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Abstract

This paper deals with a boundary-value problem in three-dimensional smoothly bounded domains for a coupled chemotaxis-
Stokes system generalizing the prototype⎧⎪⎨

⎪⎩
nt + u · ∇n = �nm − ∇ · (n∇c),

ct + u · ∇c = �c − nc,

ut + ∇P = �u + n∇φ,

∇ · u = 0,

which describes the motion of oxygen-driven swimming bacteria in an incompressible fluid.
It is proved that global weak solutions exist whenever m > 8

7 and the initial data (n0, c0, u0) are sufficiently regular satisfying
n0 > 0 and c0 > 0. This extends a recent result by Di Francesco, Lorz and Markowich [M. Di Francesco, A. Lorz, P.A. Markowich,
Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior, Dis-
crete Contin. Dyn. Syst. Ser. A 28 (2010) 1437–1453] which asserts global existence of weak solutions under the constraint

m ∈ [ 7+√
217

12 ,2].

Résumé

Ce papier considère un problème aux limites dans des domaines tridimensionnels réguliers et bornés, plus précisément, un
système couplé de chemotaxie-Stokes qui généralise le prototype⎧⎪⎨

⎪⎩
nt + u · ∇n = �nm − ∇ · (n∇c),

ct + u · ∇c = �c − nc,

ut + ∇P = �u + n∇φ,

∇ · u = 0

et qui décrit le mouvement des bactéries nageuses conduites par l’oxygène dans un fluide incompressible.
On montre que les solutions faibles globales existent quand m > 8

7 et la donnée initiale (n0, c0, u0) est suffisamment régulière et
vérifie n0 > 0 et c0 > 0. Cela étend le résultat récent de Di Francesco, Lorz et Markowich [M. Di Francesco, A. Lorz, P.A. Marko-
wich, Chemotaxis–fluid coupled model for swimming bacteria with nonlinear diffusion: Global existence and asymptotic behavior,
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Discrete Contin. Dyn. Syst. Ser. A 28 (2010) 1437–1453] qui affirme l’existence globale de solutions faibles sous la contrainte

m ∈ [ 7+√
217

12 ,2].
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1. Introduction

We consider a mathematical model for the motion of oxygen-driven swimming bacteria in an incompressible
viscous fluid. Such bacteria may orient their movement towards higher concentration of oxygen which they consume,
and the motion of the fluid is under the influence of external forces such as gravity exerted from aggregating bacteria
onto the fluid. Both bacteria and oxygen diffuse through the fluid, and they are also transported by the fluid (cf. [3]
and [15]).

Taking into account all these processes, in [23] the authors proposed the model⎧⎪⎨
⎪⎩

nt + u · ∇n = �n − ∇ · (nχ(c)∇c
)
, x ∈ Ω, t > 0,

ct + u · ∇c = �c − nf (c), x ∈ Ω, t > 0,

ut + κ(u · ∇)u = �u − ∇P + n∇φ, x ∈ Ω, t > 0,

∇ · u = 0, x ∈ Ω, t > 0,

(1.1)

for the unknown bacterial density n, the oxygen concentration c, the fluid velocity field u and the associated pressure
P in the physical domain Ω ⊂ R

N . The function χ(c) measures the chemotactic sensitivity, f (c) is the consumption
rate of the oxygen by the bacteria, φ represents the gravitational potential, and the constant κ is related to the strength
of nonlinear fluid convection.

There are only few results on the mathematical analysis of this chemotaxis-Navier–Stokes system (1.1). In [15],
local-in-time weak solutions were constructed for a boundary-value problem for (1.1) in the three-dimensional setting.
In [5], global classical solutions near constant states were constructed for (1.1) with Ω = R

3. In [14], global weak
solutions to (1.1) with arbitrarily large initial data in Ω =R

2 were constructed. Very recently, in [27], a unique global
classical solution has been constructed for (1.1) with arbitrarily large initial data in bounded convex domains Ω ⊂R

2.
The question whether solutions of (1.1) with large initial data exist globally or may blow up appears to remain an
open and challenging topic in the three-dimensional case.

The chemotaxis-Stokes system. Main results. Well-established physical considerations suggest to modify (1.1) in
at least two directions: Firstly, when the fluid motion is slow, a commonly employed approximation of the Navier–
Stokes equations is given by the Stokes equations in which the nonlinear convective term u · ∇u is ignored in the
u-equation of (1.1). For this simplification of (1.1) thus obtained by setting κ = 0, it is asserted in [5] that when
Ω = R

2, appropriate smallness assumptions on either the initial data for c or ∇φ ensure global existence of weak
solutions, provided that some technical conditions on χ and f are satisfied. For instance, this set of conditions allows
to cover the case when χ ≡ 1 and f is strictly increasing and strictly concave on [0,∞). For bounded convex domains
Ω ⊂ R

2 these assumptions could be relaxed in [27] to include the choices made in (1.2) with D ≡ 1, and moreover
the global solutions constructed there are classical and bounded throughout Ω × (0,∞).

Secondly, the diffusion of bacteria (or, more generally, of cells) in a viscous fluid may be viewed like movement
in a porous medium (see the discussions in [24,19,1,11], for instance). Adjusting the above model accordingly and
fixing χ(c) ≡ 1 and f (c) = c for definiteness, we shall subsequently consider the chemotaxis-Stokes system⎧⎪⎨

⎪⎩
nt + u · ∇n = ∇ · (D(n)∇n

) − ∇ · (n∇c), x ∈ Ω, t > 0,

ct + u · ∇c = �c − nc, x ∈ Ω, t > 0,

ut = �u − ∇P + n∇φ, x ∈ Ω, t > 0,
(1.2)

L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.© 2012
∇ · u = 0, x ∈ Ω, t > 0,
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in a smoothly bounded convex domain Ω ⊂R
3, with prescribed initial data

n(x,0) = n0(x), c(x,0) = c0(x) and u(x,0) = u0(x), x ∈ Ω, (1.3)

and under the boundary conditions

D(n)
∂n

∂ν
= ∂c

∂ν
= 0 and u = 0 on ∂Ω. (1.4)

Here we assume that

D ∈ C1+θ
loc

([0,∞)
)

for some θ > 0, (1.5)

as well as

D(s) �msm−1 for all s > 0 (1.6)

with some m > 1, and that

φ ∈ W 1,∞(Ω). (1.7)

As to the initial data, for simplicity we shall require throughout this paper that⎧⎨
⎩

n0 ∈ C1(Ω̄) is positive in Ω̄,

c0 ∈ C1(Ω̄) is positive in Ω̄, and
u0 ∈ W 2,2(Ω) ∩ W

1,2
0 (Ω) is such that ∇ · u0 = 0.

(1.8)

Under these assumptions, our main result is the following.

Theorem 1.1. Suppose that (1.5)–(1.8) hold with some m > 8
7 . Then (1.2)–(1.4) possesses at least one global weak

solution (n, c,u,P ) in the sense of Definition 3.1 below. Moreover, for any fixed T > 0 this solution is bounded in
Ω × (0, T ) in the sense that∥∥n(·, t)∥∥

L∞(Ω)
� C(T ) for all t ∈ (0, T ) (1.9)

is valid with some C(T ) > 0.

Moreover, if in addition we assume that

D(s) > 0 for all s � 0, (1.10)

so that the first PDE in (1.2) becomes uniformly parabolic, then our solutions will actually be smooth and hence
classical:

Theorem 1.2. Suppose that (1.5)–(1.8) and (1.10) hold with some m > 8
7 . Then (1.2)–(1.4) possesses at least one

global classical solution (n, c,u,P ).

A natural question that has to be left open here is whether the achieved lower bound 8
7 for m is optimal. It should

be noted in this context that even for m = 1 certain weak solutions exist globally in time [27]; however, it is neither
known whether these solutions are classical, nor if they enjoy a boundedness property as in (1.9).

Porous medium-type diffusion in chemotaxis systems. Before going into details, let us briefly comment on known
facts about the interplay of nonlinear diffusion and chemotactic cross-diffusion. Indeed, several rigorous results in the
literature on corresponding Keller–Segel systems without fluid interaction indicate that increasing m in the porous
medium-type diffusion �nm with m > 1 can enhance the balancing effect of diffusion on the tendency toward cell
accumulation due to chemotaxis. For instance, let us consider the classical chemotaxis system in bounded domains
Ω ⊂R

N with nonlinear diffusion and nonlinear cross-diffusion (cf. [8]),{
nt = ∇ · (D(n)∇n

) − ∇ · (S(n)∇c
)
, (1.11)
ct = �c − c + n,



160 Y. Tao, M. Winkler / Ann. I. H. Poincaré – AN 30 (2013) 157–178
under the assumption that D(n) does not decay faster than algebraically as n → ∞. Then known results say that if
S(n)
D(n)

� Cn
2
N

−ε holds for some C > 0, ε > 0 and all large n, then all solutions are global in time and bounded ([16,21,

9], see also [10]), whereas if S(n)
D(n)

� Cn
2
N

+ε for some C > 0, ε > 0 and large n, then there exist solutions which blow
up either in finite or in infinite time [26].

