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Abstract

In this paper, we will study the existence and qualitative property of standing waves ψ(x, t) = e− iEt
ε u(x) for the nonlinear

Schrödinger equation iε
∂ψ
∂t

+ ε2

2m
�xψ − (V (x) + E)ψ + K(x)|ψ |p−1ψ = 0, (t, x) ∈ R+ × R

N . Let G(x) = [V (x)]
p+1
p−1 − N

2 ×
[K(x)]− 2

p−1 and suppose that G(x) has k local minimum points. Then, for any l ∈ {1, . . . , k}, we prove the existence of the standing
waves in H 1(RN) having exactly l local maximum points which concentrate near l local minimum points of G(x) respectively as
ε → 0. The potentials V (x) and K(x) are allowed to be either compactly supported or unbounded at infinity. Therefore, we give a
positive answer to a problem proposed by Ambrosetti and Malchiodi (2007) [2].
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1. Introduction

In this paper, we will consider the existence of concentrating solutions for the following nonlinear Schrödinger
equations{−ε2�u + V (x)u = K(x)up, u > 0, x ∈ R

N,

u ∈ H 1
(
R

N
)
,

(1.1)

where ε > 0 is a small number, 1 < p < (N + 2)/(N − 2) for N � 3, and 1 < p < ∞ for N = 1,2, V (x) � 0 has
a compact support, and K(x) � 0 may tend to zero or infinity as |x| → ∞, H 1(RN) is the usual Sobolev space
{u ∈ D1,2(RN):

∫
RN |u|2 < ∞}.

A basic motivation for the study of (1.1) comes from looking for standing waves of the type

ψ(x, t) = e− iEt
ε u(x)
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for the following nonlinear Schrödinger equations

iε
∂ψ

∂t
= − ε2

2m
�xψ + (

V (x) + E
)
ψ − K(x)|ψ |p−2ψ, (t, x) ∈ R+ × R

N, (1.2)

where ε is the Planck constant, i is the imaginary unit. Problem (1.2) arises in many applications. For example, in
some problems arising in nonlinear optics, in plasma physics and in condensed matter physics, the presence of many
particles leads one to consider nonlinear terms which simulate the interaction effect among them. The function V (x)

represents the potential acting on the particle and K(x) represents a particle-interaction term, which avoids spreading
of the wave packets in the time-dependent version of the above equation. A solution ψ is referred to as a bound state
of (1.2) if ψ → 0 as |x| → +∞. Furthermore, to describe the transition from quantum to classical mechanics, we
let ε → 0 and thus the existence of solutions ψε(x, t) of (1.2) for small ε (which is called semiclassic state) has an
important physical interest.

There are a lot of works on problem (1.1). In [23], Floer and Weinstein considered the case N = 1, p = 3 and
K(x) ≡ 1. By using a Lyapunov–Schmidt reduction argument, they constructed a positive solution uε to problem (1.1)
which concentrates around the critical point of potential V (x) as ε → 0. Their method and results were later gen-
eralized by Oh [31,32] to the higher-dimensional case with 1 < p < (N + 2)/(N − 2) and multi-bump solutions
concentrating near several non-degenerate critical points of V (x) as ε → 0 were obtained. Existence of solutions
concentrating at one or several points to problem (1.1) under different conditions has also been obtained in [4,6,12,
18–21,26,27,30,33,35–37].

We also mention some results on problem (1.1) in the case that lim inf|x|→∞ V (x) > 0, Z =: {x ∈ R
N :

V (x) = 0} �= ∅, which was referred to as the critical frequency in [8]. In [8,9], it was shown that problem (1.1)
admits a ground state concentrating on Z. Later, if Z consists of several components, Cao and Peng in [15], Cao
and Noussair in [13] and Cao, Noussair and Yan in [14] proved that problem (1.1) has multi-peak solutions which
concentrate simultaneously on some prescribed components of Z or some points on which V (x) does not vanish. For
more results, we can refer to [10,11,34] and the references therein.

In all the works mentioned above, it is worth pointing out that the common assumptions are lim inf|x|→∞ V (x) > 0
and 0 < K(x) < c in R

N for some c > 0. The assumption lim inf|x|→∞ V (x) > 0 guarantees that the norm
(
∫

RN |∇u|2 +V (x)u2)1/2 is not weaker than the usual norm of Sobolev space H 1(RN), and thus ensures that the solu-
tions of (1.1) are bound states which are the most relevant from the physical point of view. Hence, by the boundedness
of K(x), the energy functionals corresponding to the equations are well defined in H 1(RN) and the variational theory
can be used directly. However, if the potential V (x) decays to zero or is compactly supported, or K(x) approaches
infinity at infinity, variational theory in H 1(RN) cannot be used, nor can one apply the perturbation methods, as in [4],
since the spectrum of the linear operator −� + V (x) is [0,+∞), see [7]. Therefore, the methods used in the previous
papers cannot be employed any more in the present situation.

Recently, the case in which V (x) and K(x) may decay to zero as |x| → ∞ has been investigated. In [1], it is proved
that if the potentials V (x) and K(x) are smooth and satisfy

(V0) ∃γ0, γ1 > 0: γ0

1 + |x|α � V (x) � γ1,

(K0) ∃β, k: 0 < K(x) � k

1 + |x|β ,

then (1.1) has a ground state solution for 0 � α < 2 provided that ε is sufficiently small and σ < p < (N +2)/(N −2),
where

σ =
{

N+2
N−2 − 4β

α(N−2)
, if 0 < β < α,

1 otherwise.

In [3], this result was generalized to the case 1 < p < (N + 2)/(N − 2) and 0 � α � 2. Moreover, setting

G(x) = [
V (x)

] p+1
p−1 − N

2
[
K(x)

]− 2
p−1 ,

which is referred to as a ground energy function introduced in [36], then it is verified that for any isolated stable sta-
tionary point x0 of G(x), Eq. (1.1) has a bound state concentrating at x0 for ε sufficiently small. When Z = {x ∈ R

N :
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V (x) = 0} �= ∅ and V (x), K(x) satisfy (V0) and (K0) at infinity respectively, Ambrosetti and Wang in [5] obtained
a ground state of (1.1) which concentrates at some point x∗ ∈ Z in the case 0 � α < 2 and σ < p < N+2

N−2 . Similar
results can also be found in [10,11].

An open problem left, as proposed by Ambrosetti and Malchiodi in [2], is what happens if the potential V (x)

decays faster than |x|−2 at infinity or has compact support? More precisely, it was illustrated in [2] the following:
“Is it possible to handle potentials with faster decay, or compactly supported? . . . . Clearly, the approach used so far
cannot be repeated. However, any result, positive or negative, would be interesting.”

Concerning this open problem, some interesting results appeared recently. In [16], the case V (x) ∼ |x|α at infinity
with α � −4 was considered by a constructive argument and multi-peak bound states with prescribed number of
maximum points approaching to a local minimum point of the function G(x) as ε → 0 were obtained. The case that
V (x) has compact support, which is the most difficult case, was studied by Fei and Yin in [22], where it was shown
that problem (1.1) admits a bound state with exact one local maximum point xε which tends to a minimum point of the
function G(x) as ε → 0. The method introduced in [22] is quite new. Precisely, the authors proved a mountain pass
solution to a modified problem and then obtained a type of the weak Harnack inequality, by which they proved that
the solution decays at infinity at the desired speed and hence is a bound state solving the original problem. However,
the solution obtained in [22] is in some sense a least energy solution and indeed one-peaked. Moreover, because of
the absence of an exact estimate to the energy related to the solution, their argument cannot be adopted to look for
multi-peak solutions with higher energy. In this paper, we intend to focus on this problem.

