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Abstract

We prove the existence of non-smooth solutions to three-dimensional Special Lagrangian Equations in the non-convex case.

Résumé

Nous démontrons l’existence de solutions singulières d’équations speciales lagrangiennes en dimension trois, dans le cas non
convexe.

MSC: 35J60; 53C38

1. Introduction

In this paper we study a fully nonlinear second-order elliptic equations of the form (where h ∈ R)

Fh

(
D2u

) = det
(
D2u

) − Tr
(
D2u

) + hσ2
(
D2u

) − h = 0 (1)

defined in a smooth-bordered domain of Ω ⊂ R3, σ2(D
2u) = λ1λ2 + λ2λ3 + λ1λ3 being the second symmetric

function of the eigenvalues λ1, λ2, λ3 of D2u. Here D2u denotes the Hessian of the function u. This equation is
equivalent to the Special Lagrangian potential equation [10]:

SLEθ : Im
{
e−iθ det

(
I + iD2u

)} = 0

for h := − tan(θ) which can be re-written as

Fθ = arctanλ1 + arctanλ2 + arctanλ3 − θ = 0.

The set{
A ∈ Sym2(R3): Fh(A) = 0

} ⊂ Sym2(R3)
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has three connected components, Ci , i = 1,2,3, which correspond to the values θ1 = − arctan(h) − π , θ2 =
− arctan(h), θ3 = − arctan(h) + π .

We study the Dirichlet problem{
Fθ

(
D2u

) = 0 in Ω,

u = ϕ on ∂Ω,

where Ω ⊂ Rn is a bounded domain with smooth boundary ∂Ω and ϕ is a continuous function on ∂Ω .
For θ1 = − arctan(h)−π and θ3 = − arctan(h)+π the operator Fθ is concave or convex, and the Dirichlet problem

in these cases was treated in [5]; smooth solutions are established there for smooth boundary data on appropriately
convex domains.

The middle branch C2, θ2 = − arctan(h) is never convex (neither concave), and the classical solvability of the
Dirichlet problem remained open.

In the case of uniformly elliptic equations a theory of weak (viscosity) solutions for the Dirichlet problem gives
the uniqueness of such solutions, see [8], moreover these solutions lie in C1,ε [4,16,17]. However, the recent re-
sults [13–15] show that at least in 12 and more dimensions the viscosity solution of the Dirichlet problem for a
uniformly elliptic equation can be singular, even in the case when the operator depends only on eigenvalues of the
Hessian.

One can define viscosity solutions for strictly elliptic equations (such as SLEθ ); in this case the uniqueness and the
existence for C0 viscosity solutions are known to experts in the field. For example, strict ellipticity alone is enough for
the argument leading to comparison on pp. 45 and 46 of Caffarelli and Cabre [4]; cf. [6, p. 594]. However, we prefer to
use a new very interesting approach to degenerate elliptic equations suggested recently by Harvey and Lawson [11].
They introduced a new notion of a weak solution for the Dirichlet problem for such equations and proved the existence,
the continuity and the uniqueness of these solutions.

The main purpose of the present note is to show that the classical solvability for Special Lagrangian Equations does
not hold.

More precisely, we show the existence for any θ ∈ ]−π/2,π/2[ of a small ball B ⊂ R3 and of an analytic function φ

on ∂B for which the unique Harvey–Lawson solution uθ of the Dirichlet problem satisfies:

(i) uθ ∈ C1,1/3;
(ii) uθ /∈ C1,δ for ∀δ > 1/3.

Our construction use the Legendre Transform for solutions of F 1
h
(D2u) = 0 which gives solutions of Fh(D

2u) = 0;

in particular, for h = 0 it transforms solutions of σ2(D
2u) = 1 into solutions of det(D2u) = Tr(D2u). This construc-

tion could be of interest by itself. The Legendre Transform was already used in [3, p. 312] (as was kindly pointed to
us by the anonymous referee) to convert solutions of det(D2u) = Tr(D2u) into solutions of σ2(D

2u) = 1, but only in
the convex case.

Finally, we think that the following conjecture is quite plausible.

Conjecture. Any Harvey–Lawson solution of SLEθ on a ball B lies in C1(B) (if ϕ is sufficiently smooth).

In the case θ = 0 these solutions lie in C0,1(B) by Corollary 1.2 in [18] (note that in this case the convexity of the
equation is not really necessary there).