We note that our results assert a range m > 8
7 of global existence that is larger than the corresponding boundedness

regime m > 4
3 for (1.11). However, a comparison of these seems only partially adequate, because in (1.2) the chemo-

attractant is consumed, rather than produced, by the population individuals.
Some precedents also indicate a similar explosion-inhibiting effect of porous medium-type diffusion in chemotaxis

systems when coupled to fluid equations. A first result of this flavor [4] addresses the chemotaxis-Stokes variant of
(1.1) (with κ = 0) and asserts global existence of weak solutions in bounded domains Ω ⊂ R

2 when m ∈ ( 3
2 ,2] and

f is increasing with f (0) = 0. This global existence result in the spatially two-dimensional setting could recently be
extended in [22] so as to cover the whole range m ∈ (1,∞), and moreover it has been shown there that all solutions
evolving from sufficiently regular initial data are uniformly bounded in Ω ×(0,∞). The work [14] proves global weak
solvability of the chemotaxis-Stokes variant of (1.1) for the precise value m = 4

3 and Ω = R
3 under some additional

assumptions on χ and f . This complements a corresponding result in [4] which asserts global weak solvability of the

chemotaxis-Stokes variant of (1.1) for any m ∈ [ 7+√
217

12 ,2] and bounded domains Ω ⊂R
3.

Methods of proof. Plan of the paper. Whereas the proofs in the mentioned previous related works [4,5,14,27] are
crucially based on a free-energy inequality, our method will be different in that it will rely on a similar energy estimate
only at a first stage. Indeed, a corresponding inequality (see Lemma 2.3) will serve in Section 2.2 as the starting point
for an iterative bootstrap procedure which will eventually yield bounds for

∫
Ω

np for any p < 9(m − 1).
The essential novelty in our approach, to be presented in Section 2.3, consists of a subtle combination of entropy-

like estimates for
∫
Ω

np (Lemma 2.6) and
∫
Ω

|∇c|2k (Lemma 2.9) in establishing corresponding estimates for coupled
quantities of the form∫

Ω

np +
∫
Ω

|∇c|2k

with any large k > 1 and certain p > 1 (see Section 2.3 and in particular Lemma 2.16). Finally, in Section 3 we
complete the proofs of Theorems 1.1 and 1.2.

2. Estimates for non-degenerate problems

Throughout this section we shall assume that (1.5)–(1.8) and (1.10) are satisfied with some m > 1, and we em-
phasize that all constants appearing in the estimates in this section will only depend on Ω , m and the initial data. In
particular, the value of the parameter function D at zero does not enter any of our estimates in a quantitative way. This
will allow us to treat the degenerate case D(s) = msm−1 in a familiar approximative manner, namely by applying the
results of this section to the shifted function Dε(s) = m(s + ε)m−1 for ε > 0 and letting ε ↘ 0 to end up with a weak
solution of the degenerate problem.

2.1. Preliminary observations

Our first statement concerns local classical solvability of (1.2)–(1.4) in the case of non-degenerate diffusion. In
its formulation, we shall refer to the standard fractional powers of the Stokes operator A regarded as a self-adjoint
operator in the solenoidal subspace L2

σ (Ω) := {ϕ ∈ L2(Ω) | ∇ · ϕ = 0 in D′(Ω)} of L2(Ω), in its natural domain
D(A) = W 2,2(Ω) ∩ W

1,2
0 (Ω) ∩ L2

σ (Ω).

Lemma 2.1. Assume (1.5)–(1.8) and (1.10). Then there exists Tmax > 0 with the property that (1.2)–(1.4) possesses a
classical solution (n, c,u,P ) such that n > 0 and c > 0 in Ω̄ × [0, Tmax), that

n ∈ C0(Ω̄ × [0, Tmax)
) ∩ C2,1(Ω̄ × (0, Tmax)

)
,
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c ∈ C0(Ω̄ × [0, Tmax)
) ∩ C2,1(Ω̄ × (0, Tmax)

)
, and

u ∈ C0(Ω̄ × [0, Tmax)
) ∩ C2,1(Ω̄ × (0, Tmax)

)
,

and such that either Tmax = ∞, or

∥∥n(·, t)∥∥
L∞(Ω)

+ ∥∥c(·, t)∥∥
W 1,∞(Ω)

+ ∥∥u(·, t)∥∥
D(Aα)

→ ∞ for all α ∈
(

3

4
,1

)
as t ↗ Tmax. (2.1)

Proof. A proof of this can be obtained by a straightforward adaptation of the reasoning in [27, Lemma 2.1] and [20,
Lemma 2.1], and so we may refrain from repeating the arguments here. �
Lemma 2.2. Assume (1.5)–(1.8) and (1.10). If (n, c,u,P ) is a classical solution of (1.2)–(1.4) in Ω × (0, T ) for some
T > 0, then∫

Ω

n(x, t) dx =
∫
Ω

n0 for all t ∈ (0, T ) (2.2)

and

|c| � ‖c0‖L∞(Ω) in Ω × (0, T ). (2.3)

Proof. The identity (2.2) directly results from an integration of the first PDE in (1.2) over Ω , whereas the inequality
(2.3) is a consequence of the parabolic maximum principle applied to the second equation in (1.2), because n� 0. �
Lemma 2.3. Suppose that (1.5)–(1.8) and (1.10) hold. Then there exists C > 0 such that if (n, c,u,P ) is a classical
solution of (1.2)–(1.4) in Ω × (0, T ) for some T > 0, then

d

dt

{ ∫
Ω

n lnn + 2
∫
Ω

|∇√
c|2

}
+

∫
Ω

nm−2|∇n|2 +
∫
Ω

c
∣∣D2 ln c

∣∣2 + 1

2

∫
Ω

n
|∇c|2

c
� C

∫
Ω

|u|4 (2.4)

for all t ∈ (0, T ).

Proof. (2.4) is a consequence of [27, Lemmas 3.2–3.4]. Since it is a cornerstone of subsequent a priori estimates in
the present paper, let us recall the main ideas. We divide the proof into three steps.

Step 1. We derive an energy identity.
By straightforward computation (cf. [27, Lemma 3.2] for details), one verifies the identity

d

dt

{ ∫
Ω

n lnn + 2
∫
Ω

|∇√
c|2

}
+

∫
Ω

D(n)

n
|∇n|2 +

∫
Ω

c
∣∣D2 ln c

∣∣2 + 1

2

∫
Ω

n
|∇c|2

c

= −1

2

∫
Ω

|∇c|2
c2

(u · ∇c) +
∫
Ω

�c

c
(u · ∇c) + 1

2

∫
∂Ω

1

c

∂|∇c|2
∂ν

for all t ∈ (0, T ). (2.5)

Step 2. We establish a useful integral inequality.
By some computation and the Hölder inequality (cf. [27, Lemma 3.3] for details), one proves the inequality∫

Ω

|∇c|4
c3

� (2 + √
3)2

∫
Ω

c
∣∣D2 ln c

∣∣2
. (2.6)

Step 3. We proceed to prove (2.4).
To this end, we need to estimate the three terms in the right-hand side of (2.5). Firstly, the convexity of ∂Ω in

conjunction with the boundary condition ∂c
∂ν

= 0 on ∂Ω implies that ([13, Lemme I.1], [2] or [21, Lemma 3.2])

∂|∇c|2 � 0 on ∂Ω. (2.7)

∂ν
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Then, by some computation, Young’s inequality, (2.6) and the fact that |�z|2 � 3|D2z|2 for z ∈ C2(Ω̄) (cf. [27,
Lemma 3.4] for details), one finds some constant C > 0 such that∣∣∣∣−1

2

∫
Ω

|∇c|2
c2

(u · ∇c) +
∫
Ω

�c

c
(u · ∇c)

∣∣∣∣� 3

4

∫
Ω

c
∣∣D2 ln c

∣∣2 + C

4

∫
Ω

|u|4. (2.8)

Finally, collecting (2.5), (2.7) and (2.8) and using (1.6), we prove (2.4). �
Our next goal is to derive some first a priori estimates from the above energy inequality. As a useful preparation

for this, we state the following.

