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Abstract

In this paper we prove comparison principles between viscosity semicontinuous sub- and supersolutions of the ge
Dirichlet problem (in the sense of viscosity solutions) for theLevi Monge–Ampèreequation. As a consequence of this res
and of the Perron’s method we get the existence of a continuous solution of the Dirichlet problem related to the prescr
curvature equation under suitable assumptions on the boundary data and on the Levi curvature of the domain. We
that such a solution is Lipschitz continuous by building Lipschitz continuous barriers and by applying a weak Bernstein
introduced by Barles in [Differential Integral Equations 4 (2) (1991) 241].

Résumé

Dans cet article, nous prouvons des principes de comparaison entre sous et sursolutions du problème de Dirichlet
(dans le sens des solutions de viscosité) pour l’équation deLevi Monge–Ampère. Comme conséquence de ces résultats
obtenons l’existence d’une solution continue du problème de Dirichlet associé à l’équation de la courbure de Levi
hypothèses convenables sur les conditions au bord et sur l’ouvert. Nous prouvons que la solution est lipschitzien
méthode de Bernstein faible introduite par Barles dans [Differential Integral Equations 4 (2) (1991) 241].
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1. Introduction

If M is a hypersurface inRn, and if Π is its second fundamental form, then the eigenvalues ofΠ are the
principal curvatures ofM . The trace ofΠ is called the mean curvature ofM and the determinant ofΠ is the
Gauss–Kronecker curvature. The Dirichlet problem for a convex graph with prescribed curvature is class
for example [13]). It has been considered by many authors in the past (see [24] for a list of references),
from the pioneering works by A.D. Aleksandrov and I.Ya. Bakelman. For a real hypersurfaceM ⊂ C

n+1, let H

denote then-dimensional complex subspace of the tangent space toM . The restriction of the second fundamen
form of M on H is a Hermitian formΛ, which is called the Levi form. More precisely, ifM is a real manifold of
classC2 which is locally defined byρ, then the Levi formΛ(ρ) is the restriction to the complex tangent spaceH

of the Hermitian form associated with the complex Hessian matrixHessCρ = (
∂2ρ

∂z�∂z̄p
)n+1
�,p=1 of ρ. The Levi form is

of great importance in the study of envelopes of holomorphy in the theory of holomorphic functions inCn+1 (see
[11,14,18,21] for details on this matter). By using the biholomorphic invariant analogue of Euclidean con
(see for example [18]), it can be shown that the Levi form is the biholomorphic invariant part of the real H
of the defining function. SinceΛ is obtained from part of the second fundamental form ofM, one can expec
that it will have some properties similar to curvatures. However,Λ itself depends on the defining function for t
domain. This obstacle can be avoided as follows. IfM is given locally as{ρ = 0} with ∂ρ �= 0, then one can defin
the normalized Levi form asL(ρ) = Λ(ρ)

|∂ρ| . Easy calculations show thatL is independent of the defining functio
ρ and depends only on the domain (a proof of this assertion can be found in [19, Proposition A.1]). Bedf
Gaveau [6] were the first to remark this fact and they used the normalized Levi form to bound the doma
which M can be defined as the graph of a function of classC2. The signature ofL is a biholomorphic invarian
of M , althoughL itself is not invariant. We recall that a domain{ρ < 0} is pseudoconvex (strongly pseudoconv
if the Levi form ρ (or equivalently the normalized Levi form) is semidefinite positive (positive definite) on
boundary. The eigenvalues ofL correspond to mean curvatures in certain complex directions and, more gen
symmetric functions in the eigenvalues ofL are complex curvatures ofM . The product of the eigenvalues ofL,
corresponding to the complex version of the Gauss–Kronecker curvature ofM , is the scalar functionkM(·) defined
by

kM(z) = −∣∣∂ρ(z)
∣∣−n−2 det


0 ∂1ρ(z) · · · ∂n+1ρ(z)

∂1ρ(z) ∂11ρ(z) · · · ∂1n+1ρ(z)

...
...

. . .
...

∂n+1ρ(z) ∂n+11ρ(z) · · · ∂n+1n+1ρ(z)

 . (1.1)

We will call kM(z) the totalLevi curvatureof M at a pointz ∈ M . In (1.1) ∂j , ∂j̄ , ∂�j̄ denote respectively th

derivatives ∂
∂zj

, ∂
∂z̄j

, ∂2

∂z�∂z̄j
and∂ρ = (∂1ρ, . . . , ∂n+1ρ). To convince the reader that the total Levi curvature is

analogous of the Gauss curvature for the complex structure, we propose the following example.

Example 1.1(Total Levi curvature of a ball). If M is the ball of radiusr with center at zero, then by choosing
defining functionρ = |z1|2 + · · · + |zn+1|2 − r2, an easy calculation showskM ≡ r−n.

However, a cylinder inCn+1 may not have zero total Levi curvature, as the following example shows.

Example 1.2(Total Levi curvature of a cylinder). Let B(0, r) ⊂ C
n × R be a ball of radiusr . We consider the

following cylinder

B(0, r)× iR =
{
(z,w) ∈ C

n × C: |z|2 +
(

w + �w)2

− r2 < 0

}
.

2
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It is easy to check that

1

2rn
� k∂B(0,r)×iR(z,w) = r2 + (Rew)2

2rn+2
� 1

rn

for every(z,w) ∈ ∂B(0, r)× iR.

If M is the graph of a functionu :Ω → R, Ω ⊂ C
n × R, we say thatu is Levi convexin Ω if epi(u) = {(z,w) ∈

C
n+1: Imw > u(z,Rew)} is pseudoconvex at every point ofM . In this situation for every(z,w) ∈ epi(u) we have

kM(z,w) = −2n+2(1+ |Du|2)−(n+2)/2 det

( 0 uz̄ uRew − i/2
uz uzz̄ uzw

uRew + i/2 uwz̄ uww

)

where all the partial derivatives ofu are computed at(z,Rew). The determinant on the right-hand side is of
called theLevi Monge–Ampèreoperator LMA(u), to emphasize the comparison with the Euclidean Mon
Ampère operator. Even if the Levi curvature has some geometric properties similar to the Euclidean
curvature we must stress that theLevi Monge–Ampèreoperator is never strictly elliptic, not even on the cla
of strictly convex functions. In this paper we consider the Dirichlet problem of finding a non parametric
surface with prescribed total Levi curvaturek on a domainΩ ⊂ C

n × R ⊂ C
n × C whereΩ × iR is strongly

pseudoconvex. The problem can be formulated as follows. Givenϕ ∈ C(∂Ω) andk � 0 continuous, findu ∈ C(Ω)

Levi convex such that

u|∂Ω = ϕ and LMA(u) = k(·, u)
(
1+ |Du|2)(n+2)/2 onΩ. (1.2)

In the sequel we denote byDu and D2u the gradient and the Hessian matrix ofu respectively. The Dirichle
problem for LMA for n = 1 was considered first by A. Debiard and Gaveau [12], who gave an estimate f
modulus of continuity of the solution and by Z. Slodkowski and G. Tomassini in [22].

Z. Slodkowski and G. Tomassini defined in [23] viscosity solutions of the Dirichlet problem (1.2) with(1 +
|Du|2) raised to the 3n/2 power. The technique developed in [23] is to reduce (1.2) to a Bellman proble
a family of quasilinear degenerate elliptic operatorLν and to provide a priori estimates of the solutions of
uniformly elliptic equation

Lν(u) + ε
u = k1/n
(
1+ |Du|2)1/2

independent ofε and of ν. The main result is the existence of a Lipschitz continuous viscosity solutionu to
(1.2). However, the method in [23] requires very strong conditions onk and on the growth of its first and seco
derivatives (see [23, Theorem 2.4 and condition (2.5), p. 488]). In addition such a solution is shown to be
only in the particular casek ≡ 0. We reacll that ifu is the solution of (1.2) withk ≡ 0, then forλ � maxΩ u, the
setΓ λ+(u) = {(x, is) ∈ Ω × iR:u(x) � s � λ} is both the holomorphic hull and the envelope of holomorphy
Cϕ,λ = (Ω × {iλ}) ∪ {(x, is) ∈ ∂Ω × iR: ϕ(x) � s � λ}. In this paper we consider also the casek �≡ 0 which is
seems to be significative above all from the point of view of the regularity theory of pde’s. In [20] it is show
LMA is degenerate elliptic in the set of Levi convex functions, namely, ifu,v are Levi convex andD2u � D2v then
0 � L(u) � L(v) and LMA(u) � LMA (v). Therefore one cannot expect in generalC∞ regularity result for this
equation. We notice that ifk ≡ 0 then every real function of the last variableu(Rew) is a solution LMA(u) = 0.

Hence, in this case the regularity of a solution comes from the regularity of the boundary data. However,k �= 0
the missing ellipticity direction can be recovered by taking into account the CR structure of the hypersurfac
fact has been used by F. Lascialfari and the second author in [20] to prove that the Levi Monge Ampère
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has some hypoelliptic properties analogous to the Monge–Ampère operator. Precisely, ifCm,α denote the usua
Hölder space with respect to the Euclidean metric, the following regularity result was proved in [20].

Theorem.Let Ω ⊂ R
2n+1 be an open set andq ∈ C∞(Ω × R × R2n+1), q > 0. If u ∈ C2,α(Ω) is a strictly Levi

convex solution to the Levi Monge–Ampère equation

LMA (u) = q(·, u,Du), (1.3)

thenu ∈ C∞(Ω).

The existence of classical solution of Eq. (1.3) forn > 1 is an interesting open problem while forn = 1 it
has been solved by Citti, Lanconelli and the second author in [7]. The main aim of this paper is to sh
existence and the uniqueness of a Lipschitz continuous viscosity solution of (1.2) under far less restrictive re
assumptions on the prescribed functionk. To this purpose we use the main tools of the theory of viscosity solut
We recall that the theory of viscosity solutions, which was initiated in the early 80’s by the paper of M.G. Cr
and P.L. Lions [8] not only provides a convenient partial differential equations framework for dealing wi
lack of the existence of classical solutions, but also leads to the correct formulation of the “generalized” bo
conditions of fully nonlinear elliptic and parabolic pde’s. For a complete survey of the results obtained wit
theory of viscosity solutions for the first-order case we refer to the books of Bardi and Capuzzo Dolcetta
Barles [2], while for the second-order case we refer to the “User’s guide” of Crandall, Ishii and Lions [9].