2. Harvey–Lawson Dirichlet Duality Theory

In this section we recall the “Dirichlet duality” theory by Harvey and Lawson [11], which establishes (under an
appropriate explicit geometric assumption on the domain Ω) the existence and uniqueness of continuous solutions of
the Dirichlet problem for fully nonlinear, degenerate elliptic equations

F
(
D2u

) = 0. (2)

Following the method by Krylov [12] this theory takes a geometric approach to the equation which eliminates the
operator F and replaces it with a closed subset F of the space Sym2(Rn) of real symmetric n × n matrices, with the



N. Nadirashvili, S. Vlăduţ / Ann. I. H. Poincaré – AN 27 (2010) 1179–1188 1181
property that ∂F is contained in {F = 0}. We need only the case when Ω is a ball when the geometric assumption is
automatically true and thus we do not discuss it below.

The general set-up of the theory is the following. Let F be a given closed subset of the space of real symmetric
matrices Sym2(Rn). The theory formulates and solves the Dirichlet problem for the equation

Hessx(u) ∈ ∂F for all x ∈ Ω

using the functions of “type F ”, i.e., which satisfy

Hessx(u) ∈ F for all x.

A priori these conditions make sense only for C2-functions u. The theory extends the notion to functions which are
only upper semi-continuous.

A closed subset F ⊂ Sym2(Rn) is called a Dirichlet set if it satisfies the condition

F + P ⊂ F

where

P = {
A ∈ Sym2(Rn

)
: A � 0

}
is the subset of non-negative matrices. This condition corresponds to degenerate ellipticity in modern fully nonlinear
theory; it implies that the maximum of two functions of type F is again of type F which is the key requirement
for solving the Dirichlet problem. Note that translates, unions (when closed) and intersections of Dirichlet sets are
Dirichlet sets. The Dirichlet dual set F̃ is defined as

F̃ := −(
Sym2(Rn

)\Int(F )
)
.

By Lemma 4.3 in [11] this is equivalent to the condition

F̃ := {
A ∈ Sym2(Rn

)
: ∀B ∈ F, A + B ∈ P̃

}
,

P̃ being the set of all quadratic forms except those that are negative definite.
An upper semi-continuous (USC) function u is called a subaffine function if it verifies locally the condition:
For each affine function a, if u � a on the boundary of a ball B , then u � a on B .
Note that a C2-function is subaffine if and only if Hess(u) has at least one non-negative eigenvalue at each point.

A USC function u is of type F if u + v is subaffine for all C2-functions v of type F̃ . In other words, u is of type F

if for any “test function” v ∈ C2 of dual type F̃ , the sum u + v satisfies the maximum principle. A function u on a
domain is said to be F -Dirichlet if u is of type F and −u is of type F̃ . Such a function u is automatically continuous,
and at any point x where u is C2, it satisfies the condition

Hessx(u) ∈ ∂F for all x ∈ Ω.

The main result of the theory (in our restricted setting) is Theorem 6.2 in [11].

Theorem (The Dirichlet problem). Let B ⊂ Rn be a ball, and let F be a Dirichlet set. Then for each ϕ ∈ C(∂B),
there exists a unique u ∈ C(B) which is an F -Dirichlet function on B and equals ϕ on ∂B .

Besides, one has [11, Remark 4.9]:

Proposition (Viscosity solutions). In the conditions of the theorem u is a viscosity solution of (2).

Krylov’s idea [12, Theorem 3.2] permits to reconstruct from F a canonical form of the operator F such that:

1) ∂F = {F = 0};
2) F = {F � 0}.
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It is sufficient to define

F(A) := dist(A, ∂F ) for A ∈ F ;
F(A) := −dist(A, ∂F ) for A /∈ F .

The operator F (in its canonical form) is strictly elliptic if for any A ∈ F there exists δ(A) > 0 s.t. F(A + P) �
δ(A) · ‖P‖ for all P ∈ P , and uniformly elliptic if F(A + P) � δ · ‖P‖ for all P ∈ P , A ∈ F and an absolute constant
δ > 0 (note that for F in its canonical form F(A + P) − F(A) � ‖P‖ by definition). Moreover, the function F is
concave iff F is concave, and is convex iff F̃ is convex.

Below we will use the Harvey–Lawson theory only in the case of Hessian equations, i.e. when F(A) depends only
on the eigenvalues λ1(A) � λ2(A) � · · · � λn(A) of A. Then the sets {F = 0},F, F̃ are stable under the action of the
orthogonal group On(R) by conjugation. Consider the map

Sym2(Rn
) −→ Dn ⊂ Rn,

A �−→ (
λ1(A),λ2(A), . . . , λn(A)

)
where

Dn := {
(λ1, λ2, . . . , λn) ∈ Rn: λ1 � λ2 � · · · � λn

}
.

