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Abstract

We consider solutions of the focusing cubic and quintic Gross–Pitaevskii (GP) hierarchies. We identify an observable corre-
sponding to the average energy per particle, and we prove that it is a conserved quantity. We prove that all solutions to the focusing
GP hierarchy at the L2-critical or L2-supercritical level blow up in finite time if the energy per particle in the initial condition is
negative. Our results do not assume any factorization of the initial data.

1. Introduction

The mathematical analysis of interacting Bose gases is a rich and fascinating research topic that is experiencing
remarkable progress in recent years. One of the fundamental questions in this field concerns the mathematically
rigorous proof of Bose–Einstein condensation; for some recent landmark results in this direction, we refer to the
works of Lieb, Seiringer, Yngvason, and their collaborators which have initiated much of the current interest in the
field, see [2,24–26] and the references therein.

Another main line of research focuses on the effective mean field dynamics of interacting Bose gases. In the recent
years, remarkable progress has been achieved in the mathematically rigorous derivation of the nonlinear Schrödinger
(NLS) and nonlinear Hartree (NLH) equations as the mean field limits of interacting Bose gases. For some recent
fundamental results in this area, we refer to the works of Erdös, Schlein and Yau in [10,11,13], and also [23,22,29]
and the references therein; see also [1,3,8,14–16,19–21,30].

The strategy of [10,11,13] involves the following main steps, which are presented in more detail below: Based
on the Schrödinger evolution of the given N -body system of bosons, one derives the associated BBGKY hierarchy
of marginal density matrices. Subsequently, one takes the limit N → ∞, whereupon the BBGKY hierarchy tends
to an infinite hierarchy of marginal density matrices referred to as the Gross–Pitaevskii (GP) hierarchy. Finally, one
proves that for factorized initial conditions, the solutions of the GP hierarchy are factorized and unique, and that the
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individual factors satisfy the NLS or NLH, depending on the definition of the original N -body system. In the work at
hand, we will focus on the case linked to the NLS.

It is well known that for focusing L2-critical and L2-supercritical NLS, negativity of the conserved energy implies
blowup of solutions in H 1. For a proof of this statement under the assumption of finite variance,1 see e.g. [18,31,32].
This is usually proven by use of energy conservation combined with a virial identity, a method often referred to as
Glassey’s argument. In this paper, we are especially interested in the phenomenon of blowup of solutions for the
GP hierarchy without assuming factorization of the initial conditions. More precisely, here we obtain an analogue of
Glassey’s argument for the GP hierarchy, and thereby, we establish blowup of solutions to the GP hierarchy under the
condition that the initial energy is negative and that the variance is finite.

First, for the convenience of the reader, we outline below the main steps along which the defocusing cubic NLS is
derived as the mean field limit for a gas of bosons with repelling pair interactions, following [10,11,13]. For repelling
three body interactions leading to the defocusing quintic NLS, we refer to [6]. We remark that currently, very few
analogous results are available for the case of attractive (focusing) interactions. For L2-subcritical interactions, we
expect the problem to be accessible through arguments similar to those in [9]. For the case of focusing L2-supercritical
interactions, a key difficulty emerges from the lack of an a priori bound (based on energy conservation) at the level
of the BBGKY hierarchy. Consequently, it is at present not known how to derive the GP hierarchy from the BBGKY
hierarchy in the latter situation.

(i) From N -body Schrödinger to BBGKY. Let ψN ∈ L2(RdN) denote the wave function describing N bosons in Rd .
To account for the Bose–Einstein statistics, ψN is invariant with respect to permutations π ∈ SN , which act by inter-
changing the particle variables,

ψN(xπ(1), xπ(2), . . . , xπ(N)) = ψN(x1, x2, . . . , xN). (1.1)

We denote L2
s (R

dN) := {ψN ∈ L2(RdN) | ψN satisfies (1.1)}. The dynamics of the system is determined by the
Schrödinger equation

i∂tψN = HNψN. (1.2)

The Hamiltonian HN is assumed to be a self-adjoint operator acting on the Hilbert space L2
s (R

dN), of the form

HN =
N∑

j=1

(−�xj
) + 1

N

∑
1�i<j�N

VN(xi − xj ), (1.3)

where VN(x) = NdβV (Nβx) with V ∈ Wr,s(Rd) spherically symmetric, for some suitable r , s, and for β ∈ (0,1)

sufficiently small.
The limit N → ∞ is obtained in the following manner. One introduces the density matrix

γN

(
t, xN , x′

N

) = ∣∣ψN(t, xN)
〉〈
ψN(t, xN)

∣∣ := ψN(t, xN)ψN

(
t, x′

N

)
where xN = (x1, x2, . . . , xN) and x′

N = (x′
1, x

′
2, . . . , x

′
N). Moreover, one introduces the associated sequence of k-

particle marginal density matrices γ
(k)
N (t), for k = 1, . . . ,N , as the partial trace of γN over the degrees of freedom of

the last (N − k) particles,

γ
(k)
N = Trk+1,k+2,...,N |ψN 〉〈ψN |.

Here, Trk+1,k+2,...,N denotes the partial trace with respect to the particles indexed by k+1, k+2, . . . ,N . Accordingly,
γ

(k)
N is defined as the non-negative trace class operator on L2

s (R
dk) with kernel given by

γ
(k)
N

(
xk, x

′
k

) =
∫

dxN−kγN

(
xk, xN−k;x′

k, xN−k

)
=

∫
dxN−kψN(xk, xN−k)ψN

(
x′

k, xN−k

)
. (1.4)

1 The finite variance assumption was removed by Ogawa and Tsutsumi in [28], see also [17] and [27].
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It is clear from the definitions given above that γ
(k)
N = Trk+1 γ

(k+1)
N , and that Trγ (k)

N = ‖ψN‖2
L2

s (R
dN )

= 1 for all N ,

and all k = 1,2, . . . ,N .
The time evolution of the density matrix γN is determined by the Heisenberg equation

i∂t γN(t) = [
HN,γN(t)

]
, (1.5)

which is equivalent to

i∂t γN

(
t, xN , x′

N

) = −(�xN
− �x′

N
)γN

(
t, xN , x′

N

)
+ 1

N

∑
1�i<j�N

[
VN(xi − xj ) − VN

(
x′
i − x′

j

)]
γN

(
t, xN , x′

N

)
, (1.6)

expressed in terms of the associated integral kernel. Accordingly, the k-particle marginals satisfy the BBGKY hierar-
chy

i∂t γ
(k)

(
t, xk;x′

k

)
= −(�xk

− �x′
k
)γ (k)

(
t, xk, x

′
k

)
+ 1

N

∑
1�i<j�k

[
VN(xi − xj ) − VN

(
x′
i − x′

j

)]
γ (k)

(
t, xk;x′

k

)
(1.7)

+ N − k

N

k∑
i=1

∫
dxk+1

[
VN(xi − xk+1) − VN

(
x′
i − xk+1

)]
γ (k+1)

(
t, xk, xk+1;xk, x

′
k+1

)
(1.8)

where �xk
:= ∑k

j=1 �xj
, and similarly for �x′

k
. We note that the number of terms in (1.7) is ≈ k2

N
→ 0, and the

number of terms in (1.8) is k(N−k)
N

→ k as N → ∞. Accordingly, for fixed k, (1.7) disappears in the limit N → ∞
described below, while (1.8) survives.