In framework of viscosity solutions the standard Dirichlet boundary conditions have to be relaxed and
the viscosity sense as

min
(−LMA(u) + 2nk(·, u)

(
1+ |Du|2)(n+2)/2

, u − ϕ
)
� 0 on∂Ω (1.4)

and

max
(−LMA (u) + 2nk(·, u)

(
1+ |Du|2)(n+2)/2

, u − ϕ
)
� 0 on∂Ω. (1.5)

Roughly speaking, these relaxed conditions mean that the equations has to hold up to the boundary,
boundary condition is not assumed in the classical sense.

One of the main tools to prove the existence and the uniqueness of a continuous solution to (1.2) is to p
comparison principle between semicontinuous sub and supersolutions to (1.2). Indeed the existence follo
through the Perron’s method by Ishii [15] with the version up to the boundary obtained by the first author in

Hereafter we suppose thatΩ ⊂ R
2n+1 is a bounded domain with boundary of classC2. We list below some

basic assumptions we use throughout the paper.
We assume thatk :Ω × R → [0,+∞) is a continuous bounded function satisfying

(H1) for all R > 0, there exists�R > 0, such that, for everyx ∈ Ω , and−R � v � u � R

�R(u − v) � k1/n(·, u) − k1/n(·, v), (1.6)

(H2) for all R > 0, for all (x, y) ∈ Ω and|u| � R, there exists a modulus of continuityωR such thatωR(s) → 0
ass → 0+ and∣∣k1/n(x,u) − k1/n(y,u)

∣∣ � ωR(|x − y|).

Conditions (H1) and (H2) will be used in Section 3 to prove a comparison principle between viscosity semi
uous sub- and supersolution to the problem (1.2). In Section 4 to solve the Dirichlet problem by using the P
method we will use the following additional assumptions onk andΩ :

(H3) Ω × iR is strongly pseudoconvex and, for allξ0 ∈ ∂Ω , supΩ×R
k < k∂Ω×iR(ξ0).

(H4) sup k < 1/rn, wherer is the radius of the minimum sphere containingΩ .
Ω×R
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Condition (H3) will guarantee that there is no loss of boundary condition and will also allow to build local ba
to the problem (1.2). Condition (H4) will be used to build a particular global subsolution to (1.2) and thus
permit to get the existence of a continuous solution by the Perron’s method.

We prove the following theorems.

Theorem 1.1(The strictly monotone case). Assume(H1)–(H4)hold. Then for anyϕ ∈ C(∂Ω) there exists a uniqu
continuous viscosity solutionu of (1.2). Moreover, ifk ∈ C0,1( �Ω × W) for everyW ⊂⊂ R, andϕ ∈ C1,1(∂Ω),
thenu ∈ C0,1(Ω).

In order to include the case when the prescribed functionk is constant, (H1) may be modified and relaxed to

(H5) for all R > 0, for everyx ∈ Ω , and−R � v � u � R

0� k(·, u) − k(·, v). (1.7)

Indeed, whenk is constant inx, i.e.

(H6) k(x,u) = k(u) for all (x,u) ∈ Ω × R,

the result can be strengthened as follows.

Theorem 1.2(Thex-independent case). Assume that(H2)–(H6) hold. Then, for everyϕ ∈ C(∂Ω), there exists a
unique continuous viscosity solutionu of (1.2). Moreover, ifϕ ∈ C1,1(∂Ω), thenu ∈ C0,1(Ω).

The proofs of Theorems 1.1 and 1.2 follow classical arguments from the theory of viscosity solution
e.g. [9]). The Lipschitz continuity of the solution is obtained by building local barriers on the boundary a
adapting to our setting the weak Bernstein method, which was introduced by Barles in [3] to get gradien
for viscosity solutions to fully nonlinear degenerate elliptic pde’s.

If in addition the prescribed functionk satisfies

(H7) k ∈ C0,1(Ω × W) for everyW ⊂⊂ R,

and

(H8) there areα � 0,L > 0 such that

Dxk · p + Duk|p|2
(1+ |p|2)1/2

+ gnk1+1/n � α (1.8)

for almost every(x,u) ∈ Ω × R and for all |p| � L, for someg � g0, whereg0 is the universal constan√
2(2− √

2)(
√

2+ 1)−1,

we prove the existence of a solution of (1.2) by an approximation argument. More precisely, by using local
and the weak Bernstein method, we get a priori estimates of the Lipschitz constant and of theL∞-norm of the
solution of the approximating problem. The result is

Theorem 1.3(The Lipschitz continuous case). Assume(H3)–(H5) and (H7)–(H8) hold. For everyϕ ∈ C1,1(∂Ω)

there exists a Lipschitz continuous viscosity solutionu of (1.2). Moreover, ifk > 0, then the solution is unique.
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We should stress that for general fully nonlinear pde’s the weak Bernstein method requires the inequ
(1.8) to hold for someα > 0. Because of the particular structure of the Levi Monge–Ampère operator he
constantα can be zero.

The uniqueness statement in Theorem 1.3 is obtained via a comparison principle between continuous
supersolutions. In the casek > 0 a strong comparison principle betweenC2 sub- and supersolutions has be
proved in [19], by using the fact that the nonellipticity direction can be recovered by commutations.

Our paper is organized as follows. In Section 2 we give a precise viscosity formulation of the Dirichlet pr
(1.2) and we show the equivalence with the one given in [23]. In Section 3 we analyze the loss of bo
conditions for the Dirichlet problem (1.2). The question of loss of boundary conditions have been addresse
first author in [10] for general fully nonlinear second order degenerate elliptic and parabolic equations. As i
known, this fact may depend on various aspects such as the geometry of the domains, the structural proper
operator appearing in the equation and the value of the boundary data. The main result of this section is th
the hypothesis (H3) there is no loss of boundary condition for the Dirichlet problem (1.2). In Section 4 we
comparison principles between viscosity semicontinuous sub- and supersolutions to the problem (1.2) a
either conditions (H1) and (H2), or (H2) and (H5)–(H6). Using a geometric property of the Levi curvature
section we also prove a comparison principle between continuous sub- and supersolution for Lipschitz co
k > 0 satisfying (H7). This result yields the uniqueness of a solution of problem (1.2) in Theorem 1.3. As
product of the comparison results and the Perron’s method, under the hypothesis (H4) we get the existe
continuous solution to (1.2) for all continuous boundary data. In Section 5, we show the existence of a L
continuous solution to (1.2). Moreover by using an approximation argument, together with some a priori e
for the Lipschitz constant of a solution, we also prove the existence part of Theorem 1.3. In Section 6 w
an estimate of the maximum ball contained inΩ for which the problem (1.2) is solvable in the class of Lipsch
continuous viscosity solutions. Our argument is inspired from [6, Theorem 1] and to [19, Corollary 1.1]. Mor
when the domainΩ is a ball, we shall prove a nonexistence result which shows that conditions (H3) and
cannot be significantly relaxed.

2. Graphs with prescribed Levi curvature in a viscosity sense

In this section we give the definition of pseudoconvex domains and Levi convex functions in a suitabl
sense. We also give a precise formulation of the Dirichlet problem (1.2) in a viscosity sense.

We start with the following

Definition 2.1. An open setD ⊂ C
n+1 is pseudoconvex in a generalized sense if for everyz0 ∈ ∂D and for every

φ ∈ C2(Cn+1) such that∂zφ(z0) �= 0 and{φ(z) < φ(z0)} ⊆ D nearz0, we haveL(φ)(z0) � 0.

One can see that Definition 2.1 is equivalent to the definition of Hartogs pseudoconvexity given in the lit
(see e.g. [18]). More precisely we have the following equivalences.

Proposition 2.1.LetD ⊂ C
n+1 be an open set. The following conditions are equivalent:

(1) D is pseudoconvex in a generalized viscosity sense;
(2) For everyz0 ∈ ∂D and for every quadratic polynomialq with q(z0) = 0, ∂zq(z0) �= 0, such that{z: q(z) < 0}

is contained inD nearz0, thenL(q)(z0) � 0;
(3) D is Hartogs pseudoconvex.

Proof. The proof of Proposition 2.1 is implicitly contained in [17, Theorem 4.1.27]) and we leave details
reader. �
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Let M be a nonparametric hypersurface, which is the graph of aC2 functionu :Ω → R, whereΩ ⊂ R
2n+1 is

an open bounded set, namely,M = {s = u(x1, y1, . . . , xn, yn, t)}. In this case the coefficientsA�p̄(Du,D2u) of the
Levi form L(u) are quasilinear partial differential operators whose real and imaginary parts are given by

Re
(
A�p̄(Du,D2u)

) = (
∂x�xpu + ∂y�ypu + a�∂xptu + ap∂x�tu

+b�∂yptu + bp∂y�tu + (a�ap + b�bp)∂2
t u

)
,

(2.1)
Im

(
A�p̄(Du,D2u)

) = (
∂x�ypu − ∂xpy�

u − ap∂y�tu + a�∂yptu

+bp∂x�tu − b�∂xptu + (bpa� − b�ap)∂2
t u

)
where

a� = a�(Du) = ∂y�
u − ∂x�

u ∂tu

1+ (∂tu)2
, b� = b�(Du) = −∂x�

u − ∂y�
u ∂tu

1+ (∂tu)2
. (2.2)

In particular for every� = 1, . . . , n, the diagonal coefficientA��(Du,D2u) is a degenerate elliptic second ord
operator, whose characteristic form

ξ = (ξ1, . . . , ξ2n+1) −→ (ξ2l−1 + a�ξ2n+1)
2 + (ξ2l + b�ξ2n+1)

2,

is nonnegative definite for everyξ ∈ R
2n+1

, but has 2n− 1 eigenvalues identically zero. In accordance with
notations of the Introduction, we define theLevi Monge–Ampèreoperator as

LMA(u) = (1+ u2
t )det

(
A�,p(Du,D2u)

)
. (2.3)

Definition 2.2. We say that a functionu ∈ C2(Ω) is Levi convex (strictly Levi convex) atξ0 ∈ Ω if L(u)(ξ0) � 0
(> 0) and Levi convex (strictly Levi convex) inΩ if L(u)(ξ) � 0 (> 0) for everyξ ∈ Ω .

