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Abstract

In this paper the reconstruction of damaged piecewice constant color images is studied using an RGB total variation based model
for colorization/inpainting. In particular, it is shown that when color is known in a uniformly distributed region, then reconstruction
is possible with maximal fidelity.
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1. Introduction

In this work we address the following colorization problem: How can a color image be recovered when the un-
derlying gray level function is known everywhere but only small patches of color are available? Among the various
approaches used in the study of this problem (e.g., [7–10,20,23,24]), we highlight the Red–Green–Blue (RGB) to-
tal variation model proposed by Fornasier in [14,15], and subsequently studied in [16]. A main motivation for that
work was the restoration of damaged frescoes during WWII. The numerical implementation of this model usually
provides very good results (see [16]); see also the work of Kang and March [17], where the Chromaticity/Brightness
representation of colors is used in place of the RGB one.

In the RGB model, a color is identified with a vector ξ = (ξ1, ξ2, ξ3) ∈ R
3, whose components ξ1, ξ2, and ξ3

correspond to the different channels red, green, and blue. The color image to be reconstructed is represented by a
function of bounded variation u0 ∈ BV(R;R

3), where the open rectangle R := (0, a) × (0, b) ⊂ R
2 is the domain of

the image.

* Corresponding author.
E-mail addresses: fonseca@andrew.cmu.edu (I. Fonseca), giovanni@andrew.cmu.edu (G. Leoni), maggi@math.unifi.it (F. Maggi),

morini@sissa.it (M. Morini).

© 2010 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
0294-1449/$ – see front matter
doi:10.1016/j.anihpc.2010.06.004

© 2010 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.



1292 I. Fonseca et al. / Ann. I. H. Poincaré – AN 27 (2010) 1291–1331
The goal is to reconstruct the original color image u0 through a variational model starting from the knowledge of
the gray level of u0 on a given open subset D of R (the damaged region) together with the exact information of u0 on
R \ D (the undamaged region). In [16] (see also [14,15]), the authors propose to minimize a functional of the form

Φ(Du)(R) + λ

∫
R\D

(u − u0)
p dx + μ

∫
D

(
L(u · e) − L(u0 · e))p dx (1.1)

among all functions u ∈ BV(R;R
3), where Φ is a convex function on R

3×3, Du is the gradient measure of u, so that
Φ(Du)(R) is the corresponding (possibly anisotropic) total variation, λ,μ ∈ (0,∞), 1 � p < ∞, L : R → [0,∞) is
an increasing nonlinear function, and e ∈ R

3 is a unit vector. The map u �→ L(u · e) represents a nonlinear projection,
which associates to each color u the corresponding gray level L(u · e).

The purpose of this paper is to study the faithfulness of the reconstruction provided by the model (1.1), with
particular emphasis on the possible creation of new, spurious contours in the restored image. For this reason, we
will consider only images that exhibit “perfect” fidelity, in the sense that we require u = u0 L2-a.e. on R \ D and
u · e = u0 · e L2-a.e. in D, equivalently, λ = μ = ∞. For simplicity, we take Φ to be the Euclidean norm. Therefore,
we are led to the total variation-type minimization problem (see [22])

inf
{|Du|(R): u ∈ Ad(u0,D)

}
, (1.2)

where the class of admissible color images Ad(u0,D) is defined as

Ad(u0,D) := {
u ∈ BV

(
R;R

3), u = u0 L2-a.e. on R \ D, u · e = u0 · e L2-a.e. in D
}
.

Simple explicit examples (see Example 6.1) show that in general the solution to (1.2) may present spurious con-
tours. However, some numerical experiments performed in [16] seem to indicate that the model (1.1) provides good
reconstruction results when the exact information of the color is known over a small but uniformly distributed area
(see [16, Figs. 8.1 and 8.2]), and, intuitively, we expect that the two models describe similar phenomena provided λ

and μ are large enough. This is speculative, since noise and blurring may prevent exact reconstruction to be attain-
able. As it turns out, the study of the simplified model (1.2) is analytically very challenging even when considering
very special color images u0 (which will exclude images with textures) and very special geometries for the damaged
region D. The analysis requires new ideas, which do not rely on classical mathematical tools.

Indeed, the exact reconstructibility of u0 reduces to proving that u0 is the unique solution of the 1-Laplacian
Neumann problem (2.3). This question is far from trivial since standard PDE methods for elliptic equations with an
underlying strictly convex integrand, e.g., the p-Laplacian with p > 1, fail to apply in our case. Since the 1-Laplacian
is not defined at points in which Du vanishes, we need to introduce a very weak notion of solution, inspired by
what is commonly done in the scalar setting (see, e.g., [6,11,18]). Precisely, in the first main result of the paper,
Theorem 1.8, we prove the existence of a suitable tensor-valued calibration, i.e., a divergence-free tensor field with
norm not exceeding one and with prescribed normal traces on the discontinuity set of u0. The construction of such a
calibration is new, and exploits in a rather subtle way the non-simply connected geometry of the damaged region (see
Lemma 5.1). Although calibration methods have been previously used to deal with total variation based functionals,
this seems to be the first paper where related techniques are applied in the corresponding vectorial setting.

Moreover, in Theorems 1.8 and 1.10 we show that the reconstructibility of u0 over a neighborhood of the disconti-
nuity set is closely related to the problem of finding the extension of a vector-valued Lipschitz function defined on an
unbounded domain with minimal norm of its gradient. Note that for scalar-valued functions, the corresponding exten-
sion problem (1.17) has been studied by several authors (see, e.g., the review paper [4]) starting from the pioneering
work of Kirszbraun [19], McShane [21], and Whitney [25], see also the seminal paper of Aronsson [3]. Very little is
known in the vectorial setting.

Finally, in Theorem 1.13 we validate in our simplified model (1.2) the numerical experiments performed in [16] for
(1.1), namely, we show that a special class of piecewise constant images u0 are exactly reconstructible, provided that
the exact information on the colors is known over a (possibly) small but sufficiently well distributed region. The result
is nontrivial, and it amounts to exhibiting a large family of explicit solutions to problem (1.2). We remark that only
very few explicit solutions are known in the scalar case and, to our knowledge, no results prior to ours are available in
the vectorial setting.

In view of these considerations, we regard the analysis in this paper as a first necessary step toward the understand-
ing of the more realistic model (1.1).
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Fig. 1. An admissible image u0, with its contour Γ and a damaged region D.

We now describe the results of the paper more in details.
As mentioned above, we will restrict the study to the case in which the original image belongs to a special class

Im(R) of piecewise constant functions, precisely, u0 belongs to Im(R) if there exist {ξk}Nk=1 ⊂ R
3 with ξk �= ξh for

k �= h and a family {Ωk}Nk=1 of mutually disjoint open Lipschitz subsets of R such that

R = Γ ∪
N⋃

k=1

Ωk, u0 =
N∑

k=1

ξk1Ωk
, (1.3)

where Γ := ⋃N
k=1 Σk , with Σk := ∂Ωk ∩ R. Note that since Ωk is Lipschitz, it has only finitely many connected

components. We refer to Γ as the contour of u0 and Σk is called the kth contour (cf. Fig. 1).

Definition 1.1. A color image u0 ∈ Im(R) is said to be reconstructible over an open subset D of R if it is a minimizer
of (1.2).

Given u0 ∈ Im(R) and an arbitrary open set D ⊂ R, in general u0 need not be reconstructible over D. Some
examples may be found in Section 6. In particular, when neighboring colors ξh and ξk (i.e., H1(∂Ωk ∩ ∂Ωh) > 0) of
u0 have the same gray level, i.e., ξh · e = ξk · e, and the damaged region D contains part of ∂Ωk ∩ ∂Ωh, then u0 may
fail to be reconstructible over D. This leads us to the notion of compatibility of neighboring colors and to restricting
our analysis to specific geometries of the damaged region D. Precisely, for k = 1, . . . ,N decompose

Σk =
⋃
h�=k

Σk,h,

where Σk,h := ∂Ωk ∩ ∂Ωh. We define the compatibility vector field zk ∈ L∞(Σk; 〈e〉⊥) of u0 as follows:

zk(x) := P

(
ξk − ξh

|ξk − ξh|
)

if x ∈ Σk,h, h �= k, with H1(Σk,h) > 0,

where P : R3 → 〈e〉⊥ denotes the projection of R
3 on the orthogonal space 〈e〉⊥ to e, i.e.,

P(ξ) := ξ − (ξ · e)e.
Thus zk is a piecewise constant vector field on Σk , and it is constant on each Σk,h. By construction, ‖zk‖L∞(Σk;〈e〉⊥)

� 1. In addition, |zk| = 1 over some Σk,h if and only if the two neighboring colors ξh and ξk have the same gray level.
Thus, the condition

sup
1�k�N

‖zk‖L∞(Σk;〈e〉⊥) < 1, (1.4)

is equivalent to saying that u0 does not have neighboring colors with the same gray level.
Concerning the restriction imposed on the damaged region, we will often assume that the intersection of the contour

of u0 with the boundary of the damaged region D has zero length, i.e.,

H1(Γ ∩ ∂D) = 0. (1.5)

In the statement of the first main theorem (see Theorem 1.2) we use a particular class F (D) of divergence-free
vectors fields. To fix the notation, let {ε1, ε2} be an orthonormal basis of 〈e〉⊥, and decompose the generic vector
z ∈ 〈e〉⊥ as z = z(1)ε1 + z(2)ε2. In R

2 we consider the canonical basis {e1, e2}, where e1 = (1,0), e2 = (0,1), and for
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every v = (v1, v2) ∈ R
2 we define v⊥ := (v2,−v1). Given a tensor M ∈ 〈e〉⊥ ⊗R

2, write M = ε1 ⊗M(1) + ε2 ⊗M(2)

with M(1),M(2) ∈ R
2. Hence, if ξ ∈ R

2,

M[ξ ] = (
M(1) · ξ)ε1 + (

M(2) · ξ)ε2,

and the Euclidean norm in 〈e〉⊥ ⊗ R
2 is

|M| =
√∣∣M(1)

∣∣2 + ∣∣M(2)
∣∣2,

induced by the scalar product

M : M∗ = (
M(1) · M(1)∗

)+ (
M(2) · M(2)∗

)
.

If M :D → 〈e〉⊥ ⊗ R
2 is a smooth tensor field, then divM :D → 〈e〉⊥ is defined by

divM := divM(1)ε1 + divM(2)ε2,

where divM(i) is the divergence of the vector field M(i) :D → R
2, i = 1,2. Hence, the divergence theorem becomes∫

∂D

M[νD] · ϕ dH1 =
∫
D

(∇ϕ : M + ϕ · divM)dx,

whenever D ⊂ R
2 is an open bounded Lipschitz domain and ϕ :D → 〈e〉⊥ is sufficiently regular. Here νD is the outer

unit normal to D.
We now introduce F (D). Given an open set D ⊂ R with Lipschitz boundary, we define F (D) as the space of all

tensor fields M ∈ L∞(D; 〈e〉⊥ ⊗ R
2) with

‖M‖L∞(D;〈e〉⊥⊗R2) � 1,

and zero distributional divergence, i.e.,

〈divM,ϕ〉 = −
∫
D

∇ϕ : M dx = 0 for all ϕ ∈ C∞
c

(
D; 〈e〉⊥).

By [2, Theorem 1.2] every M ∈ F (D) admits a normal trace, that is, there exists a linear operator

Ψ :
{
M ∈ L∞(

D; 〈e〉⊥ ⊗ R
2): divM = 0

}→ L∞(
∂D; 〈e〉⊥)

such that∥∥Ψ (M)
∥∥

L∞(∂D;〈e〉⊥)
� ‖M‖L∞(D;〈e〉⊥⊗R2) � 1 (1.6)

and ∫
∂D

Ψ (M) · ϕ dH1 =
∫
D

∇ϕ : M dx (1.7)

for every ϕ ∈ C∞(D; 〈e〉⊥), and

Ψ (M)(x) = M(x)
[
νD(x)

]
for H1-a.e. x ∈ ∂D,

whenever M ∈ C∞(D; 〈e〉⊥ ⊗ R
2) ∩ F (D). As usual we define M[νD] := Ψ (M) for every M ∈ F (D).

The next theorem states that the reconstructibility of u0 is equivalent to the existence of a suitable tensor-valued
calibration.

Theorem 1.2. Let u0 ∈ Im(R) and let D ⊂ R be an open set with Lipschitz boundary satisfying (1.5). Then the
following three conditions are equivalent:
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(i) u0 is reconstructible over D;
(ii) for every 1 � k � N and ϕ ∈ BV(D ∩ Ωk; 〈e〉⊥),

|Dϕ|(D ∩ Ωk) +
∫

∂D∩Ωk

|ϕ|dH1 +
∫

D∩Σk

zk · ϕ dH1 � 0;

(iii) for every 1 � k � N there exists a tensor field Mk ∈ F (D ∩ Ωk) such that

Mk[νD∩Ωk
] = −zk on D ∩ Σk, (1.8)

where zk is the compatibility vector field of u0.

Moreover, if (1.4) holds, then any of the conditions (i)–(iii) is equivalent to

(iv) u0 is the unique minimizer for the model on D.

Remark 1.3. In view of (1.8) and of Lemma 4.1, the tensor field M :D → 〈e〉⊥ ⊗R
2 defined by M := Mk in D ∩Ωk ,

1 � k � N , is divergence-free in D. The conditions on M can be considered as a weak formulation of a 1-Laplacian
Neumann problem (see Remark 2.2 for more details).

Since D ⊂ R
2, any divergence-free field rotated of π

2 is locally the gradient of a Lipschitz function. Based on this
observation, part (i) of the following proposition provides a method to construct a tensor field M satisfying part (iii)
of Theorem 1.2.

To give the precise statement, we introduce the following notation, which will be used throughout the paper: Given
a vector v = (v1, v2) ∈ R

2, we define v⊥ := (v2,−v1).

Proposition 1.4. Let A ⊂ R
2 be an open set with Lipschitz boundary, let Σ ⊂ ∂A, and let g ∈ L∞(Σ; 〈e〉⊥).

(i) If there exists a Lipschitz function f :A → 〈e〉⊥ such that ∂τA
f = g on Σ , where ∂τA

f is the tangential derivative
of f with respect to the orientation induced by τA := (νA)⊥, then the tensor field M :A → 〈e〉⊥ ⊗ R

2 defined by

M(j) := −(∇f (j)
)⊥

, j = 1,2,

is divergence free in D and satisfies

M[νA] = g on Σ. (1.9)

Moreover, if ‖∇f ‖L∞(A;〈e〉⊥⊗R2) � 1, then M ∈ F (A).
(ii) Conversely, if A is simply connected, given M ∈ F (A) such that (1.9) holds, there exists a Lipschitz function

f :A → 〈e〉⊥ such that ‖∇f ‖L∞(A;〈e〉⊥⊗R2) � 1 and ∂τA
f = g on Σ .

Remark 1.5. In view of Theorem 1.2(i) and (iii) and Proposition 1.4, we remark that the reconstructibility of u0 can
be reduced to a Lipschitz extension problem.

The proof of the previous proposition is standard and we omit it.
Next we focus our attention on special classes of damaged regions. As already mentioned, we are particularly

interested in undamaged regions R \ D having small area but that are uniformly distributed in R. Since in this case
the damaged area is very large, it is reasonable to assume that it contains a small neighborhood of Γ (see Fig. 3). Note
that if D1 ⊂ D2 ⊂ R, then

Ad(u0,D1) ⊂ Ad(u0,D2),

therefore if u0 is reconstructible over D2, then it is also reconstructible over D1. Hence, as a starting point, we begin
to study the case in which u0 is reconstructible over a δ-neighborhood of the contour Γ , i.e., D = Γ (δ) for δ > 0
sufficiently small, where

Γ (δ) := {
x ∈ R: dist(x,Γ ) < δ

}
. (1.10)

Note that condition (1.5) holds.
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Precisely, our results will apply to the following stronger reconstructibility condition over Γ (δ).