(ii) From BBGKY to GP. It is proven in [10,11,13] that, for a suitable topology on the space of marginal density
matrices, and as N → ∞, one can extract convergent subsequences γ

(k)
N → γ (k) for k ∈ N, which satisfy the infinite

limiting hierarchy

i∂t γ
(k)

(
t, xk;x′

k

) = −(�xk
− �x′

k
)γ (k)

(
t, xk;x′

k

)+ b0

k∑
j=1

(
Bj,k+1γ

(k+1)
)(

t, xk;x′
k

)
, (1.9)

which is in e.g. [10,23] referred to as the Gross–Pitaevskii (GP) hierarchy.2 Here,(
Bj,k+1γ

(k+1)
)(

t, xk;x′
k

)
:=

∫
dxk+1 dx′

k+1

[
δ(xj − xk+1)δ

(
xj − x′

k+1

)− δ
(
x′
j − xk+1

)
δ
(
x′
j − x′

k+1

)]
γ (k+1)

(
t, xk, xk+1;x′

k, x
′
k+1

)
,

and b0 = ∫
V (x)dx. The interaction term here is obtained from the limit of (1.8) as N → ∞, using that VN(x) →

b0δ(x) weakly. We will set b0 = 1 in the sequel.

(iii) NLS and factorized solutions of GP. The link between the original bosonic N -body system and solutions of the
NLS is established as follows. Given factorized k-particle marginals

γ
(k)
0

(
xk;x′

k

) =
k∏

j=1

φ0(xj )φ0
(
x′
j

)

2 We remark that, on the other hand, the terminology “Gross–Pitaevskii equation” refers to a cubic nonlinear Schrödinger equation, see e.g. [12].
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at initial time t = 0, with φ0 ∈ H 1(Rd), one can easily verify that the solution of the GP hierarchy remains factorized
for all t ∈ I ⊆ R,

γ
(k)
0

(
t, xk;x′

k

) =
k∏

j=1

φ(t, xj )φ
(
t, x′

j

)
,

if φ(t) ∈ H 1(Rd) solves the defocusing cubic NLS,

i∂tφ = −�xφ + |φ|2φ, (1.10)

for t ∈ I , and φ(0) = φ0 ∈ H 1(Rd).
Solutions of the GP hierarchy are studied in spaces of k-particle marginals with norms ‖γ (k)‖


H 1
k

:=
Tr(S(k)γ (k)) < ∞ or ‖γ (k)‖H 1

k
:= (Tr(S(k)γ (k))2)1/2 < ∞ where S(k) := ∏k

j=1〈∇xj
〉〈∇x′

j
〉, and Hα

k ≡ Hα(Rdk ×Rdk)

for brevity. While the existence of factorized solutions can be easily obtained, as outlined above, the question remains
whether solutions of the GP hierarchy are also unique.

The proof of uniqueness of solutions of the GP hierarchy is the most difficult part in the program outlined above,
and it was originally accomplished by Erdös, Schlein and Yau in [10,11,13] by use of sophisticated Feynman graph
expansion methods. In [23] Klainerman and Machedon proposed an alternative method for proving uniqueness based
on use of space–time bounds on the density matrices and introduction of an elegant “board game” argument whose
purpose is to organize the relevant combinatorics related to expressing solutions of the GP hierarchy using iterated
Duhamel formulas. For the approach developed in [23], the authors assume that the a priori space–time bound∥∥Bj ;k+1γ

(k+1)
∥∥

L1
t Ḣ

1
k

< Ck (1.11)

holds, with C independent of k. The authors of [22] proved that the latter is indeed satisfied for the cubic case in
d = 2, based on energy conservation.

Non-factorized solutions of focusing and defocusing GP hierarchies. As mentioned above, it is currently only known
how to obtain a GP hierarchy from the N → ∞ limit of a BBGKY hierarchy with repulsive interactions, but not for
attractive interactions.

However, in the work at hand, we will, similarly as in [7], start directly from the level of the GP hierarchy, and
allow ourselves to also discuss attractive interactions. Accordingly, we will refer to the corresponding GP hierarchies
as cubic, quintic, focusing, or defocusing GP hierarchies, depending on the type of the NLS governing the solutions
obtained from factorized initial conditions.

Recently, in [7], two of us analyzed the Cauchy problem for the cubic and quintic GP hierarchy in Rd , d � 1 with
focusing and defocusing interactions, and proved the existence and uniqueness of solutions to the GP hierarchy that
satisfy the space–time bound (1.11) which was assumed in [23]. As a key ingredient of the arguments in [7] a suitable
topology is introduced on the space of sequences of marginal density matrices,

G = {
Γ = (

γ (k)
(
x1, . . . , xk;x′

1, . . . , x
′
k

))
k∈N

∣∣ Trγ (k) < ∞}
. (1.12)

It is determined by the generalized Sobolev norms

‖Γ ‖Hα
ξ

:=
∑
k∈N

ξk
∥∥γ (k)

∥∥
Hα

k
, (1.13)

parametrized by ξ > 0, and the spaces Hα
ξ = {Γ ∈ G | ‖Γ ‖Hα

ξ
< ∞} were introduced. The parameter ξ > 0 is de-

termined by the initial condition, and it sets the energy scale of a given Cauchy problem; if Γ ∈ Hα
ξ , then ξ−1 is an

upper bound on the typical Hα-energy per particle. The parameter α determines the regularity of the solution. In [7],
the local in time existence and uniqueness of solutions is established for cubic, quintic, focusing and defocusing GP
hierarchies in Hα

ξ for α in a range depending on d , which satisfy a space–time bound ‖B̂Γ ‖L1
t∈I Hα

ξ
< C‖Γ0‖Hα

ξ0
for

some 0 < ξ � ξ0 (here B̂Γ := (Bk+ p
2
γ (k+ p

2 ))k∈N). The precise statement and the associated consequences that we
will use in this paper are presented in the next section. This result implies, in particular, (1.11).

In this paper we study solutions of focusing GP hierarchies without any factorization condition, and especially
establish the following results characterizing the blowup of solutions:
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(1) For defocusing cubic GP hierarchies in d = 1,2,3, and defocusing quintic GP hierarchies in d = 1,2, which
are obtained as limits of BBGKY hierarchies as outlined above, it is possible to derive a priori bounds on
‖γ (k)(t)‖L∞

t H 1
k

based on energy conservation in the N -particle Schrödinger system, see [10,11,13], and also
[6,22]. However, on the level of the GP hierarchy, no conserved energy functional has so far been known. We
identify an observable corresponding to the average energy per particle, and we prove that it is conserved.

(2) Furthermore, we prove the virial identity on the level of the GP hierarchy that enables us to obtain an analogue of
Glassey’s argument from the analysis of focusing NLS equations. As a consequence, we prove that all solutions
to the focusing GP hierarchy at the L2-critical or L2-supercritical level blow up in finite time if the energy per
particle in the initial condition is negative.

Organization of the paper. In Section 2 we present the notation and the preliminaries. The main results of the paper
are stated in Section 3. In Section 4 we identify the average energy per particle and prove that it is a conserved quantity.
In Section 5, we derive a virial identity that enables us to prove an analogue of Glassey’s blow-up argument familiar
from the analysis of NLS. The analogue of Glassey’s blow-up argument is presented in Section 6.

2. Definition of the model and preliminaries

We introduce the space

G :=
∞⊕

k=1

L2(Rdk × Rdk
)

(2.1)

of sequences of density matrices

Γ := (
γ (k)

)
k∈N

(2.2)

where γ (k) � 0, Trγ (k) = 1, and where every γ (k)(xk, x
′
k) is symmetric in all components of xk , and in all components

of x′
k , respectively, i.e.