We assume that V (x),K(x) satisfy the following conditions:
(H1). V (x) ∈ C(RN) is compactly supported, V (x) � 0 and V (x) �≡ 0; K(x) ∈ C(RN), K(x) � 0.
(H2). There exist smooth bounded domains Λi of R

N , mutually disjoint such that V (x) > 0 and K(x) > 0 on Λ̄i ,
i = 1, . . . , k, and

0 < ci ≡ inf
x∈Λi

G(x) < inf
x∈∂Λi

G(x).

(H3). There exist constants k1 > 0, β1 < 2 such that

0 � K(x) � k1
(
1 + |x|)β1 in R

N.

Our main result for Eq. (1.1) is as follows:

Theorem 1.1. Assume N � 5 and max(1, (N + β1)/(N − 2)) < p < (N + 2)(N − 2). Under the assumptions
(H1)–(H3), there is an ε0 > 0 such that for every 0 < ε < ε0, problem (1.1) admits a positive solution uε ∈ H 1(RN).
Moreover, uε possesses exactly k local maxima xi

ε ∈ Λi , i = 1, . . . , k, which satisfy that G(xi
ε) → infx∈Λi

G(x) as
ε → 0.

Remark 1.1. We actually prove the existence of solutions concentrating simultaneously at several points of a set
{ξ1, . . . , ξk}, where for each i = 1, . . . , k, ξi satisfies G(ξi) = ci .

Remark 1.2. From the proof of Theorem 1.1, we can see that Theorem 1.1 holds if V (x) is a nonnegative continuous
function in R

N . In particular, Theorem 1.1 remains true if V (x) decays faster than |x|−α including the case that V (x)

decays faster than e−β|x|, where α > 0, β > 0. Furthermore, if V (x) = 1/|x|2 near infinity, which is related to the
well-known Hardy inequality, our result is also true.

In order to obtain the existence of peaked solutions we use variational methods and penalization techniques. Since∫
RN V (x)u2 < ∞ cannot guarantee that u is a bound state and

∫
RN K(x)|u|p+1 may not make sense for u ∈ H 1(RN)

due to the fact that V (x) may vanish or K(x) may be unbounded at infinity, we will employ a penalization argu-
ment which needs to modify the nonlinear term K(x)up in (1.1). To obtain multi-peak bound states with the desired
number of peaks, we must give an exact estimate to the functional energy corresponding to the solution uε of the
modified problem. For this, we penalize the functional related to the modified problem by adding a penalization Pε(u)

introduced in [19], which can also be used to prevent the concentration outside of
⋃k

i=1 Λi . To ensure that uε solves
the original problem (1.1), we use an argument similar to [22] to obtain the weak Harnack inequality and thus find
the decay rate of uε outside Λi . As we can see later, for the case k = 1, our method can simplify the proof in [22].
Moreover, our result is true for the case that V (x) decays faster than |x|α (∀α < 0) at infinity.
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This paper is organized as follows: In Section 2 we define the modified functional needed for the proof of The-
orem 1.1, and prove some preliminary results. Section 3 is devoted to the proof of Theorem 1.1. In this paper, the
notations C,C1, . . . denote the generic positive constants depending only on V (x),K(x),p.

2. Preliminaries

Let Λ = ⋃k
i=1 Λi . For ξ ∈ Λ, consider the following equation{−�u(x) + V (ξ)u(x) = K(ξ)up(x), u(x) > 0, x ∈ R

N,

u ∈ H 1
(
R

N
)
.

(2.1)

The functional corresponding to (2.1) is defined as

Iξ (u) = 1

2

∫
RN

|∇u|2 + V (ξ)

2

∫
RN

|u|2 − K(ξ)

p + 1

∫
RN

|u|p+1. (2.2)

The following function

G(ξ) = inf
u∈Mξ

Iξ (u) (2.3)

is referred to as ground energy function of (2.1) (see [36]), where Mξ is the Nehari manifold defined by

Mξ = {
u ∈ H 1(

R
N

) \ {0}: 〈
I ′
ξ (u),u

〉 = 0
}
.

For further properties of G(ξ), one can see [36]. It is shown in [24,28] that, up to translations, (2.1) has a unique
solution Uξ(x), which is radially symmetric and decays exponentially at infinity. Moreover,

G(ξ) = Iξ (Uξ ). (2.4)

Let Eε be a class of weighted Sobolev space defined as follows{
u ∈ D1,2(

R
N

) ∣∣∣ ∫
RN

(
ε2|∇u|2 + V (x)|u|2) < ∞

}
,

where D1,2(RN) = {u ∈ L
2N

N−2 (RN) | ∇u ∈ L2(RN)}. The norm of the space Eε is denoted by

‖u‖ε =
( ∫

RN

(
ε2|∇u|2 + V (x)|u|2))1/2

.

Under the assumptions (H1) and (H2), we can deduce from the Sobolev inequality the following:

Lemma 2.1. Assume that (H1), (H2) hold true, then for each ε ∈ (0,1], there exists a constant C1 > 0 independent
of ε such that∫

Λ

K(x)|u|p+1 � C1ε
− N(p−1)

2 ‖u‖p+1
ε , ∀u ∈ Eε. (2.5)

Next we define the first modification of our functional. Set

fε(x, t) = min

{
K(x)

(
t+

)p
,

ε3

1 + |x|θ0
t+,

ε

1 + |x|N
}
,

where t+ = max{t,0}, and θ0 > 2 will be suitably chosen later on.
Define

gε(x, ξ) = χΛ(x)K(x)
(
ξ+)p + (

1 − χΛ(x)
)
fε(x, ξ),

where χΛ(x) represents the characteristic function of the set Λ. Denote Gε(x,u) = ∫ u
gε(x, τ ) dτ .
0
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Now we define the modified functional Lε : Eε→R as

Lε(u) = 1

2

∫
RN

(
ε2|∇u|2 + V (x)u2) − 1

p + 1

∫
Λ

K(x)
(
u+)p+1 −

∫
RN\Λ

Fε(x,u),

where Fε(x,u) = (1 − χΛ(x))
∫ u

0 fε(x, τ ) dτ .
For u∈Eε , due to θ0 > 2, we see that

∫
RN\Λ

Fε(x,u) �
∫

RN\Λ

ε3

1 + |x|θ0
u2 � Cε3

( ∫
RN\Λ

|u| 2N
N−2

)N−2
N

� Cε3
∫

RN

|∇u|2 � Cε‖u‖2
ε. (2.6)

It follows from (2.5) and (2.6) that Lε(u) is well defined in Eε .
Next, we introduce the second modification of the functional. Assume G(ξi) = ci , ξi ∈ Λi . Let σi > 0 be such that

sup
Λi

G(x) � ci + σi, (2.7)

and assume that

k∑
i=1

σi <
1

2
min{ci | i = 1, . . . , k}. (2.8)

This can be achieved by making Λi smaller if necessary. For mutually disjoint open sets Λ̃i compactly containing Λi

and satisfying V (x) > 0 on the closure of Λ̃i , we define on Eε the functional

Li
ε(u) = 1

2

∫
Λ̃i

(
ε2|∇u|2 + V (x)u2) − 1

p + 1

∫
Λi

K(x)
(
u+)p+1 −

∫
Λ̃i\Λi

Fε(x,u), (2.9)

and the penalization

Pε(u) = M

k∑
i=1

{(
Li

ε(u)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}2
+. (2.10)

The constant M will be chosen later. Now set

Jε(u) = Lε(u) + Pε(u).