Definition 1.6. Let u0 ∈ Im(R) and let D be an open subset of R. Then u0 is said to be stably reconstructible over D

if there exists ε > 0 such that all u ∈ Im(R) of the form

u =
N∑

k=1

ξ ′
k1Ωk

, with max
1�k�N

∣∣ξ ′
k − ξk

∣∣< ε,

are reconstructible over D.

For damaged regions of the type (1.10), and when Γ is piecewise C1, we give a sufficient condition for stable
reconstructibility in terms of an explicit algebraic inequality that involves the values of the colors and the angles of
the corners of Γ , if any.

Definition 1.7. A color image u0 ∈ Im(R) is a regular image if for every k = 1, . . . ,N , the ith connected component
Σ

(i)
k of the kth contour Σk , i = 1, . . . ,mk , is given by the image of a piecewise C1 curve γk,i parametrized by arc-

length, and oriented so that (γ ′
k,i )

⊥ agrees with the inner unit normal vector field νk of Ωk .

Given a regular image u0, using the notation just introduced, for each curve γk,i consider the set of those s ∈
[0, �k,i], where �k,i := length(γk,i), such that Γ has a corner at γk,i(s), precisely,

Sk,i := {
s ∈ [0, �k,i): γ ′

k,i

(
s+) �= (

γ ′
k,i

)(
s−)}. (1.11)

Here we use the following convention: If the curve γk,i is closed, then we define γk,i(0−) := γk,i(�
−
k,i ) and γ ′

k,i (0
−) :=

γ ′
k,i(�

−
k,i ); if γk,i is not closed, then we extend γk,i to [−ε,0) in a C1 way, so that γ ′

k,i (0
−) is well-defined.

When (1.4) holds, we will show that the stable reconstructibility of u0 on the damaged region Γ (δ) depends only
on some compatibility conditions between the vector fields zk ∈ L∞(Σk; 〈e〉⊥) and the tangent vectors γ ′

k,i at points
in Sk,i . Using a blow-up argument, and in view of Proposition 1.4 and Remark 1.5, in Theorems 1.8 and 1.10 below
we show that the analysis may be reformulated in terms of a Lipschitz extension-type problem to R

2 of a function
g :C → 〈e〉⊥, where

C := {
x ∈ R

2: x = −sv, s � 0
}∪ {

x ∈ R
2: x = sw, s � 0

}
, (1.12)

with v,w ∈ S1 linearly independent. Recall that we write g = g(1)ε1 + g(2)ε2, where {ε1, ε2} is an orthonormal basis
of 〈e〉⊥ so that each g(i), i = 1,2, is of the form

g(i)(x) =
{−sr(i) if x = −sv for s � 0,

st (i) if x = sw for s � 0,

for some r(i), t (i) ∈ [−1,1]. Note that

Lip
(
g(i),C

) := sup
x,y∈C,x �=y

|g(i)(x) − g(i)(y)|
|x − y|

= sup
s1,s2>0

|s1r
(i) + s2t

(i)|
|s1v + s2w| =: G(

r(i), t (i), v,w
)
. (1.13)

The exact expression of G may be found in Proposition A.1 in Appendix A. The next theorem provides a sufficient
condition for stable reconstructibility in terms of the Lipschitz constant (1.13).

Theorem 1.8. Let u0 ∈ Im(R) be a regular image. Assume that (1.4) holds and[
G
(
z
(1)
0 , z

(1)
1 , v,w

)]2 + [
G
(
z
(2)
0 , z

(2)
1 , v,w

)]2
< 1, (1.14)

whenever

z0 = zk

(
γk,i

(
s−)), z1 = zk

(
γk,i

(
s+)), v = γ ′

k,i

(
s−), w = γ ′

k,i

(
s+), (1.15)
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Fig. 2. If we chose ξ1, ξ2, ξ3 so that ζ1 is continuous at the corner point γ1(s1) and it jumps at γ1(s2), then condition (1.16) is imposed at γ1(s1),
while condition (1.14) is imposed at γ1(s2).

with k = 1, . . . ,N , i = 1, . . . ,mk , and s ∈ Sk,i . Then u0 is stably reconstructible on the damaged region Γ (δ) for
some δ > 0.

Remark 1.9. (Cf. Fig. 2.)

(i) In Example 6.2 we exhibit an image u0 consisting of just two colors separated by a corner, with parameters
chosen in such a way that (1.14) fails. We will show that in this case minimizers present an additional (artificial)
contour.

(ii) Note that if zk is constant near γk(s), i.e., z0 = z1 =: z, then (1.14) takes the particularly simple form

|z|2 <
1 + v · w

2
. (1.16)

In the limit case v = w, condition (1.16) reduces to the trivial fact |z| < 1.
(iii) If z0 = −z1, then condition (1.16) becomes |z| < 1 (see (A.2) in Appendix A), and therefore it is always satisfied.

Next we give a necessary condition for u0 ∈ Im(R) to be stably reconstructible on the damaged region Γ (δ).

Theorem 1.10. Let u0 ∈ Im(R) be a regular image.

(i) If u0 is reconstructible on the damaged region Γ (δ) for some δ > 0, then whenever z0, z1, v, and w are as in
(1.15),

min
{‖∇g‖L∞(R2;〈e〉⊥⊗R2): g ∈ W 1,∞(

R
2; 〈e〉⊥), g(y) = B[y] for y ∈ C

}
� 1, (1.17)

where C is the set defined in (1.12) and B ∈ 〈e〉⊥ ⊗ R
2 is the tensor uniquely determined by

B[v] = −z0 and B[w] = −z1. (1.18)

(ii) If u0 is stably reconstructible on the damaged region Γ (δ) for some δ > 0, then the inequality in (1.17) is strict.

Remark 1.11. Note that in some cases condition (1.17) coincides with (1.14) with < replaced by �. For instance, if
z0 = z1, let g ∈ W 1,∞(R2; 〈e〉⊥) be a solution of the minimization problem (1.17) satisfying ‖∇g‖L∞(R2;〈e〉⊥⊗R2) � 1.
Consider the points x = −v and y = w. Then by (1.18),

2|z0| = |z0 + z1| =
∣∣g(−v) − g(w)

∣∣� ‖∇g‖L∞(R2;〈e〉⊥⊗R2)|v + w|
� |v + w| = √

2
√

1 + v · w,

which is (1.16) with < replaced by �. In particular, by part (ii) of Theorem 1.10, if z0 = z1, then (1.16) is both
necessary and sufficient for the stable reconstructibility.

It is important to observe that in the previous theorem we are using the Euclidean norm of ∇g(x), that is,

‖∇g‖L∞(R2;〈e〉⊥⊗R2) := ess sup
2

√∣∣∇g(1)(x)
∣∣2 + ∣∣∇g(2)(x)

∣∣2,

x∈R
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Fig. 3. On the left figure, Γ (δ) is a neighborhood of width δ of the contour Γ of u0 ∈ Ad(R). On the right figure, the color is given only inside
small and uniformly distributed squares. Note that here the damaged region contains a small neighborhood of the contour Γ .

Fig. 4. An example of an ε-uniformly distributed (undamaged) region.

where g = g(1)ε1 + g(2)ε2. Hence, the minimization problem (1.17) is different from the classical problem of finding
an extension with minimal Lipschitz constant (see [3,4,19,21,25]). Indeed, in the vectorial case the Lipschitz constant
of an admissible function g ∈ W 1,∞(R2; 〈e〉⊥) in (1.17) is

Lip
(
g,R

2)= ess sup
x∈R2

sup
ν∈S1

∣∣∇g(x)[ν]∣∣� ‖∇g‖L∞(R2;〈e〉⊥⊗R2),

where the inequality is in general strict.
Next we focus on images for which neighboring colors do not share the same gray level and when the undamaged

region R \ D has small area but is uniformly distributed in R.
Let ω : (0,∞) → (0,∞) be such that

lim
ε→0+

ω(ε)

ε2
= ∞, lim

ε→0+
ω(ε)

ε
= 0. (1.19)

Given ε > 0 and an open set U ⊂ R with Lipschitz boundary, we say that U is an ε-uniformly distributed (undamaged)
region if

U ⊃ R ∩
( ⋃

x∈εZ2

Q
(
x,ω(ε)

))
, (1.20)

where for x ∈ R
2 and r > 0, Q(x, r) := x+(− r

2 , r
2 )2. Hence, in this case, the damaged region D := R\U is contained

in

R ∩
( ⋃

x∈εZ2

Q(x, ε) \ Q
(
x,ω(ε)

))
(see Fig. 4).

For damaged regions of this type it is always possible to obtain an asymptotic reconstruction result for arbitrary
color images u0 ∈ BV(R;R

3). Precisely,

Theorem 1.12. Let u0 ∈ BV(R;R
3) ∩ L∞(R;R

3) and let

Dε = R ∩
⋃

x∈εZ2

Q(x, ε) \ Q
(
x,ω(ε)

)
, (1.21)

where ω satisfies (1.19). For every ε > 0 the variational problem

inf
{|Du|(R): u ∈ BV

(
R;R

3), u = u0 L2-a.e. on R \ Dε

}
(1.22)

admits a minimizer. In addition, if uε ∈ BV(R;R
3) is a minimizer for (1.22), then uε → u0 in L1(R;R

3) as ε → 0+.
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Under additional assumptions, Theorems 1.13 and 1.14 provide exact reconstruction for sufficiently small values
of ε.

Theorem 1.13. Let u0 ∈ Im(R) be a stably reconstructible image over the damaged region Γ (δ) for some δ > 0. If
(1.4) holds, then there exists ε0 > 0 such that u0 is reconstructible on the complement of every ε-uniformly distributed
(undamaged) region, with ε < ε0.

We note that the condition (1.19)1 is sharp, in the sense that if ω(ε) � cε2 for some c > 0, then we cannot expect,
in general, to attain exact reconstruction (see Example 6.4).

It is possible to treat more general non-periodic geometries, in particular, the case in which each cube Q(x,ω(ε))

in (1.20) is replaced by a closed connected set whose diameter is of order ω(ε). More precisely, given ε > 0 and
θ ∈ (0,1), we consider the class Dε,θ of open sets D ⊂ R with Lipschitz boundary such that

D ⊂ R ∩
⋃

x∈εZ2

(
Q(x, ε) \ Cx,ε

)
,

where, for every x ∈ εZ
2, Cx,ε is a connected closed set contained in Q(x, θε), with diam(Cx,ε) � ω(ε). Then the

following generalization of Theorem 1.13 holds.

Theorem 1.14. Let u0 ∈ Im(R) be a stably reconstructible image over the damaged region Γ (δ) for some δ > 0. If
(1.4) holds, then for every θ ∈ (0,1) there exists ε0 > 0 depending only on u0, θ , and ω, such that for every 0 < ε < ε0,
u0 is reconstructible over all damaged regions D ∈ Dε,θ .

This paper is organized as follows. In Section 2 we prove some preliminary results. In Section 3 we prove The-
orem 1.2. The proofs of Theorems 1.8, 1.10 and of Theorems 1.12, 1.13, and 1.14 are presented in Section 4 and
Section 5, respectively. In Section 6 we give some explicit examples in which exact reconstruction fails, and minimiz-
ers display different, spurious contours.

2. Existence of minimizers and an alternative formulation of the model

We begin by proving that the minimization problem (1.2) admits always a solution.

Proposition 2.1. Let u0 ∈ BV(R;R
3) and let D ⊂ R be an open set with Lipschitz boundary. Then there exists a

minimizer of (1.2).

Proof. Let {un}n∈N ⊂ BV(R;R
3) be a minimizing sequence for (1.2). In particular,

sup
n∈N

|Dun|(R) � |Du0|(R) < ∞,

where we have used the fact that u0 ∈ Ad(u0,D). Moreover,

|Dun|(R) = |Dun|(D) + |Dun|(R \ D) +
∫

∂D

|un − u0|dH1, (2.1)

where in the boundary integral un stands for the trace of un on ∂D as an element of BV(D;R
3), and u0 stands for the

trace of u0 on ∂D as an element of BV(R \ D;R
3) (cf. [1, Theorem 3.84]). Let

vn :=
{

un − u0 on D,

0 on R
2 \ D.

Then vn ∈ BV(R2;R
3) and, by the Sobolev–Gagliardo–Nirenberg inequality,

2
√

π

( ∫
D

|un − u0|2 dx

)1/2

= 2
√

π‖vn‖L2(R2;R3) � |Dvn|
(
R

2)
= ∣∣D(un − u0)

∣∣(D) +
∫

|un − u0|dH1 � |Dun|(R) + |Du0|(D),
∂D
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where in the last inequality we used (2.1). Therefore supn∈N ‖un‖L1(R;R3) < ∞ and, in turn, {un}n∈N is bounded
in BV(R;R

3). By [1, Corollary 3.49], up to a subsequence, {un} converges strongly in L1(R;R
3) to some ū ∈

BV(R;R
3). Using the lower semicontinuity of the total variation and the fact that the class Ad(u0,D) is closed

with respect to weak star convergence in BV , we have that ū belongs to Ad(u0,D) and is a minimizer. �
If the damaged region D is an open set with Lipschitz boundary and satisfies the geometric condition (1.5) and if

u0 ∈ Im(R), then it is possible to reformulate the minimization problem (1.2) as

inf
{
F(u,D): u ∈ BV

(
D;R

3), u · e = u0 · e L2-a.e. in D
}
, (2.2)

where

F(u,D) := |Du|(D) +
N∑

k=1

∫
∂D∩Ωk

|u − ξk|dH1.

In the boundary terms of F we integrate the trace of u ∈ BV(D;R
3) on ∂D.

Remark 2.2. Note that the Euler–Lagrange equation of the functional F are given, formally, by the 1-Laplacian
Neumann problem{

div Du
|Du| ‖ e on D,

P
(

Du
|Du| [νD])= −z on ∂D,

(2.3)

where z := P(
u−ξk|u−ξk | ) in ∂D∩Ωk . Since this equation is in general not well-defined, Du

|Du| is replaced by the tensor field
M given in Theorem 1.2. Hence, the conditions on M can be considered as a weak formulation of the Euler–Lagrange
equations of F . For similar results see, e.g., [6,11,18].

Proposition 2.3. Let u0 ∈ Im(R) and let D ⊂ R be an open set with Lipschitz boundary such that (1.5) holds. If
u ∈ BV(D;R

3) is a minimizer of (2.2), then the function

ū =
{

u0 on R \ D,

u in D,

is a minimizer of (1.2). Conversely, if u ∈ BV(R;R
3) is a minimizer of (1.2), then its restriction ū to D is a minimizer

of (2.2).

Proof. For every v ∈ Ad(u0,R), we have

|Dv|(R) = |Dv|(R \ D) + |Dv|(D) + |Dv|(R ∩ ∂D).

Since v = u0 in the open set R \ D, it follows that |Dv|(R \ D) = |Du0|(R \ D). Moreover, |Dv|(D) = |Dṽ|(D),
where ṽ is the restriction of v to D. Thus

|Dv|(R) = |Du0|(R \ D) + |Dṽ|(D) + |Dv|(R ∩ ∂D).

We now consider the term |Dv|(R ∩ ∂D). Using (1.5), we obtain

|Dv|(R ∩ ∂D) = |Dv|((R \ Γ ) ∩ ∂D
)=

N∑
k=1

|Dv|(Ωk ∩ ∂D).

By [1, Theorem 3.84],

|Dv|(Ωk ∩ ∂D) =
∫

∂D∩Ωk

|ξk − ṽ|dH1,

where in the last integral ṽ denotes the trace on ∂D of ṽ as an element of BV(D;R
3). Therefore,

|Dv|(R) = |Du0|(R \ D) + F(ṽ;D),

and the statement follows. �
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Remark 2.4. Note that u ∈ BV(D;R
3) is a minimizer of (2.2) if and only if for every ϕ ∈ BV(D, 〈e〉⊥) the convex

function f : [0,∞) → [0,∞) defined by

f (t) := F(u0 + tϕ,D), t � 0, (2.4)

has a minimum in t = 0, or, equivalently,

0 � lim
t→0+

f (t) − f (0)

t
. (2.5)

This is an immediate consequence of the fact that v ∈ BV(D;R
3) is such that v · e = u0 · e on D if and only if

v = u0 + ϕ with ϕ ∈ BV(D; 〈e〉⊥).