Lemma 2.4. Let T > 0. Then there exists C(T ) > 0 such that if (n, c,u,P ) is a classical solution of (1.2)–(1.4) in
Ω × (0, T ), then

T∫
0

∫
Ω

|u|4 � C(T ) ·
{ T∫

0

∫
Ω

nm−2|∇n|2 + 1

} 1
3m−1

. (2.9)

Proof. First, according to standard results on maximal Sobolev regularity of the Stokes evolution equation [7, Theo-
rem 2.7], there exists C1(T ) > 0 such that

T∫
0

∥∥u(·, t)∥∥4

W
2, 12

11 (Ω)
dt � C1(T ) ·

{ T∫
0

∥∥n(·, t)∇φ
∥∥4

L
12
11 (Ω)

dt + 1

}
.

Since ∇φ was assumed to be bounded, and since in the three-dimensional setting we have W 2, 12
11 (Ω) ↪→ L4(Ω), we

thus find C2(T ) > 0 fulfilling

T∫
0

∥∥u(·, t)∥∥4
L4(Ω)

dt � C2(T ) ·
{ T∫

0

∥∥n(·, t)∥∥4

L
12
11 (Ω)

dt + 1

}
. (2.10)

We next invoke the Gagliardo–Nirenberg inequality (see [6] and e.g. [25] for a version involving Lr spaces with r < 1)
to obtain C3 > 0 such that

T∫
0

∥∥n(·, t)∥∥4

L
12
11 (Ω)

(·, t) dt =
T∫

0

∥∥n
m
2 (·, t)∥∥ 8

m

L
24

11m (Ω)

dt

� C3

T∫
0

{∥∥∇n
m
2 (·, t)∥∥2

L2(Ω)
+ ∥∥n

m
2 (·, t)∥∥2

L
2
m (Ω)

} 1
3m−1 · ∥∥n

m
2 (·, t)∥∥ 8

m
− 2

3m−1

L
2
m (Ω)

dt.

In view of (2.2), we therefore have

T∫
0

∥∥n(·, t)∥∥4

L
12
11 (Ω)

(·, t) dt � C4

T∫
0

{∥∥∇n
m
2 (·, t)∥∥2

L2(Ω)
+ 1

} 1
3m−1 dt

for some C4 > 0. Combined with (2.10) this easily yields (2.9). �
Lemma 2.5. For each T > 0 there exists C(T ) > 0 such that if (1.5)–(1.8) and (1.10) hold and (n, c,u,P ) is a
classical solution of (1.2)–(1.4) in Ω × (0, T ) then

T∫ ∫
nm−2|∇n|2 � C(T ), (2.11)
0 Ω
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∫
Ω

|∇c|2 � C(T ) for all t ∈ (0, T ), and (2.12)

T∫
0

∫
Ω

|∇c|4 � C(T ). (2.13)

Proof. Integrating (2.4) over (0, t) we obtain

2
∫
Ω

∣∣∇√
c(·, t)∣∣2 +

t∫
0

∫
Ω

nm−2|∇n|2 +
t∫

0

∫
Ω

c
∣∣D2 ln c

∣∣2

� C1

t∫
0

∫
Ω

|u|4 +
∫
Ω

n0 lnn0 + 2
∫
Ω

|∇√
c0|2 −

∫
Ω

n(·, t) lnn(·, t)

for some C1 > 0 and all t ∈ (0, T ). Since −ξ ln ξ � 1
e

for all ξ > 0, and since |∇√
c|2 = |∇c|2

4c
, this in conjunction

with Lemma 2.4 shows that there exists some C2(T ) > 0 such that

1

2
· sup
t∈(0,T )

∫
Ω

|∇c|2
c

+
T∫

0

∫
Ω

nm−2|∇n|2 +
T∫

0

∫
Ω

c
∣∣D2 ln c

∣∣2

� C1 · C2(T ) ·
{ T∫

0

∫
Ω

nm−2|∇n|2 + 1

} 1
3m−1

+
∫
Ω

n0 lnn0 + 2
∫
Ω

|∇√
c0|2 + |Ω|

e
. (2.14)

By the Young inequality and the fact that 1
3m−1 < 1 thanks to our restriction m > 1 > 2

3 , we derive from (2.14) that

1

2
· sup
t∈(0,T )

∫
Ω

|∇c|2
c

+ 1

2

T∫
0

∫
Ω

nm−2|∇n|2 +
T∫

0

∫
Ω

c
∣∣D2 ln c

∣∣2 � C3(T ), (2.15)

where

C3(T ) :=
∫
Ω

n0 lnn0 + 2
∫
Ω

|∇√
c0|2 + |Ω|

e
+

(
2

3m − 1

) 1
3m−2 · 3m − 2

3m − 1
· (C1 · C2(T )

) 3m−1
3m−2 .

Therefore (2.11)–(2.13) result from (2.15) and (2.6) upon recalling that c � ‖c0‖L∞(Ω) in Ω × (0, T ) by
Lemma 2.2. �

Another basic observation is obtained in a standard way upon testing the first PDE in (1.2) by powers of n. Since
∇ · u = 0, the convective term does not play a role here. We thereby gain the preliminary estimate (2.16) which will
be treated in two different ways in the sequel: In Section 2.2 we shall further estimate its right-hand side by primarily
using (2.13), whereas in Section 2.3 we will use the information thereby achieved (cf. Lemma 2.7 below) to derive
improved estimates on coupling (2.16) to a corresponding inequality for

∫
Ω

|∇c|2k , k > 1, and thus use the dissipative
features of the second PDE in (1.2) to absorb the right-hand side of (2.16) properly.

Lemma 2.6. Assume (1.5)–(1.8) and (1.10), and suppose that (n, c,u,P ) is a classical solution of (1.2)–(1.4) in
Ω × (0, T ) for some T > 0. Then for each p > 1 we have

d

dt

∫
Ω

np + 2mp(p − 1)

(m + p − 1)2

∫
Ω

∣∣∇n
m+p−1

2
∣∣2 � p(p − 1)

2m

∫
Ω

n−m+p+1|∇c|2 for all t ∈ (0, T ). (2.16)
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Proof. We multiply the first equation in (1.2) by np−1 and integrate by parts over Ω to obtain

1

p

d

dt

∫
Ω

np + (p − 1)

∫
Ω

np−2D(n)|∇n|2 = (p − 1)

∫
Ω

np−1∇n · ∇c for all t ∈ (0, T ),

where we have used that ∇ · u = 0. Since D(n)� mnm−1 by (1.6), this yields

1

p

d

dt

∫
Ω

np + m(p − 1)

∫
Ω

nm+p−3|∇n|2 � (p − 1)

∫
Ω

np−1∇n · ∇c for all t ∈ (0, T ). (2.17)

Since by Young’s inequality

(p − 1)

∫
Ω

np−1∇n · ∇c � m(p − 1)

2

∫
Ω

nm+p−3|∇n|2 + p − 1

2m

∫
Ω

n−m+p+1|∇c|2,

(2.16) results from (2.17) upon obvious rearrangements. �
2.2. A bound for

∫
Ω

np for p < 9(m − 1) by iteration

Throughout the remainder of this paper we assume that m > 10/9, that is, 9(m − 1) > 1. Building on Lemmas 2.6,
2.5 and an iteration argument, we first establish a bound for

∫
Ω

np for p < 9(m − 1). More precisely, the main result
of this subsection reads as follows.

Lemma 2.7. Let p0 ∈ (0,9(m − 1)) and T > 0. Then there exists C(p0, T ) > 0 such that whenever (1.5)–(1.8) and
(1.10) hold and (n, c,u,P ) is a classical solution of (1.2)–(1.4), we have∫

Ω

np0(x, t) dx � C(p0, T ) for all t ∈ (0, T ). (2.18)

Proof. We divide the proof into two steps.
Step 1. We first make sure that if for some p̂ � 1 there exists c1(p̂, T ) > 0 such that∫

Ω

np̂(x, t) dx � c1(p̂, T ) for all t ∈ (0, T ), (2.19)

and if p > 1 is such that

p < 3(m − 1) + 2

3
p̂, (2.20)

then we even have∫
Ω

np(x, t) dx � c2(p,T ) for all t ∈ (0, T ) (2.21)

with some c2(p,T ) > 0.
To achieve this, we use the Hölder inequality to estimate the right-hand side in (2.16) according to∫

Ω

np−m+1|∇c|2 �
( ∫

Ω

n2(p−m+1)

) 1
2 ·

( ∫
Ω

|∇c|4
) 1

2

. (2.22)

Here the Gagliardo–Nirenberg inequality provides c3 > 0 such that( ∫
Ω

n2(p−m+1)

) 1
2 = ∥∥n

p+m−1
2

∥∥ 2(p−m+1)
p+m−1

L
4(p−m+1)
p+m−1 (Ω)

� c4
(∥∥∇n

p+m−1
2

∥∥b

L2(Ω)
· ∥∥n

p+m−1
2

∥∥1−b
2p̂

p+m−1
+ ∥∥n

p+m−1
2

∥∥ 2p̂
p+m−1

) 2(p−m+1)
p+m−1 ,
L (Ω) L (Ω)
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where

b =
p+m−1

2p̂
− p+m−1

4(p−m+1)

p+m−1
2p̂

− 1
6

= 1 − p̂
2(p−m+1)

1 − p̂
3(p+m−1)

∈ (0,1).