Remark 2.1.The following conditions are equivalent (see [20]):

(1) u is Levi convex inΩ ,
(2) the matrixA(Du,D2u) = (A�,p̄(Du,D2u))�,p=1,...,n is nonnegative definite inΩ ,
(3) the epigraph ofu is pseudoconvex.

In [20] it has been proved that ifu ∈ C2(Ω) is convex in the classical sense, thenu is Levi convex. In particular
if D2u � 0, thenA(Du,D2u) � 0. The converse obviously is not true.

For anyO ⊆ R
m, we denote by USC(O) the set of upper semicontinuous functions inO and by LSC(O) the

set of lower semicontinuous functions inO.
Definition 2.2 can be generalized to upper semicontinuous functions as follows (see also [23]).

Definition 2.3. We say that a functionu ∈ USC(Ω) is Levi convex (strictly Levi convex) in a viscosity sense
ξ0 ∈ Ω if for all φ ∈ C2(Ω) and for all local maximumξ0 of u − φ we haveL(φ)(ξ0) � 0 (> 0) and Levi convex
(strictly Levi convex) inΩ if L(φ)(ξ) � 0 (> 0).

Now we give the definition of viscosity subsolution and supersolution to the following equation

detA(Du,D2u) = k(ξ,u)f (Du) in Ω, (2.4)

wherek :Ω × R → [0,+∞) is a given continuous function and

f (Du) = 2n (1+ |Du|2)(n+2)/2

2
.

(1+ (∂tu) )
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Our definition extends the one given by Ishii and Lions in [16] in the case of the classical Monge–Ampère eq
and it is analogous to that introduced by Slodkowski and Tomassini in [23] for the Dirichlet problem (1.2).

Definition 2.4. We say thatu ∈ USC(Ω) (resp.v ∈ LSC(Ω)) is a viscosity subsolution (resp. supersolution)
(2.4) if for all φ ∈ C2(Ω) the following holds: at each local maximumξ0 (resp. local minimum ) point ofu − φ

(v − φ) then

detA(Dφ,D2φ)(ξ0) � k
(
ξ0, u(ξ0)

)
f

(
Dφ(ξ0)

)
and

L(φ)(ξ0) � 0

(resp. eitherL(φ)(ξ0) is not semidefinite positive or

detA(Dφ,D2φ)(ξ0) � k
(
ξ0, u(ξ0)

)
f

(
Dφ(ξ0)

)
and

L(φ)(ξ0) � 0).

We recall that for allA ∈ Sn (the set ofn × n symmetric matrices) the following matrix identity holds:

(detA)1/n =
{

inf
{
Tr(AB): B ∈ Sn,B � 0,detB = n−n

}
, if A � 0,

−∞, otherwise.
(2.5)

In view of the identity (2.5), we give another viscosity formulation of the Dirichlet problem (1.2). To this pu
we consider the operatorF :Ω × R × R

N × SN → R with N = 2n+ 1, defined by

F(ξ,u,p,X) :=
{

k1/n(ξ, u)f 1/n(p) − (
detA(p,X)

)1/n
, if A(p,X) � 0,

+∞, otherwise
(2.6)

and the Dirichlet problem{
F(ξ,u,Du,D2u) = 0 in Ω,
u(ξ) = ϕ(ξ), in ∂Ω,

(DP)

whereϕ ∈ C(∂Ω) the solutionu is a scalar function andDu andD2u denote respectively its gradient and Hess
matrix.

We setF ∗ andF∗ the usc and lsc envelope ofF respectively.

Definition 2.5. A function u ∈ USC(Ω) (resp.v ∈ LSC(Ω)) is said to be a viscosity subsolution (resp. supers
tion) of (DP) in a generalized sense iff the following property holds:

for all φ ∈ C2(Ω), at each maximum pointξ0 ∈ Ω of u − φ we have

F∗
(
ξ0, u(ξ0),Dφ(ξ0),D

2φ(ξ0)
)
� 0 if ξ0 ∈ Ω,

min
(
F∗

(
ξ0, u(ξ0),Dφ(ξ0),D

2φ(ξ0)
)
, u(ξ0) − ϕ(ξ0)

)
� 0 if ξ0 ∈ ∂Ω,

(resp. for allφ ∈ C2(Ω), at each minimum pointξ0 ∈ Ω of u − φ we have

F ∗(ξ0, u(ξ0),Dφ(ξ0),D
2φ(ξ0)

)
� 0 if ξ0 ∈ Ω,

max
(
F ∗(ξ0, u(ξ0),Dφ(ξ0),D

2φ(ξ0)
)
, u(ξ0) − ϕ(ξ0)

)
� 0 if ξ0 ∈ ∂Ω.

Proposition 2.2.Every solutionu of (2.4) at ξ0 ∈ Ω in the sense of Definition2.4 is a solution ofF = 0 in the
sense of Definition2.5.
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depend
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operator

sumed
Proof. We show that every solution ofF = 0 in the sense of Definition 2.5 is a solution of (2.4) in the sens
Definition 2.4, the other implication being evident. Letu be a generalized solution of (DP) and letφ ∈ C2(Ω) be
such thatu − φ has a maximum atξ0 ∈ Ω , then the inequalityF∗(ξ0, u(ξ0),Dφ(ξ0),D

2φ(ξ0)) � 0 implies that
L(φ)(ξ0) � 0. Thus we have

detA(Dφ,D2φ)(ξ0) � k
(
ξ0, u(ξ0)

)
f

(
Dφ(ξ0)

)
and

L(φ)(ξ0) � 0.

Now suppose thatu − φ has a minimum atξ0 ∈ Ω and thatF ∗(ξ0, u(ξ0),Dφ(ξ0),D
2φ(ξ0)) � 0. We distinguish

the following two cases:
(1) L(φ)(ξ0) � 0 andL(φ)(ξ0) has at least one null eigenvalue. In this case we have

0= detA(Dφ,D2φ)(ξ0) � k
(
ξ0, u(ξ0)

)
f

(
Dφ(ξ0)

)
.

(2) L(φ)(ξ0) > 0, then there is a ballB(ξ0, r), r > 0, such thatL(φ)(y) > 0 for all y ∈ B(ξ0, r). It follows that

F ∗(ξ0, u(ξ0),Dφ(ξ0),D
2φ(ξ0)

) = F
(
ξ0, u(ξ0),Dφ(ξ0),D

2φ(ξ0)
)

and the inequalityF ∗(ξ0, u(ξ0),Dφ(ξ0),D
2φ(ξ0)) � 0 implies

detA(Dφ,D2φ)(ξ0) � k
(
ξ0, u(ξ0)

)
f

(
Dφ(ξ0)

)
and

L(φ)(ξ0) � 0.

Hence we can conclude.�
In the sequel when we talk about sub- and supersolutions of (DP), we will always mean in a viscosity se
We explicitly remark that subsolutions of (DP) are Levi convex in a viscosity sense. Moreover, standard

lations show that ifu ∈ C2(Ω) ∩ C( �Ω) is Levi convex, thenu is a classical solution of (DP) iffu is a viscosity
solution of (DP) (see [23]).

3. Loss of boundary conditions

Let Ω be a bounded open set ofR
N,N = 2n+ 1, with C2 boundary. Denote byd a smooth function agreein

in a neighborhoodW of ∂Ω with the signed distance function to∂Ω which is positive inΩ and negative inR \ Ω

and we denote byn(ξ) := −Dd(ξ) for all ξ ∈W . If ξ ∈ ∂Ω, n(ξ) is just the unit outward normal to∂Ω at ξ .
In this section we analyze the loss of boundary conditions for the Dirichlet problem (DP) whereF is given

by (2.6). The question of loss of boundary conditions have been addressed by the first author in [10] for
fully nonlinear second order degenerate elliptic and parabolic equations. As it is well known this fact may
on various aspects, such as the geometry of the domains, the structural properties of the operator appea
equation and the value of the boundary data (see e.g. the example in [5]). Here we are going to test on the
(2.6) the conditions which have been found in [10] implying that the Dirichlet boundary conditions are as
continuously by the solutions of (DP). To this end we introduce the following subsets of the boundary∂Ω : we
denote byΣ− the set of the pointsξ ∈ ∂Ω such that, for allR > 0 either

lim inf
w→ξ

{
F

(
w,−R,

−n(w) + oα(1)

α
,− 1

α2
n(w) ⊗ n(w) + oα(1)

α2

)}
> 0 (3.1)
α↓0
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dary

ote that
or

lim inf
w→ξ
α↓0

{
F

(
w,−R,

−n(w) + oα(1)

α
,

1

α
D2d(w) + oα(1)

α

)}
> 0 (3.2)

and we denote byΣ+ the set of the pointsξ ∈ ∂Ω such that, for allR > 0

lim sup
w→ξ
α↓0

{
F

(
w,R,

n(w) + oα(1)

α
,

1

α2
n(w) ⊗ n(w) + oα(1)

α2

)}
< 0 (3.3)

or

lim sup
w→ξ
α↓0

{
F

(
w,R,

n(w) + oα(1)

α
,− 1

α
D2d(w) + oα(1)

α

)}
< 0, (3.4)

whereoα(1)→ 0 asα ↓ 0 andp ⊗ p is the matrix(pipj )
N
i,j=1, for all p = (p1, . . . , pN). Finally we set

Σ := ∂Ω \ (Σ− ∪ Σ+).

We premise some comments on the setsΣ±. In Section 4 of [10], it is proved that there cannot be loss of boun
conditions respectively for the sub- and supersolutions of (DP), namely for everyξ ∈ Σ− (resp.Σ+) and any
subsolutionsu (resp. supersolutionsv) we haveu(ξ) � ϕ(ξ) (v(x) � ϕ(ξ)).