The images {Fλ = 0},Fλ, F̃λ of {F = 0},F, F̃ determine completely their preimages. The sets

{FΛ = 0} :=
⋃

σ∈Sn

{Fσ(λ) = 0} ⊂ Rn,

FΛ :=
⋃

σ∈Sn

Fσ(λ) ⊂ Rn,

F̃Λ :=
⋃

σ∈Sn

F̃σ (λ) ⊂ Rn,

where σ(λ) := (λσ(1), λσ(2), . . . , λσ(n)) are Sn-invariant subsets in Rn which determine {F = 0},F and F̃ as well.
Moreover, it is well known (see, e.g., [2,5]) that the set F is convex iff FΛ is convex.

3. Some properties of Special Lagrangian Equations

In this section we give some properties of the Special Lagrangian Equation

F−c

(
D2u

) = det
(
D2u

) − Tr
(
D2u

) − cσ2
(
D2u

) + c = 0.

Note first that the set {F−c,Λ = 0} is a real cubic surface Sc,Λ with three components (“branches”) which can be
presented as a graph:

λ3 = c(1 − λ1λ2) + λ1 + λ2

λ1λ2 − 1 + c(λ1 + λ2)
. (3)

One easily proves the following by brute force computations:

Lemma 3.1.

1) The components of Sc,Λ are given by

C1 = {
(λ1, λ2, λ3): λ1λ2 − 1 + c(λ1 + λ2) > 0, λ1 > −c, λ2 > −c

}
,

C2 = {
(λ1, λ2, λ3): λ1λ2 − 1 + c(λ1 + λ2) < 0

}
,

C3 = {
(λ1, λ2, λ3): λ1λ2 − 1 + c(λ1 + λ2) > 0, λ1 < −c, λ2 < −c

};
equivalently,
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C1 = {
(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 = π + arctan c

}
,

C2 = {
(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 = arctan c

}
,

C3 = {
(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 = −π + arctan c

}
.

2) For any c ∈ R, C1 is convex, C3 is concave, C2 is neither.

Proof. 1) is straightforward, 2) follows from the Hessian of λ3 in (3):

∂2λ3

∂λ2
1

= 2(λ2 + c)(λ2
2 + 1)(1 + c2)

(λ1λ2 − 1 + cλ1 + cλ2)3
,

∂2λ3

∂λ2
2

= 2(λ1 + c)(λ2
1 + 1)(1 + c2)

(λ1λ2 − 1 + cλ1 + cλ2)3
,

det
(
D2λ3

) = 4(c2 + 1)2(cλ1 + cλ2 + λ2
1λ

2
2 + λ1λ2 + λ2

2 + λ2
1)

(λ1λ2 − 1 + cλ1 + cλ2)5
,

which implies e.g. that the point with λ1 = λ2 = −c − 1/10 for c � 0, λ1 = λ2 = −c + 1/10 for c � 0 is a saddle
point on C2. �

The corresponding Dirichlet sets F i
c , i = 1,2,3, are given (via F i

c,Λ) by

F 1
c,Λ = {

(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 � π + arctan c
}
,

F 2
c,Λ = {

(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 � arctan c
}
,

F 3
c,Λ = {

(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 � −π + arctan c
}
,

and their duals by [11, Prop. 10.4.]:

F̃ 1
c,Λ = {

(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 � −π − arctan c
}
,

F̃ 2
c,Λ = {

(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 � − arctan c
}
,

F̃ 3
c,Λ = {

(λ1, λ2, λ3): arctanλ1 + arctanλ2 + arctanλ3 � π − arctan c
}
.

A simple calculation gives

Lemma 3.2. F i
c is strictly, but not uniformly, elliptic.

Indeed, the derivatives 1
λ2

i +1
> 0 tend to 0 at infinity.

Remark 3.1. If we (artificially) impose the uniform ellipticity condition, we get a smooth solution. Indeed, if F−c

verifies this condition on u, the derivatives

1

λ2
1 + 1

,
1

λ2
2 + 1

,
1

λ2
3 + 1

= (λ1λ2 − 1 + cλ1 + cλ2)
2

(1 + λ2
2)(λ

2
1 + 1)(c2 + 1)

∈
[

1

M
,M

]

for some ellipticity constant M , which implies that u ∈ C1,1 and thus is smooth by [19].
We give now the principal technical result of this section which permits to construct in the next section a singular

solution of SLE.