γ (k)
(
xπ(1), . . . , xπ(k);x′

π ′(1), . . . , x
′
π ′(k)

) = γ (k)
(
x1, . . . , xk;x′

1, . . . , x
′
k

)
(2.3)

holds for all π,π ′ ∈ Sk .
Moreover, the k-particle marginals are hermitean,

γ (k)
(
xk;x′

k

) = γ (k)
(
x′

k;xk

)
. (2.4)

We call Γ = (γ (k))k∈N admissible if γ (k) = Trk+1,...,k+ p
2
γ (k+ p

2 ), that is,

γ (k)
(
xk;x′

k

) =
∫

dxk+1γ
(k+1)

(
xk, xk+1;x′

k, xk+1
)

(2.5)

for all k ∈ N.
We will use the following convention for the Fourier transform,

γ
(
xk;x′

k

) =
∫

duk du′
k eiukxk−iu′

kx
′
k γ̂

(
uk;u′

k

)
.

Let 0 < ξ < 1. We define

Hα
ξ := {

Γ ∈ G
∣∣ ‖Γ ‖Hα

ξ
< ∞}

(2.6)

where

‖Γ ‖Hα
ξ

=
∞∑

k=1

ξk
∥∥γ (k)

∥∥
Hα(Rdk×Rdk)

, (2.7)

with ∥∥γ (k)
∥∥

α dk dk = ∥∥S(k,α)γ (k)
∥∥

2 dk dk , (2.8)

H (R ×R ) L (R ×R )
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and S(k,α) := ∏k
j=1〈∇xj

〉α〈∇x′
j
〉α . Clearly, Hα

ξ is a Banach space. Similar spaces are used in the isospectral renormal-
ization group analysis of spectral problems in quantum field theory, [4].

Next, we define the cubic, quintic, focusing, and defocusing GP hierarchies. Let p ∈ {2,4}. The p-GP (Gross–
Pitaevskii) hierarchy is given by

i∂t γ
(k) =

k∑
j=1

[−�xj
, γ (k)

]+ μBk+ p
2
γ (k+ p

2 ) (2.9)

in d dimensions, for k ∈ N. Here,(
Bk+ p

2
γ (k+ p

2 )
)(

t, x1, . . . , xk;x′
1, . . . , x

′
k

)
:=

k∑
j=1

(
Bj ;k+1,...,k+ p

2
γ (k+ p

2 )
)(

t, x1, . . . , xk;x′
1, . . . , x

′
k

)
:=

k∑
j=1

[(
B1

j ;k+1,...,k+ p
2
γ (k+ p

2 )
)(

t, x1, . . . , xk;x′
1, . . . , x

′
k

)
− (

B2
j ;k+1,...,k+ p

2
γ (k+ p

2 )
)(

t, x1, . . . , xk;x′
1, . . . , x

′
k

)]
, (2.10)

where(
B1

j ;k+1,...,k+ p
2
γ (k+ p

2 )
)(

t, x1, . . . , xk;x′
1, . . . , x

′
k

)
=

∫
dxk+1 · · ·dxk+ p

2
dx′

k+1 · · ·dx′
k+ p

2

k+ p
2∏

�=k+1

δ(xj − x�)δ
(
xj − x′

�

)
γ (k+ p

2 )
(
t, x1, . . . , xk+ p

2
;x′

1, . . . , x
′
k+ p

2

)
,

and (
B2

j ;k+1,...,k+ p
2
γ (k+ p

2 )
)(

t, x1, . . . , xk;x′
1, . . . , x

′
k

)
=

∫
dxk+1 · · ·dxk+ p

2
dx′

k+1 · · ·dx′
k+ p

2

k+ p
2∏

�=k+1

δ
(
x′
j − x�

)
δ
(
x′
j − x′

�

)
γ (k+ p

2 )
(
t, x1, . . . , xk+ p

2
;x′

1, . . . , x
′
k+ p

2

)
.

The operator Bk+ p
2
γ (k+ p

2 ) accounts for (
p
2 + 1)-body interactions between the Bose particles. We note that for fac-

torized solutions, the corresponding 1-particle wave function satisfies the p-NLS i∂tφ = −�φ + μ|φ|pφ.
We refer to (2.9) as the cubic GP hierarchy if p = 2, and as the quintic GP hierarchy if p = 4. Also we denote

the L2-critical exponent by pL2 = 4
d

and refer to (2.9) as an L2-critical GP hierarchy if p = pL2 and as an L2-
supercritical GP hierarchy if p > pL2 . Moreover, for μ = 1 or μ = −1 we refer to the GP hierarchies as being
defocusing or focusing, respectively.

To obtain the blow-up property, we need a result providing a blow-up alternative. This is a usually obtained as a
byproduct of the local theory. In the context of the local theory developed in [7], we recall the following two theorems:
Theorem 2.1 which establishes the local well-posedness of the GP equation and Theorem 2.5 that gives lower bounds
on the blow-up rate. In order to state these two theorems, we recall that in [7] the GP hierarchy was rewritten in the
following way:

i∂tΓ + �̂±Γ = μB̂Γ, (2.11)

where

�̂±Γ := (
�

(k)
± γ (k)

)
k∈N

with �
(k)
± = �xk

− �x′
k
,

and

B̂Γ := (
Bk+ p γ (k+ p

2 )
)

. (2.12)

2 k∈N
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Also the following set A(d,p) was introduced in [7], for p = 2,4 and d � 1,

A(d,p) =
⎧⎨⎩

( 1
2 ,∞) if d = 1,

( d
2 − 1

2(p−1)
,∞) if d � 2 and (d,p) �= (3,2),

[1,∞) if (d,p) = (3,2),

(2.13)

which we will use to account for the regularity of solutions.
Now we recall the local well-posedness theorem proved in [7].

Theorem 2.1. Let 0 < ξ1 < 1. Assume that α ∈ A(d,p) where d � 1 and p ∈ {2,4}. Then, for every Γ0 ∈ Hα
ξ1

,
there exist constants T > 0 and 0 < ξ2 � ξ1 such that there exists a unique solution Γ (t) ∈ Hα

ξ2
for t ∈ [0, T ] with

‖B̂Γ ‖L1
t∈[0,T ] Hα

ξ2
< ∞.

Moreover, there exists a finite constant C(T ,d,p, ξ1, ξ2) such that the bound

‖B̂Γ ‖L1
t∈I Hα

ξ2
� C(T ,d,p, ξ1, ξ2)‖Γ0‖Hα

ξ1
(2.14)

holds.

Definition 2.2. We say that a solution Γ (t) of the GP hierarchy blows up in finite time with respect to Hα if there
exists T ∗ < ∞ such that the following holds: For every ξ > 0 there exists T ∗

ξ,Γ < T ∗ such that ‖Γ (t)‖Hα
ξ

→ ∞ as
t ↗ T ∗

ξ,Γ . Moreover, T ∗
ξ,Γ ↗ T ∗ as ξ → 0.

For the study of blow-up solutions, it is convenient to introduce the following quantity.

Definition 2.3. We refer to

AvHα(Γ ) := [
sup

{
ξ > 0

∣∣ ‖Γ ‖Hα
ξ

< ∞}]−1
, (2.15)

AvLr (Γ ) := [
sup

{
ξ > 0

∣∣ ‖Γ ‖Lr
ξ
< ∞}]−1

, (2.16)

respectively, as the typical (or average) Hα-energy and the typical Lr -norm per particle.

We then have the following characterization of blowup.

Lemma 2.4. Blowup in finite time of Γ (t) with respect to Hα as t ↗ T ∗, as characterized in Definition 2.2, is
equivalent to the statement that AvHα(Γ (t)) → ∞ as t ↗ T ∗ (and similarly for Lr ).