Then it follows from Proposition A.1 in Appendix A that functional Jε is of class C1. We show next that Jε satisfies
the Palais–Smale condition.

Lemma 2.2. Let {un} be a sequence in Eε such that Jε(un) is bounded and J ′
ε(un) → 0. Then {un} has a convergent

subsequence.

Proof. We first prove that the sequence {un} is bounded in Eε .
Similarly to (2.6), we have∣∣∣∣

∫
RN\Λ

fε(x,u)u

∣∣∣∣ � Cε‖u‖2
ε, ∀u ∈ Eε. (2.11)

For a fixed q ∈ (2,p + 1), by (2.6) and (2.11), we have
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Lε(un) − 1

q

〈
L′

ε(un), un

〉 = (
1

2
− 1

q

) ∫
RN

(
ε2|∇un|2 + V (x)u2

n

) +
(

1

q
− 1

p + 1

)∫
Λ

K(x)
(
u+

n

)p+1

+ 1

q

∫
RN \Λ

fε(x,un)un −
∫

RN\Λ
Fε(x,un)

� C

∫
RN

(
ε2|∇un|2 + V (x)u2

n

)
. (2.12)

Similarly, we find

Li
ε(un) − 1

q

〈
Li ′

ε (un), un

〉
� C

∫
Λ̃i

(
ε2|∇un|2 + V (x)u2

n

)
. (2.13)

On the other hand, noting that

〈
P ′

ε(un), un

〉 = M

k∑
i=1

{(
Li

ε(un)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}
+
(
Li

ε(un)+
)− 1

2
〈
Li ′

ε (un), un

〉
,

we derive from (2.13) that

Pε(un) − 1

q

〈
P ′

ε(un), un

〉 = M

k∑
i=1

{(
Li

ε(un)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}2
+

− 1

q
M

k∑
i=1

{(
Li

ε(un)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}
+
(
Li

ε(un)+
)− 1

2
〈
Li ′

ε (un), un

〉

= M

k∑
i=1

{(
Li

ε(un)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}
+

×
[{(

Li
ε(un)+

) 1
2 − ε

N
2 (ci + σi)

1
2
}
+ − 1

q

(
Li

ε(un)+
)− 1

2
〈
Li ′

ε (un), un

〉]

� M

k∑
i=1

{(
Li

ε(un)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}
+

× [{(
Li

ε(un)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}
+ − (

Li
ε(un)+

) 1
2
]

� −M

k∑
i=1

ε
N
2 (ci + σi)

1
2
{(

Li
ε(un)+

) 1
2 − ε

N
2 (ci + σi)

1
2
}
+

� −M
1
2

k∑
i=1

ε
N
2 (ci + σi)

1
2 P

1
2

ε (un) = −Cε
N
2 P

1
2

ε (un).

Hence, by the fact that Pε(un) � M
∫

RN (ε2|∇un|2 + V (x)u2
n), we get

Cε � Jε(un) − 1

q

〈
J ′

ε(un), un

〉

� C

∫
RN

(
ε2|∇un|2 + V (x)u2

n

) − Cε
N
2

( ∫
RN

(
ε2|∇un|2 + V (x)u2

n

)) 1
2

, (2.14)

which implies that {un} is bounded in Eε .
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Since Eε ↪→ D1,2(RN) ↪→ H 1
loc(R

N), the boundedness of {un} in Eε implies that there exists u0 ∈ Eε satisfying,
after passing to a subsequence if necessary,

un → u0 weakly in Eε, un → u0 strongly in L
q

loc

(
R

N
)
,

for 2 � q < 2N/(N − 2).
Now, to complete the proof, it suffices to prove that ‖un‖ε → ‖u0‖ε as n → ∞.
By 〈J ′

ε(un), u0〉 → 0, we see∫
RN

(
ε2|∇u0|2 + V (x)unu0

) −
∫
Λ

K(x)
(
u+

n

)p
u0 −

∫
RN\Λ

fε(x,un)u0

+ M

k∑
i=1

{
Li

ε(un)
1
2+ − ε

N
2 (ci + σi)

1
2
}
+Li

ε(un)
− 1

2+

×
(∫

Λ̃i

(
ε2|∇u0|2 + V (x)unu0

) −
∫
Λi

K(x)
(
u+

n

)p
u0 −

∫
Λ̃i\Λi

fε(x,un)u0

)

= on(1). (2.15)

In addition, from 〈J ′
ε(un), un〉 = on(1)‖un‖ and the boundedness of {un}, we have∫

RN

(
ε2|∇un|2 + V (x)u2

n

) −
∫
Λ

K(x)
(
u+

n

)p+1 −
∫

RN\Λ
fε(x,un)un

+ M

k∑
i=1

{
Li

ε(un)
1
2+ − ε

N
2 (ci + σi)

1
2
}
+Li

ε(un)
− 1

2+

×
(∫

Λ̃i

(
ε2|∇un|2 + V (x)u2

n

) −
∫
Λi

K(x)
(
u+

n

)p+1 −
∫

Λ̃i\Λi

fε(x,un)un

)

= on(1). (2.16)

On the other hand, we find

lim
n→∞

∫
RN

V (x)u2
n = lim

n→∞

∫
RN

V (x)unu0, (2.17)

lim
n→∞

∫
Λ

K(x)
(
u+

n

)p+1 = lim
n→∞

∫
Λ

K(x)
(
u+

n

)p
u0, (2.18)

lim
n→∞

∫
Λ̃i

V (x)u2
n = lim

n→∞

∫
Λ̃i

V (x)unu0, (2.19)

lim
n→∞

∫
Λi

K(x)
(
u+

n

)p+1 = lim
n→∞

∫
Λi

K(x)
(
u+

n

)p
u0, (2.20)

lim
n→∞

∫
Λ̃i\Λi

fε(x,un)un = lim
n→∞

∫
Λ̃i\Λi

fε(x,un)u0, (2.21)

and for any fixed large R > 0 such that Λ ⊂ BR(0),

lim
n→∞

∫
fε(x,un)un = lim

n→∞

∫
fε(x,un)u0.
BR(0)\Λ BR(0)\Λ



1212 N. Ba et al. / Ann. I. H. Poincaré – AN 27 (2010) 1205–1226
We will prove that for any given δ > 0, there exists R > 0 such that for all n∣∣∣∣
∫

RN\BR(0)

fε(x,un)u0

∣∣∣∣ < δ,

∣∣∣∣
∫

RN \BR(0)

fε(x,un)un

∣∣∣∣ < δ.

We just check the first inequality since the second one can be checked in a similar way. As in the proof of (2.6), we
have ∣∣∣∣

∫
RN\BR(0)

fε(x,un)u0

∣∣∣∣ � ε3
∫

RN\BR(0)

|un||u0|
1 + |x|θ0

� ε3
( ∫

RN\BR(0)

1

(1 + |x|θ0)
N
2

) 2
N ‖un‖

L
2N

N−2 (RN)
‖u0‖

L
2N

N−2 (RN)

� ε

Rθ0−2
‖un‖ε‖u0‖ε → 0 as R → ∞.