We will show that condition (H3) on∂Ω is enough to guarantee thatΣ = ∅.
Now we are going to test the conditions (3.1)–(3.3) and (3.4) in the case of the operator (2.6). We first n

if u is a defining function forΩ then the Levi curvature (1.1) ofM = {(ξ, s) ∈ R
2n+2: u(x, y, t) − s = 0} can be

represented as follows

kM(ξ,u) = −h(Du)detB(Du,D2u) (3.5)

with h(Du) := 2n+2(1+ |Du|2)−((n+2)/2) and

B(Du,D2u) =



0 ∂1u · · · ∂tu − i

2

∂1u ∂11u · · · ∂1t u

2
...

...
. . .

...

∂tu + i

2

∂t1u

2
· · · ∂ttu

4


. (3.6)

Define

k∞
M (ξ) := lim

η→∞ kM(ξ, ηs).

Then

k∞
M (ξ) = −2n|Du|−(n+2) detB∞(Du,D2u), (3.7)

with

B∞(Du,D2u) :=


0 ∂1u · · · ∂tu

∂1u ∂11u · · · ∂1t u

...
...

. . .
...



∂tu ∂t1u · · · ∂ttu
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we

e

lds.
andk∞
M (ξ) is exactly the Levi curvaturek∂Ω×iR of the cylinder∂Ω × iR = {(ξ, s): u(ξ) = 0}. By algebraic com-

putations one can rewritekM also as follows (see e.g [20])

kM(ξ,u) = 1

2n

(1+ u2
t )

(1+ |Du|2)(n+2)/2
detA(Du,D2u), (3.8)

whereA(p,X) is then × n Hermitian matrix defined in (2.1).
We list below some facts on the matrixA that will be useful to check (3.1)–(3.4) on a boundary point. First

have

A(ηp,ηX) = η

(η−2 + p2
N)2

A′(p,X,η) (3.9)

where the coefficients ofA′(p,X,η) are given by

Re
(
A′

�p̄(Du,D2u,η)
) = (η−2 + u2

t )
2(∂x�xpu + ∂y�ypu) + (η−2 + u2

t )(a
′
�∂xptu + a′

p∂x�tu

+b′
�∂yptu + b′

p∂y�tu) + (a′
�a

′
p + b′

�b
′
p)∂2

t u,

Im
(
A′

�p̄(Du,D2u,η)
) = (η−2 + u2

t )
2(∂x�ypu − ∂xpy�

u) + (η−2 + u2
t )(−a′

p∂y�tu + a′
�∂yptu

+b′
p∂x�tu − b′

�∂xptu) + (b′
pa′

� − b′
�a

′
p)∂2

t u

and

a′
� = a′

�(Du,η) = η−1∂y�
u − ∂x�

u ∂tu, b′
� = b′

�(Du,η) = −η−1∂x�
u − ∂y�

u ∂tu.

MoreoverA′(p,X,η) converges toA∞(p,X) asη → ∞ locally uniformly in (p,X), where the real part and th
imaginary part of(A∞)�p(Du,D2u) are given by

Re
(
(A∞)�p(Du,D2u)

) = (ut )
4(∂x�xpu + ∂y�ypu) + u2

t (a
∞
� ∂xptu + a∞

p ∂x�tu

+b∞
� ∂yptu + b∞

p ∂y�tu) + (a∞
� a∞

p + b∞
� b∞

p )∂2
t u,

(3.10)
Im

(
(A∞)�p(Du,D2u)

) = (ut )
4(∂x�ypu − ∂xpy�

u) + u2
t (−a∞

p ∂y�tu + a∞
� ∂yptu

+b∞
p ∂x�tu − b∞

� ∂xptu) + (b∞
p a∞

� − b∞
� a∞

p )∂2
t u

with

a∞
� = a∞

� (Du) = −∂x�
u ∂tu, b∞

� = b∞
� (Du) = −∂y�

u ∂tu. (3.11)

Next we start analyzing the two conditions (3.1), (3.3). Standard computations show that detB∞(n,n ⊗ n) =
detB∞(−n,−n ⊗ n) = 0.

Now we takeξ0 ∈ ∂Ω and we distinguish two cases.
Case 1: for all α > 0 small and for allw close toξ0 the matrixA(

−n(w)+oα(1)
α

,− 1
α2 n(w) ⊗ n(w) + oα(1)

α2 ) is not
semidefinite positive. In this case we trivially have

lim inf
w→ξ
α↓0

{
F

(
w,R,

−n(w) + oα(1)

α
,− 1

α2
n(w) ⊗ n(w) + oα(1)

α2

)}
� 0.

Case 2: there are subsequencesαn → 0 andwn → ξ0 (that we continue to denote byα andw) such that the
matrixA(

−n(w)+oα(1)
α

,− 1
α2 n(w)⊗n(w)+ oα(1)

α2 ) is semidefinite positive. In this case the following estimate ho

F

(
w,−R,

−n(w) + oα(1)

α
,− 1

α2
n(w) ⊗ n(w) + oα(1)

α2

)
= f 1/n

(−n(w) + oα(1)

α

){
k1/n(w,−R)

−
[
detA

(−n(w) + oα(1)
,− 1

2
n(w) ⊗ n(w) + oα(1)

2

)
f −1

(−n(w) + oα(1)
)]1/n}

.

α α α α
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t

rictly
By using the identities (3.7), (3.8) and the fact that detB∞(−n,−n ⊗ n) = 0, we get

lim inf
w→ξ0
α↓0

−
[
detA

(−n(w) + oα(1)

α
,− 1

α2
n(w) ⊗ n(w) + oα(1)

α2

)
f −1

(−n(w) + oα(1)

α

)]1/n

+ k1/n(w,−R)

� lim inf
w→ξ0
α↓0

[−2
(−det

(
B∞

(−n(w),−n(w) ⊗ n(w)
))1/n + k1/n(w,−R)

]
= k1/n(ξ0,−R) � 0.

Thus sincef 1/n � 0 we finally obtain

lim inf
w→ξ0
α↓0

{
F

(
w,−R,

−n(w) + oα(1)

α
,− 1

α2
n(w) ⊗ n(w) + oα(1)

α2

)}

� lim inf
w→ξ0
α↓0

f 1/n

(−n(w) + oα(1)

α

)
k1/n(ξ0,−R) � 0.

In a similar way one sees that

lim sup
w→ξ0
α↓0

{
F

(
w,R,

n(w) + oα(1)

α
,

1

α2
n(w) ⊗ n(w) + oα(1)

α2

)}
� 0.

Thus the conditions (3.1) and (3.3) are not satisfied.
This implies that we have to impose some suitable conditions on theLevi curvatureof the domain in order tha

both conditions (3.2) and (3.4) hold.
To this end we assume thatΩ satisfies (H3). Then since−d is a defining function ofΩ the following two

conditions holds for everys ∈ R andξ0 ∈ ∂Ω :

A∞
(
n(ξ0),−D2d(ξ0)

)
> 0 (3.12)

and

2
(−det

(
B∞

(
n(ξ0),−D2d(ξ0)

)))1/n
> k1/n(ξ0, s). (3.13)

Proposition 3.1.Assume(H3) then both the conditions(3.2)and (3.4)are satisfied.

Proof. We first notice thatA∞(−n(ξ0),D
2d(ξ0)) = −A∞(n(ξ0),−D2d(ξ0)) is not semidefinite positive.

We claim that the matrix

A

(−n(w) + oα(1)

α
,

1

α
D2d(w) + oα(1)

α

)
is not semidefinite positive forα → 0 andw → ξ0 as well.

Indeed sinceA∞(−n(ξ0),D
2d(ξ0)) is not semidefinite positive, there is at least one eigenvalue which is st

negative. Now from (3.9) it follows that

A

(−n(w) + oα(1)

α
,

1

α
D2d(w) + oα(1)

α

)
= α−1

2 2 2
A′(Dd + oα(1),D2d + oα(1), α−1

)
. (3.14)
(α + (dt + oα(1) )
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d

d super-
ously.

a unique

that the
the

lu-
Since

A′(Dd(w) + oα(1),D2d(w) + oα(1), α−1) → A∞
(
Dd(ξ0),D

2d(ξ0)
)

as α → 0 andw → ξ0, one can see that there arer > 0 andα0 > 0 such that for all 0< α � α0 and for all
w ∈ B(ξ0, r) the matrixA′(Dd(w) + oα(1),D2d(w) + oα(1), α−1) is not semidefinite positive. Thus from (3.1
it follows that the matrix

A

(−n(w) + oα(1)

α
,

1

α
D2d(w) + oα(1)

α

)
is not semidefinite positive too and we prove the claim.

Hence we have

lim inf
w→ξ0
α↓0

{
F

(
w,−R,

−n(w) + oα(1)

α
,

1

α
D2d(w) + oα(1)

α

)}
= +∞ (3.15)

and (3.2) holds.
On the other hand ifA∞(n(ξ0),D

2d(ξ0)) is definite positive then the matrix

A

(
n(w) + oα(1)

α
,− 1

α
D2d(w) + oα(1)

α

)
is definite positive asα → 0 andw → ξ0. To show this fact one argues exactly as above. Thus we have

lim sup
w→ξ0
α↓0

{
F

(
w,R,

n(w) + oα(1)

α
,− 1

α
D2d(w) + oα(1)

α

)}
= lim sup

w→ξ0
α↓0

f 1/n

(
n(w) + oα(1)

α

)
,

lim sup
w→ξ0
α↓0

{
−

(
det

(
A

(
n(w) + oα(1)

α
,− 1

α
D2d(w) + oα(1)

α

)
f −1

(
n(w) + oα(1)

α

))1/n

+ k1/n(w,R)

}

� lim sup
w→ξ0
α↓0

f 1/n

(−n(w) + oα(1)

α

)
· {−2

(−det
(
B∞

(
n(ξ0),−D2d(ξ0)

)))1/n + k1/n(ξ0,R)
}

< 0,

where the last inequality follows by combining (3.13) and the fact thatf 1/n � 2. Therefore (3.4) is satisfied an
we conclude. �

4. Comparison principles and existence results

In this section we provide two comparison principles between viscosity semicontinuous subsolutions an
solutions of (DP) under the hypothesis (H3), which guarantees that the boundary data is assumed continu

As a by-product of the these comparison results and the Perron’s method we get the existence of
continuous viscosity solution of (DP).