Proposition 3.1. There exists a ball B = B(0, ε) centered at the origin s.t.

1) The equation

λ1λ2 + λ2λ3 + λ1λ3 = σ2
(
D2u

) = 1

has an analytic solution u0 in B verifying
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(i) u0 = −y4

3
+ 5y2z2 − x4 + 7x2z2 − z4

3
+ 2y2z − 2zx2 + y2

2
+ x2

2
+ O

(
r5),

(ii) λ1 = 1 + O(r), λ2 = 1 + O(r), λ3 = −x2

2
− 3y2

2
− z2 + O

(
r3).

2) The equation

λ1λ2 + λ2λ3 + λ1λ3 + c(λ1λ2λ3 − λ1 − λ2 − λ3) = σ2
(
D2u

) + c
(
det

(
D2u

) − Tr
(
D2u

)) = 1

for c 	= 0,−1 has an analytic solution uc in B verifying

(i) uc = −z4

(c + 1)(c2 + 2c + 2)(c2 + c + 1)(c2 + 1)
+ 2z2y2(4c5 + 4c4 + 8c3 + 5c2 + 4c + 4)

(c + 1)(c2 + c + 1)

+ 2x2z2(4c2 + 4c + 3)

(c + 1)(c2 + c + 1)
+ y4(c2 + 1)(3c4 + 2c3 + 2c2 − 4c − 4)

(c + 1)(c2 + c + 1)
− x4(3c2 + 2c + 2)

(c + 1)(c2 + c + 1)

− 2(c2 + 1)zy2 + 2zx2 + (c2 + c + 1)y2

2
+ (c + 1)x2

2
+ O

(
r5),

(ii) λ1 = c2 + c + 1 + O(r), λ2 = c + 1 + O(r),

λ3 = −x2(c2 + 1)(c2 + 2c + 2) + 3y2c2(c2 + 1)(c2 + 2c + 2) + 3z2

2(c + 1)(c2 + c + 1)(c2 + 1)(c2 + 2c + 2)
+ O

(
r3).

3) The equation (c = −1)

λ1λ2 + λ2λ3 + λ1λ3 + c(λ1λ2λ3 − λ1 − λ2 − λ3) = σ2
(
D2u

) − det
(
D2u

) + Tr
(
D2u

) = 1

has an analytic solution u−1 in B verifying

(i) u−1 = 48y2x2 − 12y2z2 − 119x4

2
+ 93x2z2 + z4

2
+ 2y2z − 9x2z − y2

6
+ x2 + O

(
r5),

(ii) λ1 = 2 + O(r), λ2 = 6y2 + 6x2 + 3z2

2
+ O

(
r3), λ3 = −1

3
+ O(r),

for r = |(x, y, z)|.

Proof. Let us note that

v0 := −y4

3
+ 5y2z2 − x4 + 7x2z2 − z4

3
+ 2y2z − 2zx2 + y2

2
+ x2

2
,

v−1 := 48y2x2 − 12y2z2 − 119x4

2
+ 93x2z2 + z4

2
+ 2y2z − 9x2z − y2

6
+ x2,

and

vc = −z4

(c + 1)(c2 + 2c + 2)(c2 + c + 1)(c2 + 1)
+ 2z2y2(4c5 + 4c4 + 8c3 + 5c2 + 4c + 4)

(c + 1)(c2 + c + 1)

+ 2x2z2(4c2 + 4c + 3)

(c + 1)(c2 + c + 1)
+ y4(c2 + 1)(3c4 + 2c3 + 2c2 − 4c − 4)

(c + 1)(c2 + c + 1)
− x4(3c2 + 2c + 2)

(c + 1)(c2 + c + 1)

− 2
(
c2 + 1

)
zy2 + 2zx2 + (c2 + c + 1)y2

2
+ (c + 1)x2

2

verify their respective equations up to the second-order, i.e.

σ2
(
D2v0

) − 1 = O
(
r3),

σ2
(
D2v−1

) − det
(
D2v−1

) + Tr
(
D2v−1

) − 1 = O
(
r3),

σ2
(
D2vc

) + c
(
det

(
D2uc

) − Tr
(
D2uc

)) − 1 = O
(
r3),
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which can be proven by a brute force (e.g., MAPLE) calculation (e.g.,

σ2
(
D2v0

) − 1 = 4
(−10y4 − 32y2x2 − 50y2z2 − 42x4 − 130x2z2 + 11z4 − 36y2z + 4x2z + 4z3)).