Now thanks to (2.20) we find that

b · 2(p − m + 1)

p + m − 1
< 1,

so that in view of (2.22), (2.19) and Young’s inequality we can thus pick c4 > 0 such that

p(p − 1)

2m

∫
Ω

np−m+1|∇c|2 � mp(p − 1)

(m + p − 1)2

∫
Ω

∣∣∇n
m+p−1

2
∣∣2 + c4

( ∫
Ω

|∇c|4 + 1

)
.

Hence, from (2.16) we obtain that y(t) := ∫
Ω

np(x, t) dx, t ∈ [0, T ), satisfies the differential inequality

y′(t) � c5

( ∫
Ω

|∇c|4 + 1

)
for all t ∈ (0, T )

with some c5 > 0. On integration we infer that

y(t) � y(0) + c5

( T∫
0

∫
Ω

|∇c|4 + T

)
for all t ∈ (0, T ),

whereupon an application of (2.13) yields (2.21).
Step 2. We proceed to prove the statement of the lemma.
To this end, given p0 ∈ (1,9(m − 1)) we fix ε > 0 small enough such that still p0 < 9(m − 1 − ε). We now define

(pk)k∈N ⊂R by letting

p1 := 1 and pk+1 := 3(m − 1 − ε) + 2

3
pk, k � 1.

Then from (2.2) we know that (2.19) is valid for p̂ := p1, so that since evidently pk+1 < 3(m−1)+ 2
3pk for all k ∈ N,

we infer from a recurrent application of Step 1 that for each k ∈ N there exists C(k,T ) > 0 fulfilling∫
Ω

npk (x, t) dx � C(k,T ) for all t ∈ (0, T ).

Since it can easily be checked that pk increases with k and satisfies pk ↗ p∞ := 9(m− 1 − ε) as k → ∞, this implies
(2.18) due to the fact that p0 < p∞. �
2.3. A bound for

∫
Ω

np with any p > 1 by a coupled entropy estimate

As announced above, we shall now treat the integral on the right of (2.16) in a different way. In fact, we shall allow
our estimate to depend on a certain higher norm of |∇c| which will finally be controlled using the diffusive properties
of the equation for c in (1.2). To be more precise:

Lemma 2.8. Let k > 1, T > 0 and η > 0. Then for any p > 2(m − 1) fulfilling

p < (8k − 1)(m − 1) (2.23)

there exists C(k,p,T ,η) > 0 such that if (1.5)–(1.8) and (1.10) hold and (n, c,u,P ) solves (1.2)–(1.4) classically in
Ω × (0, T ), then∫

Ω

n−m+p+1|∇c|2 � η

∫
Ω

∣∣∇n
m+p−1

2
∣∣2 + η

∫
Ω

∣∣∇|∇c|k∣∣2 + C(k,p,T ,η) for all t ∈ (0, T ). (2.24)
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Proof. We let

ϕ(s) := (2k − 1)(m − 1) + 2

3
ks, s > 0, (2.25)

and observe that

ϕ
(
9(m − 1)

) = (8k − 1)(m − 1).

Hence, by (2.23) we can find p0 ∈ (0,9(m − 1)) such that

p < ϕ(p0), (2.26)

and since p0 < 9(m − 1), Lemma 2.7 provides C1(T ) > 0 such that∫
Ω

np0 � C1(T ) for all t ∈ (0, T ). (2.27)

According to Lemma 2.5, we can furthermore fix C2(T ) > 0 satisfying∫
Ω

|∇c|2 � C2(T ) for all t ∈ (0, T ). (2.28)

Now by the Hölder inequality applied with exponents 3k
3k−1 and 3k,

∫
Ω

n−m+p+1|∇c|2 �
( ∫

Ω

n
3k

3k−1 (−m+p+1)

) 3k−1
3k ·

( ∫
Ω

|∇c|6k

) 1
3k

= ∥∥n
m+p−1

2
∥∥ 2(−m+p+1)

m+p−1

L
6k(−m+p+1)

(3k−1)(m+p−1) (Ω)

· ∥∥|∇c|k∥∥ 2
k

L6(Ω)
for all t ∈ (0, T ). (2.29)

Here, from the Gagliardo–Nirenberg inequality and (2.27) we obtain C3(k,p) > 0 and C4(k,p,T ) > 0 such that

∥∥n
m+p−1

2
∥∥ 2(−m+p+1)

m+p−1

L
6k(−m+p+1)

(3k−1)(m+p−1) (Ω)

� C3(k,p) · {∥∥∇n
m+p−1

2
∥∥ 2(−m+p+1)

m+p−1 a

L2(Ω)
· ∥∥n

m+p−1
2

∥∥ 2(−m+p+1)
m+p−1 (1−a)

L

2p0
m+p−1 (Ω)

+ ∥∥n
m+p−1

2
∥∥ 2(−m+p+1)

m+p−1

L

2p0
m+p−1 (Ω)

}

� C4(k,p,T ) · {∥∥∇n
m+p−1

2
∥∥ 2(−m+p+1)

m+p−1 a

L2(Ω)
+ 1

}
for all t ∈ (0, T ) (2.30)

with a ∈ (0,1) determined by

−3(3k − 1)(m + p − 1)

6k(−m + p + 1)
= −1

2
a − 3(m + p − 1)

2p0
(1 − a),

that is, with

a = (m + p − 1) · [3k(−m + p + 1) − (3k − 1)p0]
(−m + p + 1) · k · [3(m + p − 1) − p0] . (2.31)

We note here that according to our restriction p > 2(m−1) and the fact that p0 < 9(m−1), the expression 3(m+p−
1)−p0 > 0 indeed is positive. As for the rightmost term in (2.29), we invoke the Sobolev inequality to find C5(k) > 0
such that∥∥|∇c|k∥∥ 2

k

L6(Ω)
� C5(k) · {∥∥∇|∇c|k∥∥ 2

k

L2(Ω)
+ ∥∥|∇c|k∥∥ 2

k

L1(Ω)

}
for all t ∈ (0, T ), (2.32)

where in the case k � 2, the last term in brackets can clearly be controlled using (2.28). However, if k > 2 then by
Hölder’s and Young’s we can further estimate

∥∥|∇c|k∥∥ 2
k

L1(Ω)
� 1 ∥∥|∇c|k∥∥ 2

k

L6(Ω)
+ C6(k)

∥∥|∇c|k∥∥ 2
k

2 for all t ∈ (0, T )

2C5(k) L k (Ω)



Y. Tao, M. Winkler / Ann. I. H. Poincaré – AN 30 (2013) 157–178 167
with some C6(k) > 0, whence from (2.32) and (2.28) we all in all obtain C7(k, T ) such that∥∥|∇c|k∥∥ 2
k

L6(Ω)
� C7(k, T ) · {∥∥∇|∇c|k∥∥ 2

k

L2(Ω)
+ 1

}
for all t ∈ (0, T ).

Combined with (2.30), in view of (2.29) this shows that for some C8(k,p,T ) > 0 we have∫
Ω

n−m+p+1|∇c|2 � C8(k,p,T ) · {∥∥∇n
m+p−1

2
∥∥ 2(−m+p+1)

m+p−1 a

L2(Ω)
· ∥∥∇|∇c|k∥∥ 2

k

L2(Ω)
+ 1

}
(2.33)

for all t ∈ (0, T ). Now by (2.31) and (2.26) we see that

2(−m + p + 1)

m + p − 1
a + 2

k
− 2 = 2

k
·
{

3k(−m + p + 1) − (3k − 1)p0

3(m + p − 1) − p0
+ 1 − k

}

= 2

k
· −6(m − 1)k − 2kp0 + 3(m + p − 1)

3(m + p − 1) − p0

= 6

k
· −(2k − 1)(m − 1) − 2

3kp0 + p

3(m + p − 1) − p0

= 6

k
· −ϕ(p0) + p

3(m + p − 1) − p0

< 0

and hence
2(−m + p + 1)

m + p − 1
a + 2

k
< 2.

Therefore, given any δ > 0, upon twice applying Young’s inequality we can find C9(k,p, δ) > 0 such that

X
2(−m+p+1)

m+p−1 a · Y 2
k � δ · (A2 + B2) + C9(k,p, δ) for all X � 0 and Y � 0.