The first comparison result of this section is the following theorem, which holds under the assumption
function k is strictly increasing with respect tou. The proof of this result is standard and we provide it for
reader’s convenience.

Theorem 4.1.Assume(H1)–(H3). Letu ∈ USC(Ω) andv ∈ LSC(Ω) be respectively a bounded viscosity subso
tion and supersolution of(DP). Thenu � v in Ω .
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is not a
is to

n of it.
Proof. We suppose by contradiction that maxΩ(u−v) = M > 0. By (H3) such maximum is achieved at an inter
point ξ0. For allε > 0 we consider the auxiliary function

Φε(ξ, ζ ) = u(ξ) − v(ζ ) − |ξ − ζ |2
ε2

.

Let (ξε, ζε) be a maximum ofΦε in Ω × Ω . By standard arguments we get, up to subsequences, thatξε, ζε → ξ̃ ∈
Ω , and

|ξε − ζε|2
ε2

= oε(1) asε → 0,

u(ξε) − v(ζε) → u(ξ̃ ) − v(ξ̃ ) = M,

u(ξε) → u(ξ̃ ), v(ζε) → v(ξ̃ ).

We observe that sinceu � v on∂Ω we haveξ̃ ∈ Ω , thus forε small enoughξε, ζε ∈ Ω as well. Hence the equatio
holds for bothu andv respectively atξε andζε.

Setφ(ξ, ζ ) = |ξ − ζ |2/ε2. For all α > 0 there existX,Y ∈ S(N) such that, ifpε := 2(ξε − ζε)/ε
2, andA =

D2φ(ξε, ζε), we have

(pε,X) ∈ J 2,+u(ξε), (pε,Y ) ∈ J 2,−v(ζε),

−
(

1

α
+ ||A||

)
Id �

(
X 0
0 −Y

)
� A + αA2 (4.1)

and

F∗
(
ξε, u(ξε),pε,X

)
� 0 and F ∗(ζε, v(ζε),pε,Y

)
� 0. (4.2)

We note that (4.1) impliesX � Y , thusA(pε,X) � A(pε,Y ) for all ε as well. By subtracting the two inequalitie
in (4.2) and by using (H1) we get

�R

(
u(ξ̃ ) − v(ξ̃ )

)
� o(1) asε → 0

and we obtain a contradiction by lettingε → 0. �
Next we are going to prove a comparison result by assuming the weaker condition (H5). When there

strict monotonicity with respect tou, one of the classical approaches from the theory of viscosity solutions,
try to find a strict subsolution or supersolution either of the original equation or of a suitable approximatio
Here we extend the techniques used in Ishii and Lions [16] for quasilinear equations.

To this purpose we need the following two lemmae.

Lemma 4.1.There is a functionψ ∈ C2(Ω) such that

inf
p∈R2n+1

(
detA(p,D2ψ)

)1/n = ν > 0.

Proof. Let us takeψ(x, y, t) = g((‖x‖2 + ‖y‖2)/2), with g ∈ C2(R) andg′, g′′ > 0. We note that for allp ∈ R
N

andX ∈ SN we haveA(p,Y ) = σ(p)YσT(p) whereσ is then × N matrix given by

σ(p) = (
In, −iIn, a(p) − ib(p)

)
(4.3)

a(·), b(·) being defined in (2.1). By using the above identity one can readily see that we have

A(p,D2ψ) = 2g′
(

In + g′′
′ (x − iy) ⊗ (x + iy)

)

2g
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d

and (
detA(p,D2ψ)

)1/n � 2g′
(

1+ g′′

2g′
(‖x‖2 + ‖y‖2))1/n

= ν. �

Lemma 4.2. If u ∈ USC(Ω) is a bounded viscosity subsolution ofF = 0, thenum = u + 1
m

ψ , with ψ as in the
previous lemma, is a strictly viscosity subsolution of

F(ξ,um,Dum − Dψ/m,D2um) + f 1/n(Dum − Dψ/m)
(
k1/n(ξ, um − ψ/m) − k1/n(ξ, um)

) = − ν

m
.

Proof. We notice that for allφ ∈ C2(Ω), ξ0 is a maximum point ofum −φ, iff ξ0 is a maximum point ofu− (φ −
ψ/m). Thus, sinceu is a viscosity subsolution ofF = 0, at each maximum point ofum − φ, we have

F
(
ξ0, u(ξ0),

(
Dφ − Dψ/m

)
(ξ0),

(
D2φ − D2ψ/m

)
(ξ0)

)
� 0.

Therefore, by the convexity of the functionA �→ −(detA)1/n and by Lemma 4.1, we get

F(ξ0, um,Dφ − Dψ/m,D2φ) + f 1/n(Dφ − Dψ/m)
(
k1/n(ξ0, um − ψ/m) − k1/n(ξ0, um)

)
= −(

detA(Dφ − Dψ/m,D2φ)
)1/n + f 1/n(Dφ − Dψ/m)k1/n(ξ0, u)

� −(
detA(Dφ − Dψ/m,D2φ − D2ψ/m)

)1/n − (
detA(Dφ − Dψ/m,D2ψ/m)

)1/n

+f 1/n(Dφ − Dψ/m)k1/n(ξ0, u)

= F(ξ0, u,Dφ − Dψ/m,D2φ − D2ψ/m) − (
detA(Dφ − Dψ/m,D2ψ/m)

)1/n

� −(
detA(Dφ − Dψ/m,D2ψ/m)

)1/n � −ν/m. �
Now we shall prove a comparison principle, by assuming that (H6) holds, i.e.k :R → [0,+∞) is a continuous

function which does not depend onξ .

Theorem 4.2.Assume(H2)–(H3) and (H5)–(H6). Letu ∈ USC(Ω) and v ∈ LSC(Ω) be respectively a bounde
viscosity sub- and supersolution of(DP). Thenu � v in Ω .

Proof. We considerum = u + 1
m

ψ with ψ as in Lemma 4.1. We may suppose without restriction that(|x|2 +
|y|2) �= 0 in Ω , otherwise in the definition ofψ we replace(|x|2 +|y|2) with (|x − x0|2 +|y − y0|2)with a suitable
(x0, y0). Moreover we chooseg in such a way that‖ψ‖∞ < +∞. Our aim is to show that supΩ(um − v) �
1
m

‖ψ‖∞. Suppose by contradiction that for allm large enough we haveMm = maxΩ(um − v) > 1
m

‖ψ‖∞. Since
by (H3) we haveu(x) � ϕ(x) � v(x) for all x ∈ ∂Ω , such a maximum is achieved at an interior pointξ0 (depending
onm). For allε > 0 let us consider the auxiliary function

Φε(ξ, ζ ) = um(ξ) − v(ζ ) − |ξ − ζ |2
ε2

.

Let (ξε, ζε) be a maximum ofΦε in Ω × Ω . By standard arguments we get, up to subsequences,ξε, ζε → ξ̃ ∈ Ω ,
and

|ξε − ζε|2
ε2

= oε(1) asε → 0,

um(ξε) − v(ζε) → um(ξ̃ ) − v(ξ̃ ) = Mm,

um(ξε) → um(ξ̃ ), v(ζε) → v(ξ̃ ).
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f
et
Sinceξ̃ is necessarily inΩ , for ε small enough we haveξε, ζε ∈ Ω as well. Hence the equation holds for bothum

andv respectively inξε andζε.
There existX,Y ∈ SN such that, ifpε := 2(ξε − ζε)/ε

2, we have

(pε,X) ∈ J 2,+um(ξε), (pε,Y ) ∈ J 2,−v(ζε),

− 8

ε2
Id �

(
X 0
0 −Y

)
� 3

ε2

(
I −I

−I I

)
(4.4)

and by Lemma 4.2

F(ξε, um,pε − Dψ/m,X) + f 1/n(pε − Dψ/m)
(
k1/n(um − ψ/m) − k1/n(um)

)
< − ν

m
,

(4.5)
F(ζε, v,pε,Y ) � 0.

Moreover,(pε − Dψ
m

,X − D2ψ/m) ∈ J 2,+u(ξε), and

F∗(ξε, u(ξε),pε − Dψ/m,X − D2ψ/m) � 0. (4.6)

SetΣ1 = σ(pε − 1
m

Dψ) andΣ2 = σ(pε), whereσ is then × N matrix defined in (4.3). Multiply both sides o
the inequality (4.4) by the matrix(Σ1 Σ2) on the left, and by the transpose of its conjugate on the right, to g

Σ1X �Σ T
1 − Σ2Y �Σ T

2 � 3

ε2
(Σ1 − Σ2)(Σ1 − Σ2)

T = 1

ε2
η ⊗ η̄ (4.7)

with

η =
[
a

(
pε − 1

m
Dψ

)
−a(pε)

]
− i

[
b

(
pε − 1

m
Dψ

)
− b(pε)

]
= −g′

m

(
y − x(pε)2n+1 − i(x + y(pε)2n+1)

1+ (pε)
2
2n+1

)
= g′

m

(
(pε)2n+1 − i

1+ (pε)
2
2n+1

)
(x − iy).

Thus,

Σ1X �Σ T
1 − Σ2Y �Σ T

2 � (g′)2

ε2m2(1+ (pε)
2
2n+1)

(‖x‖2 + ‖y‖2) Id .

From (4.6) it follows that

Σ1(X − D2ψ/m) �Σ T
1 � 0

and

Σ1X �Σ T
1 �

Σ1D
2ψ �Σ T

1

m
= 1

m

(
g′′(x − iy) ⊗ (x + iy) + 2g′ Id

)
> 0.