Proof. Clearly, AvHα(Γ ) is the reciprocal of the convergence radius of ‖Γ ‖Hα
ξ

as a power series in ξ . Accordingly,

‖Γ ‖Hα
ξ

< ∞ for ξ < AvHα(Γ )−1, and ‖Γ ‖Hα
ξ

= ∞ for ξ � AvHα(Γ )−1.
Blowup in finite time of Γ (t) in Hα as t ↗ T ∗, as characterized in Definition 2.2, is equivalent to the statement

that the convergence radius of ‖Γ (t)‖Hα
ξ
, as a power series in ξ , tends to zero as t ↗ T ∗. Thus, in turn, blowup in

finite time of Γ (t) with respect to Hα is equivalent to the statement that AvHα(Γ (t)) → ∞ as t ↗ T ∗. �
The following theorem from [7] gives lower bounds on the blow-up rate.

Theorem 2.5. Assume that Γ (t) is a solution of the (cubic p = 2 or p = 4 quintic) p-GP hierarchy with initial
condition Γ (t0) = Γ0 ∈ Hα

ξ , for some ξ > 0, which blows up in finite time. Then, the following lower bounds on the
blow-up rate hold:

(a) Assume that 4
d

� p < 4
d−2α

. Then,(
AvHα

(
Γ (t)

)) 1
2 >

C

∗ (2α−d+ 4
p

)/4
. (2.17)
|T − t |



1278 T. Chen et al. / Ann. I. H. Poincaré – AN 27 (2010) 1271–1290
Thus specifically, for the cubic GP hierarchy in d = 2, and for the quintic GP hierarchy in d = 1,(
AvH 1

(
Γ (t)

)) 1
2 � C

|t − T ∗| 1
2

, (2.18)

with respect to the Sobolev spaces Hα , Hα
ξ .

(b) (
AvLr

(
Γ (t)

)) 1
2 � C

|t − T ∗| 1
p

− d
2r

, for
pd

2
< r. (2.19)

Remark 2.6. We note that in the factorized case, the above lower bounds on the blow-up rate coincide with the known
lower bounds on the blow-up rate for solutions to the NLS (see, for example, [5]).

We note that

Γ = (|φ〉〈φ|⊗k
)
k∈N

⇒ AvHα(Γ ) = ‖φ‖2
Hα and AvLr (Γ ) = ‖φ‖2

Lr (2.20)

in the factorized case.
The fact that Γ ∈ Hα

ξ means that the typical energy per particle is bounded by AvHα(Γ ) < ξ−1. Therefore, the
parameter ξ determines the Hα-energy scale in the problem. While solutions with a bounded Hα-energy remain in
the same Hα

ξ for some sufficiently small ξ > 0, blow-up solutions undergo transitions Hα
ξ1

→ Hα
ξ2

→ Hα
ξ3

→ ·· ·
where the sequence ξ1 > ξ2 > · · · converges to zero as t → T ∗.

We emphasize again that (AvN(Γ ))−1 is the convergence radius of ‖Γ ‖Nξ
as a power series in ξ , for the norms

N = Hα,Lr and Nξ = Hα
ξ , Lr

ξ , respectively.

3. Statement of the main results

The following two theorems are the main results of this paper. First we prove energy conservation per particle for
solutions Γ (t) of the p-GP hierarchy. More precisely,

Theorem 3.1. Let 0 < ξ < 1. Assume that Γ (t) ∈ Hα
ξ , with α � 1, is a solution of the focusing (μ = −1) or defocusing

(μ = 1) p-GP hierarchy with initial condition Γ0 ∈ Hα
ξ . Then, the following hold. Let

Ek

(
Γ (t)

) := 1

2
Tr

(
k∑

j=1

(−�xj
)γ (k)(t)

)
+ μ

p + 2
Tr

(
k∑

j=1

B1
j ;k+1,...,k+ p

2
γ (k+ p

2 )(t)

)
. (3.1)

Then, the quantity

Enξ

(
Γ (t)

) :=
∑
k�1

ξkEk

(
Γ (t)

)
(3.2)

is conserved, and in particular,

Enξ

(
Γ (t)

) =
(∑

k�1

kξk

)
E1

(
Γ (t)

)
, (3.3)

where
∑

k�1 kξk < ∞ for any 0 < ξ < 1.

We recall that Tr(A) means integration of the kernel A(x,x′) against the measure
∫

dx dx′ δ(x − x′). We note that
for factorized states Γ (t) = (|φ(t)〉〈φ(t)|⊗k)k∈N, one finds

E1
(
Γ (t)

) = 1

2

∥∥∇φ(t)
∥∥2

L2 + μ

p + 2

∥∥φ(t)
∥∥p+2

Lp+2 , (3.4)

which is the usual expression for the conserved energy for solutions of the NLS i∂tφ + �φ + μ|φ|pφ = 0.
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Theorem 3.2. Let p � pL2 . Assume that Γ (t) = (γ (k)(t))k∈N solves the focusing (i.e., μ = −1) p-GP hierarchy with
initial condition Γ (0) ∈ H1

ξ for some 0 < ξ < 1, with Tr(x2γ (1)(0)) < ∞. If E1(Γ (0)) < 0, then there exists T ∗ < ∞
such that AvH 1(Γ (t)) → ∞ as t ↗ T ∗.

Remark 3.3. We note that Theorem 3.2 is proved under the assumption that Tr(x2γ (1)(0)) < ∞, which is analogous
to the finite variance assumption in the case of Glassey’s blow-up argument for the NLS (see e.g. [5, Theorem 6.5.4]).

As a motivation for the proofs presented below, we briefly recall the application of Glassey’s argument in the case
of an L2-critical or supercritical focusing NLS. We consider a solution of i∂tφ = −�φ − |φ|pφ with φ(0) = φ0 ∈
H 1(Rd) and p � pL2 = 4

d
, such that the conserved energy satisfies E[φ(t)] := 1

2‖∇φ(t)‖2
L2 − 1

p+2‖φ(t)‖p+2
Lp+2 =

E[φ0] < 0. Moreover, we assume that ‖|x|φ0‖L2 < ∞. Then, one considers the quantity V (t) := 〈φ(t), x2φ(t)〉,
which is shown to satisfy the virial identity

∂2
t V (t) = 16E[φ0] − 4d

p − pL2

p + 2

∥∥φ(t)
∥∥p+2

Lp+2 . (3.5)

Hence, if E[φ0] < 0, and p � pL2 , the identity (3.5) shows that V is a strictly concave function of t . But since V

is also non-negative, we conclude that the solution can exist only for a finite amount of time (for more details, see
Section 6). This phenomenon is referred to as negative energy blowup in finite time for the NLS. In the sequel, we
will prove analogues of these arguments for the GP hierarchy.

4. Conservation of energy

In this section, we prove Theorem 3.1. We demonstrate the proof for the cubic case, p = 2. To begin with, we note
that

Ek

(
Γ (t)

) = kE1
(
Γ (t)

)
(4.1)

for Γ (t) = (γ (k)(t))k∈N a solution of the cubic GP hierarchy, where by definition, all γ (k)’s are admissible. To prove
this, we note that (3.1) can be written as

Ek

(
Γ (t)

) =
k∑

j=1

[
1

2
Tr

(
(−�xj

)γ (k)(t)
)+ μ

4
Tr

(
B1

j,k+1γ
(k+1)(t)

)]
, (4.2)

where each of the terms in the sum equals the one obtained for j = 1, by symmetry of γ (k) and γ (k+1) with respect to
their variables. We present the detailed calculation for the interaction term, and note that the calculation for the kinetic
energy term is similar. Consider 1 � i < j � k. We have that(

B1
j,k+1γ

(k+1)
)(

x1, x2, . . . , xk;x′
1, x

′
2, . . . , x

′
k

)
= γ (k+1)

(
x1, x2, . . . , xi, . . . , xj , . . . , xk, xj ;x′

1, x
′
2, . . . , x

′
i , . . . , x

′
j , . . . , x

′
k, xj

)
, (4.3)

and (
B1

i,k+1γ
(k+1)