Applied to (2.33), this yields∫
Ω

n−m+p+1|∇c|2 � δC8(k,p,T ) · {∥∥∇n
m+p−1

2
∥∥2

L2(Ω)
+ ∥∥∇|∇c|k∥∥2

L2(Ω)

} + C8(k,p,T ) · (C9(k,p, δ) + 1
)

for all t ∈ (0, T ), and thereby proves (2.24) on choosing δ := η
C8(k,p,T )

. �
The first term on the right of (2.24) may clearly be absorbed by the dissipative integral in (2.16). Accordingly, our

next goal is to cope with the second appropriately. This is prepared by the following inequality in which once more
the convexity of Ω is essential.

Lemma 2.9. Let (1.5)–(1.8) and (1.10) be satisfied, and suppose that (n, c,u,P ) is a classical solution of (1.2)–(1.4)
for some T > 0. Then for all k > 1 we have

1

2k

d

dt

∫
Ω

|∇c|2k + k − 1

2

∫
Ω

|∇c|2k−4
∣∣∇|∇c|2∣∣2 +

∫
Ω

|∇c|2k−2
∣∣D2c

∣∣2

�
∫
Ω

nc∇ · (|∇c|2k−2∇c
) +

∫
Ω

(u · ∇c)∇ · (|∇c|2k−2∇c
)

for all t ∈ (0, T ). (2.34)

Proof. By direct computation using the second equation in (1.2) we obtain

1

2k

d

dt

∫
Ω

|∇c|2k =
∫
Ω

|∇c|2k−2∇c · ∇ct

=
∫

|∇c|2k−2∇c · ∇�c −
∫

|∇c|2k−2∇c · ∇(nc + u · ∇c) for all t ∈ (0, T ). (2.35)
Ω Ω
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Here an integration by parts shows that the second integral equals the sum on the right of (2.34), because ∂c
∂ν

= 0
on ∂Ω . Moreover, in view of the pointwise identity

∇c · ∇�c = 1

2
�|∇c|2 − ∣∣D2c

∣∣2
,

upon another integration by parts the first term on the right becomes∫
Ω

|∇c|2k−2∇c · ∇�c = 1

2

∫
Ω

|∇c|2k−2�|∇c|2 −
∫
Ω

|∇c|2k−2
∣∣D2c

∣∣2

= −1

2

∫
Ω

∇|∇c|2k−2 · ∇|∇c|2 + 1

2

∫
∂Ω

|∇c|2k−2 ∂|∇c|2
∂ν

−
∫
Ω

|∇c|2k−2
∣∣D2c

∣∣2 for all t ∈ (0, T ).

Since

1

2
∇|∇c|2k−2 · ∇|∇c|2 = k − 1

2
|∇c|2k−4

∣∣∇|∇c|2∣∣2
,

and since ∂|∇c|2
∂ν

� 0 on ∂Ω thanks to the convexity of Ω and the fact that ∂c
∂ν

= 0 on ∂Ω [2], this directly
gives (2.34). �

We proceed to estimate both integrals on the right of (2.34) in a straightforward manner.

Lemma 2.10. Let k > 1. Then there exists C > 0 such that if (1.5)–(1.8) and (1.10) hold and (n, c,u,P ) is a classical
solution of (1.2)–(1.4) in Ω × (0, T ) for some T > 0, then

1

2k

d

dt

∫
Ω

|∇c|2k + k − 1

k2

∫
Ω

∣∣∇|∇c|k∣∣2

� C ·
{ ∫

Ω

n2|∇c|2k−2 +
∫
Ω

|u|2|∇c|2k

}
for all t ∈ (0, T ). (2.36)

Proof. Starting from (2.34), we rewrite∫
Ω

nc∇ · (|∇c|2k−2∇c
) =

∫
Ω

nc|∇c|2k−2�c + (k − 1)

∫
Ω

nc|∇c|2k−4∇|∇c|2 · ∇c.

Here we use Young’s inequality along with the fact that (2.3) guarantees that |c| � ‖c0‖L∞(Ω) to estimate∫
Ω

nc|∇c|2k−2�c � δ

3

∫
Ω

|∇c|2k−2|�c|2 + 3

4δ

∫
Ω

n2c2|∇c|2k−2

� δ

∫
Ω

|∇c|2k−2
∣∣D2c

∣∣2 + 3‖c0‖2
L∞(Ω)

4δ

∫
Ω

n2|∇c|2k−2 (2.37)

for any δ > 0, because |�c|2 � 3|D2c|2 by the Cauchy–Schwarz inequality for sums. Proceeding similarly, we find
that

(k − 1)

∫
nc|∇c|2k−4∇|∇c|2 · ∇c � δ

∫
|∇c|2k−4

∣∣∇|∇c|2∣∣2 + (k − 1)2‖c0‖2
L∞(Ω)

4δ

∫
n2|∇c|2k−2.
Ω Ω Ω
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Combined with (2.37), this easily yields (2.36) upon choosing δ := min{ k−1
4 , 1

2 } and noticing the identity
|∇c|2k−4|∇|∇c|2|2 = 4

k2 |∇|∇c|k|2. �
By means of an embedding argument, the first term on the right of (2.36) can be related to a higher Lebesgue norm

of n as follows.

Lemma 2.11. For all k > 1, T > 0 and η > 0 there exists C(k,T , η) > 0 such that whenever (1.5)–(1.8) and (1.10)
are valid and (n, c,u,P ) solves (1.2)–(1.4) classically in Ω × (0, T ), we have∫

Ω

n2|∇c|2k−2 � η

∫
Ω

∣∣∇|∇c|k∣∣2 + C(k,p,T ,η) · {‖n‖2k

L
6k

2k+1 (Ω)

+ 1
}

for all t ∈ (0, T ). (2.38)

Proof. Abbreviating w := |∇c|2, from Lemma 2.5 we know that there exists C1(T ) > 0 such that∥∥w
k
2
∥∥ 2

k

L
2
k (Ω)

≡
∫
Ω

|∇c|2 � C1(T ) for all t ∈ (0, T ). (2.39)

Now by the Hölder inequality applied with exponents 3k
2k+1 > 1 and 3k

k−1 , we estimate

∫
Ω

n2|∇c|2k−2 =
∫
Ω

n2wk−1 �
( ∫

Ω

n
6k

2k+1

) 2k+1
3k ·

( ∫
Ω

w3k

) k−1
3k = ‖n‖2

L
6k

2k+1 (Ω)

· ∥∥w
k
2
∥∥ 2(k−1)

k

L6(Ω)
(2.40)

for all t ∈ (0, T ). Here, using the Sobolev inequality and (2.39) we find C2(k) > 0 and C3(k, T ) > 0 such that

∥∥w
k
2
∥∥ 2(k−1)

k

L6(Ω)
� C2(k) · {∥∥∇w

k
2
∥∥ 2(k−1)

k

L2(Ω)
+ ∥∥w

k
2
∥∥ 2(k−1)

k

L
2
k (Ω)

}
� C3(k, T ) · {∥∥∇w

k
2
∥∥ 2(k−1)

k

L2(Ω)
+ 1

}
for all t ∈ (0, T ).

Thus, according to Young’s inequality applied to (2.40) with exponents k
k−1 and k and recalling that w = |∇c|2, we

can achieve that given any η > 0 we can find C4(k, T , η) > 0 such that∫
Ω

n2|∇c|2k−2 � η · {∥∥∇|∇c|k∥∥2
L2(Ω)

+ 1
} + C4(k, T , η) · ‖n‖2k

L
6k

2k+1 (Ω)

for all t ∈ (0, T ),

which easily yields (2.38). �
Since the integrability powers in the norm of n appearing in (2.38) do not depend on p, it is evident that this term

can be controlled by the dissipative integral in (2.16) provided that p is large enough. Our reasoning in the sequel
(cf. Lemma 2.16) shall crucially rely on a precise condition for p under which this conclusion is valid. Using an
interpolation argument involving Lemma 2.7 we shall derive (2.41) as such a sufficient condition, which in the case
m > 8

7 will turn out to be mild enough so as to be achievable together with (2.23) and another restriction on p arising
below (cf. (2.52)).