3. Reconstructibility and tensor-valued calibrations: Proof of Theorem 1.2

In (2.2) we minimize u �→ F(u,D) under the constraint that u · e = u0 · e on D. In view of Remark 2.4, it is natural
to consider variations of the form u + εϕ, where ϕ :D → 〈e〉⊥. Writing ϕ = ϕ1ε1 + ϕ2ε2, with ϕi :D → R, i = 1,2,
we have that

∇ϕ = ε1 ⊗ ∇ϕ1 + ε2 ⊗ ∇ϕ2,

i.e., ∇ϕ :D → 〈e〉⊥ ⊗ R
2.

Lemma 3.1. Let D be an open set with Lipschitz boundary, let Γ1,Γ2 be Borel subsets of ∂D such that

∂D = Γ1 ∪ Γ2, H1(Γ1 ∩ Γ2) = 0,

and let z ∈ L∞(Γ2; 〈e〉⊥). Then the following two conditions are equivalent:

(i) for every ϕ ∈ BV(D; 〈e〉⊥),

0 � |Dϕ|(D) +
∫
Γ1

|ϕ|dH1 +
∫
Γ2

ϕ · z dH1;

(ii) there exists M ∈ F (D) such that

M[νD] = −z on Γ2.

Proof.

Step 1. We prove that (ii) implies (i). Since D has Lipschitz boundary, it suffices to verify (i) for ϕ ∈ C∞(D; 〈e〉⊥).
By (1.6), for every such ϕ we have

|Dϕ|(D) =
∫
D

|∇ϕ|dx �
∫
D

∇ϕ : M dx =
∫

∂D

M[νD] · ϕ dH1.

Since H1(Γ1 ∩ Γ2) = 0, we have that∫
∂D

M[νD] · ϕ dH1 =
∫
Γ1

M[νD] · ϕ dH1 −
∫
Γ2

z · ϕ dH1 � −
∫
Γ1

|ϕ|dH1 −
∫
Γ2

z · ϕ dH1,

where in the last inequality we have used (1.6), and so (i) follows.

Step 2. We prove that (i) implies (ii). Although this implication could be derived from general theorems in convex
analysis (see [12]), for the convenience of the reader, we give a direct proof. For every ϕ ∈ BV(D; 〈e〉⊥) and μ ∈ X

we define
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Ψ (ϕ) :=
∫
Γ1

|ϕ|dH1 +
∫
Γ2

ϕ · z dH1,

Φ(ϕ,μ) := |Dϕ − μ|(D) + Ψ (ϕ),

where X := Mb(D; 〈e〉⊥ ⊗ R
2) is the Banach space of all bounded Radon measures with values in 〈e〉⊥ ⊗ R

2.
Consider the function f :X → [−∞,∞] defined as

f (μ) := inf
{
Φ(ϕ,μ): ϕ ∈ BV

(
D; 〈e〉⊥)}, μ ∈ X.

We claim that∣∣f (μ)
∣∣� |μ|(D) for all μ ∈ X. (3.1)

Indeed, f (μ) � Φ(0,μ) = |μ|(D), while, in view of (i), for every ϕ ∈ BV(D; 〈e〉⊥),

Φ(ϕ,μ) � |Dϕ|(D) − |μ|(D) + Ψ (ϕ) � −|μ|(D).

In particular, f is real-valued and locally bounded. Moreover, f is convex. Hence, the sub-differential of f at every
μ ∈ X is nonempty (see, e.g., Theorems 4.43 and 4.51 in [13]). Therefore, since f (0) = 0, there exists μ∗ in the
topological dual X∗ of X such that〈

μ∗,μ
〉
� f (μ) for all μ ∈ X. (3.2)

Since the restriction of μ∗ to L1(D; 〈e〉⊥ ⊗R
2) is still a continuous linear functional, there exists M ∈ L∞(D; 〈e〉⊥ ⊗

R
2) such that〈

μ∗,μ
〉= −

∫
D

M ′ : M dx,

whenever μ = M ′L2�D for some M ′ ∈ L1(D; 〈e〉⊥ ⊗ R
2). By (3.1) and (3.2), it follows that

‖M‖L∞(D;〈e〉⊥⊗R2) � 1.

Restricting (3.2) to measures of the form μ = ∇ϕL2�D, where ϕ ∈ C∞(D; 〈e〉⊥), we obtain

−
∫
D

∇ϕ : M dx � f
(∇ϕL2�D)

� Φ
(
ϕ,∇ϕL2�D)

= Ψ (ϕ) for all ϕ ∈ C∞(
D; 〈e〉⊥). (3.3)

In particular, taking ±ϕ ∈ C∞
c (D; 〈e〉⊥), we find that∫

D

∇ϕ : M dx = 0 for all ϕ ∈ C∞
c

(
D; 〈e〉⊥),

and thus M ∈ F (D). Then by (1.7) and (3.3), we get∫
Γ1

|ϕ|dH1 +
∫
Γ2

ϕ · z dH1 � −
∫

∂D

M[νD] · ϕ dH1 for all ϕ ∈ C∞(
D; 〈e〉⊥).

In particular,∫
Γ2

(
M[νD] + z

) · ϕ dH1 � 0

for every ϕ ∈ C∞(D; 〈e〉⊥) such that ϕ = 0 on Γ1. Thus, M[νD] = −z on Γ2 and we conclude the proof of the
lemma. �

We now turn to the proof of Theorem 1.2.
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Proof of Theorem 1.2.

Step 1. We start by proving that (i) is equivalent to (ii). Let f be the function defined in (2.4). Since u0 =∑N
k=1 ξk1Ωk

,
we have that

f (t) = ∣∣D(u0 + tϕ)
∣∣(D) +

N∑
k=1

∫
∂D∩Ωk

∣∣ξk − (u0 + tϕ)
∣∣dH1

= ∣∣D(u0 + tϕ)
∣∣(Γ ∩ D) +

N∑
k=1

∣∣D(u0 + tϕ)
∣∣(D ∩ Ωk) + t

N∑
k=1

∫
∂D∩Ωk

|ϕ|dH1.

If ϕk ∈ BV(D ∩ Ωk, 〈e〉⊥) denotes the restriction of ϕ to the open set Ωk ∩ D, then

f (t) = ∣∣D(u0 + tϕ)
∣∣(Γ ∩ D) + t

N∑
k=1

(
|Dϕk|(D ∩ Ωk) +

∫
∂D∩Ωk

|ϕk|dH1
)

. (3.4)

Note that∣∣D(u0 + tϕ)
∣∣(Γ ∩ D) =

N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

∣∣(ξk + tϕk) − (ξh + tϕh)
∣∣dH1, (3.5)

where, we recall, Σk,h = ∂Ωk ∩ ∂Ωh. Therefore, by (3.4) and (3.5),

f (t) =
N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

∣∣(ξk + tϕk) − (ξh + tϕh)
∣∣dH1

+ t

N∑
k=1

(
|Dϕk|(D ∩ Ωk) +

∫
∂D∩Ωk

|ϕk|dH1
)

. (3.6)

Hence, by Remark 2.4, condition (i) is equivalent to (2.5), which, by (3.6), becomes

0 �
N∑

k=1

|Dϕk|(D ∩ Ωk) +
∫

∂D∩Ωk

|ϕk|dH1 +
N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

ξk − ξh

|ξk − ξh| · (ϕk − ϕh)dH1. (3.7)

By definition of zk and since ϕ takes values in 〈e〉⊥, we have that

1D∩Σk,h

ξk − ξh

|ξk − ξh| · (ϕk − ϕh) = 1D∩Σk,h
(zk · ϕk + zh · ϕh).

Thus, after relabeling terms,

N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

ξk − ξh

|ξk − ξh| · (ϕk − ϕh)dH1

=
N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

(zk · ϕk + zh · ϕh)dH1

=
N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

zk · ϕk dH1 +
N∑

h=2

h−1∑
k=1

∫
D∩Σk,h

zh · ϕh dH1

=
N∑

k=1

∫
zk · ϕk dH1. (3.8)
D∩Σk
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Finally, from (3.7) and (3.8) we conclude that (i) is equivalent to

0 �
N∑

k=1

(
|Dϕk|(D ∩ Ωk) +

∫
∂D∩Ωk

|ϕk|dH1 +
∫

D∩Σk

zk · ϕk dH1
)

for every ϕ ∈ BV(D, 〈e〉⊥), and, in turn, this last inequality is equivalent to (ii).

Step 2. To prove that (ii) is equivalent to (iii), it suffices to apply Lemma 3.1 on Ωk ∩ D for every k = 1, . . . ,N .

Step 3. Let us now assume that (1.4) holds and prove that if u0 is a minimizer for F on D, then it is the unique mini-
mizer. Let u ∈ BV(D;R

3) be such that u · e = u0 · e on D. Then, we may write u = u0 + ϕ, where ϕ ∈ BV(D; 〈e〉⊥).
By (3.6) with t = 1,

F(u,D) =
N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

∣∣(ξk + ϕk) − (ξh + ϕh)
∣∣dH1 +

N∑
k=1

(
|Dϕk|(D ∩ Ωk) +

∫
∂D∩Ωk

|ϕk|dH1
)

, (3.9)

where, as before, ϕk is the restriction of ϕ to Ωk ∩ D. Setting ψ := u − (u0 · e)e = u0 − (u0 · e)e + ϕ, we have that
ψ ∈ BV(D; 〈e〉⊥), and in Ωk ∩ D,

ψ = ψk := ϕk + (
ξk − (ξk · e)e), k = 1, . . . ,N.

Therefore,

F(u,D) =
N−1∑
k=1

N∑
h=k+1

∫
D∩Σk,h

∣∣((ξk · e)e − (ξh · e)e)+ (ψk − ψh)
∣∣dH1

+
N∑

k=1

(
|Dψk|(D ∩ Ωk) +

∫
∂D∩Ωk

∣∣ψk − (
ξk − (ξk · e)e)∣∣dH1

)
.

By the Pythagorean theorem∣∣(ξk · e − ξh · e)e + (ψk − ψh)
∣∣=√

(ξk · e − ξh · e)2 + (ψk − ψh)2,

where (ξk · e − ξh · e)2 > 0 thanks to (1.4). Thus, the integrals∫
D∩Σk,h

∣∣(ξk · e − ξh · e)e + (ψk − ψh)
∣∣dH1

are strictly convex in the ψk − ψh variables. In particular, if u0 and u are both minimizers, we must have

ψk − ψh = ψk,0 − ψh,0 H1-a.e. on Σk,h,

i.e., ϕk = ϕh H1-a.e. on Σk,h. Here ψk,0 = ξk − (ξk · e)e. Using the equality F(u,D) = F(u0,D) and the expression
of F given in (3.9) we then obtain that

0 =
N∑

k=1

(
|Dϕk|(D ∩ Ωk) +

∫
∂D∩Ωk

|ϕk|dH1
)

.

Hence, ϕk is constant on each connected component of D ∩ Ωk but this value must be zero, since ϕk = 0 H1-a.e. on
∂D ∩ Ωk . We conclude that u = u0. �
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4. Reconstructibility on a δ-neighborhood of the contour: Proof of Theorems 1.8 and 1.10

We begin with the following preliminary result.

Lemma 4.1. For i = 1,2, let Di ⊂ R
2 be an open set with Lipschitz boundary and let Mi ∈ F (Di). Let D1 ∩ D2 = ∅,

H1(∂D1 ∩ ∂D2) > 0, and define M :D1 ∪ D2 → 〈e〉⊥ ⊗ R
2 by

M := Mi on Di.

If M1[νD1] = −M2[νD2 ] on ∂D1 ∩ ∂D2, then M ∈ F (D), where D is the interior of D1 ∪ D2.

Proof. If ϕ ∈ C∞
c (D; 〈e〉⊥), then ϕ = 0 on ∂D1�∂D2 and ϕ ∈ C∞(Di; 〈e〉⊥) for i = 1,2. Thus∫

D

M : ∇ϕ dx =
2∑

i=1

∫
Di

Mi : ∇ϕ dx =
2∑

i=1

∫
∂Di

ϕ · Mi[νDi
]dH1

=
∫

∂D1∩∂D2

2∑
i=1

ϕ · Mi[νDi
]dH1 = 0. �

Before proving Theorem 1.8, we apply Theorem 1.2 to obtain an equivalent formulation of stable reconstructibility
of u0 ∈ Im(R) on Γ (δ) for some δ > 0. We remark that for sufficiently small values of δ > 0, the damaged region
Γ (δ) satisfies the condition

H1(Γ ∩ ∂Γ (δ)
)= 0,

which is one of the hypotheses of Theorem 1.2.

Proposition 4.2. Let u0 ∈ Im(R) satisfy (1.4). Then for all δ > 0 sufficiently small, the following two statements are
equivalent:

(i) u0 is stably reconstructible over Γ (δ);
(ii) for every k = 1, . . . ,N there exists Mk ∈ F (Γ (δ) ∩ Ωk) such that

Mk[νΓ (δ)∩Ωk
] = −zk on Σk,

with the further property that

‖Mk‖L∞(Γ (δ)∩Ωk;〈e〉⊥⊗R2) < 1.

Proof.

Step 1. We prove that (i) implies (ii). Let u0 be stably reconstructible over Γ (δ) and let ε0 > 0 be such that if
u = ∑N

k=1 ξ ′
k1Ωk

and max1�k�N |ξ ′
k − ξk| < ε0, then u is reconstructible over Γ (δ). We claim that there exists such

an image u with the additional property that

z′
k = λzk, k = 1, . . . ,N, (4.1)

for some constant λ > 1, where z′
k denotes the compatibility vector field associated to u. To see this, note that by (1.4),

|P(
ξk−ξh|ξk−ξh| )| < 1 for all h, k with h �= k such that H1(Σk,h) > 0.

Assume first H1(Σk,h) > 0 for all h, k with h �= k. The map

T1 : R3N → (
R

3)τ(
ξ ′

1, . . . , ξ
′
N

) �→ (
ξ ′

1 − ξ ′
2, . . . , ξ

′
1 − ξ ′

N, ξ ′
2 − ξ ′

3, . . . , ξ
′
2 − ξ ′

N, . . . , ξ ′
N−1 − ξ ′

N

)
where (R3)τ := R

3 × · · · × R
3 and τ := N(N−1)

2 , is open by the surjective mapping theorem (see [5]), the map

τ times
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T2 :
(
R

3)τ \ {0} → (
S2)τ

(
η′

1, . . . , η
′
τ

) �→
(

η′
1

|η′
1|

, . . . ,
η′

τ

|η′
τ |
)

is open, while the map

T3 :
(
S2)τ → (〈e〉⊥)τ(

ς ′
1, . . . , ς

′
τ

) �→ (
P
(
ς ′

1

)
, . . . ,P

(
ς ′

τ

))
is locally open in a neighborhood of each point (ς1, . . . , ςτ ) ∈ (S2)τ such that |P(ςi)| < 1 for all i = 1, . . . , τ . There-
fore

T3 ◦ T2 ◦ T1
(
B
(
(ξ1, . . . , ξN ), ε0

))⊃ B
(
T3 ◦ T2 ◦ T1

(
(ξ1, . . . , ξN )

)
, ε1

)
for some ε1 > 0. Let

1 < λ < 1 + ε1

1 + ‖T3 ◦ T2 ◦ T1((ξ1, . . . , ξN ))‖ .

Then there exists (ξ ′
1, . . . , ξ

′
N) ∈ B((ξ1, . . . , ξN ), ε0) such that

T3 ◦ T2 ◦ T1
(
ξ ′

1, . . . , ξ
′
N

)= λT3 ◦ T2 ◦ T1
(
(ξ1, . . . , ξN )

)
.

This proves the claim in the case H1(Σk,h) > 0 for all h, k with h �= k. The general case can be treated in an analogous
way.

Define u := ∑N
k=1 ξ ′

k1Ωk
. Since u is reconstructible over Γ (δ), by Theorem 1.2, for every k we can find M ′

k ∈
F (Γ (δ) ∩ Ωk) with M ′

k[νΓ (δ)∩Ωk
] = −λzk on Σk , where we used (4.1). Setting Mk := (1/λ)M ′

k , it now follows that
Mk satisfies the required properties.

