
Ann. I. H. Poincaré – AN 27 (2010) 1189–1204
www.elsevier.com/locate/anihpc

Higher derivatives estimate for the 3D Navier–Stokes equation
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Abstract

In this article, a nonlinear family of spaces, based on the energy dissipation, is introduced. This family bridges an energy space
(containing weak solutions to Navier–Stokes equation) to a critical space (invariant through the canonical scaling of the Navier–
Stokes equation). This family is used to get uniform estimates on higher derivatives to solutions to the 3D Navier–Stokes equations.
Those estimates are uniform, up to the possible blowing-up time. The proof uses blow-up techniques. Estimates can be obtained
by this means thanks to the galilean invariance of the transport part of the equation.
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1. Introduction

In this paper, we investigate estimates of higher derivatives of solutions to the incompressible Navier–Stokes equa-
tions in dimension 3, namely:

∂tu + div(u ⊗ u) + ∇P − �u = 0, t ∈ (0,∞), x ∈ R
3,

divu = 0. (1)

The initial value problem is endowed with the conditions:

u(0, ·) = u0 ∈ L2(
R

3).
The existence of weak solutions for this problem was proved long ago by Leray [11] and Hopf [8]. For this, Leray

introduces a notion of weak solution. He shows that for any initial value with finite energy u0 ∈ L2(R3) there exists
a function u ∈ L∞(0,∞;L2(R3)) ∩ L2(0,∞; Ḣ 1(R3)) verifying (1) in the sense of distribution. From that time on,
much effort has been made to establish results on the uniqueness and regularity of weak solutions. However those
two questions remain yet mostly open. Especially it is not known until now if such a weak solution can develop
singularities in finite time, even considering smooth initial data. We present our main result on a laps of time (0, T )

where the solution is indeed smooth (with possible blow-ups both at t = 0 and t = T ). We will carefully show,
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however, that the estimates do not depend on the blow-up time T , but only on ‖u0‖L2 and inf(t,1). The aim of this
paper is to show the following theorem.

Theorem 1. For any t0 > 0, any Ω bounded subset of (t0,∞) × R
3, any integer n � 1, any γ > 0, and any p � 0

such that

4

p
> n + 1, (2)

there exists a constant C, such that the following property holds.
For any smooth solution u of (1) on (0, T ) (with possible blow-up at 0 and T ), we have∥∥∇nu

∥∥
Lp(Ω∩[(0,T )×R3]) � C

(∥∥u0
∥∥2(1+γ )/p

L2(R3)
+ 1

)
.

Note that the constant C does not depend on the solution u nor on the blowing-up time T .

Note that for n � 3 we consider Lp spaces with p < 1. Those spaces are not complete for the weak topology. For
this reason the result cannot be easily extend to general weak solutions after the possible blow-up time. However, up
to n = 2, the result can be proved in this context. For this reason, along the proof, we will always consider suitable
weak solutions, following [2]. That is, solutions verifying in addition to (1) the generalized energy inequality in the
sense of distribution:

∂t

|u|2
2

+ div

(
u

|u|2
2

)
+ div(uP ) + |∇u|2 − �

|u|2
2

� 0, t ∈ (0,∞), x ∈ R
3. (3)

Moreover, by interpolation, the result of Theorem 1 can be extended to the whole real derivative coefficients,
1 < d � 2, for ‖�d/2u‖Lp with

4

p
> d + 1.

Our result can be seen as a kind of anti-Sobolev result. Indeed, as we will see later, ‖∇u‖2
L2 is used as a pivot

quantity to control higher derivatives on the solution. The result for d = 2 was already obtained with completely
different techniques by Constantine [4]. It has been extended in a slightly better space by Lions [13]. He shows that
∇2u can be bounded in the Lorentz space L4/3,∞.

In a standard way, using the energy inequality and interpolation, we get estimates on �d/2u ∈ Lp((0,∞) × R
3)

for

5

p
= d + 3

2
, 0 � d � 1. (4)

The Serrin–Prodi conditions (see [18,5,20]) ensure the regularity for solutions such that �d/2u ∈ Lp((0,∞) × R
3)

for

5

p
= d + 1, 0 � d < ∞. (5)

Those two families of spaces are given by an affine relation on d with respect to 1/p with slope 5. Notice that the
family of spaces present in Theorem 1 has a different slope. Imagine, that we were able to extend this result along
the same line with d < 1. For d = 0, we would obtain almost u ∈ L4((0,∞) × R

3), which would imply that the
energy inequality (3) is an equality (see [21]). Notice also that the line of this new family of spaces crosses the line
of the critical spaces (5) at d = −1, 1/p = 0. This point corresponds (at least formally) to the Tataru and Koch
result on regularity of solutions small in L∞(0,∞;BMO−1(R3)) (see [9]). However, at this time, due to the “anti-
Sobolev” feature of the proof, obtaining results for d < 1 seems out of reach. Note that different higher derivatives
estimates have been obtained by Foiaş, Guillopé, and Temam [6]. In a different direction, Giga and Sawada studied
higher derivatives of mild solutions to Navier–Stokes equations to obtain the space analyticity of those solutions
(see [7]).
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To see where lie the difficulties, let us focus on the result on the third derivatives. Consider the gradient of the
Navier–Stokes equations (1),

∂t∇u − �∇u = −∇u · ∇u − ∇2P − (u · ∇)∇u.