)(
x1, x2, . . . , xk;x′

1, x
′
2, . . . , x

′
k

)
= γ (k+1)

(
x1, . . . , xi, . . . , xj , . . . , xk, xi;x′

1, . . . , x
′
i , . . . , x

′
j , . . . , x

′
k, xi

)
. (4.4)

Thus

Tr
(
B1

j,k+1γ
(k+1)

)
=

∫
γ (k+1)(x1, . . . , xi, . . . , xj , . . . , xk, xj ;x1, . . . xi, . . . , xj , . . . , xk, xj ) dx1 dx2 · · ·dxk. (4.5)

By the symmetry of γ (k+1)(xk+1;x′
k+1) with respect to the components of xk+1 and x′

k+1, respectively,

Tr
(
B1

j,k+1γ
(k+1)

) = Tr
(
B1

i,k+1γ
(k+1)

)
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for all i, j ∈ {1, . . . , k}. Thus,

Ek

(
Γ (t)

) = k

[
1

2
Tr

(
(−�x1)γ

(k)(t)
) + μ

4
Tr

(
B1

1,k+1γ
(k+1)(t)

)]
(4.6)

follows.
We can go one step further and note that(

B1
1,k+1γ

(k+1)
)(

x1, x2, . . . , xk;x′
1, x

′
2, . . . , x

′
k

) = γ (k+1)
(
x1, x2, . . . , xk, x1;x′

1, x
′
2, . . . , x

′
k, x1

)
. (4.7)

Then

Tr
(
B1

1,k+1γ
(k+1)

) =
∫

γ (k+1)(x1, x2, . . . , xk, x1;x1, x2, . . . , xk, x1) dx1 dx2 · · ·dxk

=
∫

γ (k+1)(x1, x1, x2, . . . , xk;x1, x1, x2, . . . , xk) dx1 dx2 · · ·dxk

where in the last equality we used symmetry of γ (k+1). On the other hand,(
B1

1,2γ
(2)

)(
x1;x′

1

) = γ (2)
(
x1, x1;x′

1, x1
)

=
∫

γ (k+1)
(
x1, x1, x2, . . . , xk;x′

1, x1, x2, . . . , xk

)
dx2 · · ·dxk (4.8)

by repeated use of the admissibility of γ (j), for j = 2, . . . , k + 1. Thus,

Tr
(
B1

1,2γ
(2)

) =
∫

γ (k+1)(x1, x1, x2, . . . , xk;x1, x1, x2, . . . , xk) dx1 dx2 · · ·dxk

and

Tr
(
B1

1,k+1γ
(k+1)

) = Tr
(
B1

1,2γ
(2)

)
follows. Therefore,

Ek

(
Γ (t)

) = k

[
1

2
Tr

(
(−�x1)γ

(1)(t)
)+ μ

4
Tr

(
B1

1,2γ
(2)(t)

)]
= kE1

(
Γ (t)

)
, (4.9)

as claimed.
The fact that (3.3) then follows is evident.
Next, we verify that E1(Γ (t)) is a conserved quantity, which means that E1(Γ (t)) = E1(Γ (0)) for all t ∈ R.
For the proof, the following auxiliary identities are very useful:∫

dx dx′ δ
(
x − x′)∇x · ∇x′A

(
x;x′)

= −
∫

dx dx′ δ
(
x − x′)�xA

(
x;x′) (4.10)

= −
∫

dx dx′ δ
(
x − x′)�x′A

(
x;x′). (4.11)

To prove (4.10), we note that∫
dx dx′ δ

(
x − x′)∇x · ∇x′A

(
x;x′)

=
∫

dudu′
∫

dx dx′ δ
(
x − x′)eiux−iu′x′

u · u′Â
(
u;u′)

=
∫

dudu′ δ
(
u − u′)u · u′Â

(
u;u′)
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=
∫

dudu′ δ
(
u − u′)u2Â

(
u;u′)

=
∫

dudu′
∫

dx dx′ δ
(
x − x′)eiux−iu′x′

u2Â
(
u;u′)

= −
∫

dx dx′ δ
(
x − x′)�xA

(
x;x′). (4.12)

The equality (4.11) can be proved in a similar way.
We now return to the proof of E1(Γ (t)) = E1(Γ (0)). For k = 1, we consider γ (1)(x, x′) where

E1
(
Γ (t)

) = 1

2
Tr

(∇x · ∇x′γ (1)
)

+ μ

4

∫
dx1 dx2 dx′

1 dx′
2 δ

(
x1 = x2 = x′

1 = x′
2

)
γ (2)

(
x1, x2;x′

1, x
′
2

)
(4.13)

in symmetrized form. Here, we have introduced the shorthand notation

δ
(
x1 = x2 = x′

1 = x′
2

) := δ(x1 − x2)δ
(
x1 − x′

2

)
δ
(
x1 − x′

1

)
. (4.14)

Clearly,

i∂tE1
(
Γ (t)

) = (I ) + (II) + (III) + (IV) (4.15)

where

(I ) := −1

2
Tr

(∇x · ∇x′(�x − �x′)γ (1)
)
, (4.16)

(II) := μ

2
Tr

(∇x · ∇x′
(
B1,2γ

(2)
))

, (4.17)

(III) := −μ

4

∫
dx1 dx2 dx′

1 dx′
2 δ

(
x1 = x2 = x′

1 = x′
2

)
(�x1 + �x2 − �x′

1
− �x′

2
)γ (2)

(
x1, x2;x′

1, x
′
2

)
, (4.18)

(IV) := μ

4

∫
dx1 dx2 dx′

1 dx′
2 δ

(
x1 = x2 = x′

1 = x′
2

)(
B3γ

(3)
)(

x1, x2;x′
1, x

′
2

)
. (4.19)

The term (I ). We claim that (I ) = 0. We note that

Tr
(∇x · ∇x′(�x − �x′)γ (1)

)
=

∫
dudu′

∫
dx dx′ δ

(
x − x′)u · u′(u2 − (

u′)2)
eiux−iu′x′

γ̂ (1)
(
u;u′)

=
∫

dudu′ δ
(
u − u′)u · u′(u2 − (

u′)2)
γ̂ (1)

(
u;u′)

= 0. (4.20)

This proves the claim.

The term (IV). We claim that (IV) also vanishes. Indeed,

(IV) = μ

4

∫
dx1 dx2 dx′

1 dx′
2 δ

(
x1 = x2 = x′

1 = x′
2

)(
B3γ

(3)
)(

x1, x2;x′
1, x

′
2

)
=

∑
j=1,2

μ

4

∫
dx1 dx2 dx′

1 dx′
2 δ

(
x1 = x2 = x′

1 = x′
2

)[
γ (3)

(
x1, x2, x1;x′

1, x
′
2, x1

)
− γ (3)

(
x1, x2, x

′
1;x′

1, x
′
2, x

′
1

)+ γ (3)
(
x1, x2, x2;x′

1, x
′
2, x2

)− γ (3)
(
x1, x2, x

′
2;x′

1, x
′
2, x

′
2

)]
= 2

μ

4

∫
dx

[
γ (3)(x, x, x;x, x, x) − γ (3)(x, x, x;x, x, x)

]
= 0. (4.21)

This proves the claim.
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The term (III). By symmetry of γ (2)(x1, x2;x′
1, x

′
2) in (x1, x2), and in (x′

1, x
′
2), we find

(III) = −2
μ

4

∫
dx1 dx2 dx′

1 dx′
2 δ

(
x1 = x2 = x′

1 = x′
2

)
(�x1 − �x′

1
)γ (2)

(
x1, x2;x′

1, x
′
2

)
= −μ

2

∫
dx1 dx′

1 δ
(
x1 − x′

1

)[(
�x1γ

(2)
)(

x1, x
′
1;x′

1, x
′
1

)− (
�x′

1
γ (2)

)(
x1, x1;x′

1, x1
)]

. (4.22)

We will show that this term is canceled by the term (II).