Step 2. We prove that (ii) implies (i). By Theorem 1.2, and since each Ωk has finitely many connected components,
it suffices to show that for a fixed k ∈ {1, . . . ,N} and for a fixed connected component Σ of Σk , there is 0 < ε0 <

1 − ‖zk‖L∞(Σk;〈e〉⊥⊗R2) such that for all 0 < ε < ε0 and for all u = ∑N
j=1 ξ ′

j 1Ωj
with max |ξ ′

j − ξj | < ε, there exists
M ∈ F (Σ(δ) ∩ Ωk) satisfying

M[νΣ(δ)∩Ωk
] = −z′ on Σ, (4.2)

where z′ ∈ L∞(Σ; 〈e〉⊥) is the restriction of the compatibility vector fields z′
k of u to Σ . Here, and throughout the

paper,

Σ(δ) := {
x ∈ R

2: dist(x,Σ) < δ
}
.

We divide the proof in two cases. Assume first that the curve Σ is open. Since Σ is Lipschitz, the geodesic distance

dΣ(x1, x2) := inf

{ 1∫
0

∣∣σ ′(t)
∣∣dt : σ ∈ W 1,∞([0,1];Σ)

, σ (0) = x1, σ (1) = x2

}
, x1, x2 ∈ Σ, (4.3)

on Σ is Lipschitz, and so there exists L > 0 such that

dΣ(x1, x2) � L|x1 − x1| for all x1, x2 ∈ Σ.

Using the fact that the projection P is Lipschitz, there exists ε0 > 0 such that if u =∑N
j=1 ξ ′

j 1Ωj
and max1�j�N |ξ ′

j −
ξj | < ε0, then∥∥zk − z′

k

∥∥
L∞(Σ;〈e〉⊥)

<
1 − ‖Mk‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2)√

2L
.

Fix any such u, and let f :Σ → 〈e〉⊥ be determined (up to additive constants) by

∂τΣ(δ)∩Ωk
f = zk − z′ on Σ. (4.4)

Then
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Fig. 5. The case in which Σ is a closed curve.

∣∣f (x1) − f (x2)
∣∣� ∥∥zk − z′∥∥

L∞(Σ;〈e〉⊥)
dΣ(x1, x2)

�
1 − ‖Mk‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2)√

2L
dΣ(x1, x2)

�
1 − ‖Mk‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2)√

2
|x1 − x2|

for all x1, x2 ∈ Σ . Applying McShane’s lemma with respect to the Euclidean distance yields a function f ∈
W 1,∞(Σ(δ) ∩ Ωk; 〈e〉⊥) such that∣∣f (x1) − f (x2)

∣∣� 1 − ‖Mk‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2)√
2

|x1 − x2|

for all x1, x2 ∈ Σ(δ) ∩ Ωk . It follows that

‖∇f ‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2) < 1 − ‖Mk‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2). (4.5)

To conclude, setting M(j) := M
(j)
k − (∇f (j))⊥, j = 1,2, in view of (4.4) and (4.5), we have that M ∈ F (Σ(δ) ∩ Ωk)

and (4.2) holds.
In the case in which the curve Σ is closed, choose two points P1 and P2 on Σ . These points determine the two arcs

Σ1 and Σ2 with endpoints P1 and P2 and whose union is Σ . For every i = 1,2, consider a segment Si having one of
the endpoints at Pi and the other on Ωk ∩ ∂[Σ(δ)], so that Σ(δ) ∩ Ωk \ (S1 ∪ S2) has two connected components U1
and U2. Set Σ ′

i := Σi ∪ S1 ∪ S2, i = 1,2 (see Fig. 5). For i = 1,2, we now reason as in the previous case, considering
the open curve Σ ′

i and taking

∂τUi
fi :=

{
zk − z′ on Σi,

0 on S1 ∪ S2,

to find a function fi ∈ W 1,∞(Ui; 〈e〉⊥) such that

‖∇fi‖L∞(Ui ;〈e〉⊥⊗R2) < 1 − ‖Mk‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2).

We conclude by setting M(j) := M
(j)
k − (∇f

(j)
i )⊥ in Ui , i, j = 1,2. �

The following extension lemma will play an important role in the proof of Theorem 1.8. The context represented
in Fig. 6 is the following: Consider a piecewise C1 injective curve γ : [r0, r1] → R

2, with γ ∈ C1([r0, s1];R
2) ∩

C1([s1, r1];R
2) for some s1 ∈ (r0, r1) and such that |γ ′(t)| = 1 for every t ∈ [r0, s1)∪(s1, r1]. Define Σ := γ ([r0, r1]).

Given z0, z1 ∈ 〈e〉⊥, with |z0| < 1, |z1| < 1, in Lemma 4.3 we construct a divergence-free tensor field on a δ-
neighborhood Σ(δ) of Σ , with normal trace taking equal to z0 and z1 on γ ([r0, s1)) and γ ((s1, r1]), respectively. We
introduce some further notation. Setting

ti (δ) := sup
{
t > 0: γ (ri) + sγ ′(ri)⊥ ∈ Σ(δ) for all s ∈ (0, t)

}
, i = 0,1,

then ti (δ) > 0 and pi,δ := γ (ri) + ti (δ)γ
′(ri)⊥ ∈ ∂Σ(δ). Consider the open segments Σi,δ with endpoints γ (ri)

and pi,δ .
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Fig. 6. The situation in Lemma 4.3.

Lemma 4.3. Let Σ , Σ0,δ , Σ1,δ , and γ be as above. Let z0, z1 ∈ 〈e〉⊥, with |z0| < 1, |z1| < 1, and let v0 := γ ′(s−
1 ),

v1 := γ ′(s+
1 ) be such that[

G
(
z
(1)
0 , z

(1)
1 , v0, v1

)]2 + [
G
(
z
(2)
0 , z

(2)
1 , v0, v1

)]2
< 1. (4.6)

In the case in which v0 = v1, assume further that z0 = z1 =: z. Then for all δ > 0 sufficiently small there exists
M ∈ F (Σ(δ)) such that

‖M‖L∞(Σ(δ);〈e〉⊥⊗R2) < 1,

M[ν] = 0 on Σ0,δ ∪ Σ1,δ,

M[ν] = −z0 on γ
([r0, s1]

)
,

M[ν] = −z1 on γ
([s1, r1]

)
,

where ν is the unit normal to Σ ∪ Σ0,δ ∪ Σ1,δ such that ν = −(γ ′)⊥ on Σ .

Proof.

Step 1. Endow Σ(δ) and Σ with their geodesic distances dΣ(δ) and dΣ , respectively. We claim that for every c, η > 0
sufficiently small there exists δ0 > 0 such that

dΣ

(
γ (r), γ (s)

)
< (1 + η)dΣ(δ)

(
γ (r) + t1γ

′(r)⊥, γ (s) + t2γ
′(s)⊥

)
(4.7)

for all r, s ∈ [r0, s1) ∪ (s1, r1] and 0 � t1, t2 � δ such that |γ (r) + t1γ
′(r)⊥ − (γ (s) + t2γ

′(s)⊥)| � c and for all
0 < δ � δ0. We begin by observing that

dΣ(δ)

(
γ (r) + t1γ

′(r)⊥, γ (s) + t2γ
′(s)⊥

)
� dΣ

(
γ (r), γ (s)

)+ 2δ (4.8)

for all r, s ∈ [r0, s1) ∪ (s1, r1], 0 � t1, t2 � δ. To see this, observe that by adding to any Lipschitz curve admissible for
dΣ(γ (r), γ (s)) (see (4.3)) the segments joining γ (r) to γ (r) + t1γ

′(r)⊥ and γ (s) to γ (s) + t2γ
′(s)⊥, we obtain a

curve admissible for dΣ(δ)(γ (r) + t1γ
′(r)⊥, γ (s) + t2γ

′(s)⊥).
To prove (4.7), we argue by contradiction and assume that there exist c, η > 0, δk → 0+, 0 � t1,k, t2,k � δk , and

rk, sk ∈ [r0, s1) ∪ (s1, r1] such that, defining xk := γ (rk) + t1,kγ
′(rk)⊥ and yk := γ (sk) + t2,kγ

′(sk)⊥, we have |xk −
yk| � c and

dΣ

(
γ (rk), γ (sk)

)
� (1 + η)dΣ(δk)(xk, yk) (4.9)

for all k ∈ N. By extracting a subsequence, not relabelled, we may assume that rk → r and sk → s, with r, s ∈ [r0, r1],
which implies that xk → x := γ (r) and yk → y := γ (s). By (4.3), for every k ∈ N, there exists a Lipschitz curve
σk : [0,1] → Σ(δk) joining xk and yk such that |σ ′

k(t)| = length(σk) for L1-a.e. t ∈ [0,1] and

length(σk) � dΣ(δk)(xk, yk) + 1

k
� dΣ

(
γ (rk), γ (sk)

)+ 1

k
+ 2δk,

where in the last inequality we used (4.8). Therefore, {σk} is a sequence of equi-Lipschitz curves, and so using the
Ascoli–Arzelï theorem, there exist a subsequence, not relabeled, and a Lipschitz curve σ : [0,1] → Σ joining x and y

such that σk → σ uniformly, and
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dΣ(x, y) � length(σ ) � lim inf
k→∞ length(σk) � lim inf

k→∞ dΣ(δk)(xk, yk)

� lim sup
k→∞

dΣ(δk)(xk, yk) � lim
k→∞dΣ

(
γ (rk), γ (sk)

)= dΣ(x, y).

Hence, dΣ(δk)(xk, yk) → dΣ(x, y) and, in turn, by (4.9),

dΣ(x, y) � (1 + η)dΣ(x, y).

Therefore, dΣ(x, y) = 0, which is impossible since dΣ(x, y) � |x − y| � c.

Step 2. We only prove the case in which v0 �= v1. The proof of the case v0 = v1 follows a similar argument. Set

G(j)(v,w) := G
(
z
(j)

0 , z
(j)

1 , v,w
)

for all linearly independent v,w ∈ S1, j = 1,2, where G is the function defined by (1.13). Note that by condition
(4.6), there exists σ ∈ (0,1) such that(

G(1)(v0, v1) + σ
)2 + (

G(2)(v0, v1) + σ
)2

< 1.

Since G is a continuous function, there exists ε0 > 0 such that∣∣G(j)(w1,w2) − G(j)(v0, v1)
∣∣� σ (4.10)

for all w1,w2 ∈ S1 with w1 ∈ B(v0, ε0) and w2 ∈ B(v1, ε0), j = 1,2.
Using the fact that γ is piecewise C1, there exists c > 0 such that if t ∈ [r0, s1) and γ (t) ∈ B(γ (s1),

c
2 ), then

γ ′(t) ∈ B(v0, ε0), (4.11)

while if t ∈ (s1, r1] and γ (t) ∈ B(γ (s1),
c
2 ), then

γ ′(t) ∈ B(v1, ε0). (4.12)

Let η > 0 be so small and m > 1 so large that

(1 + η)√
1 − 1

m2

√(
G(1)(v0, v1) + σ

)2 + (
G(2)(v0, v1) + σ

)2
< 1. (4.13)

By taking c smaller, if necessary, and using again the fact that γ is piecewise C1, we may also assume that if x, y ∈
γ ([r0, s1)) or x, y ∈ γ ((s1, r1]) with |x − y| < c, then

dΣ(x, y) � (1 + η)|x − y| � (1 + η)dΣ(δ)(x, y), (4.14)

and also that if x ∈ Σ ∩ B(γ (r0),2c), then∣∣γ ′(r0)
⊥ · (x − γ (r0)

)∣∣� 1

m

∣∣x − γ (r0)
∣∣, (4.15)

while if x ∈ Σ ∩ B(γ (r1),2c), then∣∣γ ′(r1)
⊥ · (x − γ (r1)

)∣∣� 1

m

∣∣x − γ (r1)
∣∣.

Let δ0 > 0 be given by Step 1 corresponding to the choice of η and c, and define f :Yδ → 〈e〉⊥ as

f (x) :=

⎧⎪⎨⎪⎩
−(s − r0)z0 if x = γ (s) for s ∈ [r0, s1],
−(s1 − r0)z0 − (s − s1)z1 if x = γ (s) for s ∈ [s1, r1],
0 if x ∈ Σ0,δ,

−(s1 − r0)z0 − (r1 − s1)z1 if x ∈ Σ1,δ,

where Yδ := Σ ∪ Σ0,δ ∪ Σ1,δ so that Yδ ⊂ Σ(δ). In view of Proposition 1.4, it suffices to prove that for all δ > 0
sufficiently small there exists a function f̄ ∈ W 1,∞(Σ(δ); 〈e〉⊥) such that f̄ = f on Yδ and∣∣∇f̄ (x)

∣∣< 1 for L2-a.e. x ∈ Σ(δ). (4.16)

Fix x, y ∈ Yδ . We distinguish several cases.
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Case 1. If both x and y belong to Σ , then∣∣f (j)(x) − f (j)(y)
∣∣� max

{∣∣z(j)

0

∣∣, ∣∣z(j)

1

∣∣}dΣ(x, y)

� G(j)(v0, v1) dΣ(x, y), (4.17)

where f (j) :Yδ → R denotes the j th component of f for j = 1,2 and we used the fact that G(r, t, v,w) � max{|r|, |t |}
by (A.3).

Subcase 1a. If |x − y| � c, then by Step 1 (with t1 = t2 = 0), we have for all 0 < δ � δ0,∣∣f (j)(x) − f (j)(y)
∣∣� G(j)(v0, v1) dΣ(x, y) � (1 + η)G(j)(v0, v1) dΣ(δ)(x, y). (4.18)

Subcase 1b. If x, y ∈ Σ and |x − y| < c, then there are two cases. If x, y ∈ γ ([r0, s1)) or x, y ∈ γ ((s1, r1]), then we
obtain (4.18) for all 0 < δ � δ0, with the only change that the last inequality now follows from (4.14). Assume next
that x ∈ γ ([r0, s1)) ∩ B(γ (s1),

c
2 ) and y ∈ γ ((s1, r1]) ∩ B(γ (s1),

c
2 ), with x = γ (r) and y = γ (s). By the mean value

theorem, there exist t1 ∈ [r0, s1) and t2 ∈ (s1, r1] such that

y − x =
s1∫

r

γ ′(t) dt +
s∫

s1

γ ′(t) dt

= (s1 − r)γ ′(t1) + (s − s1)γ
′(t2)

= dΣ

(
x, γ (s1)

)
γ ′(t1) + dΣ

(
y, γ (s1)

)
γ ′(t2).

In this case, by (A.1),∣∣f (j)(x) − f (j)(y)
∣∣= ∣∣dΣ

(
x, γ (s1)

)
z
(j)

0 + dΣ

(
y, γ (s1)

)
z
(j)

1

∣∣
� G(j)

(
γ ′(t1), γ ′(t2)

)∣∣dΣ

(
x, γ (s1)

)
γ ′(t1) + dΣ

(
y, γ (s1)

)
γ ′(t2)

∣∣
= G(j)

(
γ ′(t1), γ ′(t2)

)|y − x| � G(j)
(
γ ′(t1), γ ′(t2)

)
dΣ(δ)(x, y),

and so by (4.10), (4.11), and (4.12),∣∣f (j)(x) − f (j)(y)
∣∣� (

G(j)(v0, v1) + σ
)
dΣ(δ)(x, y).

Case 2. Next we consider the case in which at least one point, say y, belongs to Σ0,δ ∪ Σ1,δ . We only treat the case in
which y ∈ Σ0,δ and x ∈ Σ , the other case being analogous. By the definition of f and (4.17), we have∣∣f (j)(x) − f (j)(y)

∣∣= ∣∣f (j)(x) − f (j)
(
γ (r0)

)∣∣� G(j)(v0, v1) dΣ

(
x, γ (r0)

)
.

Subcase 2a. If |x − y| � c, then by Step 1 (with t2 = 0), we deduce that∣∣f (j)(x) − f (j)(y)
∣∣� (1 + η)G(j)(v0, v1) dΣ(δ)(x, y).