So

lim
n→∞

∫
RN\Λ

fε(x,un)un = lim
n→∞

∫
RN\Λ

fε(x,un)u0. (2.22)

From the boundedness of {un}, we have

M
(
Li

ε(un)
1
2+ − ε

N
2 (ci + σi)

1
2
)
+Li

ε(un)
− 1

2+ = ai + on(1), (2.23)

where ai � 0, i = 1, . . . , k are constants. So inserting (2.17)–(2.23) into (2.15) and (2.16), we obtain

on(1) =
∫

RN

ε2(|∇un|2 − |∇u0|2
) +

k∑
i=1

(
ai + on(1)

) ∫
Λ̃i

ε2(|∇un|2 − |∇u0|2
)
� on(1).

Thus, we have limn→∞
∫

RN |∇un|2 = ∫
RN |∇u0|2 and hence

lim
n→∞

∫
RN

(
ε2|∇un|2 + V (x)u2

n

) =
∫

RN

(
ε2|∇u0|2 + V (x)u2

0

)
.

So, the proof of Lemma 2.2 is completed. �
The previous lemma makes it possible to use the critical point theory to find critical points of the functional Jε . We

will formulate an appropriate minimax problem for Jε .
As in [17], we define a class of functions Γ . A continuous function γ : [0,1]k → Eε is in Γ if there are continuous

functions gi : [0,1] → Eε for i = 1, . . . , k satisfying

(i) supp{gi(τ )} ⊂ Λi for all τ ∈ [0,1];
(ii) γ (τ1, . . . , τk) = ∑k

i=1 gi(τi) for all (τ1, . . . , τk) ∈ ∂[0,1]k ;
(iii) gi(0) = 0 and Lε(gi(1)) < 0;
(iv) Jε(γ (t)) � εN(

∑k
i=1 ci − σ) for all t ∈ ∂[0,1]k ,

where 0 < σ < 1
2 min{ci | i = 1, . . . , k} is a fixed number.

Define

Cε = inf
γ∈Γ

sup
t∈[0,1]k

Jε

(
γ (t)

)
.

As in [19], we can prove that Γ is non-empty and
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Lemma 2.3.

Cε = εN

(
k∑

i=1

ci + o(1)

)
.

Proof. The proof is similar to Lemma 2.3 in [15] (see also [19, Lemma 1.2]), and thus we omit it. �
From Lemma 2.2 and Lemma 2.3, we conclude that there exists a critical point uε ∈ Eε of Jε such that Jε(uε) = Cε .
We define the local weights

ρi
ε = M

{(
Li

ε(uε)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}
+
(
Li

ε(uε)+
)− 1

2 ,

and then the function

ρε =
k∑

i=1

ρi
εχΛ̃i

.

The critical point uε satisfies in the weak sense

ε2 div
(
(1 + ρε)∇uε

) − (1 + ρε)V (x)uε + (1 + ρε)gε(x,uε) = 0, (2.24)

and ∫
RN

(1 + ρε)
(
ε2∇uε∇ϕ + V (x)uεϕ

) =
∫

RN

(1 + ρε)gε(x,uε)ϕ, ∀ϕ ∈ Eε. (2.25)

Set Λε
i = {y ∈ R

N | εy ∈ Λi} and Λ̃ε
i = {y ∈ R

N | εy ∈ Λ̃i}. Let vε(y) = uε(εy) for y ∈ R
N , then we see

div
((

1 + ρε(εy)
)∇vε

) − (
1 + ρε(εy)

)
V (εy)vε + (

1 + ρε(εy)
)
gε(εy, vε) = 0. (2.26)

Finally, proceeding as in the first part of the proof of Lemma 2.2, we obtain from the estimates on Cε given in
Lemma 2.3 that∫

RN

(
ε2|∇uε|2 + V (x)u2

ε

)
� CεN,

∫
RN

(|∇vε|2 + V (εy)v2
ε

)
� C. (2.27)

3. Proof of Theorem 1.1

In this section, we will prove that ρε ≡ 0 and uε is indeed a solution of the original equation (1.1).
Given R > 0 and set A ⊂ R

N , we denote by NR(A) the set {y | dist(y,A) < R}. The following lemma means that
vε is small away from the set Λε = ⋃k

i=1 Λε
i .

Lemma 3.1. There exists a C > 0 such that, for any given R > 0, one has∫
RN\NR

(
Λε

)
(|∇vε|2 + V (εy)v2

ε

)
� C

R
, (3.1)

for ε sufficiently small.

Proof. For any given R > 0, ε > 0, we may choose smooth cut-off functions 0 � ψε
i,R � 1 such that

ψε
i,R(y) =

{
1, if dist(y,Λε

i ) < R/2,

0, if dist(y,Λε
i ) > R,

(3.2)

and |∇ψε | � 4/R. Then set ηε = 1 − ∑k
i=1 ψε .
i,R R i,R
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Similarly to (2.6), we have∫
RN\Λε

(
ηε

R

)2
fε(εy, vε)vε � ε3

∫
RN\Λε

(ηε
Rvε)

2

1 + |εy|θ0

� ε3
( ∫

RN\Λε

(
ηε

Rvε

) 2N
N−2

)N−2
N

( ∫
RN\Λε

(
1

1 + |εy|θ0

)N
2
) 2

N

� ε3C

( ∫
RN\Λε

∣∣∇(
ηε

Rvε

)∣∣2
)( ∫

RN\Λε

1

(1 + |εy|θ0)
N
2

) 2
N

= Cε

( ∫
RN\Λε

∣∣∇(
ηε

Rvε

)∣∣2
)( ∫

RN\Λ

1

(1 + |x|θ0)
N
2

) 2
N

= Cε

∫
RN\Λε

∣∣∇(
ηε

Rvε

)∣∣2

� Cε

∫
RN\Λε

(
ηε

R

)2|∇vε|2 + Cε

∫
NR(Λε)\Λε

∣∣∇ηε
R

∣∣2
v2
ε .

Using the test function (ηε
R)2vε in (2.26), one gets

C

∫
RN\NR(Λε)

(|∇vε|2 + V (εy)v2
ε

)
�

∫
RN\NR(Λε)

(|∇vε|2 + V (εy)v2
ε

) − Cε

∫
RN\Λε

(
ηε

R

)2|∇vε|2

− Cε

∫
NR(Λε)\Λε

∣∣∇ηε
R

∣∣2
v2
ε

�
∫

RN\Λε

(
1 + ρε(εy)

)(
ηε

R

)2(|∇vε|2 + V (εy)v2
ε − fε(εy, vε)vε

)

= −2
∫

NR(Λε)\Λε

(
1 + ρε(εy)

)
vεη

ε
R∇vε∇ηε

R. (3.3)

Note that ρε is uniformly bounded by a constant possibly depending on M . Using this, the choice of ηε
R , (H1), (H2)

and (2.27), we find that (3.1) follows immediately from (3.3). �
Before we proceed further, we give a preliminary lemma.

Lemma 3.2. Assume that v ∈ H 1(RN) ∩ C(RN) is nonnegative and satisfies the equation

�v − v + χ{x1<0}vp = 0, x ∈ R
N.

Then v ≡ 0.