Note that the two first right-hand side terms lie in L1((0,∞) × R
3) (for the pressure term, see [13]). Parabolic

regularity are not complete in L1. This justify the fact that we miss the limit case L1. But, surprisingly, the worst term
is the transport one (u · ∇)∇u. To control it in L1 using the control on D2u in L4/3,∞ of Lions [13], we would need
u ∈ L4,1, which is not known. To overcome this difficulty, we will consider the solution in another frame, locally, by
the following flow.

The idea of the proof comes from the result of partial regularity obtained by Caffarelli, Kohn and Nirenberg [2].
This paper extended the analysis about the possible singular points set, initialized by Scheffer in a series of paper
[14–17]. The main remark in [2] is that the dissipation of entropy

D(u) =
∞∫

0

∫
R3

|∇u|2 dx dt (6)

has a scaling, through the standard invariance of the equation, which is far more powerful that any other quantities
from the energy scale (4). Let us be more specific. The standard invariance of the equation gives that for any (t0, x0) ∈
R

+ × R
3 and ε > 0, if u is a suitable solution of the Navier–Stokes equations (1), (3), then

uε(t, x) = εu
(
t0 + ε2t, x0 + εx

)
(7)

is also solution to (1), (3). The dissipation of energy of this quantity is then given by

D(uε) = ε−1 D(u).

This power of ε made possible in [2] to show that the Hausdorff dimension of the set of blow-up points is at most 1.
This was a great improvement of the result obtained by Scheffer who gives 5/3 as an upper bound for the Hausdorff
dimension of this set. We can notice that it is what we get considering the quantity of the energy scale (4) with d = 0,
p = 10/3:

F (u) =
∞∫

0

∫
R3

|u|10/3 dx dt.

Indeed:

F (uε) = ε−5/3 F (u).

The idea of this paper is to give a quantitative version of the result of [2], in the sense, of getting control of norms of
the solution which have the same nonlinear scaling that D. Indeed, for any norm of the nonlinear scaling (2), we have
(in the limit case)∥∥∇nuε

∥∥p

Lp = ε−1
∥∥∇nu

∥∥p

Lp .

The paper is organized as follows. In the next section, we give some preliminaries and fix some notations. We introduce
the local frame the following flow in the third section. The fourth section is dedicated to a local result providing a
universal control of the higher derivatives of u from a local control of the dissipation of the energy ‖∇u‖2

L2 and a
corresponding quantity on the pressure (see Proposition 10). Ideally, we would like to consider a quantity on the
pressure which has the same nonlinear scaling as D(u). The corresponding quantity is ‖∇2P‖L1 . Unfortunately, we
need a slightly better integrability in time for the local study. This is the reason why we miss the limit case Lp,∞ with

4

p
= n + 1.

This is also the reason why we need to work with fractional Laplacian for the pressure: ‖�−s∇2P‖Lp with 0 < s <

1/2. In the last section, we show how this local study leads to our main theorem.
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2. Preliminaries and notations

We gather in this section some elementary lemmas which will be useful later. They are either well-known or follow
standard ideas. We do not claim any originality in this section.

Let us denote Qr = (−r2,0) × Br where Br = B(0, r), the ball in R
3 of radius r and centered at 0.

For F ∈ Lp(R+ × R
3), we define the Maximal function in x only by

MF(t, x) = sup
r>0

1

r3

∫
Br

∣∣F(t, x + y)
∣∣dy.

We recall that for any 1 < p < ∞, there exists Cp such that for any F ∈ Lp(R+ × R
3),

‖MF‖Lp(R+×R3) � Cp‖F‖Lp(R+×R3).

We begin with an interpolation lemma. It is a straightforward consequence of a result in [1]. We state it here for
further reference.

Lemma 2. For any function F such that (−�)d1/2F lies in Lp1(0,∞;Lq1(R3)) and

(−�)d2/2F ∈ Lp2
(
0,∞;Lq2

(
R

3))
with

d1, d2 ∈ R, 1 � p1,p2 � ∞, 1 < q1, q2 < ∞,

we have (−�)d/2F ∈ Lp(0,∞;Lq(R3)) with∥∥(−�)d/2F
∥∥

Lp(0,∞;Lq(R3))
�

∥∥(−�)d1/2F
∥∥θ

Lp1 (0,∞;Lq1 (R3))

∥∥(−�)d2/2F
∥∥1−θ

Lp2 (0,∞;Lq2 (R3))
,

for any d,p,q such that

1

q
= θ

q1
+ 1 − θ

q2
,

1

p
= θ

p1
+ 1 − θ

p2
,

d = θd1 + (1 − θ)d2,

where 0 < θ < 1.

Proof. Exercise 31, p. 168 in [1] shows that for any 0 < t < ∞, we have∥∥(−�)d/2F(t)
∥∥

Lp(R3)
�

∥∥(−�)d1/2F(t)
∥∥θ

Lp1 (R3)

∥∥(−�)d2/2F(t)
∥∥1−θ

Lp2 (R3)
.

Interpolation in the time variable gives the result. �
In the second lemma we show that we can control a local L1 norm on a function f by its mean value and some

local control on the maximal function of (−�)−s∇f , 0 < s < 1/2. This extends the fact that we can control the local
L1 norm by the mean value and a local Lp norm of the gradient. But due to the nonlocal feature of the fractional
Laplacian, we need to consider the maximal function to recapture all the information needed.