We will choose the functiong in a such way that, form large enough and for allε, we have(
g′′

m
− (g′)2

m2ε2(1+ (pε)
2
2n+1)

)
� 0. (4.8)

Thus the following estimate holds

Σ2Y �Σ T
2 � Σ1X �Σ T

1 − 1

ε2
η ⊗ η̄ � 1

m

(
g′′(x − iy) ⊗ (x + iy) + 2g′ Id

) − 1

ε2
η ⊗ η̄

=
(

g′′

m
− (g′)2

m2ε2(1+ (p )2 )

)
(x − iy) ⊗ (x + iy) + 2g′

m
Id � 2g′

m
Id = γ Id > 0.
ε 2n+1
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n

(see e.g

d

Now, set

λ = (g′)2

ε2m2(1+ (pε)
2
2n+1)

(‖x‖2 + ‖y‖2),
we have(

det(Σ1XΣT
1 )

)1/n − (
det(Σ2YΣT

2 )
)1/n

�
(
det(Σ2YΣT

2 + λ Id)
)1/n − (

det(Σ2YΣT
2 )

)1/n = (
det(Σ2YΣT

2 )
)1/n(

det
(
Id+λ(Σ2YΣT

2 )−1)1/n − 1
)

�
(
det(Σ2YΣT

2 )
)1/n

(
trace(Id+λ(Σ2YΣT

2 )−1)

n
− 1

)
� 8

ε2

(
det(Σ2Σ

T
2 )

)1/n
(

trace(Id+λ(γ )−1)

n
− 1

)
� 8

ε2

(
det(Σ2Σ

T
2 )

)1/n
(

λm

2g′

)
� 16

ε2

(
1+ 1

2

(∣∣a(pε)
∣∣2 + ∣∣b(pε)

∣∣2))1/n(
g′(‖x‖2 + ‖y‖2)

2mε2(1+ (pε)
2
2n+1)

)

� C

ε2ε2/n

(
g′(‖x‖2 + ‖y‖2)

2mε2

)
, (4.9)

where, in the last inequality, we use the fact that|pε | � C/ε, for someC > 0 independent ofε,m. Setξ = (x, y,0),
we also have

f 1/n(pε) − f 1/n

(
pε − Dψ

m

)
= f 1/n(pε) − f 1/n(pε − g′ξ/m)

� C
1

ε2/n

g′

m

(‖x‖2 + ‖y‖2)1/2(1+ oε(1)
)
. (4.10)

By subtracting the two inequalities in (4.5) and by using (H2), (H5), (4.9) and (4.10), we finally obtain

ν

m
= 2g′(1+ (g′′/2g′)(‖x‖2 + ‖y‖2))1/n

m

� C

ε2/n

g′

m

(‖x‖2 + ‖y‖2)1/2(1+ oε(1)
) + C

ε2ε2/n

(
g′(‖x‖2 + ‖y‖2)

2mε2

)
. (4.11)

Now we takeg(s) = exp(βs −α) with β andα to be determined as follows. We haveg′ = βg, andg′′ = β2g. Since
(x, y) �= (0,0), if we choosem = β(2n+1)/(2n) andε = β−1/(6n), then forβ large enough we get a contradictio
in (4.11). We finally takeα (depending onβ and the diameter ofΩ) in such a way thatg � 1. We point out that by
this choice ofg, ε andm the inequality (4.8) is satisfied. Thus we can conclude.�
Remark 4.1.One can prove a variant of Theorems 4.1 and 4.2 in which the conditionu � v on∂Ω is dropped and
the conclusion is changed tou − v � sup∂Ω(u − v)+ (see e.g. User’s guide [9]).

In the general case whenk depends onx and it is not strict monotone with respect tou we are able to prove
a comparison result between continuous sub and supersolution of (DP) by following a dilation argument
[24, Theorem 2.2], [16,4]).

Theorem 4.3.Assume(H5) and (H7) and suppose thatk > 0. Letu,v ∈ C( �Ω) be respectively viscosity sub- an
supersolution of(DP). Then

sup
Ω

(u − v) � sup
∂Ω

(u − v)+.
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quation.
Proof. Let R = max(||u||∞, ||v||∞). It is not restrictive to assume thatu is nonnegative inΩ and|ξ | < diam(Ω)

for everyξ ∈ Ω . Actually we may always replaceF by G(ξ, s,p,X) = F(ξ − ξ0, s − R,p,X). For a suitable
ξ0 ∈ R

N .
For all r > 1 we setΩr = r−1Ω and we introduce the function

ur(x) = r−1u(rx), x ∈ Ωr. (4.12)

We claim that there isδ < 0 such that for allr > 1 close to 1,ur is a viscosity solution of

F
(
x,ur(x),Dur,D

2ur

)
� −δ(r − 1) in Ωr.

Indeed letφ ∈ C2(Ωr) andξ ∈ Ωr such thatur − φ has a local maximum atξ . Thenu(y) − rφ(r−1y) has a local
maximum atrξ . Sinceu is a subsolution of (DP) we have

F∗
(
rξ, u(rξ),Dφ, r−1D2φ

)
� 0.

The above inequality implies thatLφ(ξ) � 0 and

−detA(Dφ,D2φ) + rnk
(
rξ,u(rξ)

)
f (Dφ) � 0.

SetLΩ = supΩ×Ω×[0,R]((k(ξ, u) − k(ξ0, u))/|ξ − ξ0|) and suppose for the moment that

LΩ <
n infΩ×R k

diam(Ω)
. (4.13)

The following estimate holds

−detA(Dφ,D2φ) + k
(
ξ,ur(ξ)

)
f (Dφ)

� k
(
ξ,ur(ξ)

)
f (Dφ) − rnk

(
rξ,u(rξ)

)
f (Dφ)

= (1− rn)k
(
rξ,u(rξ)

)
f (Dφ) + [

k
(
ξ,ur(ξ)

) − k
(
ξ, rur(ξ)

)]
f (Dφ)

+ [
k
(
ξ, rur(ξ)

) − k
(
rξ,u(rξ)

)]
f (Dφ)

� f (Dφ)
[
(1− rn)

(
inf

Ω×R

k
)

+ (r − 1)LΩ |ξ |
]

� (r − 1)f (Dφ)
[
−n

(
inf

Ω×R

k
)

+ LΩ diam(Ω)
]
.

From (4.13) and the fact thatf (Dφ) � 1, it follows that there isδ > 0 such that we have

−detA(Dφ,D2φ) + k
(
ξ,ur(ξ)

)
f (Dφ) � −δ(r − 1).

Now by arguing as in the proof of Theorem 4.1 one gets

sup
Ω∩Ωr

(ur − v) � sup
∂(Ω∩Ωr)

(ur − v)+ (4.14)

and the conclusion follows by lettingr → 1+.
If (4.13) is not satisfied one proceeds by coveringΩ with small balls of radiusr < LΩ

−1 infΩ×R k. �
Remark 4.2.We remark that Theorem 4.3 is a consequence of the fact that we are considering a curvature e
Precisely setρr(z) = ρ(rz), with ρ(z) = u(ξ) − s and letK the Levi curvature of{ρ = 0}. Then we have

∂zρr(z) = r(∂zρ)(rz), ∂zz̄ρr (z) = r2(∂zz̄ρ)(rz)

and

−
{
|∂ρr |−n−2 det

(
0 ∂zρr

∂zρr ∂zzρr

)}
(z) = −rn

{
|∂ρ|−n−2 det

(
0 ∂zρ

∂zρ ∂zzρ

)}
(rz) = rnK(rz).
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By the comparison results and the Perron’s method we get the existence of a unique continuous solution

Corollary 4.1. Assume either the hypotheses of Theorem4.1or of Theorem4.2and suppose(H4) holds. Then for
anyϕ ∈ C(∂Ω) there exists a unique continuous viscosity solution of(DP).

Proof. We use the Perron’s method introduced for viscosity solutions by H. Ishii [15] with the version
the boundary of the first author [10]. We observe that ifM is large enough then the functionv(ξ) = M is a
supersolution of (DP). Let us denote byξ0 the center of the sphere of minimum radiusr containingΩ . Under the
assumption (H4) the functionv(ξ) = (r2 − |ξ − ξ0|2)1/2 − M is subsolution of (DP). Indeed if we setρ(ξ, s) =
(r2 − |ξ − ξ0|2)1/2 − M − s then the zero level set ofρ is a subset of a sphere of radiusr and one knows that in
this casek{ρ=0}(z) = 1/rn. ThusF(ξ, v(ξ),Dv(ξ),D2v(ξ)) = −1/r + k1/n(ξ, v(ξ)) < 0.

The Perron’s method provides us with a (possibly discontinuous) solutionu of (DP) such thatv � u � v in Ω .
The condition thatΣ = ∅ implies that there is no loss of boundary condition on∂Ω and therefore, every subsolutio
ω and every supersolutionw of (DP) satisfies

ω � ϕ � w on∂Ω.

The first consequence of this inequality is thatu∗ = u∗ = ϕ on ∂Ω and thereforeu is continuous at points of∂Ω .
The second one is the uniqueness of the continuous solutionu of (DP) which follows from either Theorem 4.1 o
Theorem 4.2. �

5. Lipschitz estimates and proofs of Theorems 1.1, 1.2, 1.3

In this section we denote byx a point inR
N , with N = 2n+1. We show the existence of a Lipschitz continuo

viscosity solution of (DP) under suitable assumptions onk and geometric conditions on the domain. To this purp
we follow two different approaches. More precisely in the particular case thatk does not depend on the variab
x we adapt the method of translation (see e.g. [16]), whereas in the case whenk depends onx andu, since it is
not possible in general to obtain the existence through the Perron’s method we use a Bernstein type meth
proper approximation argument that we explain later.

Throughout this section we assume thatΩ satisfies (H3). We recall that under (H3) the boundary data
assumed in a classical sense by the viscosity subsolutions and supersolutions of (DP), and the conditio
and (3.13) are satisfied.

We introduce the following notation: forγ > 0 we set

Ωγ := {
x ∈ Ω: d(x) < γ }.

We observe that since∂Ω is of classC2 then forγ > 0 small the distance functiond ∈ C2(Ωγ ).
We start with the following lemma.

Lemma 5.1.Assume(H3), ϕ ∈ C1,1(∂Ω). Then there areλ′ > 0, and 0 < γ ′ � γ such that for allλ � λ′ the
functionsū(x) = ϕ(x)−λd(x), andū(x) = ϕ(x)+λd(x) are respectively classical subsolution and supersolu
of (DP) in Ωγ ′ and ū(x) = ū(x) = ϕ(x) in ∂Ω . Moreoverū and ū are Lipschitz continuous inΩγ .