The term (II). We have

(II) = μ

2
Tr

(∇x · ∇x′
(
B1,2γ

(2)
))

= μ

2

∫
dx dx′ δ

(
x − x′)∇x · ∇x′

(
γ (2)

(
x, x;x′, x

)− γ (2)
(
x, x′;x′, x′)). (4.23)

Now we use (4.10), and we obtain

(II) = −μ

2

∫
dx1 dx′

1 δ
(
x1 − x′

1

)[(
�x′

1
γ (2)

)(
x1, x1;x′

1, x1
)− (

�x1γ
(2)

)(
x1, x

′
1;x′

1, x
′
1

)]
. (4.24)

Hence (4.22) and (4.24) imply (II) = −(III).
We conclude that ∂tE1(Γ (t)) = 0. Therefore, E1(Γ (t)) = E1(Γ (0)) is a conserved quantity. It represents the av-

erage energy per particle. For the quintic case p = 4 (or similarly in more general cases p ∈ 2N), the above arguments
can be adapted straightforwardly.

5. Virial identities

In this section, we prove the virial identities necessary for the application of a generalized version of Glassey’s
argument. According to our previous discussion, it is sufficient to consider only γ (1)(x1;x′

1).

5.1. Density

In what follows, we drop the superscript “(k)” from γ (k). It will be clear from the number of variables what the
value of k (in this part of the discussion, k = 1 or k = 2) is in a given expression.

We write

γ
(
x;x′) =

∫
dv dv′ eivx−iv′x′

γ̂
(
v;v′) (5.1)

and define

ρ(x) := γ (x;x) =
∫

dv dv′ ei(v−v′)x γ̂
(
v;v′). (5.2)

Thus,

∂tρ(x) =
∫

dv dv′ ei(v−v′)x∂t γ̂
(
v;v′)

= −1

i

∫
dv dv′ ei(v−v′)x ̂(�x − �x′)γ

(
v, v′)+ μ

i

∫
dv dv′ ei(v−v′)xB̂1,2γ

(
v;v′). (5.3)

First we notice that

−1

i

∫
dv dv′ ei(v−v′)x ̂(�x − �x′)γ

(
v, v′) = 1

i

∫
dv dv′ ei(v−v′)x(v2 − (

v′)2)
γ̂
(
v;v′)

= 1

i

∫
dv dv′ ei(v−v′)x(v + v′)(v − v′)γ̂ (

v;v′)
= −∇x ·

∫
dv dv′ ei(v−v′)x(v + v′)γ̂ (

v;v′). (5.4)
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On the other hand,

B1
1,2γ

(
x;x′) =

∫
dy dy′ δ(x − y)δ

(
x − y′)∫ dudq du′ dq ′ ei(ux+qy−u′x′−q ′y′)γ̂

(
u,q;u′, q ′)

=
∫

dudq du′ dq ′ ei((u+q−q ′)x−u′x′)γ̂
(
u,q;u′, q ′). (5.5)

Therefore,

B̂1
1,2γ

(
v;v′) =

∫
dx dx′ e−ivx+iv′x′

B1
1,2γ

(
x;x′)

=
∫

dudq du′ dq ′ δ
(
u + q − q ′ − v

)
δ
(
v′ − u′)γ̂ (

u,q;u′, q ′)
=

∫
dq dq ′ γ̂

(
v − q + q ′, q;v′, q ′). (5.6)

Likewise, one obtains

B̂2
1,2γ

(
v;v′) =

∫
dx dx′ e−ivx+iv′x′

B2
1,2γ

(
x;x′)

=
∫

dudq du′ dq ′ δ(v − u)δ
(
v′ − (

u′ + q ′ − q
))

γ̂
(
u,q;u′, q ′)

=
∫

dq dq ′ γ̂
(
v, q;v′ + q − q ′, q ′). (5.7)

Thus,

1

i

∫
dv dv′ ei(v−v′)xB̂1,2γ

(
v;v′) = 1

i

∫
dv dv′ ei(v−v′)x(B̂1

1,2γ
(
v;v′)− B̂2

1,2γ
(
v;v′))

= 1

i

∫
dv dv′ dq dq ′ ei(v−v′)x γ̂

(
v − q + q ′, q;v′, q ′)

− 1

i

∫
dv dv′ dq dq ′ ei(v−v′)x γ̂

(
v, q;v′ + q − q ′, q ′)

= 0, (5.8)

where the last equality is obtained by applying the change of variables v → v − q + q ′ and v′ → v′ − q + q ′ in the
second term of (5.8) so that the difference v − v′ remains unchanged.

Therefore, by combining (5.3), (5.4) and (5.8) we conclude

∂tρ(x) + ∇x · P = 0,

where

P :=
∫

dudu′ ei(u−u′)x(u + u′)γ̂ (
u;u′) (5.9)

corresponds to the momentum.

5.2. Morawetz action

We define

M :=
∫

dx x · P. (5.10)

The time derivative is given by

∂tM =
∫

dx x · ∂tP = (IM) + (IIM), (5.11)

where (IM) is the kinetic, and (IIM) the interaction term.
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We have

(IM) = 1

i

∫
dx x ·

∫
dudu′ ei(u−u′)x(u + u′)(u2 − (

u′)2)
γ̂
(
u;u′)

= 1

i

∫
dx x ·

∫
dudu′ ei(u−u′)x[(u + u′)⊗ (

u + u′)](u − u′)γ̂ (
u;u′)

= −
∫

dudu′ γ̂
(
u;u′)∫ dx x · [(u + u′)⊗ (

u + u′)](∇xe
i(u−u′)x)

=
∫

dudu′ γ̂
(
u;u′)Tr

[(
u + u′)⊗ (

u + u′)] ∫ dx ei(u−u′)x

=
∫

dudu′ δ
(
u − u′)Tr

[(
u + u′)⊗ (

u + u′)]γ̂ (
u;u′)

= 4
∫

duu2 γ̂ (u;u), (5.12)

which is 8 times the kinetic energy of one particle.

5.3. Interaction term

Next, we study the interaction term

(IIM) = μ

∫
dx x · 1

i

∫
dv dv′ ei(v−v′)x(v + v′)B̂1,2γ

(
v;v′). (5.13)

(A) The cubic case.
As we have seen in (5.5), we have

B1
1,2γ

(
x;x′) =

∫
dudq du′ dq ′ ei((u+q−q ′)x−u′x′)γ̂

(
u,q;u′, q ′).

Therefore, by (5.6)

B̂1
1,2γ

(
v;v′) =

∫
dq dq ′ γ̂

(
v − q + q ′, q;v′, q ′).

Likewise by (5.7)

B̂2
1,2γ

(
v;v′) =

∫
dq dq ′ γ̂

(
v, q;v′ + q − q ′, q ′).

