of (20), r̃ ∈ (0,
√

2/3 ), and consider the intersection δ̃ of
the tangent to g at r̃ with the abscissa, which has the expression

δ̃ = δ̃(m) = r̃ − g(r̃)

g′(r̃)
= 2r̃ − r̃3. (24)

Clearly, we have that for any σ
c

� δ̃(m) Eq. (20), with m = c2

ν
1
k

, has at least one root in (0,1). To analyze the case
σ
c

< 1 we will check the range of values of m for which δ̃(m) � 1. By using (24) we deduce that δ̃(m) � 1 if and only

if r̃ �
√

5−1
2 or, according to (23),

m �
(

1 + √
5

2

) 5
2

. (25)

In conclusion, under condition (25) there exists a root of (20) in (0,1), for every σ
c

� δ̃(m).
Define σ ∗(m) as follows

σ ∗(m)

c
=

{
δ̃(m), if m � ( 1+√

5
2 )

5
2 ,

1, otherwise.
(26)

Then, we have proved the following

Proposition 2.2. There exists a solution to Eq. (15) in r ∈ (0,1) if and only if σ > σ ∗ or σ = σ ∗ < c, where σ ∗ is
defined by (26).

As consequence, combining Propositions 2.2 and 2.1 allows to deduce the existence of a classical solution (as
established in Theorem 1.1).

2.4. Proof of Lemma 2.2

In order to prove Lemma 2.2, let us provide a description of the positive invariant set associated with the flux
defined by the planar system (13). The values (u, r) for which r ′ = 0 are defined by the equation

K(u) = −c2 r(r − σ
c
)√
2
. (27)
ν 1 − r
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Fig. 4. Description of the positive invariant regions S in terms of the curves r̃(u).

The roots of this equation can be equivalently obtained as the intersections between g(r) =
√

1−r2

r
and the straight

line − c2

K(u)ν
(r − σ

c
). The straight line is determined by the point ( σ

c
,0) and the slope − c2

K(u)ν
, where only the latter

depends on u. Using (6), we have that the slope is a decreasing function of u verifying

−∞ < − c2

K(u)ν
� − c2

K(0)ν
= − c2

kν
, u ∈ [0,1).

Our purpose now is to describe the function r̃(u), which is defined by the smallest root of (27) for σ , c and ν fixed.
We will prove that he number of these roots as well as their existence depend on the value σ

c
. Simple calculus gives

that the tangent to g at ( σ
c
,0) satisfies

r
(
2 − r2) = − g(r)

g′(r)
+ r = σ

c
.

The maximum value of the function r(2 − r2), reached at
√

2/3, is 8/(3
√

6 ). The value assumed by σ
c

, as compared

to 1 and 8/(3
√

6 ), will determine our casuistry. In Fig. 3 the curved lines describe the function g(r), while the straight

lines represent the function 1
K(u)

c2

ν
( σ

c
− r).

In the first case (left-hand side in Fig. 3), σ
c

� 8/(3
√

6 ), the straight lines have a unique intersection with the
curve g(r), and consequently r̃(u) is uniquely determined and is a decreasing function. The second case (central pic-
ture in Fig. 3) corresponds to 1 < σ

c
< 8/(3

√
6 ). It is a simple matter to check that again r̃(u) is uniquely determined

and is a decreasing function with the shape given in Fig. 4 in terms of the two critical values r∗+ and r∗−. Finally,
the third case 0 � σ

c
� 1 is represented by the picture in the right-hand side of Fig. 3. The function r̃(u) has the same

monotonicity and well-definition properties that in the previous cases, but now the critical value r∗ determines the
range of definition.

Let us now prove that the region

S =
(

(u, r) ∈ (0,1)2,

{
0 < r < r̃(u), if r̃(u) is defined,

0 < r < 1, otherwise

)
(28)