Proof. Standard regularity arguments yield v ∈ C1(RN) and v → 0,∇v → 0 as |x| → +∞. Using ∂v
∂x1

as a test
function, we see

1

2

∫
N−1

dx′
+∞∫

−∞

∂

∂x1

(|∇v|2 + v2)dx1 − 1

p + 1

∫
N−1

vp+1(0, x′)dx′ = 0.
R R
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Noting that the first integral is zero, we obtain v(0, x′) ≡ 0. Now, to prove that v ≡ 0 for x1 > 0, we use vχ{x1>0} ∈
H 1(RN) as a test function, and obtain that vχ{x1>0} ≡ 0. This contradicts the strong maximum principle if v �≡ 0.

As a result, we complete the proof. �
Lemma 3.3. Let M be as in (2.10). Assume that εj → 0 as j → +∞ and limj→+∞ Li

εj
(uεj

)ε−N
j > ci + σi . Then,

for M large enough,

lim
j→+∞Li

εj
(uεj

)ε−N
j � 2ci .

Proof. We first prove that there exist numbers S > 0 and ρ > 0, such that

sup
y∈Λ

εj
i

∫
BS(y)

v2
εj

� ρ, ∀j � j0. (3.4)

Indeed, since limj→+∞ Li
εj

(uεj
)ε−N

j > ci + σi , there is a λ > 0 such that∫
Λ̃

εj
i

(|∇vεj
|2 + V (εj y)v2

εj

)
� λ, ∀j � j0,

then, Lemma 3.1 implies that for all R > 0 large enough∫
NR(Λ

εj
i )

(|∇vεj
|2 + V (εjy)v2

εj

)
� λ

2
. (3.5)

Now assume that (3.4) is false. Then we may assume that for all S > 0, we have

sup
y∈Λ

εj
i

∫
BS(y)

v2
εj

→ 0 as j → ∞. (3.6)

Let vR
j = ψ

j
Rvεj

, where ψ
j
R = ψ

εj

i,2R is given by (3.2). Then (3.6) implies

sup
y∈RN

∫
BS(y)

(
vR
j

)2 → 0 as j → ∞

for all S > 0. Moreover, {vR
j } is a bounded sequence in H 1(RN). Then applying the concentration compactness

principle (see Lemma I.1 in [29] or Lemma 2.18 in [17]), we obtain that∫
RN

(
vR
j

)q → 0, for all 2 < q < 2N/(N − 2),

for each R > 0. In particular∫
NR(Λ

εj
i )

vp+1
εj

→ 0.

Using vR
j as a test function in (2.26), we get∫

Λ̃
εj
i

(|∇vεj
|2 + V (εj y)v2

εj

)
ψ

j
R

= −
∫

Λ̃
εj

vεj
∇vεj

∇ψ
j
R +

∫
Λ̃

εj

gεj
(εj y, vεj

)vεj
ψ

j
R

i i
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� C

R

∫
N2R(Λ

εj
i )\NR(Λ

εj
i )

|∇vεj
||vεj

| +
∫

Λ
εj
i

K(εj y)vp+1
εj

+ ε3
j

∫
N2R(Λ

εj
i )\Λεj

i

|vεj
|2

1 + |εj y|θ0

� C

(
1

R
+ ε3

j

) ∫
RN

(|∇vεj
|2 + V (εjy)v2

εj

) + C

∫
Λ

εj
i

vp+1
εj

,

which contradicts (3.5) if we choose R and j large enough. This shows the validity of (3.4). Thus, we may assume
that there is a sequence yj ∈ Λ

εj

i such that∫
BS(yj )

v2
εj

� ρ > 0, for all j � j0. (3.7)

Let us now set vj (y) = vεj
(yj +y) and Λ

εj

i,yj
= {y ∈ R

N | y+yj ∈ Λ
εj

i }. Then vj is a bounded sequence in H 1(Λ
εj

i,yj
),

and hence we may assume that it converges weakly to a v ∈ H 1(RN).
Assume first that

dist
(
yj , ∂Λ

εj

i

) → ∞.

Set xj = εj yj ∈ Λi and assume that xj → ξ ∈ Λ̄i . Then v satisfies in R
N

�v − V (ξ)v + K(ξ)vp = 0, (3.8)

and v �≡ 0, due to (3.7).
If

dist
(
yj , ∂Λ

εj

i

)
� C < ∞,

we will have that v satisfies an equation of the form

�v − V (ξ)v + χ{x1<0}K(ξ)vp = 0, in R
N. (3.9)

But, we know v ≡ 0 in this case by Lemma 3.2. Hence v > 0 solves (3.8) and is the unique critical point of the
functional Iξ . Thus we have

ci � Iξ (v) � ci + σi.

Now, using the elliptic regularity theory we see that vεj
converges strongly in the H 1-sense over any compact set.

Passing to a further subsequence if necessary, we may find a sequence of positive numbers Rj → +∞ such that

lim
j→∞

∫
BRj

(yj )

[
1

2

(|∇vεj
|2 + V (εjy)v2

εj

) − Gεj
(εj y, vεj

)

]
= Iξ (v) � ci + σi. (3.10)

Thus, combining the assumption limj→+∞ Li
εj

(uεj
)ε−N

j > ci + σi and (3.10), we find that there exists η > 0 such
that for all large j ,∫

Λ̃
εj
i \BRj

(yj )

(|∇vεj
|2 + V (εjy)v2

εj

)
> η > 0. (3.11)

Hence, similar to the proof of (3.4), we can find an S > 0 and a sequence ỹj ∈ Λ
εj

i \ BRj
(yj ) such that∫

BS(ỹj )

v2
εj

� ρ > 0.

Thus, we have again, after passing to a subsequence, the weak convergence of vεj
(· + ỹj ) to a nonzero v̂ ∈ H 1(RN).

Moreover, v̂ satisfies the equation

�v̂ − V (ξ̂ )v̂ + K(ξ̂)v̂p = 0,

with ξ̂ ∈ Λ̄i and I ˆ (v̂) � ci .
ξ
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Next, we verify that

lim
j→∞Li

εj
(uεj

)ε−N
j � Iξ (v) + I

ξ̂
(v̂) � 2ci . (3.12)

We recall that vεj
satisfies on Λ̃

εj

i the equation

�vεj
− V (εj y)vεj

+ gεj
(εj y, vεj

) = 0. (3.13)

To prove (3.12), firstly, we show that

max
x∈∂Λ̃

εj
i

vεj
(x) → 0 as j → ∞. (3.14)

It suffices to show that maxx∈∂Λ̃i
uεj

(x) → 0 as j → ∞. Suppose on the contrary that there exist subsequences, still

denoted by {εj }, and {ȳj } ⊂ ∂Λ̃i , such that εj → 0, ȳj → y0 ∈ ∂Λ̃i as j → ∞ and uεj
(ȳj ) � δ > 0. Choose ρ > 0

such that Bρ(y0) ⊂ R
N \ (

⋃k
i=1 Λi). We may assume {ȳj } ⊂ Bρ(y0). Using the above scaling technique on Bρ(y0),

it is easy to prove that wj(x) := uεj
(ȳj + εj x) converges in C2 on any compact set to some function w ∈ H 1(RN).