To prove 1) one considers the following Cauchy problem for the equation F0 = σ2(D
2u) − 1 = 0:

u|z=0 = v0|z=0 = −y4

3
− x4 + y2

2
+ x2

2
,(

∂u

∂z

)
z=0

=
(

∂v0

∂z

)
z=0

= 2y2 − 2x2.

Since the equation is elliptic, we get by the Cauchy–Kowalevskaya theorem a unique local analytic solution u0
which should coincide with v0 within to fourth-order.

The same argument is valid for

Fc = σ2
(
D2u

) + c
(
det

(
D2u

) − Tr
(
D2u

)) − 1 = 0

and the Cauchy problem

u|z=0 = vc|z=0

= y4(c2 + 1)(3c4 + 2c3 + 2c2 − 4c − 4)

3(c + 1)(c2 + c + 1)
− x4(3c2 + 2c + 2)

3(c + 1)(c2 + c + 1)
+ y2((c2 + c + 1)

2
+ x2(c + 1)

2
,

(
∂u

∂z

)
z=0

=
(

∂vc

∂z

)
z=0

= −2
(
c2 + 1

)
y2 + 2x2.

The claim on the eigenvalues follows directly from the formulas

det
(
D2v0

) = −x2

2
− 3y2

2
− z2 + O

(
r3),

det
(
D2vc

) = −x2

2
− 3y2c2

2
− 3z2

(c2 + 1)(c2 + 2c + 2)
+ O

(
r3)

which are straightforward (e.g.

det
(
D2v0

) = 120y4x2 − 140y4z2 + 168y2x4 + 1440y2x2z2 − 994y2z4 − 420x4z2 − 1350x2z4 − 140z6

+ 40y4z + 192y2x2z − 136y2z3 − 168x4z − 120x2z3 − 16z5 − 10y4 + 20y2x2 + 28y2z2

− 42x4 + 28x2z2 − 8z4 − 24y2z + 40x2z − 3y2

2
− x2

2
− z2).

The argument works for 3) as well. �
4. Legendre Transform

Let us recall some essential properties see, e.g. §1.6 in [7], of the Legendre Transform (for simplicity of notation
we consider here only the case of 3 dimensions used below). Let f be a C2-function defined in a domain D ⊂ R3 s.t.
its gradient map ∇f :D −→ R3 maps bijectively D onto a domain G. Let g = (∇f )−1 = (P,Q,R) :G −→ D be the
map inverse to the gradient. Then the Legendre Transform f̃ :G −→ R is given by

f̃ (u, v,w) := uP (u, v,w) + vQ(u, v,w) + wR(u,v,w) − f
(
g(u, v,w)

)
. (4)

Suppose also that det(D2f ) 	= 0 except for a point a ∈ D with b = (∇f )(a). Then (D2f̃ ) = (D2f )−1 on G − {b}.
We want then to apply the Legendre Transform to the solutions uc on a small ball centered at zero. We need thus

to verify that ∇uc is injective. One finds

∇uc = [
U(x, y, z)x + (c + 1)x,V (x, y, z)y + (

c2 + c + 1
)
y,−4z3mc + x2W1(z) + y2W2(z)

]
,

where U(x,y, z),V (x, y, z) ∈ R{{x, y, z}}, W1(z),W2(z) ∈ R{{z}}, U(0,0,0) = V (0,0,0) = 0, mc :=
1/((c + 1)(c2 + 2c + 2)(c2 + c + 1)(c2 + 1)) > 0 for c 	= 0,−1, m−1 := 1/2, m0 := 1/3.
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To prove the injectivity of the gradient map we use Theorem 1.1 of [9] which says in our situation that the degree
of ∇uc equals dimR Q(∇uc)− 2 dimR I where I is an ideal of Q(∇uc) which is maximal with respect to the property
I 2 = 0, the ring Q(∇uc) being defined as

Q(∇uc) := R
{{x, y, z}}/(∂uc/∂x, ∂uc/∂y, ∂uc/∂z).

Therefore, to prove the injectivity it is sufficient to prove

Lemma 4.1. The ring Q(∇uc) is isomorphic to R[h]/(h3).

Proof. For simplicity of notation we consider only the case c = 0, the general case being completely similar. Then

∇u0 =
[
U(x, y, z)x + x,V (x, y, z)y + y,−4z3

3
+ x2W1(z) + y2W2(z)

]

and

Q(∇uc) = R
{{x, y, z}}/

(
U(x, y, z)x + x,V (x, y, z)y + y,−4z3

3
+ x2W1(z) + y2W2(z)

)
.