Subcase 2b. If |x − y| < c, then taking δ0 < c, we have that∣∣x − γ (r0)
∣∣� ∣∣y − γ (r0)

∣∣+ |x − y| < 2c.

By (4.14) and (4.17), we have that∣∣f (j)(x) − f (j)(y)
∣∣� G(j)(v0, v1) dΣ

(
x, γ (r0)

)
� (1 + η)G(j)(v0, v1)

∣∣x − γ (r0)
∣∣.

Since y = γ (r0) + tγ ′(r0)
⊥ for some t ∈ (0, δ), by (4.15),

|y − x|2 = ∣∣x − γ (r0)
∣∣2 + t2 + 2tγ ′(r0)

⊥ · (x − γ (r0)
)

�
∣∣x − γ (r0)

∣∣2 + t2 − 2

m
t
∣∣x − γ (r0)

∣∣
�
(

1 − 1
2

)∣∣x − γ (r0)
∣∣2,
m
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Fig. 7. The shaded region is Σ(δ) ∩ Ωk .

and thus,∣∣f (j)(x) − f (j)(y)
∣∣� (1 + η)√

1 − 1
m2

G(j)(v0, v1)|x − y| � (1 + η)√
1 − 1

m2

G(j)(v0, v1) dΣ(δ)(x, y).

In conclusion, collecting all the previous estimates, we deduce that∣∣f (j)(x) − f (j)(y)
∣∣� (1 + η)√

1 − 1
m2

(
G(j)(v0, v1) + σ

)
dΣ(δ)(x, y) (4.19)

for all x, y ∈ Yδ . We now apply McShane’s lemma to extend each component f (j) to a function f̄ (j) :Σ(δ) → R still
satisfying (4.19) for all x, y ∈ Σ(δ). In turn,∣∣f̄ (x) − f̄ (y)

∣∣� (1 + η)√
1 − 1

m2

√(
G(1)(v0, v1) + σ

)2 + (
G(2)(v0, v1) + σ

)2
dΣ(δ)(x, y)

for all x, y ∈ Σ(δ). Property (4.16) now follows from the previous inequality, (4.13), and the fact that dΣ(δ) coincides
with the Euclidean distance for sufficiently close pairs of points. �

We now turn to the proof of Theorem 1.8.

Proof of Theorem 1.8. In order to prove that u0 is stably reconstructible over Γ (δ), by Proposition 4.2 it suffices to
show that for every fixed k and for every connected component Σ of Σk , which is the support of a piecewise C1 curve
γ parameterized by its arc-length, there exists M ∈ F (Σ(δ) ∩ Ωk) such that

‖M‖L∞(Σ(δ)∩Ωk;〈e〉⊥⊗R2) < 1,

M[νΣ(δ)∩Ωk
] = −zk on Σ.

As usual, we orient γ in such a way that (γ ′)⊥ is the inner unit normal to Ωk . We denote by S the singular set of γ ,
as defined in (1.11). There are two possibilities: Either γ is closed with image contained in R or its endpoints belong
to ∂R. We only consider the latter situation (see Fig. 7), since the former can be treated similarly. Fix a finite number
of points in [0, H1(Σ)] \ S ,

r0 := 0 < r1 < · · · < rn+1 := H1(Σ),

such that for each i = 0, . . . , n, the following alternative holds: Either

(ri , ri+1) ∩ S is a singleton

or

(ri , ri+1) ∩ S = ∅ and zk is constant on γ
(
(ri , ri+1)

)
,

with the latter occurring in (r0, r1) and (rn, rn+1). For every i = 1, . . . , n − 1, we define

Σ ′
i = {

γ (ri) + tγ ′(ri)⊥: 0 < t < ti(δ)
}
,

where ti (δ) := sup{t > 0: γ (ri) + sγ ′(ri)⊥ ∈ Σ(δ) ∩ Ωk for all s ∈ (0, t)}.



1312 I. Fonseca et al. / Ann. I. H. Poincaré – AN 27 (2010) 1291–1331
Fig. 8. The field M is obtained by gluing together the constructions of Lemma 4.3 performed on each Di .

For every i = 1, . . . , n − 1 we apply Lemma 4.3 with Σ , Σ0,δ , Σ1,δ , and γ replaced by Σ̂i := γ ([ri , ri+1]), Σ ′
i ,

Σ ′
i+1, and γ |[ri ,ri+1], respectively, to find Mi ∈ F (Σ̂i(δ)) such that

‖Mi‖L∞(Σ̂i (δ);〈e〉⊥⊗R2)
< 1,

Mi[ν] = 0 on Σ ′
i ∪ Σ ′

i+1,

Mi[ν] = −zk on γ ([ri , ri+1]).
Since zk is constant on Σ̂0 := γ ((r0, r1)) and on Σ̂n := γ ((rn, rn+1)), reasoning as in Lemma 4.3, yields the existence
of tensor fields M0 ∈ F (Σ̂0(δ)) and Mn ∈ F (Σ̂n(δ)) such that

‖M0‖L∞(Σ̂0(δ);〈e〉⊥⊗R2)
< 1, ‖Mn‖L∞(Σ̂n(δ);〈e〉⊥⊗R2)

< 1,

M0[ν] = 0 on Σ ′
1, Mn[ν] = 0 on Σ ′

n,

M0[ν] = −zk on γ ([r0, r1]), Mn[ν] = −zk on γ ([rn−1, rn]).
For every i = 1, . . . , n − 1, we define Di to be the connected component of Σ̂i(δ) \ (Σ ′

i ∪ Σ ′
i+1 ∪ Σ̂i) contained

in Ωk . In this way, Σ(δ)∩Ωk \⋃n−1
i=1 Di has two connected components D0 and Dn, with ∂D0 ∩Σ = γ ([r0, r1]) and

∂Dn ∩ Σ = γ ([rn, rn+1]) (cf. Fig. 8). To conclude, it suffices to define M = Mi in Di and to apply Lemma 4.1. �
Finally, we prove Theorem 1.10.

Proof of Theorem 1.10.

Step 1. We prove (i). Let u0 ∈ Im(R) be reconstructible over Γ (δ) for some δ > 0 (we may assume δ so small that the
δ-neighborhoods of each connected component of Σk are all disjoint). By Theorem 1.2 and Remark 1.3, there exists
a tensor field M ∈ F (Γ (δ)) such that

M[νΩk
] = −zk on Σk,

where zk is the compatibility vector field of u0. Fix a connected component Σ of Σk , and let γ and S be as in the
proof of the previous theorem. Let s0 ∈ S and set

z− := zk

(
γ (s−

0 )
)
, z+ := zk

(
γ
(
s+

0

))
, v− := γ ′(s−

0

)
, v+ := γ ′(s+

0

)
.

By Proposition 1.4 there exists a Lipschitz function f :B(γ (s0), ε) → 〈e〉⊥ such that∣∣∇f (x)
∣∣� 1 for L2-a.e. x ∈ B

(
γ (s0), ε

)
,

f
(
γ (s0)

)= 0 and −(∇f (j)
)⊥ = M(j), j = 1,2, in B

(
γ (s0), ε

)
,

where 0 < ε < δ is chosen so small that zk takes only the values z− and z+ on Σ ∩B(γ (s0), ε). In particular, we have

f
(
γ (t)

)=
{−(t − s0)z

− if t < s0 and γ (t) ∈ B(γ (s0), ε),

−(t − s0)z
+ if t > s0 and γ (t) ∈ B(γ (s0), ε).

(4.20)

We now consider the sequence of Lipschitz functions

fn(x) := nf

(
x + γ (s0)

)
.

n



I. Fonseca et al. / Ann. I. H. Poincaré – AN 27 (2010) 1291–1331 1313
Since fn(0) = 0 and ‖∇fn‖L∞(B(0,nε);〈e〉⊥⊗R2) = ‖∇f ‖L∞(B(γ (s0),ε);〈e〉⊥⊗R2) � 1, we may extract a subsequence (not
relabelled) such that

fn
∗
⇀f∞ in W

1,∞
loc

(
R

2, 〈e〉⊥) (4.21)

and

‖∇f∞‖L∞(R2;〈e〉⊥⊗R2) � 1. (4.22)

Let

C := {
x ∈ R

2: x = −tv−, t � 0
}∪ {

x ∈ R
2: x = tv+, t � 0

}
.

Let y ∈ C be of the form y = tv+ for some t > 0. Then, using (4.20), the definition of fn, and the Lipschitz continuity
of f , we have∣∣fn

(
tv+)+ tz+∣∣= ∣∣∣∣nf( tv+

n
+ γ (s0)

)
− nf

(
γ

(
t

n
+ s0

))∣∣∣∣
� Lip(f )

∣∣∣∣tv+ + nγ (s0) − nγ

(
t

n
+ s0

)∣∣∣∣
� no

(
1

n

)
→ 0 as n → ∞, (4.23)

where in the last equality we have used the fact that γ ( t
n

+ s0) = γ (s0) + v+ t
n

+ o( 1
n
). Similarly, we can prove that∣∣fn(−tv−) − tz−∣∣→ 0 as n → ∞ for all t > 0. (4.24)

Let B ∈ 〈e〉⊥ ⊗ R
2 be the tensor uniquely determined by

B
[
v−]= −z− and B

[
v+]= −z+.

It follows from (4.21), (4.23), and (4.24) that

f∞(y) = B[y] for all y ∈ C.

Hence, the function f∞ is admissible for the minimization problem (1.17) (with z− and z+ in place of z0 of z1). In
view of (4.22), this concludes the proof of part (i).

Step 2. To prove (ii), assume that u0 is stably reconstructible over Γ (δ), for some δ > 0. We claim that the inequality
(1.17) is strict. Let ε0 > 0 be such that if u =∑N

k=1 ξ ′
k1Ωk

and max1�k�N |ξ ′
k − ξk| < ε0, then u is also reconstructible

over Γ (δ). Reasoning as in Step 1 of Proposition 4.2, we may find such an image u with the additional property that

z′
k = λzk, k = 1, . . . ,N,

for some fixed constant λ > 1, where z′
k denotes the compatibility vector field associated to u. As in Step 1 of the

present proof, fix a connected component Σ of Σk and let s0 ∈ S . Defining(
z′)− := z′

k

(
γ
(
s−

0

))= λz−,
(
z′)+ := z′

k

(
γ
(
s+

0

))= λz+,

by part (i) of the theorem there exists f∞ ∈ W 1,∞(R2, 〈e〉⊥) such that ‖∇f∞‖L∞(R2;〈e〉⊥⊗R2) � 1 and

f∞
(−tv−)= t

(
z′)− = tλz−, f∞

(
tv+)= −t

(
z′)+ = −tλz+.

Hence the function 1
λ
f∞ is admissible for the minimization problem (1.17) and∥∥∥∥1

λ
∇f∞

∥∥∥∥
L∞(R2;〈e〉⊥⊗R2)

� 1

λ
< 1,

which implies that the inequality (1.17) is strict. �
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5. Reconstructibility from small uniformly distributed undamaged regions: Proof of Theorems 1.12, 1.13,
and 1.14

In this section we prove Theorems 1.12, 1.13, and 1.14.

Proof of Theorem 1.12. The existence of uε may proved as in the proof of Proposition 2.1. Moreover, by a truncation
argument and by the minimality of uε , we have that supε ‖uε‖∞ < ∞. Again by minimality,

|Duε|(R) � |Du0|(R) for all ε > 0. (5.1)

Hence, for every subsequence εn → 0 we may extract a further subsequence (not relabelled) such that uεn → v in
L1(R;R

3) for some v ∈ BV(R;R
3). We claim that v = u0. Assume by contradiction that this is not the case. Then by

Egoroff’s theorem we may find η > 0 and a compact set K ⊂ R of positive L2-measure such that

K ⊂ {
x ∈ R:

∣∣v(x) − u0(x)
∣∣> η

}
and uεn → v uniformly on K. (5.2)

Let x0 ∈ R be a point of density one for K and fix 0 < δ < dist(x0, ∂R) so small that

L2(Q(x0, δ) ∩ K)

δ2
>

3

4
.

Setting An := {x ∈ εnZ
2: Q(x, εn) ⊂ Q(x0, δ)} and Qεn,δ :=⋃

x∈An
Q(x, εn), we have

card(An) � δ2

ε2
n

and
L2(Qεn,δ ∩ K)

δ2
>

3

4
(5.3)

for n large enough. Denoting A+
n :={x ∈ An: L2(Q(x, εn)∩K) > 1

2 L2(Q(x, εn))} and A−
n :={x ∈ An: L2(Q(x, εn)∩

K) � 1
2 L2(Q(x, εn))}, we claim that

card
(
A+

n

)
>

1

4

δ2

ε2
n

. (5.4)

Indeed, if not, we would have card(A+
n ) � 1

4
δ2

ε2
n

and, by the first inequality in (5.3), card(A−
n ) � δ2

ε2
n

. Hence,

L2(Qεn,δ ∩ K) �
∑
x∈An

L2(Q(x, εn) ∩ K
)
� ε2

n card
(
A+

n

)+ 1

2
ε2
n card

(
A−

n

)
� 1

4
δ2 + 1

2
δ2 = 3

4
δ2,

which contradicts the second inequality in (5.3).
Fix x ∈ A+

n and recall that by (5.2),

|uεn − v| > η

2
on Q(x, εn) ∩ K (5.5)

for all n � n0 for a suitable n0 ∈ N independent of x. Let (�, θ) denote the polar coordinates centered at x and for
θ ∈ (0,2π) and n ∈ N define

gθ,n(ρ) := uεn

(
x + ρ(cos θ, sin θ)

)
, gθ (ρ) := v

(
x + ρ(cos θ, sin θ)

)
, ρ ∈ Iθ ,

where Iθ := {ρ > 0: x + ρ(cos θ, sin θ) ∈ R}. Let T ⊂ (0,2π) be the set of all θ ’s such that the set

Uθ :=
{
ρ ∈ Iθ :

∣∣gθ,n(ρ) − gθ (ρ)
∣∣> η

2

}
has positive L1-measure. By (5.5) and the definition of A+

n , we have

1

2
L2(Q(x, εn)

)
< L2(Q(x, εn) ∩ K

)
� L2

(
Q(x, εn) ∩

{
|uεn − v| > η

2

})

=
∫ ∫

� d� dθ �
∫ εn

√
2∫
� d� dθ = L1(T )ε2

n,
T Uθ T 0
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which implies that

L1(T ) >
1

2
.

By (5.5) and the fact that uεn and v coincide in Q(x,ω(εn)) (see (1.21)), for all θ ∈ T we have (see Sections 3.2 and
3.11 in [1])∣∣D(gθ,n − gθ )

∣∣(ω(εn)

2
, �θ

)
>

η

2
,

where �θ denotes the length of the set {ρ > 0: x + ρ(cos θ, sin θ) ∈ Q(x, εn)}. Hence,

∣∣D(uεn − v)
∣∣(Q(x, εn)

)
�
∫
T

dθ

�θ∫
ω(εn)

2

� d
∣∣D(gθ,n − gθ )

∣∣
� ω(εn)

2

∫
T

∣∣D(gθ,n − gθ )
∣∣(ω(εn)

2
, �θ

)
dθ

>
ω(εn)η

4
L1(T ) >

ω(εn)η

8
.

Summing the last inequality over all x ∈ A+
n and using (5.4) and (1.19), we obtain∣∣D(uεn − v)

∣∣(Qεn,δ) >
ω(εn)η

8
card

(
A+

n

)
>

ηδ2

32

ω(εn)

ε2
n

→ ∞,

which contradicts (5.1). This concludes the proof of the theorem. �
Next we prove Theorem 1.13 and Theorem 1.14. Given an image u0, which is stably reconstructible over Γ (δ) for

some small δ > 0, we show that it is reconstructible over the complement D of an ε-uniformly distributed (undamaged)
region for ε sufficiently small. In view of Theorem 1.2, it suffices to construct a divergence-free tensor field M on D

whose normal trace on D ∩∂Ωk agrees with −zk . Again by Theorem 1.2, we know that such a construction is possible
in the thin layer Γ (δ) ∩ Ωk for δ small enough. Therefore, it remains to extend this tensor field to the whole D ∩ Ωk ,
keeping it divergence-free and preserving its boundary values. The following lemma is at the core of this extension.
In the remainder of this section, we denote a generic point x of R

2 as x = (s, t).