Now we determine the term (IIM) in
∫

dx x · ∂tP that involves the interaction. To this end, we first consider

1

i

∫
dv dv′ ei(v−v′)x(v + v′)B̂1,2γ

(
v;v′)

= 1

i

∫
dv dv′ ei(v−v′)x(v + v′)(B̂1

1,2γ
(
v;v′)− B̂2

1,2γ
(
v;v′))

= 1

i

∫
dv dv′ dq dq ′ ei(v−v′)x(v + v′)γ̂ (

v − q + q ′, q;v′, q ′)
− 1

i

∫
dv dv′ dq dq ′ ei(v−v′)x (v + v′)γ̂ (

v, q;v′ + q − q ′, q ′). (5.14)

In the last term, we apply the change of variables v → v − q + q ′ and v′ → v′ − q + q ′, so that the difference v − v′
remains unchanged. We obtain that the above equals
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1

i

∫
dv dv′ dq dq ′ ei(v−v′)x(v + v′)γ̂ (

v − q + q ′, q;v′, q ′)
− 1

i

∫
dv dv′ dq dq ′ ei(v−v′)x(v + v′ − 2q + 2q ′)γ̂ (

v − q + q ′, q;v′, q ′)
= 1

i

∫
dv dv′ dq dq ′ ei(v−v′)x γ̂

(
v − q + q ′, q;v′, q ′)((v + v′)− (

v + v′ − 2q + 2q ′))
= 1

i

∫
dv dv′ dq dq ′ ei(v−v′)x2

(
q − q ′)γ̂ (

v − q + q ′, q;v′, q ′). (5.15)

The contribution of this term to the integral
∫

dx x · ∂tP is given by

μ

i

∫
dx x ·

∫
dv dv′ dq dq ′ ei(v−v′)x2

(
q − q ′)γ̂ (

v − q + q ′, q;v′, q ′). (5.16)

Next, we express everything in position space.
We have that the last line equals

μ

i

∫
dx x ·

∫
dXdY dX′ dY ′

∫
dv dv′ dq dq ′ ei(v−v′)x2

(
q − q ′)

× ei(−(v−q+q ′)X−qY+v′X′+q ′Y ′)γ
(
X,Y ;X′, Y ′)

= μ

i

∫
dx

∫
dXdY dX′ dY ′ γ

(
X,Y ;X′, Y ′)∫ dv dv′ dq dq ′

× eiv(x−X)−iv′(x−X′)2x · (q − q ′)e+iq(X−Y)−q ′(X−Y ′)

= −μ

∫
dx

∫
dXdY dX′ dY ′ γ

(
X,Y ;X′, Y ′)∫ dq dq ′

× δ(x − X)δ
(
x − X′)2X · ∇Xe+iq(X−Y)−iq ′(X−Y ′)

= −μ

∫
dX dY dY ′ γ

(
X,Y ;X,Y ′)2X · ∇Xδ(X − Y)δ

(
Y − Y ′) (5.17)

= −μ

∫
dX dY γ (X,Y ;X,Y)2X · ∇Xδ(X − Y)

= μ

∫
dXdY δ(X − Y)(2d + 2X · ∇X)γ (X,Y ;X,Y) (5.18)

where we have written δ(X − Y)δ(X − Y ′) = δ(X − Y)δ(Y − Y ′) to get (5.17).
Now we note that∫

dXX · ∇Xγ (X,X;X,X) (5.19)

=
∫

dX dY δ(X − Y)(X · ∇X + Y · ∇Y )γ (X,Y ;X,Y)

=
∫

dX dY δ(X − Y)
(
X · ∇Xγ (X,Y ;X,Y) + Y · ∇Y γ (Y,X;Y,X)

)
=

∫
dX dY δ(X − Y)

(
2X · ∇Xγ (X,Y ;X,Y)

)
(5.20)

where we used the symmetry γ (X,Y ;X,Y) = γ (Y,X;Y,X), and renamed the variables in the last term. Clearly,
(5.19) equals

−d

∫
dX γ (X,X;X,X) (5.21)

from integrating by parts.
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Therefore, combining (5.18), (5.20) and (5.21)

(IIM) = μ

∫
dXdY δ(X − Y)(2d + 2X · ∇X)γ (X,Y ;X,Y)

= μ

∫
dXdY δ(X − Y)(2d − d)γ (X,Y ;X,Y)

= μd

∫
dX γ (X,X;X,X). (5.22)

This is the desired result for the cubic case.

(B) The quintic case.
Now we give a sketch of the calculations related to the interaction term in the quintic (p = 4) case. Again it suffices

to consider k = 1.
Since in the case when p = 4 we have

B1
1;2,3γ

(
x;x′) =

∫
dy dy′ dzdz′ δ(x − y) δ

(
x − y′)δ(x − z)δ

(
x − z′)

×
∫

dudq dr du′ dq ′ dr ′ ei(ux+qy+rz−u′x′−q ′y′−r ′z′)γ̂
(
u,q, r;u′, q ′, r ′)

=
∫

dudq dr du′ dq ′ dr ′ ei((u+q+r−q ′−r ′)x−u′x′)γ̂
(
u,q, r;u′, q ′, r ′), (5.23)

by taking the Fourier transform we obtain

B̂1
1;2,3γ

(
v;v′) =

∫
dx dx′ e−ivx+iv′x′

B1
1;2,3γ

(
x;x′)

=
∫

dudq dr du′ dq ′ dr ′ δ
(
u + q + r − q ′ − r ′ − v

)
δ
(
v′ − u′)γ̂ (

u,q, r;u′, q ′, r ′)
=

∫
dq dr dq ′ dr ′ γ̂

(
v − q − r + q ′ + r ′, q, r;v′, q ′, r ′). (5.24)

As in the cubic case, to determine the term (IIM) in
∫

dx x · ∂tP , we first observe that

1

i

∫
dv dv′ ei(v−v′)x(v + v′)B̂1;2,3γ

(
v;v′)

= 1

i

∫
dv dv′ ei(v−v′)x(v + v′)(B̂1

1;2,3γ
(
v;v′)− B̂2

1;2,3γ
(
v;v′))

= 1

i

∫
dv dv′ dq dq ′ dr dr ′ ei(v−v′)x(v + v′)γ̂ (

v − q − r + q ′ + r ′, q, r;v′, q ′, r ′)
− 1

i

∫
dv dv′ dq dq ′ dr dr ′ ei(v−v′)x(v + v′)γ̂ (

v, q, r;v′ + q + r − q ′ − r ′, q ′, r ′),
which after performing the change of variables v → v − q − r + q ′ + r ′ and v′ → v′ − q − r + q ′ + r ′ in the last term,
becomes

1

i

∫
dv dv′ dq dq ′ dr dr ′ ei(v−v′)x2

(
q + r − q ′ − r ′)γ̂ (

v − q − r + q ′ + r ′, q, r;v′, q ′, r ′).
Hence the contribution of this term to the integral

∫
dx x · ∂tP is given by

μ

i

∫
dx x ·

∫
dv dv′ dq dq ′ dr dr ′ ei(v−v′)x2

(
q + r − q ′ − r ′)γ̂ (

v − q − r + q ′ + r ′, q, r;v′, q ′, r ′),
which we express in the position space as follows
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μ

i

∫
dx x ·

∫
dXdY dZ dX′ dY ′ dZ′

∫
dv dv′ dq dq ′ dr dr ′ ei(v−v′)x2

(
q + r − q ′ − r ′)

× ei(−(v−q−r+q ′+r ′)X−qY−rZ+v′X′+q ′Y ′+r ′Z′)γ
(
X,Y,Z;X′, Y ′,Z′)

= μ

i

∫
dx

∫
dXdY dZ dX′ dY ′ dZ′ γ

(
X,Y,Z;X′, Y ′,Z′)∫ dv dv′ dq dq ′ dr dr ′

× eiv(x−X)−iv′(x−X′)2x · (q + r − q ′ − r ′)e+iq(X−Y)−iq ′(X−Y ′)e+ir(X−Z)−ir ′(X−Z′)

= −μ

∫
dx

∫
dXdY dZ dX′ dY ′ dZ′ γ

(
X,Y,Z;X′, Y ′,Z′)∫ dq dq ′ dr dr ′

× δ(x − X)δ
(
x − X′)2X · ∇Xe+iq(X−Y)+ir(X−Z)−iq ′(X−Y ′)−ir ′(X−Z′)