is positively invariant. In order to show the positive invariance of S we will describe the flux at the boundary. First,
we observe that the segment {(u, r), 0 � r < 1, u = 0} at the left-hand side of the square (0,1)2 is invariant, which
prevents the solutions to escape through it. Every point of the segment {(u, r), 0 < u < 1, r = 0} at the bottom of
the square (0,1)2 has a strict incoming flux because the vector field is vertical through this segment. The arrow at the
corner (u, r) = (1,0) corresponds to the discussion carried out in Remark 2. The solid lines in Fig. 4 correspond to the
curves r̃(u) and satisfy that the vertical components of the flux vanish because r ′ = 0 while u′ < 0. The dashed lines
corresponding to the slopes in the curves r̃(u) are also incoming points since u′ < 0 there. In Fig. 4 we have plotted
the phase diagram (slope field) of the planar system (13), (u, r) : (−∞, ξ0) → (0,1)2 with boundary conditions (14)
and (17). Therefore, we have proved that if there exists ξ̄ such that (u(ξ̄ ), r(ξ̄ )) ∈ S, then (u(ξ), r(ξ)) ∈ S for any
ξ � ξ̄ .
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The proof concludes once we prove the existence of a sequence ξ̄n → −∞ such that (u(ξ̄n), r(ξ̄n)) ∈ S. Using (14),
we can deduce the existence of a sequence ξ̄n → −∞ for which r ′(ξ̄n) > 0. Now, we observe that the graphic of r̃(u)

splits (0,1) × (0, r∗) into two components characterized by r ′ > 0 or r ′ < 0. Since (u(ξ̄n), r(ξ̄n)) → (1,0), it is clear
that (u(ξ̄n), r(ξ̄n)) ∈ S ∩ (0,1) × (0, r∗) for n large enough. �
3. Entropy solutions and consequences

In this section we deal with the study of discontinuous traveling waves. To the authors knowledge, there is no
previous literature reporting on the existence of singular traveling waves. In this case it is necessary to use the notion
of entropy solution for this equation, which has been introduced in [2].

The main result of this section is the following

Theorem 3.2. Assume σ = σ ∗ = c. Then, there exists a discontinuous entropy traveling wave that solves Eq. (2).

The existence of entropy traveling wave solutions if σ < σ ∗ is an open problem.
Define

v(t, x) =
{

u(x − σ t), x − σ t < ξ0,

0, otherwise,
(29)

where σ � σ ∗, ξ0 < ∞, and u : (−∞, ξ0) → (0,1) is a solution to Eq. (8) given by Proposition 2.1. The conditions
stated in (16) then imply that v is discontinuous.

It is by no means trivial to prove that some of these functions v are entropy solutions. This follows from the next
two results.

Lemma 3.4. Any solution to Eq. (8) satisfying (9)–(10) is log-concave in (−∞, ξ0).

Proof. To see that log(v(ξ)) is concave, it is enough to prove that v′(ξ)
v(ξ)

is decreasing. Using (13) we have

v′(ξ)

v(ξ)
= − c

ν

r(ξ)√
1 − r(ξ)2

.

The result follows from Lemma 2.2, since the function r → r√
1−r2

, r ∈ (0,1), is strictly increasing. �
The following proposition allows to characterize the entropy solutions. The proof follows the same lines of Propo-

sition 6.6 in [3], where a similar result was obtained in the case of compactly supported solutions for a version of the
equation without the reaction FKPP term. Thus, combining Theorem 3.4 and Proposition 6.6 in [3] along with the null
flux at infinity for non-compactly supported solutions and Proposition 3.15 in [2], we have

Proposition 3.3. Let v : [0, T ) ×R→ [0,1) and Ω = supp(v(0, ·)) be such that the following properties hold for any
t ∈ [0, T ):

(i) supp(v(t, ·)) = Ωt , where Ωt = Ω + B(0, ct).
(ii) v ∈ C2(Ωt ) and solves Eq. (2).

(iii) v(t, x) has a vertical contact angle at the boundary of Ωt , for any t ∈ (0, T ).
(iv) v(t, x) is log-concave in Ωt .

Then, v is an entropy solution.

This result allows to select an entropy solution v from those defined by (29). Properties (ii) and (iv) of Proposi-
tion 3.3 are satisfied by any v, but only when σ = σ ∗ = c the statement (i) holds, i.e. supp(v) = Ω(t). Moreover, we
conclude the proof of Theorem 3.2 by proving that, in this case, v has a vertical contact angle at the boundary of Ω(t),
and therefore (iii) is also satisfied.