Proof. Let us continue to denote byϕ the smooth extension ofϕ to Ω .
Subsolution case: We show that there areγ ′ � γ andλ′ > 0 such that for allλ � λ′, ū(x) is a classical subsolu

tion of (DP) inΩγ ′ . We haveDū(x) = Dϕ(x)−λDd(x), D2ū(x) = D2ϕ(x)−λD2d(x). From the condition (3.12
and the continuity ofA∞ there isr0 > 0 such that for allx ∈ B(x0, r0) we haveA∞(−Dd(x),−D2d(x)) > 0. We
notice that

A
(
Dū(x),D2ū(x)

) = λ

[(λ−2) + (λ−1Dū(x)))2 ]2A′(λ−1Dū(x),λ−1D2ū(x), λ
)

N
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and A′(λ−1Dū(x),λ−1D2ū(x), λ) converges toA∞(Dd(x),D2d(x)) uniformly in B(x0, r0) as λ → ∞. Thus
there existsλ0 := λ(x0, r) such that for allλ � λ0 and for all x ∈ B(x0, r0) the matrix A′(λ−1Dϕ(x) −
Dd(x),λ−1D2ϕ(x) − D2d(x)) is definite positive as well. Since∂Ω is compact, we can findγ ′ < γ and λ′
such that for allλ � λ′ and for allx ∈ Ωγ ′ the matrix the matrixA(Dū(x),D2ū(x)) is definite positive.

On the other hand one sees that

h
(
Dū(x)

)
det

(
B

(
Dū(x),D2ū(x)

)) → 2n det
(
B∞

(
Dd(x),D2d(x)

))
asλ → ∞ uniformly in x ∈ B(x0, r0). Since∂Ω is a compact set, the condition (3.13) implies that forλ large
enough and for allx ∈ Ωγ ′ we have(−h

(
Dū(x)

)
detB

(
Dū(x),D2ū(x)

))1/n
> k1/n

(
x, ū(x)

)
and in particular(

detA
(
Dū(x),D2ū(x)

)
f −1(Dū(x)

))1/n
> k1/n

(
x, ū(x)

)
.

Thus forλ > 0 large enough and for allx ∈ Ωγ ′ we get

F∗
(
x, ū(x),Dū(x),D2ū(x)

)
= f 1/n

(
Dū(x)

) · {(−detA
(
Dū(x),D2ū(x)

)
f −1(Dū(x)

))1/n + k1/n(x, ū)
}

< 0.

This proves that̄u is a classical subsolution of (DP) inΩγ ′ .
Supersolution case: Let us consider the functionū(x) = ϕ(x) + λd(x). We first notice that for every

x0 ∈ ∂Ω , A∞(Dd,D2d) = −A∞(−Dd,−D2d) is not semidefinite positive. This means that there exists at
one eigenvalue which is strictly negative. By analogous arguments as above one can show that forλ > 0 large
enough and forγ ′ small the matrixA(Dϕ(x) + λDd(x),D2ϕ(x) + λD2d(x)) is not semidefinite positive for a
x ∈ Ωγ ′ . This implies thatF ∗(x, ū,Dū,D2ū) = +∞. Finally the Lipschitz continuity of̄u andū follows from the
fact thatϕ ∈ C1,1(Ωγ ) andd ∈ C2(Ωγ ). Thus we can conclude.�

Next we prove the Lipschitz continuity of the solution to (DP) under the assumption thatk does not depen
onx.

Theorem 5.1(Thex-independent case). Assume(H2)–(H6), ϕ ∈ C1,1(∂Ω). Then there exists a unique Lipsch
continuous viscosity solutionu of (DP).

Proof. Let us continue to denote byϕ the smooth extension ofϕ to Ω . The existence of a continuous solutionu to
(DP) follows from Corollary 4.1. Moreover by comparingu with the barriers defined in Corollary 4.1 one gets t
||u||∞ < R for someR > 0. Now we consider the functions̄u and ū defined in Lemma 5.1. We havēu = u = ū

on∂Ω , andū � u � ū ond(x) = γ ′ providedλ > (||u||∞ +||ϕ||∞)/γ ′. Theorem 4.2 yields that̄u � u � ū in Ωγ ′ .
To show the Lipschitz continuity ofu we adapt the method of translations (see [16]). Givenh ∈ R

N , the function
u(· + h) is a viscosity solution of the same equation as that foru but set inΩ − h, since the equation does n
depend onx. Theorem 4.2 and Remark 4.1 yield

sup
Ωγ ′∩(Ωγ ′−h)

∣∣u − u(· + h)
∣∣ � sup

∂(Ωγ ′∩(Ωγ ′−h))

∣∣u − u(· + h)
∣∣c

� sup
∂(Ωγ ′∩(Ωγ ′−h))

max
{∣∣ū − ū(· + h)

∣∣, ∣∣ū − ū(· + h)
∣∣}

� C|h|.
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Thusu is Lipschitz continuous inΩγ ′ . Next we show that this implies thatu is Lipschitz continuous inΩ . Indeed
by Theorem 4.2 and Remark 4.1 we have

sup
Ω∩(Ω−h)

∣∣u − u(· + h)
∣∣ � sup

∂(Ω∩(Ω−h))

∣∣u − u(· + h)
∣∣. (5.1)

We estimate the l.h.s of (5.1). Ifh � γ ′, then sup∂(Ω∩(Ω−h)) |u−u(·+h)| � C|h| by the above estimates. Ifh > γ ′

we have|u(x) − u(x + h)| � 2||u||∞ � 2||u||∞ h
γ ′ . In any case we get

sup
Ω∩(Ω−h)

∣∣u − u(· + h)
∣∣ � C|h|,

and we can conclude.�
Proof of Theorem 1.2. In view of (2.3) and of (2.4), the Dirichlet problem (1.2) is equivalent to (DP). He
Theorem 1.2 follows from Theorem 5.1.�

Next we prove the existence of a Lipschitz continuous solution to (DP) under more general conditions ok for
which we cannot applying directly the Perron’s method not having a comparison result. To this end we use
Bernstein method” introduced by Barles in [3] to obtain gradient bound for viscosity solutions to fully non
pde’s. Roughly speaking in [3] it is shown that if a continuous degenerate elliptic operatorG :Ω ×R×R×SN → R

satisfies in a neighborhood of the set of{(x,u,p,M): |u| � R, |p| � L,G = 0} the condition

DxG · p + DuG|p|2 − gDMG · M2 > α > 0 (5.2)

for some constantsα,g > 0 andL large and for allR > 0 then any viscosity solution ofG = 0 satisfies

sup
Ω

∣∣Du(x)
∣∣ � max

(
L,sup

∂Ω

∣∣Du(x)
∣∣). (5.3)

Next we will use the hypothesis (H8).

Remark 5.1.We observe that

(i) if k ∈ C1(Ω × R, [0,+∞)), then (H8) is satisfied if for instance one the following conditions hold:
(1) Du > 0;
(2) |Dxk| � LDuk + g̃nk1+1/n for someL > 0 andg̃ < g0.

(ii) if k satisfies (H5), (H6) and (H7), then it satisfies (H8) too. Hence, the following approach provides a
native proof of Theorem 5.1 for Lipschitz continuousk.

We first show that ifk ∈ C1(Ω × R, [0,+∞)) satisfies (H8) for someα > 0, then a Lipschitz continuou
solution of (DP) satisfies (5.3).

To this end we denote

F̃ (x,u,p,X) = −det
(
A(p,X)

) + k(x,u)f (p).

We start with the following lemma in which we prove that ifk ∈ C1(Ω × R, [0,+∞)) satisfies (H8) for some
α > 0, then the operator̃F satisfies the condition (5.2) in a neighborhood of the setV (R,L) = {(x,u,p,M):
|u| � R, |p| � L,F(x,u,p,M) = 0}.

Lemma 5.2.If k ∈ C1(Ω × R, [0,+∞)) satisfies(H8) for someα > 0, then the condition(5.2) is satisfied bỹF in
a neighborhoodW(R,L) of the setV (R,L).
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ve
Proof. We start by showing that (5.2) holds in the setV (R,L).
We first observe that if(x,u,p,M) ∈ V (R,L) then we haveA(p,X) � 0 andF̃ (x,u,p,X) = −detA(p,X)+

k(x,u)f (p) = 0. The following equalities hold.

DxF̃ = f (p)Dxk(x,u), DuF̃ = f (p)Duk(x,u). (5.4)

Now setΣ(p) = σ̄T(p)σ (p), whereσ(p) is the matrix defined in (4.3). We notice thatΣ(p) � 0 with minimum
eigenvalue identically zero and

Σ(p) � TrΣ(p) · IN , (5.5)

where TrΣ(p) = 2n+ |a(p)|2 + |b(p)|2 = 2n+ (
∑2n

1 p2
j )/(1+ p2

N).

By denotingA∗(p,X) the cofactor matrix ofA(p,X), recalling that detA∗(p,X) = (detA(p,X))n−1 and using
the inequality (5.5), we have

−DMF̃ · M2 = Tr
[(

A∗(p,M)
)
σ(p)M2σ̄T(p)

]
� n

(
det

[(
A∗(p,M)

)
(p)σ (p)M2σ̄T])1/n

� n
[
TrΣ(p)

]−1/n(det
[(

A∗(p,M)
)
σ(p)MΣ(p)Mσ̄T(p)

])1/n

= ndet
(
A(p,M)

)1+1/n[TrΣ(p)
]−1/n = n

(
k(x,u)f (p)

)1+1/n[TrΣ(p)
]−1/n

. (5.6)

In (5.6) we use the fact that for all Hermitian matricesA,B � 0 we have

det(AB) �
(

Tr(AB)

n

)n

.