Lemma 3. Let 0 < s < 1/2, q � 1, p � 1. For any φ ∈ C∞(R3), φ � 0, compactly supported in B1 with∫
R3 φ(x)dx = 1, there exists C > 0 such that, for any function f ∈ Lq(R3) with (−�)−s∇f ∈ Lp(R3), we have

f ∈ L1(B1) and

‖f ‖L1(B1)
� C

(∣∣∣∣
∫
R3

f (x)φ(x)dx

∣∣∣∣ + ∥∥M
(
(−�)−s∇f

)∥∥
Lp(B1)

)
.
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Proof. Let us denote g = (−�)−s∇f . Since f ∈ Lq(R3), we have

f = −(−�)s−1 divg.

So, for any x ∈ B1,

f (x) = Cs

∫
R3

g(y)

|x − y|2(1+s)
· (x − y)

|x − y| dy,

and

f (x) −
∫
R3

φ(z)f (z) dz = Cs

∫
R3

∫
R3

φ(z)g(y)

(
(x − y)/|x − y|
|x − y|2(1+s)

− (z − y)/|z − y|
|y − z|2(1+s)

)
dy dz.

Note that, for k � 2, y ∈ B2k \ B2k−1 , x ∈ B1, z ∈ B1, we have∣∣∣∣ (x − y)/|x − y|
|x − y|2(1+s)

− (z − y)/|z − y|
|y − z|2(1+s)

∣∣∣∣ � C

2k(3+2s)
.

Moreover∫
B1

∫
B1

∫
B2

φ(z)
∣∣g(y)

∣∣∣∣∣∣ (x − y)/|x − y|
|x − y|2(1+s)

− (z − y)/|z − y|
|y − z|2(1+s)

∣∣∣∣dy dzdx

�
∫
B3

∫
B1

∫
B2

φ(z)|g(y)|
|x|2(1+s)

dy dz dx +
∫
B1

∫
B3

∫
B2

sup |φ||g(y)|
|z|2(1+s)

dy dz dx

� 2Cs‖g‖L1(B1)
� 2Cs‖Mg‖L1(B1)

,

since 2(1 + s) < 3. Hence∥∥∥∥f −
∫

φ(z)f (z) dz

∥∥∥∥
L1(B1)

�
∫
B1

∫
B1

∫
B2

φ(z)
∣∣g(y)

∣∣∣∣∣∣ (x − y)/|x − y|
|x − y|2(1+s)

− (z − y)/|z − y|
|y − z|2(1+s)

∣∣∣∣dy dzdx

+
∞∑

k=2

∫
B1

∫
B1

∫
(B2k \B2k−1 )

φ(z)
∣∣g(y)

∣∣∣∣∣∣ (x − y)/|x − y|
|x − y|2(1+s)

− (z − y)/|z − y|
|y − z|2(1+s)

∣∣∣∣

� 2Cs‖Mg‖L1(B1)
+ C

∞∑
k=2

∫
B2k

|g(y)|
2k(3+2s)

dy

� 2Cs‖Mg‖L1(B1)
+ 8C

∞∑
k=2

2−2sk 1

|B2k+1 |
∫
B1

∫
B2k+1

∣∣g(y + u)
∣∣dy du

� 2Cs‖Mg‖L1(B1)
+ C‖Mg‖L1(B1)

∞∑
k=2

[
2−2s

]k
� Cs‖Mg‖L1(B1)

,

whenever 0 < s < 1/2. �
We give now very standard results of parabolic regularity. There are not even optimal, but enough for our study.

Lemma 4. For any 1 < p < ∞, t0 > 0, there exists a constant C such that the following is true. Let f,g ∈
Lp((−t0,0) × R

3) be compactly supported in B1 in x. Then there exists a unique u ∈ Lp(−t0,0;W 1,p(R3)) solution
to
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∂tu − �u = g + divf, −t0 � t � 0, x ∈ R
3,

u(−t0, x) = 0, x ∈ R
3.

Moreover,

‖u‖Lp(−t0,0;W 1,p(B1))
� C

(‖f ‖Lp((−t0,0)×R3) + ‖g‖Lp((−t0,0)×R3)

)
. (8)

If g ∈ L1(−t0,0;L∞(R3)) and f ∈ L1(−t0,0;W 1,∞(R3)), then

‖u‖L∞((−t0,0)×R3) � C
(‖g‖L1(−t0,0;L∞(R3)) + ‖f ‖L1(−t0,0;W 1,∞(R3))

)
.

Proof. We get the solution using the Green function:

u(t, x) =
t∫

−t0

1

4π(t − s)3/2

∫
R3

e
− |x−y|2

4(t−s)
(
g(s, y) + divf (s, y)

)
dy ds.

From this formulation, using that zne−z2
are bounded functions, we find that

∣∣u(t, x)
∣∣ � C

‖f ‖L1((−t0,0)×B1)
+ ‖g‖L1((−t0,0)×B1)

|x|3 , for |x| > 2,−t0 � t < 0. (9)

Standard Solonnikov’s parabolic regularization result gives (8) (see for instance [19]). Finally, if g ∈ L1(−t0,0;
L∞(R3)) and f ∈ L1(−t0,0;W 1,∞(R3)), then the function

v(t, x) =
t∫

0

(∥∥g(s)
∥∥

L∞ + ∥∥divf (s)
∥∥

L∞
)
ds

is a supersolution thanks to (9). The global bound follows. �
The last lemma of this section is a standard decomposition of the pressure term as a close range part and a long

range part.