Moreover w satisfies

−�w + V (y0)w = 0, in R
N,

which implies w ≡ 0. This contradicts the fact that maxw(x) � δ, and therefore (3.14) holds.
We use in (3.13) a test function of the form

φ = vεj

[
ψ

(|y − yj |/R
) + ψ

(|y − ỹj |/R
)]

,

where ψ is a C∞ function with ψ(s) = 0 for s � 1 and ψ(s) = 1 for s � 2. Denoting NR(yj , ỹj ) = B(yj ,R) ∪
B(ỹj ,R), by (3.14), we conclude that∫

Λ̃
εj
i \NR(yj ,ỹj )

(|∇vεj
|2 + V (εj y)v2

εj

)

�
∫

Λ̃
εj
i \NR(yj ,ỹj )

gεj
(εj y, vεj

)vεj
−

∫
N2R(yj ,ỹj )\NR(yj ,ỹj )

gεj
(εj y, vεj

)vεj
+ C

R
+ oεj

(1)

� 2
∫

Λ
εj
i \NR(yj ,ỹj )

Gεj
(εj y, vεj

) +
∫

Λ̃
εj
i \Λεj

i

gεj
(εj y, vεj

)vεj
+ C

R
+ C(R) + oεj

(1)

= 2
∫

Λ̃
εj
i \NR(yj ,ỹj )

Gεj
(εj y, vεj

) +
∫

Λ̃
εj
i \Λεj

i

gεj
(εj y, vεj

)vεj
− 2

∫
Λ̃

εj
i \Λεj

i

Gεj
(εj y, vεj

) + C

R
+ C(R) + oεj

(1)

� 2
∫

Λ̃
εj
i \NR(yj ,ỹj )

Gεj
(εj y, vεj

) − ε3
j

∫
Λ̃

εj
i \Λεj

i

1

1 + |εj y|θ0
v2
εj

+ C

R
+ C(R) + oεj

(1)

= 2
∫

Λ̃
εj
i \NR(yj ,ỹj )

Gεj
(εj y, vεj

) + C

R
+ C(R) + oεj

(1),

where C(R) → 0 as R → +∞, and we have used∫
Λ̃

εj \Λεj

1

1 + |εj y|θ0
v2
εj

� C

∫
Λ̃

εj \Λεj

V (εj y)v2
εj

� C

∫
RN

V (εj y)v2
εj

. (3.15)
i i i i
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Thus, it gives

Li
εj

(uεj
)ε−N

j �
∫

NR(yj ,ỹj )

[
1

2

(|∇vεj
|2 + V (εjy)v2

εj

) − Gεj
(εj y, vεj

)

]
+ O

(
1

R

)
+ C(R) + oεj

(1),

and

lim
j→∞Li

εj
(uεj

)ε−N
j �

∫
BR(0)

[
1

2

(|∇v|2 + V (ξ)v2) − 1

p + 1
K(ξ)vp+1

]

+
∫

BR(0)

[
1

2

(|∇v̂|2 + V (ξ̂ )v̂2) − 1

p + 1
K(ξ̂)v̂p+1

]
+ O

(
1

R

)
+ C(R).

Consequently, choosing R large, we get (3.12) and complete the proof. �
Lemma 3.4. For M > 0 sufficiently large,

lim sup
ε→0

Li
ε(uε)ε

−N � ci + σi, ∀i = 1, . . . , k. (3.16)

Proof. Firstly, we prove that

lim inf
ε→0

Lε(uε)ε
−N � 0. (3.17)

Choose a smooth cut-off function 0 � ψR � 1 such that

ψR(y) =
{

1, if y ∈ NR(Λε),

0, if y ∈ R
N \ N2R(Λε),

and |∇ψR| � 2/R.
Using in (3.13) the test function vεψR and noting (3.1) and (3.15), we have∫

NR(Λε)

(|∇vε|2 + V (εy)v2
ε

) + C

R
=

∫
N2R(Λε)

gε(εy, vε)vεψR

�
∫
Λε

K(εy)vp+1
ε − ε3C

∫
RN

V (εy)v2
ε .

Similarly, using (2.6) and (3.1), we see

Lε(vε) = 1

2

∫
NR(Λε)

(|∇vε|2 + V (εy)v2
ε

) −
∫
Λε

Gε(εy, vε) −
∫

RN\Λε

Fε(εy, vε) + C

R

� 1

2

∫
NR(Λε)

(|∇vε|2 + V (εy)v2
ε

) − 1

p + 1

∫
Λε

K(εy)vp+1
ε − εC + C

R
.

Now, combining these two inequalities, we find that for R large and ε small,

Lε(vε) �
(

1

2
− 1

p + 1

) ∫
NR(Λε)

(|∇vε|2 + V (εy)v2
ε

) − C

R
− Cε > 0,

which implies (3.17).
Suppose that (3.16) is not true, then it follows from Lemma 3.3 that

lim Li
εj

(uεj
)ε−N

j � 2ci,

j→+∞
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which, together with (3.17), implies that

lim inf
j→∞ Jεj

(uεj
)ε−N

j � M
{
(2ci)

1/2 − (ci + σi)
1/2}2

+.

Using the upper estimate for the critical value Cεj
= Jεj

(uεj
), we obtain

M
{
(2ci)

1/2 − (ci + σi)
1/2}2

+ �
k∑

i=1

ci .

Therefore, if M is such that

M >

∑k
i=1 ci

min{((2ci)1/2 − (ci + σi)1/2)2 | i = 1, . . . , k} ,
then we can get a contradiction to Lemma 2.3. Hence (3.16) is true for large M . This concludes the proof of
Lemma 3.4. �

Lemma 3.4 implies that ρε ≡ 0 if M is chosen large enough. In the sequel we fix M so large that Lemma 3.4 holds
true. Now, using the standard arguments (see [15, Lemma 3.4]) we can prove

Lemma 3.5.

lim
ε→0

Li
ε(uε)ε

−N = ci, ∀i = 1, . . . , k.

Lemma 3.5 implies that the concentration of uε must occur around some x̄i ∈ Λi with G(x̄i) = ci . The concentra-
tion implies the presence of at least one local maximum xi

ε in each Λi , and also limε→0 G(xi
ε) = ci .

Next we show the uniqueness of the maxima xi
ε in Λi . We argue by contradiction. Assume the existence of a

sequence εj → 0, such that uεj
possesses two local maxima x̄1

j , x̄2
j ∈ Λi . Then uεj

(x̄i
j ) � b (i = 1,2) for some

constant b > 0. But, the fact that limj→∞ G(x̄i
j ) = ci < inf∂Λi

G(x) implies that these sequences stay away from the

boundary of Λi , so, if we let vj (x) = uεj
(x̄1

j + εj x), then after passing to a subsequence vj converges in the C2 sense

over compact sets to a solution v in H 1(RN) of �v−V (ξ̄1)v+K(ξ̄1)vp = 0, where limj→∞ x̄1
j = ξ̄1. The function v

has a local maximum at zero and is radially symmetric and radially decreasing, which implies that x̄j = ε−1
j (x̄2

j − x̄1
j )

satisfies |x̄j | → ∞. Now repeating the process in the proof of Lemma 3.3, we have

lim inf
n→∞ Li

εj
(uεj

)ε−N
j � 2ci,

which is obviously a contradiction to Lemma 3.5. So, in Λi , the maxima xi
ε of uε are unique and in Λ, uε has exactly

k peaks.
The above procedure indeed proves the following proposition.