The following result can be deduced directly from Proposition 2.1. We actually give here a more explicit description
of the vertical angle near ξ0.
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Lemma 3.5. Let u be a discontinuous traveling wave for σ = σ ∗ = c. Then, the vertical angle near ξ0 is of order

(ξ0 − ξ)− 1
2 .

Proof. Our starting point is system (13). By using Lemma 2.3 we can assure, when σ � σ ∗, that there exist a constant
ασ > 0 and ξ0 such that u(ξ0) = ασ and r(ξ0) = 1. In the case σ = σ ∗ = c, (13) leads to

r ′ = 1

c
K(u) − c

ν
r

√
1 − r√
1 + r

.

Clearly r ′(ξ0) = 1
c
K(ασ ) < ∞. A Taylor expansion of r(ξ) around ξ0 leads to r(ξ) = 1 + 1

c
K(ασ )(ξ − ξ0) +

O((ξ − ξ0)
2). Now, combining this expression with the equation for u and integrating between ξ0 and ξ , 0 <

ξ0 − ξ 
 1, we obtain

− log
(
u(ξ0)

) + log
(
u(ξ)

) = c

ν

2

(2 1
c
K(ασ ))

1
2

(ξ0 − ξ)
1
2 − c

ν

(
K(ασ )

2c

)
(ξ0 − ξ)

3
2 .

Neglecting higher-order terms we find u(ξ) = ασ e

c
ν

2

(2 1
c K(ασ ))

1
2

(ξ0−ξ)
1
2

, or

u(ξ) = ασ + ασ

c

ν

2

(2 1
c
K(ασ ))

1
2

(ξ0 − ξ)
1
2 , for 0 < ξ0 − ξ 
 1,

after Taylor expansion. �
Remark 3. Since classical solutions are in particular entropy solutions, the existence of traveling waves for σ � σ ∗
is now completed. The existence of an entropy solution for σ < σ ∗ is an open question. We can only claim that the
corresponding function v, defined by (29), is not an entropy solution. This follows from Theorem 3.9 of [2], which
establishes that the support of any log-concave solution moves with speed c while the support of v(t, ·) moves with
speed σ < c.

Remark 4. The existence of other traveling waves than wave fronts is also an open question. It can be proved that no
more classical (C2) wave fronts exist. The authors’ conjecture is that no more entropy traveling wave solutions will
exist, but it is likely to be a much harder problem.

To conclude this section we propose an application of the traveling wave solutions with σ ∗ < c that allows to bound
entropy solutions.

Proposition 3.4. Let u0 : R → [0,1) be a measurable function with compact support and ess sup(u0) < 1. Let also
u(t, x) be an entropy solution to Eq. (2) with initial data u0. Then

ess supx∈R
(
u(t, x)

)
< 1,

and for any c > σ > σ ∗ there exist positive constants α and β (not depending upon σ ) such that

ess sup|x|>σt u(t, x) � αe−β(σ−σ ∗)t .

In addition, if σ > c we have

ess sup|x|>σt u(t, x) = 0

for large values of t .

Proof. Let v∗(t, x) = u∗(x − σ ∗t) be a C2 traveling wave solution to Eq. (2) defined by Theorem 1.1. Then, we can
take a translation of u∗, still denoted u∗ for simplicity, such that u∗(ξ) � u0(ξ). A comparison principle for entropy
solutions (see Theorem 3.8 in [2]) leads to

u(t, x) � u∗(x − σ ∗t
)
, a.e. (t, x) ∈R

2.
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On the other hand, for a classical traveling wave there exist positive constants α and β such that

u(ξ) � αe−βξ , ξ ∈ R.

This upper estimate is a consequence of the facts that u∗ is uniformly bounded and that limξ→∞ (u∗(ξ))′
u(ξ)

is strictly
negative as pointed out in (18). Hence, we find

u(t, x) � u∗(x − σ ∗t
)
� αe−β(x−σ ∗t), a.e. (t, x) ∈ R

2. (30)

Assuming now that x > σ t , we deduce from (30) the inequality

u(t, x) � αe−β(σ−σ ∗)t , a.e. (t, x) ∈ R
2, x > σ t. (31)

In the case x < −σ t we can argue in a similar way by using a classical traveling wave ũ∗(σ ∗t − x) such that
u0(ξ) < ũ∗(−ξ).

The second assertion follows by a comparison argument with the singular traveling wave defined in (29). �
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