Lemma 5. Let B and B be two balls such that

B � B.

Then for any 1 < p < ∞, there exists a constant C > 0 and a family of constants {Cd,q \ d, q integers} (depending
only on p, B and B) such that for any R ∈ L1(B) and A ∈ [Lp(B)]N×N symmetric matrix, verifying

−�R = div divA, in B,

we have a decomposition

R = R1 + R2,

with, for any integer q � 0, d � 0:

‖R1‖Lp(B) � C‖A‖Lp(B),∥∥∇dR2
∥∥

L∞(B)
� Cd,q

(‖A‖L1(B) + ‖R‖W−q,1(B)

)
.

Moreover, if A is Lipschitzian, then we can choose R1 such that

‖R1‖L∞(B) � C
(‖∇A‖L∞(B) + ‖A‖L∞(B)

)
.
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Proof. Let B∗ be a ball such that

B � B∗ � B,

with a distance between B and B∗c bigger that D/2, where D is the distance between B and Bc. Consider a smooth
nonnegative cut-off function ψ , 0 � ψ � 1 such that

ψ(x) = 1 in B∗,
= 0 in Bc.

Then the function ψR (defined in R
3) is solution in R

3 to

−�(ψR) = div div(ψA) + R�ψ + A : ∇2ψ − 2 div{∇ψ · A + R∇ψ}.
We denote

R1 = (−�)−1 div div(ψA),

R2 = (−�)−1(R�ψ + A : ∇2ψ − 2div{∇ψ · A + R∇ψ}).
We have, on B , R = R1 + R2. The operator (−�)−1 div div is a Riesz operator, so there exists a constant (depending
only on p and ψ ) such that

‖R1‖Lp(R3) � C‖ψA‖Lp(R3) � C‖A‖Lp(B),

‖R1‖Cα(R3) � C‖ψA‖Cα(R3) � C
(‖∇A‖L∞(B) + ‖A‖L∞(B)

)
.

Using the fact that ∇ψ and ∇2ψ vanishes on B∗ ∪ Bc, we have for any x ∈ B:

∣∣∇dR2(x)
∣∣ =

∣∣∣∣
∫
R3

∇d

(
1

|x − y|
)(

R�ψ + A : ∇2ψ
)
(y) dy + 2

∫
R3

∇d+1
(

1

|x − y|
)

{∇ψ · A + R∇ψ}(y) dy

∣∣∣∣
�

∥∥∇2ψ
∥∥

L∞‖A‖L1(B) sup
|x−y|�D/2

∣∣∣∣∇d

(
1

|x − y|
)∣∣∣∣

+ 2‖∇ψ‖L∞‖A‖L1(B) sup
|x−y|�D/2

∣∣∣∣∇d+1
(

1

|x − y|
)∣∣∣∣

+ ‖R‖W−q,1(B) sup
|x−y|�D/2

∣∣∣∣∇q

[
∇d

(
1

|x − y|
)

�ψ

]∣∣∣∣
+ 2‖R‖W−q,1(B) sup

|x−y|�D/2

∣∣∣∣∇q

[
∇d+1

(
1

|x − y|
)

∇ψ

]∣∣∣∣
� Cd

[(
2

D

)d+2

+
(

2

D

)d+1]
‖A‖L1(B) + Cd,q

[(
2

D

)d+1

+
(

2

D

)q+d+2]
‖R‖W−q,1(B). �

3. Blow-up method along the trajectories

Our result relies on a local study, which was the keystone of the partial regularity result of [2] (see [12] for an other
proof). We use, here, the version of [22]. This version is better for our purpose because it requires a bound on the
pressure only in Lp in time for any p > 1.

Proposition 6. (See [22].) For any p > 1, there exists η > 0, such that the following property holds. For any u, suitable
weak solution to the Navier–Stokes equations (1), (3), in Q1, such that

sup
−1<t<0

(∫ ∣∣u(t, x)
∣∣2

dx

)
+

∫
|∇u|2 dx dt +

0∫ (∫
|P |dx

)p

dt � η, (10)
B1 Q1 −1 B1
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we have

sup
(t,x)∈Q1/2

∣∣u(t, x)
∣∣ � 1.

As explained in the introduction, the proof of Theorem 1 relies on this local control. From there we can get control
on higher derivatives of u. We first show the following lemma. It introduces the pivot quantity. Note that the ideal
pivot quantity would be ‖∇u‖2

L2(L2)
+‖∇2P‖L1(L1). This is because this quantity scales as 1/ε through the canonical

scaling. However, to use Proposition 6 locally, we need a better integrability in time on the pressure. For this reason,
we add the quantity on the pressure involving the fractional Laplacian. We get a better integrability in time on the
pressure, at the cost of a slightly worst rate of change in ε through the canonical scaling. Finally, due to the nonlocal
character of the fractional Laplacian, the maximal function is used in order to recapture all the local information
needed (see Lemma 3).