If one sets p := x + U(x, y, z)x, q := y + V (x, y, z)y one sees that Q(∇u0) is isomorphic to R{{p,q, z}}/(p,q,

− 4z3

3 + p2W ′
1(p, q, z) + q2W ′

2(p, q, z)) and thus to R{{z}}/(− 4z3

3 ) which implies the result. �
We can now prove our main result.

Theorem 4.1. Let θ ∈ ]−π
2 , π

2 [, and let

Fθ (u) = arctanλ1 + arctanλ2 + arctanλ3 − θ = 0.

Then for some ball Bε centered at the origin there exists an analytic function fθ on ∂Bε s.t. the unique (Harvey–
Lawson) solution uθ of the Dirichlet problem{

Fθ (u) = 0 in Bε,

u = fθ on ∂Bε

verifies:

(i) uθ ∈ C1,1/3;
(ii) uθ /∈ C1,δ for ∀δ > 1/3.

Proof. We can apply the Legendre Transform to uc with c = cot(θ) for θ 	= 0, and to u0 for θ = 0 thanks to the
injectivity of ∇uc. Set uθ := ũc in this situation. Since uc with c 	= 0 verifies the equation

σ2
(
D2u

) + c
(
det

(
D2u

) − Tr
(
D2u

)) − 1 = 0,

its Legendre Transform ũc verifies

c
(
σ2

(
D2u

) − 1
) + det

(
D2u

) − Tr
(
D2u

) = 0,

the signature of (λ1(ũc), λ2(ũc), λ3(ũc)) being (+,+,−) for c � −1 and (−,−,+) for c < −1 which implies that ũc

lies on the middle branch of this equation. The same is true for ũ0 and the equations

σ2
(
D2u

) − 1 = 0, det
(
D2u

) − Tr
(
D2u

) = 0.

The function ũc is analytic outside zero and belongs to C1,1/3(Bε) which proves (i). Indeed, it is sufficient to prove
the boundness of the C1,1/3-norm of ũc on a small ball. Due to the elementary relation 3|f |2|∇f | = |∇(f 3)| which
holds for C1-functions, it will be sufficient to prove the boundness of the product |Dũc|2|D2ũc|. To prove this last
assertion we note that
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∂ũc

∂u
= ∂

∂u

(
uP + vQ + wR − uc(P,Q,R)

) = P,

∂ũc

∂v
= ∂

∂v

(
uP + vQ + wR − uc(P,Q,R)

) = Q,

∂ũc

∂w
= ∂

∂w

(
uP + vQ + wR − uc(P,Q,R)

) = R,

since ∇uc = (u, v,w). Thus, |Dũc|2 = P 2 + Q2 + R2. On the other hand, since the Hessian D2(ũc) = D2(uc)
−1,

the matrix det(D2(uc))D
2(ũc) has bounded entries and thus ‖ũc‖C2 � C

|det(D2(uc))| for an absolute constant C (e.g.

for C = 10 in the case c = 0). Since by Proposition 3.1 |det(D2(uc))| � C′(c)(P 2 + Q2 + R2) for an absolute
constant C′(c) (e.g., C′(0) = 1/2 − ε) we get the boundness of the product. We need then to prove that ũc is a
Harvey–Lawson solution of the corresponding Dirichlet problem.

This is implied by the following form of the Alexandrov maximum principle [1]:

Proposition 4.1. Let F be a Dirichlet domain, and let u = v + w where v is of F̃ -type. If

u ∈ C2(B − {0}) ∩ C1(B)

and D2u is non-negatively defined on B − {0} then

sup
B

u � sup
∂B

u.

(ii) Let u = 0, v = 0,w 	= 0. Then

λ3(uθ ) = −2m−1
c w−2/3/3 + o

(
w−2/3)

which contradicts the condition uθ ∈ C1,δ for δ > 1/3. �
Remark 4.1. Let us consider the Special Lagrangian submanifold Lu,c ⊂ C3 corresponding to our singular solution uc

i.e. the graph of the map

i∇uc :B −→ iR3.

It is easy to show that it is smooth, and the singularity of uc implies only that the projection Lu,c −→ B is singular
(map between smooth manifolds).
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[13] N. Nadirashvili, S. Vlăduţ, Nonclassical solutions of fully nonlinear elliptic equations, Geom. Funct. Anal. 17 (2007) 1283–1296.
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