Lemma 5.1. (Cf. Fig. 9.) Let λ,σ > 0 be such that

λ + 4σ � 1 (5.6)

and let η0 > 0. Fix η0 < η < 2η0 and assume that there exist T1, T2 ∈ C0([0, η]; 〈e〉⊥) such that

max
i=1,2

sup
0<r<η

∣∣Ti(r) − Ti

∣∣� σ, |T1|2 + |T2|2 � λ2, (5.7)

where

T1 :=
η

−
∫
0

T1(r) dr, T2 :=
η

−
∫
0

T2(r) dr.

For n ∈ N, 0 � h, k � n − 1, consider the squares

Qh,k :=
{
(s, t) ∈ R

2:
h

n
η < s <

h + 1

n
η,

k

n
η < t <

k + 1

n
η

}
⊂ (0, η)2,

and let Q′
h,k be the (closed) square concentric to Qh,k with side length ω(η/n), where ω satisfies (1.19). Finally,

consider the open set

Dn :=
⋃ (

Qh,k \ Q′
h,k

)
.

0�h,k�n−1
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Fig. 9. The situation in Lemma 5.1.

Fig. 10. Construction of M , and the set X.

Then there exists n0 ∈ N, depending only on η0, σ , and ω, with the following property: For all n � n0 there exists
M ∈ F (Dn) such that

M[νDn](s, η) = T2(s), M[νDn](η, t) = T1(t), M[νDn ](s,0) = M[νDn ](0, t) = 0,

for every s ∈ (0, η) and t ∈ (0, η).

Proof. By Lemma 4.1, it suffices to show that for every 0 � h, k � n − 1, setting Dh,k := Qh,k \ Q′
h,k , there exists

M ∈ F (Dh,k) with M[νDh,k
] = Ψh,k on ∂Qh,k , where

Ψh,k

(
s,

k + 1

n
η

)
:= k + 1

n
T2(s), Ψh,k

(
h + 1

n
η, t

)
:= h + 1

n
T1(t),

Ψh,k

(
s,

k

n
η

)
:= − k

n
T2(s), Ψh,k

(
h

n
η, t

)
:= −h

n
T1(t)

for all s ∈ (h
n
η, h+1

n
η) and t ∈ ( k

n
η, k+1

n
η).

Let σh,k be the closed segment joining the upper left corner of Qh,k with the upper left corner of Q′
h,k , let X0 :=

(Qh,k \ Q′
h,k) \ σh,k (see Fig. 10), and let dX0 be the geodesic distance on X0. Given a point x ∈ σh,k and a sequence

{xn}, with xn → x, we write xn → x± if (xn − x) · (1,1) ≷ 0 for all n sufficiently large. We now introduce a metric
space (X,dX), where X is given by the disjoint union of X0 and two distinct copies σ+ and σ− of the segment σh,k .
h,k h,k
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Roughly speaking X can be obtained from X0 by removing an ε-neighborhood of σh,k , considering the closure of this
set, and interpret X as a “limit” of this sequence of metric spaces as ε → 0+. The metric dX is defined by

dX(x1, x2) :=

⎧⎪⎪⎨⎪⎪⎩
dX0(x1, x2) if x1, x2 ∈ X0,

limn→∞ dX0(yn, x2) if x1 ∈ σ±
h,k, x2 ∈ X0, yn → x1±,

limn→∞ dX0(wn, yn) if x1 ∈ σ±
h,k, x2 ∈ σ±

h,k, wn → x1±, yn → x2±,

limn→∞ dX0(wn, yn) if x1 ∈ σ+
h,k, x2 ∈ σ−

h,k, wn → x1+, yn → x2 − .

It can be shown that the definition does not depend on the choice of the sequences {wn} and {yn}.
Note that the set Y := ∂Qh,k ∪ σ+

h,k ∪ σ−
h,k can be identified with the oriented polygonal path OP1P2P3P4P1O ,

where P1, P2, P3, P4, and O are the points in Fig. 10.
The strategy of the proof is the following: We define a function f on Y such that

∂τDh,k
f = Ψh,k on ∂Qh,k, ∂τσh,k

f |σ+
h,k

= ∂τσh,k
f |σ−

h,k
(5.8)

and we prove that for j = 1,2 the component f (j) is Lj -Lipschitz with respect to the distance dX , where L2
1 +L2

2 � 1.
Then we use McShane’s lemma to extend f (j) to a Lj -Lipschitz function (still denoted by f (j)) defined on all of X.
By restricting f to X0 and since dX coincides with the Euclidean distance locally in X0, this will imply, in particular,
that

‖∇f ‖L∞(X0;〈e〉⊥⊗R2) �
√∥∥∇f (1)

∥∥2
L∞(X0;R2)

+ ∥∥∇f (2)
∥∥2

L∞(X0;R2)

�
√

L2
1 + L2

2 � 1.

Note that we can identify the restrictions of f to σ+
h,k and to σ−

h,k with the traces f + and f − of f on σh,k . Next,

we define the tensor field M :X → 〈e〉⊥ ⊗ R
2 by M(j) := −(∇f (j))⊥. By (5.8), we have that the normal trace of M

is continuous across σh,k . Hence, by Proposition 1.4 and by (5.8), M belongs to F (Dh,k) and M[νDh,k
] = Ψh,k , as

desired.

Step 1. Parameterize the polygonal path OP1P2P3P4P1O with constant velocity 1. For every y1, y2 ∈ Y , define the
distance

dY (y1, y2) := |s1 − s2|,
where s1 and s2 are the parameters corresponding to y1 and y2, respectively. We claim that there exists n0 ∈ N,
depending only on η0, σ , and ω, such that

1

n
dY (y1, y2) � σ dX(y1, y2) (5.9)

for all y1, y2 ∈ Y and n � n0. To prove this, we distinguish two cases.
If dX(y1, y2) � 4ω(η/n), then, since dY (y1, y2) � (4 + √

2)
η
n

, we have

1

n
dY (y1, y2) � 4 + √

2

4η

η2

n2ω(
η
n
)
dX(y1, y2).

Hence, (5.9) follows in this case by (1.19).
If dX(y1, y2) < 4ω(η/n) and y1 and y2 are contained in the same segment of the oriented polygonal path Y , then

(5.9) is immediate.
Finally, consider the case in which dX(y1, y2) < 4ω(η/n) and y1 and y2 belong to two different segments. We

first show that these segments are consecutive and that the segment joining y1 and y2 is contained in X. Indeed, if
not, then the Euclidean distance and, in turn, the geodesic distance in X, between y1 and y2 is at least η/(2n) for
n sufficiently large, unless one point is in σ+

h,k and the other is in σ−
h,k , in which case the geodesic distance is at

least 4ω(η/n). In both cases, by (1.19), for n large enough we have a contradiction. Hence we have proved that the
segments are consecutive segments in the oriented polygonal path. Next, we show that the segment σ0 joining y1 and
y2 is contained in X, provided that n is sufficiently large. Indeed, if not, then σ0 intersects ∂Q′ , thus the Euclidean
h,k
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distance and, in turn, the geodesic distance between y1 and y2 is at least dist(∂Qh,k, ∂Q′
h,k) >

η
4n

> 4ω(
η
n
) for n

sufficiently large, where in the last inequality we have used (1.19). Hence, σ0 is contained in X, and so dX(y1, y2)

reduces to the Euclidean distance.
Let y0 ∈ {P1,P2,P3,P4} be the vertex between y1 and y2, so that dY (y1, y2) is given by |y1 − y0| + |y2 − y0| �

c|y1 − y2|, where c depends only on the angles of the polygonal path. Inequality (5.9) now follows.

Step 2. Let f0 : ∂Qh,k → 〈e〉⊥, g :Y → 〈e〉⊥ be the functions (uniquely) determined by

f0

(
h

n
η,

k + 1

n
η

)
= 0, g

(
h

n
η,

k + 1

n
η

)
= 0

and

∂τDh,k
f0

(
s,

k + 1

n
η

)
= k

n
T2(s), ∂τDh,k

g

(
s,

k + 1

n
η

)
= 1

n
T2(s),

∂τDh,k
f0

(
h + 1

n
η, t

)
= h

n
T1(t), ∂τDh,k

g

(
h + 1

n
η, t

)
= 1

n
T1(t),

∂τDh,k
f0

(
s,

k

n
η

)
= − k

n
T2(s), ∂τDh,k

g

(
s,

k

n
η

)
= 0,

∂τDh,k
f0

(
h

n
η, t

)
= −h

n
T1(t), ∂τDh,k

g

(
h

n
η, t

)
= 0 (5.10)

for all s ∈ (h
n
η, h+1

n
η) and t ∈ ( k

n
η, k+1

n
η), and

∂τσh,k
g = 0 on σh,k, (5.11)

where τσh,k
:= ( 1√

2
,− 1√

2
). We set

λj =:
√∣∣T1

(j)
∣∣2 + ∣∣T2

(j)
∣∣2.

By (5.7),

λ2
1 + λ2

2 � λ2.

We claim that f
(j)

0 is Lipschitz with Lip(f0) � λj +√
2σ . To see this, we fix x1 = (s1, t1) and x2 = (s2, t2) on ∂Qh,k .

If x1 and x2 are on the same side, this follows from (5.7). Assume next that x1 and x2 are on two consecutive sides,
say x1 = (s1,

k+1
n

η) and x2 = (h+1
n

η, t2) (the other cases are analogous). Then,

∣∣f (j)

0 (x1) − f
(j)

0 (x2)
∣∣� k

n

h+1
n

η∫
s1

∣∣T (j)

2

∣∣ds + h

n

k+1
n

η∫
t1

∣∣T (j)

1

∣∣dt

�
(

h + 1

n
η − s1

)(∣∣T (j)

2

∣∣+ σ

)
+
(

k + 1

n
η − t1

)(∣∣T (j)

1

∣∣+ σ
)

� (λj + √
2σ)|x1 − x2|,

where in the last inequality we have used the Cauchy–Schwarz inequality together with (5.7). If x1 and x2 are on two
opposite sides, say x1 = (s1,

k+1
n

η) and x2 = (s2,
k
n
η), with s1 � s2 (the other cases are analogous), then

∣∣f (j)

0 (x1) − f
(j)

0 (x2)
∣∣� k

n

s2∫
s1

∣∣T (j)

2

∣∣ds + h

n

k+1
n

η∫
k
n
η

∣∣T (j)

1

∣∣dt

� (s2 − s1)
(∣∣T (j)

2

∣∣+ σ
)+ η

n

(∣∣T (j)

1

∣∣+ σ
)

� (λj + √
2σ)|x1 − x2|,
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Fig. 11. The situation in Lemma 5.2. The region R ∩ Gδ is colored in gray.

again by the Cauchy–Schwarz inequality and (5.7). Hence f
(j)

0 is Lipschitz with Lip(f0) � λj + √
2σ , and so by

McShane’s lemma we can extend it to a function defined on all of Qh,k with the same Lipschitz constant and still
denoted by f0. Moreover,

‖∇f0‖∞ �
√

λ2
1 + λ2

2 + 4σ 2 �
√

λ2 + 4σ 2 � λ + 2σ. (5.12)

Next, since by (5.10) we have ‖∂τσh,k
g‖∞ < 1

n
, using (5.9) we obtain∣∣g(y1) − g(y2)

∣∣< 1

n
dY (y1, y2) � σ dX(y1, y2) for all y1, y2 ∈ Y. (5.13)

Using McShane’s lemma with respect to dX , we can extend g to X in such a way that∣∣g(j)(x1) − g(j)(x2)
∣∣� σ dX(x1, x2) for all x1, x2 ∈ X and j = 1,2.

Since in a neighborhood of every point in the interior of X the distance dX coincides with the Euclidean distance,
it follows that ‖∇g‖∞ �

√
2σ . We now define f :X → 〈e〉⊥, f := f0 + g. By (5.10) we obtain (5.8)1. Also, by

(5.6) and (5.12), ‖∇f ‖∞ � λ + 2σ + √
2σ < λ + 4σ � 1. Moreover, by (5.11) and the fact that f0 is defined on the

whole Qh,k , we obtain (5.8)2. This concludes the proof of the lemma. �
In the next lemma we give an approximation result for elements of F (D) by more regular divergence-free fields.

Lemma 5.2. Let G ⊂ R
2 be an open set with C∞ boundary such that ∂R ∩ G is the union of finitely many segments

whose endpoints are not corners of R, and for δ > 0 let

Gδ := {
x ∈ G: dist(x, ∂G) < δ

}
.

If M ∈ F (R ∩ Gδ) and if σ ∈ (0, 1
2 ), then there exist 0 < δ′ < δ and Mσ ∈ F (R ∩ Gδ′

) such that Mσ is continuous in

R ∩ Gδ′ \ (∂G ∩ R) and

sup
R∩Gδ′

|Mσ | � (1 + σ)‖M‖L∞(R∩Gδ;〈e〉⊥⊗R2),

Mσ [νG] = M[νG] on ∂G ∩ R. (5.14)

Proof. Without loss of generality, we may assume that δ > 0 is so small that for all 0 < δ′ < 1
2δ, Gδ′

has C∞ boundary,

the function dσ (x) := σ dist(x, ∂G) is smooth on the closure of Gδ′
, and that ∂R ∩ Gδ′

is the finite union of segments
σ1, . . . , σ� whose endpoints are not the corners of R (see Fig. 11).

Define z := M[ν
R∩Gδ′ ] on ∂(R ∩ Gδ′

), where we have used the fact that M ∈ F (R ∩ Gδ′
). To each segment σi

we associate the (open) square Qi ⊂ R
2 \ R with one side coinciding with σi . We now extend M to Qi , i = 1, . . . , �,

according to the following rules. If Qi corresponds to a vertical segment σi , then M is the tensor field uniquely
determined by the conditions

M[e2] = 0 in Qi,

M[νQi
] = −z on σi,

M is constant in the e1-direction.
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If Qi corresponds to a horizontal segment σi , then we perform an analogous construction. Note that in this way we
have a tensor field M belonging to F (

⋃
i Qi ∪ [R ∩ Gδ′ ]). For x ∈ R ∩ Gδ′

we define

M(j)
σ (x) := 1

π

∫
B(0,1)

{
M(j)

(
x + dσ (x)w

)− [
w · (M(j)

(
x + dσ (x)w

))⊥](∇dσ (x)
)⊥}

dw,

j = 1,2. Since for each x ∈ R ∩ Gδ′
the ball B(x, dσ (x)) is contained

⋃
i Qi ∪ [R ∩ Gδ], the function M

(j)
σ is

well-defined. Moreover, by construction Mσ is continuous and (5.14) holds. Thus, it remains to prove that Mσ is a
divergence-free vector field having the same normal trace of M on ∂G ∩ R.

Step 1. To prove that Mσ is divergence-free, we will show that in every ball B(x0, r) ⊂ R ∩ Gδ′
, with 0 < r <

1
4 dist(x0, ∂G), the tensor field Mσ is the rotated gradient of a vector-valued function and then use Proposition 1.4.
Since the domain may not be simply connected, this function may change from ball to ball. Fix any such B(x0, r),
and note that for every x ∈ B(x0, r) the ball B(x, dσ (x)) is contained in the set B(x0,dist(x0, ∂G)), which, in turn, is
contained in

⋃
i Qi ∪ [R ∩ Gδ]. Let f :B(x0,dist(x0, ∂G)) → R be a 1-Lipschitz function such that

(∇f )⊥ = −M(1) in B
(
x0,dist(x0, ∂G)

)
. (5.15)

For x ∈ B(x0, r) define

fσ (x) := −
∫

B(x,dσ (x))

f (y) dy = 1

π

∫
B(0,1)

f
(
x + dσ (x)w

)
dw, (5.16)

and note that

∇fσ (x) = 1

π

∫
B(0,1)

{∇f
(
x + dσ (x)w

)+ [
w · ∇f

(
x + dσ (x)w

)]∇dσ (x)
}
dw.