Lemma 7. For any 0 < δ < 1, there exists γ > 0 and a constant C > 0 such that for any u solution to (1), (3), with
u0 ∈ L2(R3), we have

∞∫
0

∫
R3

(∣∣M(
(−�)−δ/2∇2P

)∣∣1+γ + ∣∣∇2P
∣∣ + |∇u|2)dx dt � C

(∥∥u0
∥∥2

L2(R3)
+ ∥∥u0

∥∥2(1+γ )

L2(R3)

)
.

Moreover, γ converges to 0 when δ converges to 0.

Proof. Integrating in x the energy equation (3) gives that

∞∫
0

∫
R3

|∇u|2 dx dt �
∥∥u0

∥∥2
L2(R3)

, (11)

together with

‖u‖2
L∞(0,∞;L2(R3))

�
∥∥u0

∥∥2
L2(R3)

.

By Sobolev embedding and interpolation, this gives in particular that

‖u‖2
L4(0,∞;L3(R3))

� C
∥∥u0

∥∥2
L2(R3)

. (12)

For the pressure, we have ∇2P ∈ L1(H) (see Lions [13]). Indeed,

∇2P = (∇2�−1)∑
ij

∂iuj ∂jui = (∇2�−1)∑
i

(∂iu) · ∇ui.

For any i, we have rot(∇ui) = 0 and div ∂iu = 0. Hence, from the div-rot lemma (see Coifman, Lions, Meyer and
Semmes [3]), we have∥∥∥∥∑

i

∂iu · ∇ui

∥∥∥∥
L1(H)

� ‖∇u‖2
L2 .

But ∇2�−1 is a Riesz operator (in x only) which is bounded from H to H. Hence:∥∥∇2P
∥∥

L1(R+×R3)
� C

∥∥∇2P
∥∥

L1(R+;H(R3))
� C‖∇u‖2

L2(R+×R3)
. (13)

Using the Sobolev imbedding with Hardy space (see Lemarié-Rieusset [10, Thm. 6.9]), we get from the second
estimate of (13) that for any 0 < s < 1,∥∥(−�)−s/2∇2P

∥∥
1 p 3 � C

∥∥u0
∥∥2

2 (14)

L (0,∞;L (R )) L
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for

1

p
= 1 − s

3
,

we have also

(−�)−1/2∇2P =
∑
ij

[
(−�)−3/2∇2∂i

]
(∂juiuj ).

The operators (−�)−3/2∇2∂i are Riesz operators so, together with (11), (12), we have∥∥(−�)−1/2∇2P
∥∥

L4/3(0,∞;L6/5(R3))
� C

∥∥u0
∥∥2

L2(R3)
. (15)

By interpolation with (14), using Lemma 2 with θ = 1/(1 + 4s), we find∥∥M
[
(−�)−δ/2∇2P

]∥∥
L1+γ ((0,∞)×R3)

� C
∥∥u0

∥∥2
L2(R3)

with

δ = 5s

1 + 4s
, γ = s

1 + 3s
.

Note that γ converges to 0 when δ goes to 0. This, together with (13) and (11), gives the result. �
Let us fix from now on a smooth cut-off function 0 � φ � 1 compactly supported in B1 and such that∫

R3

φ(x)dx = 1. (16)

For any ε > 0, we define

uε(t, x) =
∫
R3

φ(y)u(t, x + εy)dy. (17)

Note that uε ∈ L∞(0,∞;C∞(R3)) and divuε = 0. We define the flow:

∂X

∂s
= uε

(
s,X(s, t, x)

)
,

X(t, t, x) = x. (18)

Note that the flow X depends on ε. Consider, for any 0 < δ < 1 and η∗ > 0:

Ωδ
ε =

{
(t, x) ∈ (

4ε2,∞) × R
3
∣∣∣ 1

ε

t∫
t−4ε2

∫
B2ε

F δ
(
s,X(s, t, x) + y

)
ds dy � η∗εδ

}
,

where

Fδ(t, x) = ∣∣M(
(−�)−δ/2∇2P

)∣∣1+γ + |∇u|2 + ∣∣∇2P
∣∣,

and γ is defined in Lemma 7. We then have the following lemma.

Lemma 8. There exists a constant C such that for any 0 < ε < 1, 0 < δ < 1, and η∗ > 0 we have

∣∣[Ωδ
ε

]c∣∣ � C

(‖u0‖2
L2(R3)

+ ‖u0‖2(1+γ )

L2(R3)

η∗

)
ε4−δ.
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Proof. Define for t > 4ε2,

Fδ
ε (t, x) = 1

(2ε)5

t∫
t−4ε2

∫
B2ε

F δ
(
s,X(s, t, x) + y

)
ds dy. (19)

We have

∞∫
4ε2

∫
R3

Fδ
ε (t, x) dx dt =

∞∫
4ε2

∫
R3

1

(2ε)5

0∫
−4ε2

∫
B2ε

F δ
(
t + s,X(t + s, t, x) + y

)
ds dy dx dt

= 1

(2ε)5

∫
B2ε

0∫
−4ε2

∞∫
4ε2

∫
R3

Fδ
(
t + s,X(t + s, t, x) + y

)
dx dt ds dy

= 1

(2ε)5

∫
B2ε

0∫
−4ε2

∞∫
4ε2

∫
R3

Fδ(t + s, z + y)dz dt ds dy

�
(

1

(2ε)5

∫
B2ε

0∫
−4ε2

ds dy

) ∞∫
0

∫
R3

Fδ(t, z) dz dt

=
∞∫

0

∫
R3

(∣∣M(
(−�)−δ/2∇2P

)∣∣1+γ + |∇u|2 + ∣∣∇2P
∣∣)dx dt.