Lemma 2.12. Let k > 1 and p > 1 be such that

p > 2k − (6k + 1)(m − 1). (2.41)

Then given any T > 0 and η > 0 we can find C(k,p,T ,η) > 0 such that if (1.5)–(1.8) and (1.10) hold, then each
classical solution (n, c,u,P ) of (1.2)–(1.4) in Ω × (0, T ) satisfies

T∫
0

∥∥n(·, t)∥∥2k

L
6k

2k+1 (Ω)
dt � η

T∫
0

∫
Ω

∣∣∇n
m+p−1

2
∣∣2 + C(k,p,T ,η). (2.42)
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Proof. We let

χ(s) := 2k − 2k

3
s − (m − 1), s > 0,

and conclude from

χ
(
9(m − 1)

) = 2k − 6k(m − 1) − (m − 1) = 2k − (6k + 1)(m − 1)

and (2.41) that there exists p0 ∈ (0,9(m − 1)) such that

χ(p0) < p. (2.43)

Applying Lemma 2.7 to this value of p0, we find C1(T ) > 0 fulfilling∫
Ω

np0(x, t) dx � C1(T ) for all t ∈ (0, T ). (2.44)

Now since p > 1 implies that 12k
(2k+1)(m+p−1)

< 6, we may invoke the Gagliardo–Nirenberg inequality to find
C2(k,p) > 0 such that

‖n‖2k

L
6k

2k+1 (Ω)

= ∥∥n
m+p−1

2
∥∥ 4k

m+p−1

L
12k

(2k+1)(m+p−1) (Ω)

� C2(k,p) · {∥∥∇n
m+p−1

2
∥∥ 4k

m+p−1 a

L2(Ω)
· ∥∥n

m+p−1
2

∥∥ 4k
m+p−1 (1−a)

L

2p0
m+p−1 (Ω)

+ ∥∥n
m+p−1

2
∥∥ 4k

m+p−1

L

2p0
m+p−1 (Ω)

}
is valid for all t ∈ (0, T ) with a ∈ (0,1) determined by

−3(2k + 1)(m + p − 1)

12k
= −1

2
a − 3(m + p − 1)

2p0
(1 − a),

so that

a = [6k − (2k + 1)p0] · (m + p − 1)

2k · [3(m + p − 1) − p0] .

In view of (2.44), we therefore obtain C3(k,p,T ) > 0 such that

‖n‖2k

L
6k

2k+1 (Ω)

� C3(k,p,T ) · {∥∥∇n
m+p−1

2
∥∥ 2[6k−(2k+1)p0]

3(m+p−1)−p0
L2(Ω)

+ 1
}

for all t ∈ (0, T ). (2.45)

Here, since

2[6k − (2k + 1)p0]
3(m + p − 1) − p0

− 2 = 12k − (4k + 2)p0 − 6(m + p − 1) + 2p0

3(m + p − 1) − p0

= 6[2k − 2
3kp0 − (m − 1) − p]

3(m + p − 1) − p0

= 6[χ(p0) − p]
3(m + p − 1) − p0

< 0

according to (2.43), for any δ > 0 Young’s inequality provides C4(k,p, δ) > 0 such that

∥∥∇n
m+p−1

2
∥∥ 2[6k−(2k+1)p0]

3(m+p−1)−p0
L2(Ω)

� δ
∥∥∇n

m+p−1
2

∥∥2
L2(Ω)

+ C4(k,p, δ).

Applied to (2.45) for sufficiently small δ = δ(η,C3(k,p,T )) > 0, this immediately leads to (2.42). �
In a way similar to that in Lemma 2.11, the second integral on the right of (2.36) can be estimated in terms of

appropriate norms of u.
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Lemma 2.13. Given k > 1, T > 0 and η > 0, one can find C(k,T , η) > 0 such that if under the assumptions (1.5)–
(1.8) and (1.10), (n, c,u,P ) solves (1.2)–(1.4) classically in Ω × (0, T ), then∫

Ω

|u|2|∇c|2k � η

∫
Ω

∣∣∇|∇c|k∣∣2 + C(k,T , η) · {‖u‖3k−1
L∞(Ω) + 1

}
for all t ∈ (0, T ). (2.46)

Proof. According to the Hölder and the Gagliardo–Nirenberg inequalities we can find C1(k) > 0 such that∫
Ω

|u|2|∇c|2k � ‖u‖2
L∞(Ω) · ∥∥|∇c|k∥∥2

L2(Ω)

� C1(k) · ‖u‖2
L∞(Ω) · {∥∥∇|∇c|k∥∥ 6(k−1)

3k−1

L2(Ω)
· ∥∥|∇c|k∥∥ 4

3k−1

L
2
k (Ω)

+ ∥∥|∇c|k∥∥2

L
2
k (Ω)

}

for all t ∈ (0, T ). Thanks to Lemma 2.5, there exists C2(T ) > 0 such that ‖|∇c|k‖
2
k

L
2
k (Ω)

� C2(T ) for all t ∈ (0, T ),
whence∫

Ω

|u|2|∇c|2k � C3(k, T )‖u‖2
L∞(Ω) · {∥∥∇|∇c|k∥∥ 6(k−1)

3k−1

L2(Ω)
+ 1

}
for all t ∈ (0, T ) (2.47)

is valid with some C3(k, T ) > 0. Now given δ > 0, from an application of Young’s inequality with exponents 3k−1
3(k−1)

and 3k−1
2 we obtain C4(k, δ) > 0 satisfying

‖u‖2
L∞(Ω) · {∥∥|∇c|k∥∥ 6(k−1)

3k−1

L2(Ω)
+ 1

}
� δ · ∥∥∇|∇c|k∥∥2

L2(Ω)
+ C4(k, δ) · {‖u‖3k−1

L∞(Ω) + 1
}

for all t ∈ (0, T ),

and therefore (2.46) readily follows from (2.47) upon an appropriate choice of δ. �
Now standard regularity estimates for the instationary Stokes equation [7] allow us to replace, after a time integra-

tion, the norm of u appearing above by a certain norm of the cell density n which, as we recall, appears as a source
term in the third PDE in (1.2).

Lemma 2.14. Let k > 1, r > 3
2 and T > 0. Then there exists C(k, r, T ) > 0 such that if (1.5)–(1.8) and (1.10) hold

and (n, c,u,P ) is a classical solution of (1.2)–(1.4) in Ω × (0, T ), we have

T∫
0

∥∥u(·, t)∥∥3k−1
L∞(Ω)

dt � C(k, q,T ) ·
{ T∫

0

∥∥n(·, t)∥∥3k−1
Lr(Ω)

dt + 1

}
. (2.48)

Proof. From the well-known results on maximal Sobolev regularity properties of the Stokes evolution equation
[7, Theorem 2.3] we obtain C1(k, r, T ) > 0 such that

T∫
0

∥∥u(·, t)∥∥3k−1
L∞(Ω)

dt � C1(k, r, T ) ·
{ T∫

0

∥∥n(·, t)∇φ
∥∥3k−1

Lr(Ω)
+ 1

}
.

Since ∇φ ∈ L∞(Ω) and W 2,r (Ω) ↪→ L∞(Ω) due to our restriction r > 3
2 , this establishes (2.48). �

Let us summarize what we obtain from Lemma 2.10 in light of Lemmas 2.11–2.14.

Lemma 2.15. Let k > 1, r > 3
2 and p > 1 be such that

p > 2k − (6k + 1)(m − 1).

Then given any T > 0 and η > 0 we can find C(k,p, r, T , η) > 0 with the property that whenever (1.5)–(1.8) and
(1.10) are valid and (n, c,u,P ) solves (1.2)–(1.4) classically in Ω × (0, T ), we have
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sup
t∈(0,T )

∫
Ω

|∇c|2k +
T∫

0

∫
Ω

∣∣∇|∇c|k∣∣2

� η

T∫
0

∫
Ω

∣∣∇n
m+p−1

2
∣∣2 + C(k,p, r, T , η) ·

{ T∫
0

∥∥n(·, t)∥∥3k−1
Lr(Ω)

dt + 1

}
. (2.49)

Proof. We only need to apply Lemmas 2.11 and 2.13 with suitably small η > 0 in estimating the right-hand side in
(2.36) to achieve

1

2k

d

dt

∫
Ω

|∇c|2k + k − 1

2k2

∫
Ω

∣∣∇|∇c|k∣∣2 � C1(k, T ) · {‖n‖2k

L
6k

2k+1 (Ω)

+ ‖u‖3k−1
L∞(Ω)

+ 1
}

for all t ∈ (0, T )

with some C1(k, T ) > 0. Integrating with respect to t ∈ (0, T ) and using Lemmas 2.14 and 2.12 we readily end up
with (2.49). �

By combining the above inequalities we can now derive bounds, uniformly with respect to t ∈ (0, T ), for arbitrarily
high Lebesgue norms of n and ∇c. This will be achieved by deriving entropy-type estimates for coupled quantities of
the form∫

Ω

np +
∫
Ω

|∇c|2k

with any large k > 1 and certain p > 1 lying in some range suggested by the requirements (2.23), (2.41) and (2.52)
below. The main step toward this is done in the following lemma.