= −μ

∫
dX dY dZ dY ′ dZ′ γ

(
X,Y,Z;X,Y ′,Z′)2X · ∇Xδ(X − Y)δ

(
Y − Y ′)δ(X − Z)δ

(
Z − Z′) (5.25)

= −μ

∫
dX dY dZ γ (X,Y,Z;X,Y,Z)2X · ∇Xδ(X − Y)δ(X − Z)

= μ

∫
dXdY dZ δ(X − Y)δ(X − Z)(2d + 2X · ∇X)γ (X,Y ;X,Y) (5.26)

where we have written

δ(X − Y)δ
(
X − Y ′)δ(X − Z)δ

(
X − Z′) = δ(X − Y)δ

(
Y − Y ′)δ(X − Z)δ

(
Z − Z′)

to get (5.25).
On the other hand, using symmetry of γ (X,Y,Z;X,Y,Z) we obtain∫

dXX · ∇Xγ (X,X,X;X,X,X)

=
∫

dX dY dZ δ(X − Y)δ(X − Z)(X · ∇X + Y · ∇Y + Z · ∇Z)γ (X,Y,Z;X,Y,Z)

=
∫

dX dY dZ δ(X − Y)δ(X − Z)
(
X · ∇Xγ (X,Y,Z;X,Y,Z) + Y · ∇Y γ (Y,X,Z;Y,X,Z)

+ Z · ∇Zγ (Z,Y,X;Z,Y,X)
)

=
∫

dX dY dZ δ(X − Y)δ(X − Z)
(
3X · ∇Xγ (X,Y,Z;X,Y,Z)

)
. (5.27)

However, by the integration by parts,∫
dXX · ∇Xγ (X,X,X;X,X,X) = −d

∫
dX γ (X,X,X;X,X,X), (5.28)

so by combining (5.27) and (5.28) we obtain∫
dXdY dZ δ(X − Y)δ(X − Z)

(
X · ∇Xγ (X,Y,Z;X,Y,Z)

)
= −d

3

∫
dX γ (X,X,X;X,X,X). (5.29)

Therefore

(IIM) = μ

∫
dX dY dZ δ(X − Y)δ(X − Z)(2d + 2X · ∇X)γ (X,Y,Z;X,Y,Z)

= μ

∫
dX dY dZ δ(X − Y)δ(X − Z)(2d − 2d/3)γ (X,Y ;X,Y)

= μ
4d

3

∫
dX γ (X,X,X;X,X,X). (5.30)

This is the desired result for the quintic case.
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(C) The general case p ∈ 2N.
The above calculation on the interaction term can be reproduced for a general even number p and in that case we

obtain:

(IIM) = μ

∫
dX1 dX2 · · ·dX1+ p

2
δ(X1 − X2) · · · δ(X1 − X1+ p

2
)

× (2d + 2X1 · ∇X1)γ (X1, . . . ,X1+ p
2
;X1, . . . ,X1+ p

2
)

= μ

∫
dX1 dX2 · · ·dX1+ p

2
δ(X1 − X2) · · · δ(X1 − X1+ p

2
)

×
(

2d − 2
d

1 + p
2

)
γ (X1, . . . ,X1+ p

2
;X1, . . . ,X1+ p

2
)

= μ
2dp

p + 2

∫
dX γ (X, . . . ,X︸ ︷︷ ︸

1+ p
2

;X, . . . ,X︸ ︷︷ ︸
1+ p

2

). (5.31)

Now we combine (5.12) and (5.31) to conclude that:

∂2
t

∫
dx x2γ (x, x) = 2

∫
dx x · ∂tP

= 8
∫

duu2 γ̂ (u;u) + μ
4dp

p + 2

∫
dX γ (X, . . . ,X︸ ︷︷ ︸

1+ p
2

;X, . . . ,X︸ ︷︷ ︸
1+ p

2

). (5.32)

6. Glassey’s argument and blowup in finite time

Now we are prepared to prove blowup in finite time for negative energy initial conditions, by generalizing Glassey’s
argument familiar from NLS and related nonlinear PDE’s, to the GP hierarchy.

The quantity that will be relevant in reproducing Glassey’s argument is given by

Vk

(
Γ (t)

) := Tr

(
k∑

j=1

x2
j γ (k)(t)

)
. (6.1)

Similarly as in our discussion of the conserved energy, we observe that

Vk

(
Γ (t)

) = Tr

(
k∑

j=1

x2
j γ (k)(t)

)

= k Tr
(
x2

1γ (1)(t)
)

= kV1
(
Γ (t)

)
. (6.2)

Again, this follows from the fact that γ (k) is symmetric in its variables, and from the admissibility of γ (k)(t) for all
k ∈ N.

Next, we relate ∂2
t V1(t) to the conserved energy per particle. First, let us denote by EK

1 (t) the kinetic part of the
energy E1(t) and by EP

1 (t) the potential part of the energy E1(t) i.e.

EK
1

(
Γ (t)

) = 1

2
Tr

(
(−�x)γ

(1)(t)
)
,

EP
1

(
Γ (t)

) = μ

p + 2
Tr

(
B1

1;2,...,1+ p
2
γ (1+ p

2 )(t)
)
. (6.3)

From (5.32), we can relate ∂2
t V1(t) to the conserved energy per particle as follows
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∂2
t V1(t) = 8

∫
duu2γ̂ (u;u) + μ

4dp

p + 2

∫
dX γ (X, . . . ,X︸ ︷︷ ︸

1+ p
2

;X, . . . ,X︸ ︷︷ ︸
1+ p

2

)

= 16EK
1

(
Γ (t)

)+ 4dpEP
1

(
Γ (t)

)
= 16E1

(
Γ (t)

)+ 4d

(
p − 4

d

)
EP

1

(
Γ (t)

)
= 16E1

(
Γ (0)

)+ 4dμ
p − pL2

p + 2

∫
dX γ (X, . . . ,X︸ ︷︷ ︸

1+ p
2

;X, . . . ,X︸ ︷︷ ︸
1+ p

2

), (6.4)

where we used the fact that E1(Γ (t)) is conserved.
Now we conclude that for the focusing (μ = −1) GP hierarchy which is either at the L2-critical level (p = pL2 ) or

at the L2-supercritical (p > pL2 ) level,

∂2
t V1(t) � 16E1

(
Γ (0)

)
. (6.5)

However, the function V1(t) is non-negative, so we conclude that if E1(Γ (0)) < 0, the solution blows up in finite
time.

To be precise, we infer from (6.5) that there exists a finite time T ∗ such that V1(t) ↘ 0 as t ↗ T ∗. Accordingly,

1 = Tr
(
γ (1)(t)

)
�

(
Tr

(
x2γ (1)(t)

))1/2
(

Tr

(
1

x2
γ (1)(t)

))1/2

� C
(
Tr

(
x2γ (1)(t)

))1/2(Tr
(−�γ (1)(t)

))1/2 (6.6)

where we have first used the Cauchy–Schwarz, and subsequently the Hardy inequality. Thus, Tr(−�γ (1)(t)) �
(V1(t))

−1 ↗ ∞ as t ↗ T ∗.
One can easily verify from (2.8) that

∥∥γ (k)(t)
∥∥

H1
k
�

k∑
j=1

Tr
(−�xj

γ (k)(t)
)+

k∑
j=1

Tr
(−�x′

j
γ (k)(t)

)
= 2k Tr

(−�γ (1)(t)
) ↗ ∞ (6.7)

as t ↗ T ∗. Accordingly, AvH 1(Γ (t)) ↗ ∞ as t ↗ T ∗, which establishes blowup in finite time.
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