In the second equality, we have used Fubini, in the third we have used the fact that X is an incompressible flow. In the
fourth equality we did the change of variable in (t, z)

t = t + s, z = y + z.

We then find, thanks to Tchebychev inequality,∣∣∣∣
{
Fδ

ε (t, x) � η∗εδ

2(2ε)4

}∣∣∣∣ � 25

∫ ∞
0

∫
R3 Fδ

ε (t, x) dx dt

η∗ ε4−δ.

We conclude thanks to Lemma 7. �
We fix δ > 0. For any fixed (t, x) ∈ Ωδ

ε with t � 4ε2, we define vε,Pε , (depending on this fixed point (t, x)) as
functions of two local new variables (s, y) ∈ Q2:

vε(s, y) = εu
(
t + ε2s,X

(
t + ε2s, t, x

) + εy
) − εuε

(
t + ε2s,X

(
t + ε2s, t, x

))
, (20)

Pε(s, y) = ε2P
(
t + ε2s,X

(
t + ε2s, t, x

) + εy
) + εy∂s

[
uε

(
t + ε2s,X

(
t + ε2s, t, x

))]
. (21)

We have the following proposition.

Proposition 9. The function (vε,Pε) is solution to (1), (3) for (s, y) ∈ (−4,0) × R
3. It verifies:∫

R3

φ(y)vε(s, y) dy = 0, s � −4, (22)

0∫ ∫
|∇vε|2 dy ds � η∗, (23)
−4 B2
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0∫
−4

∫
B2

∣∣∇2Pε

∣∣dy ds � η∗, (24)

0∫
−4

∫
B2

∣∣M[
(−�)−δ/2∇2Pε

]∣∣1+γ
dy ds � η∗. (25)

Proof. The fact that (vε,Pε) is solution to (1), (3) and verifies (22) comes from its definition (20), (21), (16) and (17).
We have∫

Q2

(|∇vε|2 + ∣∣∇2Pε

∣∣)dy ds +
∫
Q2

∣∣M[
(−�)−δ/2∇2Pε

]∣∣1+γ
dy ds

=
∫
Q2

(
ε4(|∇u|2 + ∣∣∇2P

∣∣) + ε(4−δ)(1+γ )
∣∣M[

(−�)−δ/2∇2P
]∣∣1+γ )(

t + ε2s,X
(
t + ε2s, t, x

) + εy
)
dy ds

� 1

ε1+δ

t∫
t−4ε2

∫
B2ε

(|∇u|2 + ∣∣∇2P
∣∣ + M

[
(−�)−δ/2∇2P

]1+γ )(
s,X(s, t, x) + y

)
ds dy

� η∗. (26)

In the first equality, we used the definition of vε and Pε , in the second, we used the change of variable
(t + ε2s, εy) → (s, y) (together with the fact that δ < 4 and γ � 0), and the last inequality comes from the fact
that (t, x) lies in Ωδ

ε . �
Our aim is to apply proposition 6 to vε . It will be a consequence of the following section.

4. Local study

This section is dedicated to the following proposition.

Proposition 10. For any γ > 0 and any 0 < δ < 1, there exists a constant η < 1, and a sequence of constants {Cn}
such that for any solution (u,P ) of (1), (3) in Q2 verifying∫

R3

φ(y)u(t, x) dx = 0, t � −4, (27)

0∫
−4

∫
B2

|∇u|2 dx dt � η, (28)

0∫
−4

∫
B2

∣∣∇2P
∣∣dx dt � η, (29)

0∫
−4

∫
B2

∣∣M[
(−�)−δ/2∇2P

]∣∣1+γ
dx dt � η, (30)

the velocity u is infinitely differentiable in x at (0,0) and∣∣∇nu(0,0)
∣∣ � Cn.
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Proof. We want to apply Proposition 6. Then, by a bootstrapping argument we will get uniform controls on higher
derivatives. For this, we first need a control of u in L∞(L2) and a control on P in Lγ+1(L1). The equation is on ∇P

(not the pressure itself). Therefore, changing P by P − ∫
B2

φP dx we can assume without loss of generality that∫
R3

φ(x)P (t, x) dx = 0, −4 < t < 0.

To get a control in L1+γ (L1) on the pressure it is then enough to control ∇P .

Step 1: Control on u in L∞(L3/2) in Q3/2. Thanks to hypothesis (27), there exists a constant C, depending only
on φ, such that for any −4 < t < 0,∥∥u(t)

∥∥
L6(B2)

� C
∥∥∇u(t)

∥∥
L2(B2)

. (31)

So ∥∥(u · ∇)u
∥∥

L1(−4,0;L3/2(B2))
� C‖∇u‖2

L2(Q2)
� Cη.

We need the same control on ∇P . First, multiplying (1) by φ(x), integrating in x, and using hypothesis (27), we find
for any −4 < t < 0,∫

φ(x)(u · ∇)udx +
∫

φ(x)∇P dx −
∫

�φudx = 0. (32)

So ∥∥∥∥
∫

φ(x)∇P dx

∥∥∥∥
L1(−4,0)

� C
(‖∇u‖2

L2(Q2)
+ ‖u‖L2(−4,0;L6(B2))

)
� C

√
η.