Lemma 2.16. Suppose that k > 1 and p > max{ 3
2 ,2(m − 1)} are such that

p < (8k − 1)(m − 1) (2.50)

and

p > 2k − (6k + 1)(m − 1) (2.51)

as well as

p > (21 − 18m)k + 15m − 16. (2.52)

Then given T > 0, one can find C(k,p,T ) > 0 such that if under the hypotheses (1.5)–(1.8) and (1.10), (n, c,u,P )

is any classical solution of (1.2)–(1.4) in Ω × (0, T ), then∫
Ω

np +
∫
Ω

|∇c|2k � C(k,p,T ) for all t ∈ (0, T ). (2.53)

Proof. We define

ψ(r, s) := (3k − 1)

(
1 − s

r

)
+ s, r > 0, s > 0,

and claim that there exist r > 3
2 and p0 ∈ (0,9(m − 1)) such that

p0 � r < p (2.54)

and

ψ(r,p0) < p. (2.55)

Indeed, in the case 9(m − 1)� 3 we observe that
2
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ψ

(
3

2
,9(m − 1)

)
= (3k − 1) · (1 − 6(m − 1)

) + 9(m − 1)

= (21 − 18m)k + 15m − 16

< p

is valid in view of (2.52), so that by a continuity argument we can pick r ∈ ( 3
2 ,p) close enough to 3

2 and p0 ∈
(0,9(m − 1)) sufficiently close to 9(m − 1) such that still (2.55) holds, and we note that then (2.54) is obvious.

Conversely, if 9(m − 1) > 3
2 then we simply pick any r ∈ ( 3

2 ,p) such that r < 9(m − 1), and set p0 := r . Then
trivially p0 < 9(m − 1) and also (2.54) is evident, whereas now

ψ(r,p0) = ψ(r, r) = r < p

according to our choice of r .
Now the validity of (2.54) enables us to apply the Hölder inequality in estimating the second integral on the right

of (2.49),
T∫

0

∥∥n(·, t)∥∥3k−1
Lr(Ω)

dt �
T∫

0

∥∥n(·, t)∥∥ (3k−1)p(r−p0)

r(p−p0)

Lp(Ω) · ∥∥n(·, t)∥∥ (3k−1)p0(p−r)

r(p−p0)

Lp0 (Ω)
dt. (2.56)

Here we note that

κ :=
(3k−1)p(r−p0)

r(p−p0)

p

satisfies

κ − 1 = (3k − 1)(r − p0) − r(p − p0)

r(p − p0)
= (3k − 1)(1 − p0

r
) + p0 − p

p − p0
= ψ(r,p0) − p

p − p0
< 0

by (2.55). Thus, from (2.56) and Lemma 2.7 we obtain C1(k,p,T ) > 0 and C2(k,p,T ) > 0 such that

T∫
0

∥∥n(·, t)∥∥3k−1
Lr(Ω)

dt � C1(k,p,T )

T∫
0

∥∥n(·, t)∥∥pκ

Lp(Ω)
dt

� C2(k,p,T ) · T ·
(

sup
t∈(0,T )

∫
Ω

np(x, t) dx

)κ

with κ < 1. Lemma 2.15, which is applicable because of (2.51), therefore yields C3(k,p,T ) > 0 such that

sup
t∈(0,T )

∫
Ω

|∇c|2k +
T∫

0

∫
Ω

∣∣∇|∇c|k∣∣2

�
T∫

0

∫
Ω

∣∣∇n
m+p−1

2
∣∣2 + C3(k,p,T ) ·

{(
sup

t∈(0,T )

∫
Ω

np(x, t) dx

)κ

+ 1

}
. (2.57)

On the other hand, from Lemmas 2.6 and 2.8 we know that since (2.50) holds, we have

sup
t∈(0,T )

∫
Ω

np +
T∫

0

∫
Ω

∣∣∇n
m+p−1

2
∣∣2 �

T∫
0

∫
Ω

∣∣∇|∇c|k∣∣2 + C4(k,p,T )

with some C4 > 0. Adding this to (2.57) shows that

sup
t∈(0,T )

{∫
Ω

np +
∫
Ω

|∇c|2k

}
� C3(k,p,T ) ·

(
sup

t∈(0,T )

∫
Ω

np(x, t) dx

)κ

+ C3(k,p,T ) + C4(k,p,T ).

Since κ < 1, in view of Young’s inequality this directly leads to (2.53). �
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Now it is straightforward to check that in the case m > 8
7 the above lemma will indeed be applicable for arbitrarily

large k and p.

Corollary 2.17. Let m > 8
7 . Then for all k > 1, p > 1 and T > 0 there exists C(k,p,T ) > 0 such that whenever

(1.5)–(1.8) and (1.10) hold and (n, c,u,P ) is a classical solution of (1.2)–(1.4) in Ω × (0, T ), we have∫
Ω

np +
∫
Ω

|∇c|2k � C(k,p,T ) for all t ∈ (0, T ). (2.58)

Proof. In view of Lemma 2.16, we evidently only need to check that (2.50)–(2.52) may be fulfilled simultaneously
for all sufficiently large k > 1 and some pk > 3

2 satisfying pk → ∞ as k → ∞.
To this end, we observe that

I1(k) := (8k − 1)(m − 1) → ∞ as k → ∞,

and that since m > 8
7 , we have

I2(k) := 2k − (6k + 1)(m − 1)

(8k − 1)(m − 1)
→ 2 − 6(m − 1)

8(m − 1)
= 4 − 3m

4m − 4
< 1 as k → ∞

as well as

I3(k) := (21 − 18m)k + 15m − 16

(8k − 1)(m − 1)
→ 21 − 18m

8(m − 1)
<

21 − 18 · 8
7

8 · 1
7

= 3

8
< 1 as k → ∞.

It is therefore possible to pick k0 > 1 large enough such that I1(k) > 3
2 , I2(k) < 1 and I3(k) < 1 for all k > k0, and

then, given any k > k0, fix pk ∈ ( 3
2 , I1(k)) close enough to I1(k) such that

pk

I1(k)
> max

{
I2(k), I3(k)

}
,

which asserts that both (2.51) and (2.52) will be valid. �
Upon a straightforward adaptation of the well-known Moser–Alikakos iteration procedure we end up with the

following main result of this section.

Corollary 2.18. Let m > 8
7 . Then for all T > 0 there exists C(T ) > 0 such that if (1.5)–(1.8) and (1.10) hold and

(n, c,u,P ) solves (1.2)–(1.4) classically in Ω × (0, T ), then∥∥n(·, t)∥∥
L∞(Ω)

� C(T ) for all t ∈ (0, T ). (2.59)

Proof. For a complete proof of a corresponding statement in a more general setting, also covering the present case,
we refer to [21, Lemma 4.1]. �
3. Global existence. Proof of Theorems 1.1 and 1.2

We begin with the proof of Theorem 1.2.

Proof of Theorem 1.2. Let (n, c,u,P ) be a classical solution of (1.2)–(1.4) in Ω × (0, T ) for some T > 0. Then
(2.59) holds by Corollary 2.18, and we proceed to estimate u and c. It is well known (cf. [18], for instance) that
the Stokes operator A = −P�, with P denoting the Helmholtz projection in L2(Ω), is sectorial and generates a
contraction semigroup (e−tA)t�0 in L2(Ω) with its operator norm bounded according to∥∥e−tA

∥∥ � c1e
−μt for all t � 0

with some c1 > 0 and μ > 0. We now pick any α ∈ ( 3
4 ,1) and apply the fractional power Aα to the variation-of-

constants formula
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u(·, t) = e−tAu0 +
t∫

0

e−(t−s)AP
(
n(·, s)∇φ

)
ds, t ∈ (0, T ),

to find c2 > 0 and c3(T ) > 0 such that

∥∥u(·, t)∥∥
D(Aα)

= ∥∥Aαu(·, t)∥∥
L2(Ω)

� c2 ·
(

1 +
t∫

0

(t − s)−αe−μ(t−s)
∥∥n(·, s)∥∥

L2(Ω)
ds

)

� c2 ·
(

1 + sup
s∈(0,T )

∥∥n(·, s)∥∥
L2(Ω)

·
∞∫

0

σ−αe−μσ dσ

)

� c3(T ) for all t ∈ (0, T ). (3.1)

Since in the three-dimensional setting we have D(Aα) ↪→ W 1,q (Ω) for any q < 6
5−4α

(cf. e.g. [18, Lemma 2.4.3]), it

follows from the fact that α > 3
4 that D(Aα) is continuously embedded into both W 1,2(Ω) and L∞(Ω). Therefore,

there exists some c4(T ) > 0 such that∥∥u(·, t)∥∥
W 1,2(Ω)

� c4(T ) and
∥∥u(·, t)∥∥

L∞(Ω)
� c4(T ) for all t ∈ (0, T ). (3.2)

Therefore, by (2.59) and standard parabolic regularity theory applied to the second equation in (1.2), we obtain some
c5(T ) > 0 such that∥∥c(·, t)∥∥

W 1,∞(Ω)
� c5(T ) for all t ∈ (0, T ). (3.3)

Finally, the global classical solvability statement is a straightforward consequence of Lemma 2.1, Corollary 2.18, (3.1)
and (3.3). �

Let us now turn our attention to weak solutions as addressed in Theorem 1.1. We shall pursue the following natural
solution concept introduced in [4].