Proposition 3.1. The sequences {xi
ε} ⊂ Λi , i = 1, . . . , k satisfy that, for any ν > 0, there exist ε1(ν), ρ1(ν) > 0 such

that for ε < ε1(ν)

ε−N

∫
RN\⋃k

i=1 B
ερ1(ν)

(xi
ε)

(
ε2|∇uε|2 + V (x)u2

ε

)
< ν, (3.18)

and

dist
(
xi
ε,M

i
)
< ν, (3.19)

here Mi = {ξi ∈ Λi | G(ξi) = ci}, i = 1, . . . , k.

In the rest of this section, we will prove that uε is indeed a solution of the original problem (1.1). Let d0 =
min{dist(∂Λi,M

i), i = 1, . . . , k} > 0, and V1 = minx∈Λ V (x)/2 > 0. Fix two positive numbers K0 > max{128,2d0}
and c > 0 such that c2 � (128K2)/(d2V1).
0 0
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Set ν0 = min{d0/K0, (8C1)
− 2

p−1 } and ε2 = min{ε1(ν0), d0/(K0ρ1(ν0)), (ln 2)/c}, where C1 is defined in (2.5),
ε1(ν0) and ρ1(ν0) are given in (3.18) and (3.19) respectively. In the sequel, we assume ε < ε2 and ν < ν0. Hence,

dist
(
xi
ε, ∂Λi

)
>

d0

2
, i = 1, . . . , k and ερ1(ν0) <

d0

K0
. (3.20)

Define Ωn,ε = R
N \ ⋃k

i=1 BRn,ε (x
i
ε) with Rn,ε = ecεn and let ñ > n̂ be integers such that

Rn̂−1,ε <
d0

K0
� Rn̂,ε, Rñ+2,ε � d0

2
< Rñ+3,ε. (3.21)

By (3.20), one gets Rn,ε � Rn̂,ε � d0/K0 > ερ1(ν0) for n � n̂, and hence

Ωn,ε ∩
(

k⋃
i=1

Bερ1(ν0)

(
xi
ε

)) = ∅. (3.22)

Let χn,ε(x) be smooth cut-off functions such that χn,ε(x) = 0 in
⋃k

i=1 BRn,ε (x
i
ε), χn,ε(x) = 1 in Ωn+1,ε , 0 �

χn,ε � 1 and |∇χn,ε| � 2/(Rn+1,ε − Rn,ε).

Lemma 3.6. Assume that (H1) and (H2) hold true. If n̂ � n � ñ, then∫
RN

An,ε � 1

2

∫
Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)
, (3.23)

where An,ε(x) = ε2|∇(χn,εuε)|2 + V (x)(χn,εuε)
2.

Proof. Calculating 〈L′
ε(uε),χ

2
n,εuε〉 = 0 directly, one gets∫

RN

An,ε =
∫

Ωn,ε

ε2|∇χn,ε|2u2
ε +

∫
Λ∩Ωn,ε

χ2
n,εK(x)

(
u+

ε

)p+1 +
∫

(RN\Λ)∩Ωn,ε

fε(x,uε)χ
2
n,εuε

:= I + II + III.

Observing that

ε2|∇χn,ε|2 � 4ε2

|Rn+1,ε − Rn,ε|2 � 16

c2R2
n+1,ε

and that, for n̂ � n � ñ and x ∈ (
⋃k

i=1 BRn+1,ε
(xi

ε)) \ (
⋃k

i=1 BRn,ε (x
i
ε)),

128

c2R2
n+1,ε

� 128
128K2

0
d2

0 V1
· d2

0
K2

0

= V1 � V (x),

we obtain

ε2|∇χn,ε|2 � 1

8
V (x), in R

N

and hence

I � 1

8

∫
Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)
. (3.24)

Now, we estimate II.
Clearly, we only need to consider the case Λ ∩ Ωn,ε �= ∅. Similarly to (2.5), we obtain
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∫
Λ∩Ωn,ε

K(x)
(
u+

ε

)p+1 �
∫

Λ∩Ωn,ε

K(x)|uε|p+1

� C1ε
− N(p−1)

2

( ∫
Λ∩Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)) p+1
2

.

On the other hand, from (3.22), we see Λ ∩ Ωn,ε ⊂ R
N \ (

⋃k
i=1 B

ερ1(ν0)
(xi

ε)), for n � n̂. Thus, it follows from (3.18)
that

II � C1ε
− N(p−1)

2

( ∫
RN\(⋃k

i=1 B
ερ1(ν0)

(xi
ε))

(
ε2|∇uε|2 + V (x)u2

ε

)) p−1
2

∫
Λ∩Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)

� C1ν
p−1

2
0

∫
Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)

� 1

8

∫
Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)
. (3.25)

Finally, to estimate III, we only need to use the method for (2.6) and obtain

III �
∫

Ωn,ε

ε3

1 + |x|θ0
u2

ε � 1

8

∫
Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)
. (3.26)

Consequently, (3.23) can be proved by combining (3.24)–(3.26). �
Lemma 3.7. Under the assumptions of Lemma 3.6, for small ε < ε2, one has∫

RN

∣∣∇(χñ,εuε)
∣∣2 � CεN−22− ln 2

cε .

Proof. Lemma 3.6 implies that∫
RN

An,ε � 1

2

∫
Ωn,ε

(
ε2|∇uε|2 + V (x)u2

ε

)
� 1

2

∫
RN

An−1,ε.

Iterating the above process, we see

∫
RN

Añ,ε �
(

1

2

)ñ−n̂ ∫
RN

An̂,ε �
(

1

2

)ñ−n̂+1 ∫
Ωn̂,ε

(
ε2|∇uε|2 + V (x)u2

ε

)

�
(

1

2

)ñ−n̂+1 ∫
RN\(⋃k

i=1 Bερ1(ν0)(x
i
ε))

(
ε2|∇uε|2 + V (x)u2

ε

)

� CεN

(
1

2

)ñ−n̂+1

= CεNe−(ñ−n̂+1) ln 2 � CεN2− ln 2
cε ,

where, in the last inequality, we have used

ecε(ñ−n̂+1) = ecεñe−cε(n̂−1) = ecεñR−1
n̂−1,ε

� K0 � 2.

d0
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As a result, we obtain∫
RN

∣∣∇(χñ,εuε)
∣∣2 � ε−2

∫
RN

Añ,ε � CεN−22− ln 2
cε . �

Lemma 3.8. Under the assumptions of Lemma 3.6, there holds

uε(x) � C2− ln 2
2cε , ∀x ∈ R

N
∖(

k⋃
i=1

Bd0
2

(
xi
ε

))
.

Proof. Define

cε(x) = χε(x)K(εx)vp−1
ε + (

1 − χε(x)
) ε3

1 + |εx|θ0
,

where χε is a characteristic function of Λε = {ε−1x | x ∈ Λ}. We know vε = uε(εx) ∈ H 1
loc(R

N) is a nonnegative
weak subsolution of �v + cε(x)v = 0.