But, as for u,∥∥∥∥∇P −
∫

φ∇P dx

∥∥∥∥
L1(−4,0;L3/2(B2))

� C
∥∥∇2P

∥∥
L1(Q2)

.

So, finally∥∥∣∣(u · ∇)u
∣∣ + |∇P |∥∥

L1(−4,0;L3/2(B2))
� C

√
η. (33)

Note that

3

2

u

|u|1/2
∂tu = 3

2

1

|u|1/2
∂t

|u|2
2

= 3

2
|u|1/2∂t |u| = ∂t |u|3/2,

3

2

u

|u|1/2
�u = 3

2
div

(
u

|u|1/2
∇u

)
− 3

2

|∇u|2
|u|1/2

+ 3

4

|∇|u||2
|u|1/2

� �|u|3/2,

since |∇u| � |∇|u||.
We consider ψ1 ∈ C∞(R4) a nonnegative function compactly supported in Q2 with ψ1 = 1 in Q3/2 and

|∇t,xψ1| +
∣∣∇2

t,xψ1
∣∣ � C.

Multiplying (1) by (3/2)ψ1(t, x)u/|u|1/2 and integrating in x gives

d

dt

∫
ψ1(t, x)|u|3/2 dx

�
∫ (|∂tψ1| + |�ψ1|

)|u|3/2 dx + 3

2

∥∥ψ
1/3
1 |u|1/2

∥∥
L3(R3)

∥∥ψ
2/3
1

(
(u · ∇)u + ∇P

)∥∥
L3/2(B2)

�
∫ (|∂tψ1| + |�ψ1|

)|u|3/2 dx + 3

2

(∫
ψ1(t, x)|u|3/2 dx

)1/3∥∥(
(u · ∇)u + ∇P

)∥∥
L3/2(B2)

� α(t)

(
1 +

∫
ψ1(t, x)|u|3/2 dx

)
,
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with

α(t) =
∫ (|∂tψ1| + |�ψ1|

)|u|3/2 dx + 3

2

∥∥(
(u · ∇)u + ∇P

)∥∥
L3/2(B2)

.

Thanks to (31) and (33),

‖α‖L1(−4,0) � C
√

η.

Denoting Y(t) = 1 + ∫
ψ1(t, x)|u|3/2 dx, we have

Ẏ � αY, Y (−4) = 1.

Gronwall’s lemma gives that for any −4 < t < 0 we have

Y(t) � exp

( t∫
−4

α(s) ds

)
.

Hence, for η small enough:

‖u‖L∞(−(3/2)2,0;L3/2(B3/2))
� Cη1/3. (34)

Step 2: Control on u in L∞(L2) in Q1. We consider ψ2 ∈ C∞(R4) a nonnegative function compactly supported in
Q3/2 with ψ2 = 1 in Q1 and

|∇t,xψ2| +
∣∣∇2

t,xψ2
∣∣ � C.

Multiplying inequality (3) by ψ2 and integrating in x gives

d

dt

(∫
ψ2

|u|2
2

dx

)
�

∫
u · ∇ψ2

( |u|2
2

+ P

)
dx +

∫
(∂tψ2 + �ψ2)

|u|2
2

dx.

Equalities (31) together with (33) and Sobolev imbedding gives∥∥|u|2 + P
∥∥

L1(−(3/2)2,0;L3(B3/2))
� Cη1/2.

Together with (34), this gives that

‖u‖L∞(−1,0;L2(B1))
� Cη1/4. (35)

Step 3. L∞ bound in Q1/2. We need now to get better integrability in time on the pressure.
From (32) and (35), we get∥∥∥∥

∫
φ(x)∇P dx

∥∥∥∥
L2(−1,0)

� C
√

η.

With Lemma 3 and (30), this gives for γ < 1

‖∇P‖L1+γ (−1,0;L1(B1))
� C

√
η.

Together with (35), (28), and Proposition 6, this shows that for η small enough, we have

|u| � 1 in Q1/2.

Step 4: Obtaining more regularity. We now obtain higher derivative estimates by a standard bootstrapping method.
We give the details carefully to ensure that the bounds obtained are universal, that is, do not depend on the actual
solution u.

For n � 1 we define rn = 2−n−3, Bn = Brn and Qn = Qrn . We denote also ψn such that 0 � ψn � 1, ψn ∈
C∞(R4),
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ψn(t, x) = 1, (t, x) ∈ Qn,

= 0, (t, x) ∈ Qc
n−1.

For every n we have

∂t∇nu + divAn + ∇Rn − �∇nu = 0, (36)

with

An = ∇n(u ⊗ u), Rn = ∇nP .

So we have

‖An‖Lp(Qn−1)
� Cn‖u‖2

L2p(−r2
n−1,0;Wn,2p(Bn−1))

(37)

and thanks to Lemma 5, we can split Rn as

Rn = R1,n + R2,n,

with

‖R1,n‖Lp(Qn−1)
� Cn‖An‖Lp(Qn−2)

, (38)

‖R2,n‖L1(−r2
n−1,0;W 2,∞(Bn−1))

� Cn

(‖An‖Lp(Qn−2)
+ ‖∇P‖L1(Qn−2)

)
� Cn

(‖An‖Lp(Qn−2)
+ 1

)
. (39)

Moreover we have:

∂t

(
ψn∇nu

) − �
(
ψn∇nu

) = −div(Anψn) + ∇ψnAn − ∇(ψnRn) + (∇ψn)Rn

+ �ψn∇nu − 2div
(∇ψn∇nu

) + (∂tψn)∇nu.