Then

(∇fσ )⊥(x) = 1

π

∫
B(0,1)

{
(∇f )⊥

(
x + dσ (x)w

)+ [
w · ∇f

(
x + dσ (x)w

)]
(∇dσ )⊥(x)

}
dw

= 1

π

∫
B(0,1)

{
M(1)

(
x + dσ (x)w

)− [
w · (M(1)

(
x + dσ (x)w

))⊥](∇dσ (x)
)⊥}

dw,

where we used (5.15). We deduce that M
(1)
σ = −(∇fσ )⊥ in B(x0, r), which, in turn, implies divM

(1)
σ = 0 in the sense

of distributions. Since the argument for M
(2)
σ is clearly the same, we have proved that Mσ is a divergence-free tensor

field.

Step 2. We finally show that Mσ and M share the same normal trace. It will be enough to prove that for every
x0 ∈ ∂G ∩ R,

Mσ [νG] = M[νG] H1-a.e. on ∂G ∩ R ∩ B(x0, r) (5.17)

where r > 0 is taken so small that B(x0,2r) ⊂ R, for every x ∈ B(x0, r)∩Gδ′
the ball B(x, dσ (x)) is contained in the

set B(x0,2r) ∩ Gδ′
, and the set B(x0,2r) ∩ Gδ′

is simply connected. For any such B(x0, r), as in the previous step,
let f : B(x0,2r) ∩ Gδ′ → R be a 1-Lipschitz function satisfying (5.15) and let fσ be as in (5.16). From the previous
step

M(1)
σ = −(∇fσ )⊥ in B(x0, r) ∩ Gδ′

. (5.18)

Now observe that for all x ∈ B(x0, r) ∩ Gδ′
,∣∣fσ (x) − f (x)

∣∣� −
∫ ∣∣f (y) − f (x)

∣∣dy � −
∫

|y − x|dy � dσ (x).
B(x,dσ (x)) B(x,dσ (x))
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Thus fσ = f on ∂G ∩ B(x0, r) and, in turn, ∂τG
fσ = ∂τG

f H1-a.e. on ∂G ∩ B(x0, r). Recalling (5.18), this is equiv-

alent to M
(1)
σ · νG = M(1) · νG H1-a.e. on ∂G ∩ B(x0, r). An analogous argument shows that the same holds for M

(2)
σ

and M(2). Hence, (5.17) is established and the proof of the lemma is completed. �
Proof of Theorem 1.13. Let

Dε := R ∩
( ⋃

x∈εZ2

Q(x, ε) \ Q
(
x,ω(ε)

))
.

The strategy of the proof is the following: We will show that for ε small enough it is possible to find an admissible
domain D̃ε , with H1(∂D̃ε ∩ Γ ) = 0 and Dε ⊂ D̃ε , and a tensor field Mk,ε ∈ F (D̃ε ∩ Ωk), k = 1, . . . ,N , such that

Mk,ε[νΩk
] = −zk on Σk.

Then, by Theorem 1.2 the function u0 is reconstructible on D̃ε and, a fortiori, on Dε .

Step 1. To construct D̃ε and Mk,ε , we apply Proposition 4.2 to find δ > 0 sufficiently small and tensor fields Mk ∈
F (Σk(δ) ∩ Ωk), k = 1, . . . ,N , such that

‖Mk‖L∞(Σk(δ)∩Ωk;〈e〉⊥⊗R2) < 1,

Mk[νΩk
] = −zk on Σk.

We claim that there exists εk > 0 with the following properties: For all 0 < ε < εk there exist an admissible set Dk,ε

such that

Dε ∩ Σk(δ) ∩ Ωk ⊂ Dk,ε ⊂ Σk(δ) ∩ Ωk,

Σk

(
δ′)∩ Ωk ⊂ Dk,ε, for some δ′ ∈ (0, δ),

Ωk ∩ ∂Σk(δ) ⊂ Ωk ∩ ∂Dk,ε, (5.19)

and M̂k,ε ∈ F (Dk,ε) such that

M̂k,ε[νDk,ε
] = −zk on Σk,

M̂k,ε[νDk,ε
] = 0 on ∂Σk(δ) ∩ Ωk. (5.20)

Note that if the claim holds, then to conclude the proof of the theorem, for 0 < ε < ε0 := mink εk , it suffices to define
D̃ε by

D̃ε :=
⋃
k

(
Dk,ε ∪ (

Ωk \ Σk(δ)
))

,

and Mk,ε ∈ F (D̃ε ∩ Ωk) by

Mk,ε :=
{

M̂k,ε in Dk,ε,

0 elsewhere in D̃ε ∩ Ωk.

In view of Lemma 4.1, the tensor field Mk,ε has all the desired properties.
In the remaining of the proof we show (5.19) and (5.20) for a fixed k = 1, . . . ,N . For simplicity, we drop the

dependence on k and ε, and we write Ω , D, Σ , M , and z in place of Ωk , Dk,ε , Σk , Mk,ε , and zk , respectively.
With this simplification, we recall that we are given a Lipschitz open set Ω ⊂ R and a tensor field M ∈ F (Σ(δ) ∩

Ω) such that

‖M‖L∞(Σ(δ)∩Ω;〈e〉⊥⊗R2) < 1,

M[νΩ ] = −z on Σ, (5.21)

where Σ := ∂Ω ∩ R.
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Fig. 12. On the left, the sets Ω , Σ and Σ(δ) ∩ Ω . On the right, the sets G ∩ R and ∂G ∩ R.

Fig. 13. The construction in Step 3. The set Dk,ε is represented in the picture as the set Σ(δ) ∩ Ω after removing the colored squares contained in
the shaded region.

Step 2. We claim that, without loss of generality, we may assume that Ω = G∩R, where G ⊂ R
2 is a smooth open set.

To see this, choose an open set G ⊂ R
2 with C∞ boundary such that ∂R ∩ G is the union of finitely many segments

whose endpoints are not corners of R, G contains Ω \Σ(δ), and ∂G∩R is contained in Σ(δ)∩Ω (see Fig. 12). Since
the restriction of M to Σ(δ) ∩ G ∩ R still satisfies (5.21), with a possibly smaller δ > 0, with Ω , Σ , and −z replaced
by G ∩ R, ∂G ∩ R, and with M[νG∩R] on ∂G ∩ R, respectively, we can modify M in G ∩ R (without changing its
normal trace on ∂G ∩ R) and then use Lemma 4.1 to glue the modified field with M|Ω\(G∩R).

Step 3. (Cf. Fig. 13.) In view of the previous step and by (5.21), we are in a position to apply Lemma 5.2 (with σ

sufficiently small) to find M̃ ∈ F (Σ(δ′) ∩ Ω), where 0 < δ′ < δ, such that M̃ is continuous in Σ(δ′) ∩ Ω \ Σ and

λ := ‖M̃‖L∞(Σ(δ′)∩Ω;〈e〉⊥⊗R2) < 1,

M̃[νΩ ] = M[νΩ ] on Σ.

Let σ satisfy (5.6). Since M̃ is uniformly continuous in Σ(δ′) ∩ Ω \ Σ(δ′/2), we may find η0 > 0 such that

sup
{∣∣M̃(x) − M̃(y)

∣∣: x, y ∈ Σ
(
δ′)∩ Ω \ Σ

(
δ′/2

)
, |x − y| � 2η0

}
< σ.

Let now n0 � 3 be the integer depending on λ, σ , and η0 given by Lemma 5.1, and set

ε0 := η0

n0
.

Fix 0 < ε < ε0, let n > n0 be an odd integer such that

η0 < nε < 2η0, (5.22)

and consider a family {Q(xk,3εn)}k∈N of open squares such that xk ∈ εZ
2 for every k ∈ N, Q(xk,3εn)∩Q(xj ,3εn) =

∅ for k �= j , and R
2 =⋃

k Q(xk,3nε). Set

J := {
k ∈ N: Q(xk,3εn) ∩ R �= ∅ and Q(xk,3εn) ∩ R ⊂ Ω \ Σ

(
δ′/2

)}
and let Ω̃ε,n := int(

⋃
k∈J Q(xk,3εn)). Note that ∂Ω̃ε,n ∩ R is contained in Σ(δ′) ∩ Ω \ Σ(δ′/2), provided that η0 is

sufficiently small (see (5.22)). Consider the subfamily

J ′ := {
k ∈ J : H1(∂Q(xk,3nε) ∩ ∂Ω̃ε,n ∩ R

)
> 0

}
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corresponding to the “boundary squares”. Decompose each Q(xk,3nε), k ∈ J ′, into the disjoint union of nine squares
of side nε (still centered at points of εZ

2) and keep only those squares whose boundary intersects ∂Q(xk,3nε) ∩
∂Ω̃ε,n ∩ R. In this way we obtain a new family {Qh}h of disjoint squares of side nε whose boundary intersects
∂Ω̃ε,n ∩ R, such that each Qh has either one or two consecutive sides in common with ∂Ω̃ε,n ∩ R. Moreover,(⋃

h

∂Qh

)
∩ (∂Ω̃ε,n ∩ R) = ∂Ω̃ε,n ∩ R.

We are now in a position to apply Lemma 5.1 to each Qh according to the following cases:

(i) If Qh is contained in R and shares two consecutive sides, say σh
1 and σh

2 , with ∂Ω̃ε,n ∩ R, then we apply
Lemma 5.1 with η := nε and

T1 := −M̃[νR\Qh
] on σh

1 , T2 := −M̃[νR\Qh
] on σh

2 .

In this way we obtain a tensor field Mh ∈ F (Qh ∩Dε) such that Mh[νQh
] = Ti on σh

i , i = 1,2, and Mh[νQh
] = 0

on the remaining two sides of Qh.
(ii) If Qh is contained in R and shares just one side, say σh

1 , with ∂Ω̃ε,n ∩R, then we apply Lemma 5.1 with η := nε,
T1 := −M̃[νR\Qh

] on σh
1 , and T2 := 0 to obtain a tensor field Mh ∈ F (Qh ∩ Dε) such that Mh[νQh

] = T1 on σh
1

and Mh[νQh
] = 0 on the remaining three sides of Qh.

(iii) Next assume that Qh intersects the complement of R and two consecutive sides, σh
1 and σh

2 , have nonempty
intersection with ∂Ω̃ε,n ∩ R. Since Σ has positive distance from the vertices of R, if η0 is sufficiently small,
then ∂Ω̃ε,n ∩ R has distance greater than 3εn from the vertices of R. It follows that only one of σh

1 and σh
2 , say

σh
1 , is not contained in R. Construct a continuous function T1 with oscillation less than σ and coinciding with

−M̃[νR\Qh
] on σh

1 ∩ Ω̃ . As in (ii), we also take T2 := −M̃[νR\Qh
] on σh

2 and we apply Lemma 5.1 to obtain a

tensor field Mh ∈ F (Qh ∩ R ∩ Dε) such that Mh[νQh
] = Ti on σh

i , i = 1,2, and Mh[νQh
] = 0 on the remaining

sides.
(iv) Finally, if Qh intersects the complement of R and only one side, σh

1 , has nonempty intersection with ∂Ω̃ε,n ∩ R,
we proceed exactly as in (ii) when σh

1 ⊂ R. If σh
1 intersects also the complement of R, then we take T1 as in (iii)

and we proceed as in (ii).

By Lemma 4.1, setting

D :=
(

Ω ∩ Dε ∩
(⋃

h

Qh

))
∪
(

Ω \
(⋃

h

Qh

))
and

M̂ :=
⎧⎨⎩ M̃ on Ω \ Ω̃ε,n,

Mh on Qh ∩ Ω ∩ Dε, h ∈ N,

0 elsewhere in Ω̃ε,n ∩ Ω,

we obtain a tensor field M̂ satisfying (5.19) and (5.20). This concludes the proof of Theorem 1.13. �
Next we prove Theorem 1.14.

Proof of Theorem 1.14. The proof of this theorem is exactly the same as the one of Theorem 1.13, with the only
difference that Lemma 5.1 should be replaced by Lemma 5.3 below. �
Lemma 5.3. Let σ , λ, η0, η, T1, and T2 be as in Lemma 5.1. For n ∈ N, θ ∈ (0,1), and 0 � h, k � n − 1, consider the
squares

Qh,k :=
{
(s, t) ∈ R

2:
h

η < s <
h + 1

η,
k
η < t <

k + 1
η

}
⊂ (0, η)2,
n n n n
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denote by Qθ
h,k the closed square concentric to Qh,k and with side length (θη)/n, and let Ch,k ⊂ Qθ

h,k be a closed
connected set such that diam(Ch,k) � ω(η/n), where ω satisfies (1.19). Consider the open set

Dn :=
⋃

0�h, k�n−1

(Qh,k \ Ch,k) ∩ (0, η)2.

Then there exists n0 ∈ N depending only on η0, σ , θ , and ω with the following property: For all n � n0 there exists
M ∈ F (Dn) such that

M[νDn](s, η) = T2(s), M[νDn](η, t) = T1(t), M[νDn ](s,0) = M[νDn ](η, t) = 0,

for all s ∈ (0, η) and t ∈ (0, η).

Remark 5.4. Note that by replacing each Ch,k by a smaller closed connected subset, if needed, we may assume that
diam(Ch,k) = ω(η/n).

Proof of Lemma 5.3. The argument is very similar to the one of Lemma 5.1 and we only indicate the main changes.
The sets Dh,k should now be replaced by Dh,k := Qh,k \ Ch,k , while σh,k is now the segment joining the upper left
corner of Qh,k with a point O of Ch,k in such a way that H1(σh,k) is minimal. Define X0 := Qh,k \ (σh,k ∪ Ch,k).
Given a point x ∈ σh,k and a sequence {xn}, xn → x, we write xn → x± if (xn − x) · τσh,k

≷ 0 for all n sufficiently
large, where τσh,k

is a unit tangent vector to σh,k . We now continue as in the proof of Lemma 5.1 until Step 1.

Step 1. Let Y and dY be as in Step 1 in the proof of Lemma 5.1. We claim that there exists n0 ∈ N depending only on
η, σ , θ , and ω such that

1

n
dY (y1, y2) � σdX(y1, y2) (5.23)

for all y1, y2 ∈ Y and n � n0. To see this, we distinguish two cases. If dX(y1, y2) � ω(η/n), then, since dY (y1, y2) �
(4 + √

2)
η
n

, we have

1

n
dY (y1, y2) � 4 + √

2

η

η2

n2ω(
η
n
)
dX(y1, y2).

Hence, (5.23) follows in this case by (1.19).
If dX(y1, y2) < ω(η/n), then we claim that for n large enough either y1 and y2 are contained in the same segment

of the oriented polygonal path OP1P2P3P4P1O (see Fig. 10) or y1 and y2 belong to two consecutive segments in
the oriented polygonal path and the segment joining y1 and y2 is contained in X (here and in what follows we are
identifying y1 and y2 with points on the polygonal path). If y1 and y2 are on the same segment, then there (5.23)
follows immediately. Thus, we may assume that they belong to two different segments σ1 and σ2. If σ1 and σ2 are not
consecutive, then the Euclidean and, in turn, the geodesic distance in X between y1 and y2, is at least (1 − θ)η/(2n),
unless one point is in σ+

h,k and the other in σ−
h,k . In the latter case the curve realizing the geodesic distance between y1

and y2 must enclose the set Ch,k , and so its length is at least the diameter ω(η/n) of Ch,k . In both cases, by (1.19),
for n large enough we have a contradiction. Hence, we have proved that σ1 and σ2 are consecutive segments in the
oriented polygonal path. Next, we show that the segment σ0 joining y1 and y2 is contained in X, provided that n

is sufficiently large. Indeed, if not, then σ0 intersects Ch,k , thus by (1.19) the Euclidean and, in turn, the geodesic
distance between y1 and y2 is at least dist(∂Qh,k,Ch,k) � (1 − θ)η/(2n) > ω(η/n) for n sufficiently large. We have
proved the claim.

Note that in view of the previous claim dX(y1, y2) reduces to the Euclidean distance. Hence, if y0 ∈ {P1,P2,P3,P4}
is the vertex between y1 and y2, then dY (y1, y2) is given by |y1 − y0| + |y2 − y0| � c|y1 − y2|, where c depends only
on the minimum angle of the polygonal path and thus on θ . The inequality (5.23) easily follows.