Fix s ∈ (N
2 , 2N

(p−1)(N−2)
). Since θ0 > 2, we find

∥∥cε(x)
∥∥

Ls �
∥∥χε(x)K(εx)vp−1

ε

∥∥
Ls +

∥∥∥∥(
1 − χε(x)

) ε3

1 + |εx|θ0

∥∥∥∥
Ls

� C

( ∫
Λε

(|∇vε|2 + V (εx)v2
ε

)) p−1
2 + Cε3− N

s

( ∫
RN\Λ

1

(1 + |y|θ0)s

) 1
s

� C,

which shows that ‖cε(x)‖Ls is uniformly bounded with respect to ε. By Theorem 8.17 on page 194 in [25], there is a
constant C depending only on d0, the dimension N and the Ls bound of cε(x) such that for z ∈ R

N ,

vε(z) � C

( ∫
B cd0

4
(z)

v
2N

N−2
ε

)N−2
2N

. (3.27)

Noting that for ε small,

Bεcd0
4

(x) ⊂ Ωñ+1,ε, ∀x ∈ R
N

∖(
k⋃

i=1

Bd0
2

(
xi
ε

))
,

we see that, for any x ∈ R
N \ (

⋃k
i=1 Bd0

2
(xi

ε)),

uε(x) = vε

(
ε−1x

)
� C

( ∫
B cd0

4
(ε−1x)

v
2N

N−2
ε

)N−2
2N

= C

(
ε−N

∫
B εcd0

4
(x)

u
2N

N−2
ε

)N−2
2N

� Cε− N−2
2

( ∫
RN

(χñ,εuε)
2N

N−2

)N−2
2N

� Cε− N−2
2

( ∫
RN

∣∣∇(χñ,εuε)
∣∣2

) 1
2

� C2− ln 2
2cε . �

Now we are ready to prove Theorem 1.1.
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Proof. Since p ∈ ((N + β1)/(N − 2), (N + 2)/(N − 2)), we can choose σ0 less than but close to N − 2 such that

2 < θ0 < (p − 1)σ0 − β1, σ0p − β1 > N. (3.28)

Define the following comparison function

U(x) =
k∑

i=1

1

|x − xi
ε|σ0

in R
N

∖(
k⋃

i=1

Bd0
2

(
xi
ε

))
.

It is easy to know that Z(x) = U(x) − ε2uε(x) � 0 on ∂(
⋃k

i=1 Bd0
2
(xi

ε)) for small ε and Z(x) vanishes at infinity

due to (3.27).
On the other hand, noting σ0 < N − 2, we conclude from Lemma 3.8 that for ε sufficiently small and for all

x ∈ R
N \ (

⋃k
i=1 Bd0

2
(xi

ε)),

−�Z = −�U + ε2�uε

= σ0(N − 2 − σ0)

k∑
i=1

1

|x − xi
ε|σ0+2

+ V (x)uε − gε(x,uε)

� σ0(N − 2 − σ0)

k∑
i=1

1

|x − xi
ε|σ0+2

− χΛ(x)ε − ε(1 − χΛ(x))

1 + |x|N
� 0.

Thus, the maximum principle ensures that uε � U/ε2 in R
N \ (

⋃k
i=1 Bd0

2
(xi

ε)) and hence

uε(x) �
k∑

i=1

1

ε2|x − xi
ε|σ0

� C

ε2(1 + |x|σ0)
in R

N \ Λ. (3.29)

Next we verify that uε actually solves Eq. (1.1). Indeed, it follows from (H3), Lemma 3.8, (3.28) and (3.29) that
we can choose γ larger than but close to 1 such that, for small ε and all x ∈ R

N \ Λ,

K(x)up
ε � k1

(
1 + |x|β1

)( C

ε2(1 + |x|σ0)

)p−γ

2− (γ−1) ln 2
2cε uε � ε3

1 + |x|θ0
uε,

and

K(x)up
ε � k1

(
1 + |x|β1

)( C

ε2(1 + |x|σ0)

)p+1−γ

2− (γ−1) ln 2
2cε � ε

1 + |x|N .

Therefore, gε(x,uε) ≡ K(x)u
p
ε holds true in R

N \ Λ and uε solves the original problem (1.1). Noting that σ0 is
close to N − 2, (3.29) leads to uε ∈ L2(RN) for N � 5.

Finally, Proposition 3.1, Lemma 3.8 and (3.29) imply that uε has exactly k local maxima xi
ε ∈ Λi , i = 1, . . . , k,

which satisfy that G(xi
ε) → infx∈Λi

G(x) as ε → 0. �
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Appendix A. The smoothness of Jε(u)

Proposition A.1. Let Jε(u) be as in Section 2. Then Jε(u) ∈ C1.
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Proof. Since Jε(u) = Lε(u) + Pε(u), we divide the proof into two steps.

Step 1. The functions Lε(u) is of class C1.
We recall

fε(x, t) = min

{
K(x)

(
t+

)p
,

ε3

1 + |x|θ0
t+,

ε

1 + |x|N
}
. (A.1)

It is easy to check that fε(x, t) is continuous in both x and t . As a result, Fε(x, t) is C1 in t .
We claim that I (u) := ∫

RN\Λ Fε(x,u) is C1. Indeed, it follows from direct calculation that, for any h ∈ Eε

d

dt
I (u + th)

∣∣∣∣
t=0

=
∫

RN\Λ
fε(x,u)h.

Thus, I (u) is Gateaux differentiable. To show that I (u) is Fréchet differentiable and I (u) is C1, we just need to show
that

∫
RN\Λ fε(x,u)h is continuous in Eε .

Suppose that un → u in Eε . We have∣∣∣∣
∫

RN\Λ

(
fε(x,un) − fε(x,u)

)
h

∣∣∣∣ �
∫

RN\Λ

∣∣fε(x,un) − fε(x,u)
∣∣|h|

�
( ∫

RN\Λ

∣∣fε(x,un) − fε(x,u)
∣∣ 2N

N+2

)N+2
2N

( ∫
RN\Λ

|h| 2N
N−2

)N−2
2N

� C

( ∫
RN\Λ

∣∣fε(x,un) − fε(x,u)
∣∣ 2N

N+2

)N+2
2N ‖h‖ε. (A.2)

Using (A.1), we see that for any set S ⊂ R
N\Λ,∫

S

∣∣fε(x,un)
∣∣ 2N

N+2 � C

∫
S

( |un|
1 + |x|θ0

) 2N
N+2

�
( ∫

RN

|un| 2N
N−2

)N−2
N+2

(∫
S

1

1 + |x|Nθ0
2

) 4
N+2

� C

(∫
S

1

1 + |x|Nθ0
2

) 4
N+2

.

Since θ0 > 2, we see that if meas(S) → 0, or S moves to infinity, then∫
S

∣∣fε(x,un)
∣∣ 2N

N+2 → 0,

uniformly in n. It follows from the Vitalli theorem that∫
RN\Λ

∣∣fε(x,un) − fε(x,u)
∣∣ 2N

N+2 → 0,

as n → +∞. As a consequence,
∫

RN\Λ Fε(x,u) and hence Lε(u) are C1.

Step 2. Pε(u) is C1.
Recall

Pε(u) = M

k∑
i=1

{(
Li

ε(u)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}2
+.

Direct calculations show that
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d

dt
Pε(u + th)

∣∣∣∣
t=0

= M

k∑
i=1

{(
Li

ε(u)+
) 1

2 − ε
N
2 (ci + σi)

1
2
}
+

〈(Li
ε(u))′, h〉

(Li
ε(u)+)

1
2

.

Since {(Li
ε(u)+)

1
2 − ε

N
2 (ci + σi)

1
2 }+ 1

(Li
ε(u)+)

1
2

is continuous, we see that each term in functional Pε(u) is C1. So,

we complete the proof. �
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