Definition 3.1 (Weak solution). Let T ∈ (0,∞). A quadruple (n, c,u,P ) is said to be a weak solution to problem
(1.2)–(1.4) in Ω × (0, T ) if

(1) n ∈ L∞(Ω × (0, T )),D(n)∇n ∈ L2((0, T );L2(Ω)) and nt ∈ L2((0, T ); (W 1,2(Ω))�),
(2) c ∈ L∞(Ω × (0, T )) ∩ L2((0, T );W 2,2(Ω)) ∩ W 1,2((0, T );L2(Ω)),
(3) u ∈ L2((0, T );W 2,2(Ω) ∩ W

1,2
0 (Ω)),

(4) the identities

T∫
0

∫
Ω

ntψ −
T∫

0

∫
Ω

∇ψ · un +
T∫

0

∫
Ω

D(n)∇n · ∇ψ =
T∫

0

∫
Ω

n∇c · ∇ψ,

T∫
0

∫
Ω

ctψ −
T∫

0

∫
Ω

∇ψ · uc +
T∫

0

∫
Ω

∇c · ∇ψ = −
T∫

0

∫
Ω

ncψ,

T∫
0

∫
Ω

ψ̃t · u +
∫
Ω

ψ̃ · u0 +
T∫

0

∫
Ω

u · �ψ̃ +
T∫

0

∫
Ω

n∇φ · ψ̃ = 0

hold for all ψ ∈ L2((0, T );W 1,2(Ω)) and any ψ̃ ∈ L2((0, T );W 2,2(Ω)) ∩ W 1,2((0, T );L2(Ω)) with values
in R

2, ∇ · ψ̃ = 0 and ψ̃ |∂Ω = 0. If (n, c,u,P ) is a weak solution of (1.2)–(1.4) in Ω × (0, T ) for any T ∈ (0,∞),
then we call (n, c,u,P ) a global weak solution.

We are now in the position to prove our main result on global weak solvability.
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Proof of Theorem 1.1. Proceeding as in [22, Theorem 1.1], for ε ∈ (0,1) we consider the approximate problems
given by⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

nεt + uε · ∇nε = ∇ · (Dε(nε)∇nε

) − ∇ · (nε∇cε), x ∈ Ω, t > 0,

cεt + uε · ∇cε = �cε − nεcε, x ∈ Ω, t > 0,

uεt + ∇Pε − �uε − nε∇φ = 0, x ∈ Ω, t > 0,

∇ · uε = 0, x ∈ Ω, t > 0,

∂νnε(x, t) = ∂νcε(x, t) = 0 and uε(x, t) = 0, x ∈ ∂Ω, t > 0,

nε(x,0) = n0(x), cε(x,0) = c0(x) and uε(x,0) = u0(x), x ∈ Ω,

(3.4)

where Dε(s) := D(s +ε) for s � 0. Indeed, Theorem 1.2 asserts that for each ε ∈ (0,1) this problem admits a classical
solution (nε, cε, uε,Pε) which is defined for all t > 0. Moreover, Corollary 2.18, Lemmas 2.5, 2.2 and (3.2) say that
for each T > 0 we can find c1(T ) > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∥∥nε(·, t)
∥∥

L∞(Ω)
� c1(T ) for all t ∈ (0, T ) and

t∫
0

∫
Ω

nm−2
ε |∇nε|2 � c1(T ) for all t ∈ (0, T ),

∥∥cε(·, t)
∥∥

L∞(Ω)
� c1(T ) and

∥∥∇cε(·, t)
∥∥

L2(Ω)
� c1(T ) for all t ∈ (0, T ),∥∥uε(·, t)

∥∥
L∞(Ω)

� c1(T ) and
∥∥∇uε(·, t)

∥∥
L2(Ω)

� c1(T ) for all t ∈ (0, T )

(3.5)

are valid, and from (1.6) and the proofs of Lemmas 2.3–2.5 we also infer that there exists some c2(T ) > 0 such that

t∫
0

∫
Ω

Dε(nε)

nε

|∇nε|2 � c2(T ) for all t ∈ (0, T ). (3.6)

In order to achieve a strong precompactness property of (nε)ε∈(0,1), let us fix θ � max(1, m
2 ) and multiply the first

equation in (3.4) by nθ−1
ε ζ(x), where ζ ∈ C∞

0 (Ω). On integrating by parts, we thereby obtain

1

θ

∫
Ω

(
nθ

ε

)
t
· ζ = −(θ − 1)

∫
Ω

Dε(nε)n
θ−2
ε |∇nε|2ζ −

∫
Ω

Dε(nε)n
θ−1
ε ∇nε · ∇ζ

+ (θ − 1)

∫
Ω

nθ−1
ε ∇nε · ∇cεζ +

∫
Ω

nθ
ε∇cε · ∇ζ + 1

θ

∫
Ω

nθ
εuε · ∇ζ (3.7)

for t > 0. Here we estimate∣∣∣∣
∫
Ω

Dε(nε)n
θ−2
ε |∇nε|2ζ

∣∣∣∣� ‖nε‖θ−1
L∞(Ω×(0,T )) ·

( ∫
Ω

Dε(nε)

nε

|∇nε|2
)

· ‖ζ‖L∞(Ω),

∣∣∣∣
∫
Ω

Dε(nε)n
θ−1
ε ∇nε · ∇ζ

∣∣∣∣�
( ∫

Ω

Dε(nε)

nε

|∇nε|2 + ∥∥Dε(nε)n
2θ−1
ε

∥∥
L∞(Ω×(0,T ))

· |Ω|
)

· ‖∇ζ‖L∞(Ω),

∣∣∣∣
∫
Ω

nθ−1
ε ∇nε · ∇cεζ

∣∣∣∣�
( ∫

Ω

n2θ−2
ε |∇nε|2 +

∫
Ω

|∇cε|2
)

· ‖ζ‖L∞(Ω)

�
(

‖nε‖2θ−m
L∞(Ω×(0,T )) ·

∫
Ω

nm−2
ε |∇nε|2 +

∫
Ω

|∇cε|2
)

· ‖ζ‖L∞(Ω),

∣∣∣∣
∫
Ω

nθ
ε∇cε · ∇ζ

∣∣∣∣�
(

‖nε‖2θ
L∞(Ω×(0,T )) · |Ω| +

∫
Ω

|∇cε|2
)

· ‖∇ζ‖L∞(Ω)

and
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∣∣∣∣
∫
Ω

nθ
εuε · ∇ζ

∣∣∣∣� ‖nε‖θ
L∞(Ω×(0,T )) · ‖uε‖L∞(Ω×(0,T )) · ‖∇ζ‖L∞(Ω) · |Ω|.

According to our restriction on θ , we deduce from (3.5), (3.6) and∥∥Dε(nε)
∥∥

L∞(Ω×(0,T ))
= ∥∥D(nε + ε)

∥∥
L∞(Ω×(0,T ))

� max
s∈[0,1+‖nε‖L∞(Ω×(0,T ))]

D(s)

that for such θ there exists c3(T ) > 0 such that

∥∥(
nθ

ε

)
t

∥∥
L1((0,t);(W 2,2

0 (Ω))�)
=

t∫
0

sup
ζ∈C∞

0 (Ω),‖ζ‖
W2,2(Ω)

�1

∣∣∣∣
∫
Ω

(
nθ

ε

)
t
· ζ

∣∣∣∣� c3(T ) for all t ∈ (0, T ).

Similarly, we can find c4(T ) > 0 fulfilling

‖cεt‖L2((0,t);(W 1,2
0 (Ω))�)

� c4(T ) for all t > 0.

In conjunction with (3.5), (1.6), (1.5) and the Aubin–Lions compactness lemma ([12, Chapter IV] and [17]), we thus
infer the existence of a sequence of numbers ε = εj ↘ 0 along which⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

nε → n a.e. in Ω × (0,∞),

nε
�

⇀ n in L∞(
Ω × (0,∞)

)
,

Dε(nε)∇nε ⇀ D(n)∇n in L2
loc

(
Ω̄ × [0,∞)

)
,

cε → c a.e. in Ω × (0,∞),

∇cε ⇀ ∇c in L2
loc

(
Ω̄ × [0,∞)

)
,

uε ⇀ u in L2
loc

([0,∞);W 1,2
0 (Ω)

)
holds for some limit (n, c,u) ∈ (L∞(Ω × (0,∞)))5 with nonnegative n and c. Due to these convergence properties,
applying standard arguments we may take ε = εj ↘ 0 in each term of the natural weak formulation of (3.4) separately
to verify that in fact (n, c,u) can be complemented by some pressure function P in such a way that (n, c,u,P ) is a
weak solution of (1.2)–(1.4).

Finally, the boundedness statement is a straightforward consequence of Corollary 2.18, Lemma 2.2 and (3.2). �
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