Step 2. The argument is analogous to that of Step 2 in the proof of Lemma 5.1. �
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Fig. 14. Example 6.1: the two figures on top represent on the left the original u0 and on the right an admissible field with lower energy. In this case
the damaged region is the annulus of width δ. Hence, picture u0 is not a minimizer. The two figures on the bottom represent on the left the original
u0 and on the right an admissible field with the same energy. In this case the damaged region is a rectangle of width δ. Hence, there is lack of
uniqueness. In both cases the compatibility vector z between ξ1 and ξ2 is a unit vector.

Fig. 15. The dashed line is the contour of the damaged region D.

6. Examples

In this section we present several explicit examples in which the model fails to provide exact reconstruction.

Example 6.1. This example shows that without condition (1.4) we may lose either the reconstructibility of u0 over
Γ (δ) for δ > 0 small or the fact that u0 is the unique minimizer (see Theorem 1.2). Consider two colors ξ1 and ξ2 that
have the same gray level, i.e., ξ1 ·e = ξ2 ·e, and let u0 be an admissible color image of the form u0 = ξ11Ω1 +ξ21R\Ω1

.
If Ω1 = Br is a ball of radius r > 0 contained in R (see Fig. 14), then the image uδ = ξ11Br−δ +ξ21R\Br−δ is admissible
for the reconstruction problem over Γ (δ) for every δ > 0. Since F(uδ) < F(u0), u0 is not reconstructible over Γ (δ)

for any damaged region D. Similarly, if Ω1 = (0, a
2 ) × (0, b), then u0 is a minimizer for the reconstruction problem

on Γ (δ) for every δ > 0, but is not unique.

In the next two examples we consider an image
u0 = ξ11Ω1 + ξ21Ω2 (6.1)

Ω2 = R \ Ω1, where the two colors have different gray levels (i.e., ξ1 · e �= ξ2 · e), and the damaged region D is
compactly contained in R and such that H1(Γ ∩ ∂D) = 0, see Fig. 15. Set T1 := Ω1 ∩ D and T2 := Ω2 ∩ D, so that
D = T1 ∪ T2 ∪ (D ∩ ∂Ω1). We look for necessary and sufficient conditions for an image u of the form

u = ξ∗1T1 + ξ11Ω1\T1 + ξ21Ω2 (6.2)

to be a minimizer in the reconstruction problem over D, when ξ∗ �= ξ1 and ξ∗ · e = ξ1 · e. Whenever such an image is
a minimizer, the model creates a new “artificial” contour, namely, Ω1 ∩ ∂D.

By Remark 2.4, u is a minimizer for the reconstruction problem over D if and only if for every ϕ ∈ BV(D; 〈e〉⊥),

lim inf
t→0+

f (t) − f (0)

t
� 0, (6.3)

where f (t) := F(u + tϕ,D), t � 0.
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We have

F(u,D) =
∫

D∩∂Ω1

|ξ∗ − ξ2|dH1 +
∫

Ω1∩∂D

|ξ∗ − ξ1|dH1.

Fix ϕ∗ ∈ BV(T1; 〈e〉⊥), ϕ2 ∈ BV(T2; 〈e〉⊥) and set ϕ := ϕ∗1T1 + ϕ21T2 , so that

(u + tϕ)1D = (ξ∗ + tϕ∗)1T1 + (ξ2 + tϕ2)1T2 .

Hence,

F(u + tϕ,D) = ∣∣D(u + tϕ)
∣∣(D) +

2∑
k=1

∫
Ωk∩∂D

∣∣ξk − (u + tϕ)
∣∣dH1

= t |Dϕ∗|(T1) + t |Dϕ2|(T2) +
∫

D∩∂Ω1

∣∣(ξ∗ − ξ2) + t (ϕ∗ − ϕ2)
∣∣dH1

+
∫

Ω1∩∂D

∣∣(ξ∗ − ξ1) + tϕ∗
∣∣dH1 + t

∫
Ω2∩∂D

|ϕ2|dH1.

Defining

z∗1 := P

(
ξ∗ − ξ1

|ξ∗ − ξ1|
)

, z∗2 := P

(
ξ∗ − ξ2

|ξ∗ − ξ2|
)

,

the inequality (6.3) becomes

0 � |Dϕ∗|(T1) + |Dϕ2|(T2) +
∫

D∩∂Ω1

z∗2 · (ϕ∗ − ϕ2) dH1 +
∫

Ω1∩∂D

z∗1 · ϕ∗ dH1 +
∫

Ω2∩∂D

|ϕ2|dH1,

and we conclude that u is a minimizer if and only if

0 � |Dϕ∗|(T1) +
∫

D∩∂Ω1

z∗2 · ϕ∗ dH1 +
∫

Ω1∩∂D

z∗1 · ϕ∗ dH1,

0 � |Dϕ2|(T2) +
∫

Ω2∩∂D

|ϕ2|dH1 −
∫

D∩∂Ω1

z∗2 · ϕ2 dH1

for all ϕ∗ ∈ BV(T1; 〈e〉⊥) and ϕ2 ∈ BV(T2; 〈e〉⊥). By Lemma 3.1, these two inequalities are equivalent to the existence
of tensor-fields Mi ∈ F (Ti), i = 1,2, such that

M1[νT1 ] =
{−z∗2 on D ∩ ∂Ω1,

−z∗1 on Ω1 ∩ ∂D,
(6.4)

M2[νT2 ] = z∗2 on D ∩ ∂Ω1. (6.5)

In the next two examples we consider the colors

ξ2 = 0, ξ1 = sε1 + e, ξ∗ = tε1 + e, (6.6)

where 0 < t < s. Note that ξ∗ �= ξ1, ξ∗ · e = ξ1 · e, and

z12 = s√
1 + s2

ε1, z∗2 = t√
1 + t2

ε1, z∗1 = −ε1, (6.7)

where z12 is the compatibility vector between ξ1 and ξ2, i.e.,

z12 = P

(
ξ1 − ξ2

|ξ1 − ξ2|
)

.

The situation is represented in Fig. 16.
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Fig. 16. The mutual positions of the colors in u.

Fig. 17. The situation in Example 6.2. Since |ζ12| > 1/
√

2, the minimizer u over the damaged region D is different from u0 and presents a new
contour, no matter how small the side length of D.

Example 6.2. This example shows that if an image does not satisfy (1.14), then the reconstructed image may present
an additional spurious contour even if the inpainting region D is an arbitrarily small neighborhood of a point of the
contour Γ .

Let Ω1 be as in Fig. 17, where the vectors v and w are two orthogonal, and consider as the damaged region D the
square of side length δ with center at the corner point and sides parallel to v + w and v − w (see Fig. 17). Then, by
Theorem 1.8 and (1.16), u0 is stably reconstructible over Γ (δ) if |z12| < 1/

√
2, i.e., if s < 1. Hence, if s > 1, (1.17)

does not hold. In this case, we claim that if t = 1 in (6.7), then the function u in (6.2) is the unique minimizer. Note
that, since ξ∗ �= ξ1, u has a larger contour than u0. To prove the claim, define Mi ∈ F (Ti), i = 1,2, by

Mi := −ε1 ⊗ v + w

|v + w| .

Then divMi = 0, ‖Mi‖L∞(Ti ;ε⊥⊗R2) = 1. Moreover, using the identities νT1 = − v+w
|v+w| on Ω1 ∩ ∂D = [AC], νT1 = w

on [AB], νT1 = v on [BC], νT2 = −νT1 on [AB] ∪ [BC], and

Mi[νTi
] =

(
− v + w

|v + w| · νTi

)
ε1, i = 1,2,

we have that (6.4) and (6.5) hold.
This shows that u is a minimizer for the reconstruction problem over D. Moreover, arguing as in the proof of

Theorem 1.2, it can be seen that it is the unique minimizer. Hence, the claim holds. Finally, we remark that ξ∗ does
not depend on s.

Example 6.3. This example shows that if the undamaged regions is not ε-uniformly distributed, then an image u0
needs not be reconstructible over a region D even if it is stably reconstructible over Γ (δ) for some small δ > 0.
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Fig. 18. The situation in Example 6.3.

Let u0 be as in (6.1), with ξ1 and ξ2 satisfying (6.6). Take Ω1 to be an open rectangle of sides a, b > 0, compactly
contained in R, and let D be another open rectangle, as in Fig. 18. We assume that 0 < s < 1, so that, as in the previous
example, u0 satisfies (1.14) with strict inequality. Hence, u0 is stably reconstructible by Theorem 1.8. We claim that
if b/a is large enough, then u given by (6.2) is a minimizer for the reconstruction problem over D for a suitable value
of t .

To see this, consider the points P1, P2, P3, P4 as in Fig. 18. To construct the tensor fields M1 and M2 satisfying
(6.4) and (6.5), it is sufficient to show the existence of 1-Lipschitz functions fi :Ti → R such that

∂τ f1 = − t√
1 + t2

on [P1P2] ∪ [P2P3] ∪ [P3P4],
∂τ f1 = 1 on [P1P4],
∂τ f2 = t√

1 + t2
on [P1P2] ∪ [P2P3] ∪ [P3P4],

∂τ f2 = −1 on [P1P4]. (6.8)

Here τ := τT1 = (νT1)
⊥, so that we are orienting ∂T1 clockwise. Note that (6.8)1 and (6.8)2 define f1 over ∂T1 up to

an additive constant. The resulting function is continuous over ∂T1 if and only if

− t√
1 + t2

(b + a) + a = 0, i.e., t = 1√
(m + 1)2 − 1

, m := b

a
. (6.9)

Note that this value of t is compatible with the constraint t < s (used in computing z∗1 = −ε1) if and only if

m = b

a
�
√

1 + 1

s2
− 1. (6.10)

Since f1 is piecewise affine with slopes smaller than or equal to 1, to verify that it is 1-Lipschitz over ∂T1, it remains
to study what happens near the corners P1, P2, P3, P4. Let v and w denote the tangent vector τ on [P1P2] and [P2P3],
respectively. Then f1 is 1-Lipschitz if(

−α
t√

1 + t2
− β

t√
1 + t2

)2

� |αv + βw|2 for all α,β > 0,(
α − β

t√
1 + t2

)2

� |−αw + βv|2 for all α,β > 0. (6.11)

The first condition is equivalent to t � 1, which is satisfied, since t < s < 1 by (6.10), while the second one is always
satisfied.

Similarly, condition (6.11) guarantees that f2 is 1-Lipschitz over [P1P2] ∪ [P2P3] ∪ [P3P4]. By McShane’s lemma
we can extend fi to 1-Lipschitz functions fi :Ti → R, i = 1,2. Define

Mi := −ε1 ⊗ (∇fi)
⊥,

i = 1,2. Then (6.4), (6.5) hold by construction, and so u is a minimizer. The uniqueness can be proved arguing as in
the last part of the proof of Theorem 1.2.

In conclusion, whenever Ω1 is such that (6.10) holds, then the image u (corresponding to the value of ξ∗ defined
by (6.9)) is a minimizer for the reconstruction problem of u0 over the damaged region D. The image u has a larger
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contour than u0, that nevertheless is reconstructible over Γ (δ) for suitably small values of δ. Note also that the value
of s enters only in determining the ratio between a and b through (6.10): Once Ω1 satisfies this constraint, the new
color ξ∗ appearing in u is the same for all the compatible values of s.

Example 6.4. The following example shows that the first assumption in (1.19) is optimal. For a constant c > 0 to be
chosen later, set

ω(ε) := cε2, (6.12)

and let R := (0,3) × (0,3), Ω := (1,2) × (1,2). We consider the image u0 := ξ01Ω , with ξ0 �= 0 and ξ0 �= ξ1, where

|ξ1| := min
{|ξ |: ξ ∈ R

3, ξ · e = ξ0 · e}.
For i, j = 1, . . . , n, set Qij,n := ( i−1

n
, i

n
) × ( k−1

n
, k

n
), let xn

ij be the center of Qij,n, and define Q′
ij,n := Q(xij ,ω( 1

n
)).

We then set

Dn :=
n⋃

i,j=1

(
Qij,n \ Q′

ij,n

)
.

We now show that with the present choice of ω, the result of Theorem 1.13 may fail. Indeed, define

un(x) :=
{0 if x ∈ R \ Ω,

ξ0 if x ∈ Ω ∩ Q′
ij,n for some i, j ∈ {1, . . . , n},

ξ1 otherwise.

Then, recalling (6.12), a straightforward computation gives

F(un,Dn) = 4|ξ1| + 4n2ω

(
1

n

)
|ξ1 − ξ0| = 4|ξ1| + 4c|ξ1 − ξ0| < 4|ξ0| = F(u0,Dn),

where the last inequality holds provided that the constant c is small enough.
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Appendix A

Proposition A.1. Let G be the function defined in (1.13), that is,

G(r, t, v,w) := sup
s1,s2>0

|s1r + s2t |
|s1v + s2w| = sup

s>0

|r + st |
|v + sw| , (A.1)

where r, t ∈ [−1,1] and v,w ∈ S1 are linearly independent. Then

G(r, t, v,w) =

⎧⎪⎨⎪⎩
|r| if |r| � |t | and r2(v · w) − rt � 0,

|t | if |t | � |r| and t2(v · w) − rt � 0,√
r2+t2−2rt (v·w)

2 otherwise.
(A.2)
1−(v·w)



1330 I. Fonseca et al. / Ann. I. H. Poincaré – AN 27 (2010) 1291–1331
Moreover, in the third case,

G(r, t, v,w) = sup
s∈R

|r + st |
|v + sw| =

√
r2 + t2 − 2rt (v · w)

1 − (v · w)2
� max

{|r|, |t |}. (A.3)

Proof. Consider the function

ϕ(s) := |r + st |2
|v + sw|2 = r2 + s2t2 + 2rts

1 + s2 + 2sc
, r > 0,

where c := v · w and we used the fact that v,w ∈ S1. Assume that |r| � |t |. Then it can be checked that

ϕ(s) = r2 + s2t2 + 2rts

1 + s2 + 2sc
� r2 = ϕ(0)

for all s � 0 if and only if r2(v · w) − rt � 0. Hence, if |r| � |t | and r2(v · w) − rt � 0, then G(r, t, v,w) = |r|. On
the other hand, if |r| � |t |, then

ϕ(s) = r2 + s2t2 + 2rts

1 + s2 + 2sc
� t2 = lim

s→∞ϕ(s)

for all s � 0 if and only if t2(v · w) − rt � 0. It follows that if |r| � |t | and t2(v · w) − rt � 0, then G(r, t, v,w) = |t |.
Finally, in the remaining cases, we have that

M := sup
s>0

ϕ(s) > max
{
ϕ(0), lim

s→∞ϕ(s)
}
.

Hence, there exists s0 > 0 such that M = ϕ(s0). Define

p(s) := (
M2 − t2)s2 + 2(Mc − rt)s + M2 − r2, s ∈ R.

Then p(s) � 0 for all s > 0 and p(s0) = 0. Since p is a convex parabola, it follows that s0 is the unique global
minimizer of p, and so p(s) > 0 for all s �= s0. Hence, its discriminant vanishes, that is,

M = r2 + t2 − 2rt (v · w)

1 − (v · w)2
,

which shows that

G(r, t, v,w) = sup
s∈R

|r + st |
|v + sw| =

√
r2 + t2 − 2rt (v · w)

1 − (v · w)2
. �

We conclude the appendix by recalling McShane’s Lemma (see [21,25]):

Lemma A.2 (McShane). If (X,d) is a metric space, Y ⊂ X, and f :Y → R is r-Lipschitz with respect to the dis-
tance d , i.e.,∣∣f (y1) − f (y2)

∣∣� rd(y1, y2) for all y1, y2 ∈ Y,

then there exists f̄ :X → R such that f̄ = f on Y and∣∣f̄ (x1) − f̄ (x2)
∣∣� rd(x1, x2) for all x1, x2 ∈ X.

One such extension f̄ is given by

f̄ (x) := inf
{
f (y) + rd(x, y): y ∈ Y

}
, x ∈ X.
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