Note that ψn∇nu = 0 on ∂Qn−1. So

ψn∇nu = V1,n + V2,n (40)

with

∂tV1,n − �V1,n = −div(Anψn) + ∇ψnAn − ∇(ψnR1,n) + (∇ψn)R1,n + �ψn∇nu

− 2 div
(∇ψn∇nu

) + (∂tψn)∇nu

= Fn,

V1,n = 0 for t = −r2
n−1,

and

∂tV2,n − �V2,n = −∇(ψnR2,n) + R2,n(∇ψn),

V2,n = 0 for t = −r2
n−1.

Thanks to (37) and (38), we have

‖Fn‖Lp(−r2
n−1,0;W−1,p(Bn−1))

� Cn

(
1 + ‖u‖2

L2p(−r2
n−2,0;Wn,2p(Bn−2))

)
.

So, from Lemma 4,

‖V1,n‖Lp(−r2
n−1,0;W 1,p(Bn−1))

� C‖Fn‖Lp(−r2
n−1,0;W−1,p(R3)),

‖V2,n‖L∞(−r2
n−1,0;W 1,∞(Bn−1))

� C‖ψn∇R2,n‖L1(−r2
n−1;W 1,∞(R3)) + C

∥∥R2,n(∇ψn)
∥∥

L1(−r2
n−1W

1,∞(R3))

� Cn

(
1 + ‖u‖2

L2p(−r2
n−2,0;Wn,2p(Bn−2))

)
,

where we have used (37) and (39) in the last line.



A. Vasseur / Ann. I. H. Poincaré – AN 27 (2010) 1189–1204 1203
Hence, from (40) and using that ψn = 1 on Qn, we have for any 1 < p < ∞,∥∥∇nu
∥∥

Lp(−r2
n,0;W 1,p(Bn))

� Cn

(
1 + ‖u‖2

L2p(−r2
n−2,0;Wn,2p(Bn−2))

)
.

By induction we find that for any n � 1, and any 1 � p < ∞, there exists a constant Cn,p such that

‖u‖
L2−np(−r2

n,0;Wn,2−np(Bn))
� Cn,p.

This is true for any p, so for n fixed, taking p big enough and using Sobolev imbedding, we show that for any
1 � q < ∞, there exists a constant Cn,q such that

‖u‖Lq(−r2
n+1,0;Wn,∞(Bn+1))

� Cn,q .

As (37), we get that

‖An‖L1(−r2
n+3,0;W 2,∞(Bn+3))

� Cn.

Thanks to Lemma 5, we get

‖R1,n‖L1(−r2
n+4,0;W 1,∞(Bn+4))

� Cn,

‖R2,n‖L1(−r2
n+4,0;W 1,∞(Bn+4))

� Cn.

Hence∥∥∂t∇nu
∥∥

L1(−r2
n+4,0;L∞(Bn+4))

� Cn,

and finally∥∥∇nu
∥∥

L∞(Qn+4)
� Cn. �

5. From local to global

Let us fix δ > 0. We take η∗ � η and consider any ε > 0 such that 4ε2 � t0. Then from Proposition 10 and
Proposition 9, for any (t, x) ∈ Ωδ

ε ∩ {t � t0}, we have∣∣∇n
y vε(0,0)

∣∣ � Cn,

where vε is defined by (20). But for any n � 1, we have

∇n
y vε(0,0) = εn+1∇nu(t, x).

Hence∣∣∣∣
{
(t, x) ∈ Ω \ ∣∣∇nu(t, x)

∣∣ � Cn

εn+1

}∣∣∣∣ �
∣∣[Ωδ

ε

]c∣∣.
And thanks to Lemma 8, this measure is smaller than

C

η∗
(∥∥u0

∥∥2
L2(R3)

+ ∥∥u0
∥∥2(γ+1)

L2(R3)

)
ε4−δ.

We denote

R =
(

1 + 4

t0

) n+1
2

.

For k � 1, we use our estimate with εn+1 = R−k to get

∣∣∣∣
{
(t, x) ∈ Ω \ |∇nu(t, x)|

C
� Rk

}∣∣∣∣ �
C(1 + ‖u0‖2(γ+1)

L2(R3)
)

k 4−δ
.

n R n+1
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So, for p < 4−δ
n+1 ,∥∥∥∥∇nu

Cn

∥∥∥∥
p

Lp(Ω)

�
∣∣∣∣
{
(t, x) ∈ Ω \ |∇nu(t, x)|

Cn

� R

}∣∣∣∣Rp +
∞∑

k=1

R(k+1)p

∣∣∣∣
{
(t, x) ∈ Ω \ |∇nu(t, x)|

Cn

� Rk

}∣∣∣∣
� |Ω|Rp + CRp

(
1 + ∥∥u0

∥∥2(γ+1)

L2(R3)

) ∞∑
k=1

Rk(p− 4−δ
n+1 )

� |Ω|Rp + CRp

1 − Rp− 4−δ
n+1

(
1 + ∥∥u0

∥∥2(γ+1)

L2(R3)

)
.

The results holds for any δ > 0 which ends the proof of Theorem 1.
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