Moreover we have

f 1/n(p)
[
TrΣ(p)

]−1/n =
[
2
(1+ |p|2)(n+2)/(2n)

(1+ p2
N)1/n

][
(1+ p2

N)1/n

(2n+ |p|2 + (2n− 1)p2
N)1/n

]
� 2

(1+ |p|2)(n+2)/2n)

(2n(1+ |p|2))1/n
�

(
1+ |p|2)1/2

. (5.7)

We set

I (x,u,p) = Dxk · p + Duk|p|2
(1+ |p|2)1/2

+ gnk1+1/n. (5.8)

We recallk ∈ C1(Ω × R, [0,+∞)) and therefore the mapI is a continuous function. By combining the abo
estimates and using the fact thatf (p)(1+ |p|2)1/2 � 1, for all (x,u,p,M) ∈ V (R,L) we obtain

DxF̃ · p + DuF̃ |p|2 − g0DMF̃ · M2

= f (p)Dxk(x,u) · p + f (p)Duk(x,u) + g0n
(
k(x,u)f (p)

)1+1/n[TrΣ(p)
]−1/n

� f (p)
(
1+ |p|2)1/2

I (x,u,p) � α > 0.

The above estimate holds in a neighborhood ofV (R,L) by continuity. �
Proposition 5.1(Weak Bernstein Method). Assume thatk ∈ C1(Ω ×R, [0,+∞)) satisfies(H5) and(H8) for some
α > 0. Letu be a continuous solution of(DP)such that∣∣u(x) − u(w)

∣∣ � K|x − w|, for all (x,w) ∈ ∂(Ω × Ω). (5.9)

Then we have∣∣u(x) − u(w)
∣∣ � �C|x − w|, for all (x,w) ∈ Ω × Ω

where�C = max(L,K).



F. Da Lio, A. Montanari / Ann. I. H. Poincaré – AN 23 (2006) 1–28 23

at

ri
Proof. We follow the arguments of [3, Theorem 1]. We consider the function

Φ(x,w) := u(x) − u(w) − C|x − w|. (5.10)

We assume by contradiction that for allC > max(L,K) there is a point(x,w) such thatΦ(x,w) > 0. We observe
that because of (5.9), ifC > 0 is large then(x,w) ∈ Ω ×Ω . We setψ(x−w) = C|x−w|. There existX,Y ∈ S(N)

such that, ifp := Dψ(x − w), we have

(p,X) ∈ J 2,+u(x), (p,Y ) ∈ J 2,−u(w),(
X 0
0 −Y

)
�

(
D2ψ(x − w) −D2ψ(x − w)

−D2ψ(x − w) D2ψ(x − w)

)
(5.11)

and

F∗
(
x,u(x),p,X

)
� 0 and F ∗(w,u(w),p,Y

)
� 0. (5.12)

From (5.11) it follows thatA(p,Y ) � A(p,X) � 0. Moreover for allt ∈ [0,1] we haveA(p, tX + (1− t)Y ) � 0
as well. Moreover from (5.12) it follows that we have

−det
(
A(p,X)

) + k
(
x,u(x)

)
f (p) � 0 and − det

(
A(p,Y )

) + k
(
w,u(w)

)
f (p) � 0.

We setF̃ (x,u,p,M) = −det(A(p,M)) + k(x,u)f (p). We consider the functiong defined by

g(t) = F̃
(
tx + (1− t)w, tu(x) + (1− t)u(w),p, tX + (1− t)Y

)
.

Sinceg(t) is continuous there aret1 � t2 such thatg(t1) � 0, g(t2) � 0 andg(t) ∈ W(R,L) for all t ∈ [t1, t2]. We
assumẽF smooth. We setγ = C/|x − w|. By using (5.10) and (H5) we get

g′(t) = 1

γ

{
DxF̃ · p + DuF̃ |p|2 + γDMF̃ · (X − Y) + γDuF̃ · Φ(x,w)

}
� 1

γ

{
DxF̃ · p + DuF̃ |p|2 + γDMF̃ · (X − Y)

}
. (5.13)

By Lemma 2 in [3] we have

γ (Y − X) � g0
(
tX + (1− t)Y

)2
.

Hence from Lemma 5.2 it follows thatg′(t) > 0 for t ∈ [t1, t2], but this is in contradiction with the fact th
g(t1) � 0, g(t2) � 0. �

Let us mention that whenk is only Lipschitz continuous and (H8) holds with someα > 0 then the above a prio
estimate comes from an approximation argument.

More precisely, let̃k be the nonnegative function defined onR
N × R such that̃k(x,u) = k(x,u) if x ∈ Ω and

k̃(x, u) = 2( α
gn

)n/(n+1) if x /∈ Ω . We set

Ĩ (x, u,p) = Dxk̃ · p + Duk̃|p|2
(1+ |p|2)1/2

+ gnk̃1+1/n.

We denote bykε andIε the convolution with respect of the variables(x,u) of k̃ andĨ respectively. With a positive
mollifier Jε and by (DP)ε the Dirichlet problem (DP) forkε. The following result holds.

Corollary 5.1. Assume thatk satisfies(H7) and that(H8) holds for someα > 0 and for a.e.(x,u) ∈ Ω × R.
Suppose that for anyε > 0 there is a continuous solutionuε of (DP)ε. If the family(uε) is equibounded inΩ and
there is a positive constantK such that for everyε > 0∣∣uε(x) − uε(w)

∣∣ � K|x − w|, for all (x,w) ∈ ∂(Ω × Ω) (5.14)
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then, up to a subsequence,uε uniformly converges to a Lipschitz continuous solutionu of (DP) on the compac
subsets ofΩ .

Proof. We claim that ifk is Lipschitz continuous and satisfies condition (H8) a.e. then, for allε > 0 small,kε =
k̃ ∗ Jε satisfies condition (H8) for some 0< ᾱ < α. The thesis will then follow by applying Proposition 5.1 touε,
by remarking that the constant̃C is independent ofε, and by using the Ascoli–Arzelà Theorem. To prove the cla
we observe that by (H8) and by the construction ofĨ we haveĨ (x, u,p) � α, for almost everyx ∈ R

N, |u| � R,
|p| � L. Moreover sincekε converge uniformly tok for all x ∈ Ω, |u| � R then for allx ∈ Ω, |u| � R, |p| � L we
have

α � Iε(x,u,p) = Dxkε · p + Dukε|p|2
(1+ |p|2)1/2

+ gn(k1+1/n ∗ Jε)(x,u)

= Dxkε · p + Dukε|p|2
(1+ |p|2)1/2

+ gnk1+1/n
ε + gn

(
(k1+1/n ∗ Jε)(x,u) − k1+1/n

ε (x,u)
)

� Dxkε · p + Dukε|p|2
(1+ |p|2)1/2

+ gnk1+1/n
ε + gnCε

for some positive constantC depending on the Lipschitz constant ofk in Ω ×[−R,R]. Then, forε small, we have
α − gnCε > α

2 and we conclude. �
We explicitly remark that ifk is Lipschitz continuous and satisfies (H1) then (H8) is clearly satisfied a.e. for

α > 0. Moreover in this case the existence and uniqueness of a continuous solution follows from Corolla
Thus in view of Corollary 5.1 in order to prove the Lipschitz regularity of the solution it is enough to verify
(uε) is equibounded and the condition (5.14) holds. This is the purpose of the following

Theorem 5.2 (The strict monotone case). Assume(H1)–(H4), (H7), ϕ ∈ C1,1(∂Ω). Then there exists a uniqu
Lipschitz continuous viscosity solutionu of (DP).

Proof. For allε > 0 small, letuε be a solution of (DP)ε. The existence of a continuous solutionuε of (DP)ε follows
from Corollary 4.1, because forε smallkε satisfies (H1)–(H4), (we observe that||kε||∞ � ||k||∞). The family(uε)

is equibounded inΩ by a positive constantM0 because forε small we havev � uε � v, wherev, v are the functions
defined in Corollary 4.1. Because of Corollary 5.1 in order to prove that the family(uε) is equicontinuous, it is
enough to show that the condition (5.14) is satisfied for someC > 0 independent ofε. Let us consider the functio
ū andū defined in Lemma 5.1. In Lemma 5.1 it is shown that forλ largeū is a supersolution of (DP) andu is a
strict super subsolution of (DP) inΩγ for someγ > 0 small. Moreover they are Lipschitz continuous inΩγ with
||Dū||∞, ||Dū||∞ � �C, for some�C > 0 depending onλ. One can readily see that ifε > 0 is small then̄u andū are
super and subsolutions of (DP)ε as well. If we takeλ > (M0 + ||ϕ(x)||∞)/γ , thenū(x) � uε(x) � ū(x) for all x

such thatd(x, ∂Ω) = γ . Thus by Theorem 4.1 we haveū(x) � uε(x) � ū(x) in Ωγ .
Take (x,w) ∈ ∂(Ω × Ω) and suppose thatx ∈ ∂Ω. There are two possibilities: eitherd(w, ∂Ω) � γ or

d(w, ∂Ω) > γ . If d(w, ∂Ω) � γ then

uε(x) − uε(w) � ū(x) − u(w) � �C|x − w|.
If d(w, ∂Ω) > γ then|x − w| > γ and therefore

uε(x) − uε(w) � 2‖uε‖∞ � 2‖uε‖∞
|x − w|

γ
.

We observe that the Lipschitz constant of the solutionuε depends on the Lipschitz constant of the barriersū, ū,
on the functionk and on theL∞-norm of the solutionuε. Thus if we chooseC = max(�C,2M0/γ ), the condition
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(5.14) holds. Since (H8) hold a.e., the conclusion follows from Corollary 5.1 and by the uniqueness of a v
solution of (DP) proved in Corollary 4.1.�
Proof of Theorem 1.1. The proof is contained in Corollary 4.1 and in Theorem 5.2.�

In the general case, namely whenk is not strictly monotone with respect to theu variable, we prove the existenc
by approximating the operatorF by a sequence of operatorsFε which are strictly monotone with respect tou. More
precisely for allε > 0 we define

kε(x,u) = εq(u) + k(x,u);
whereq :R → [0,+∞) is a bounded function of classC1 such thatq ′ > 0. We consider

Fε(x,u,p,X) :=
{(

kε(x,u)
)1/n

f 1/n(p) − (
detA(p,X)

)1/n
, if A(p,X) � 0,

+∞, otherwise
(5.15)

and the Dirichlet problem{
Fε(x,u,Du,D2u) = 0 in Ω,
u(x) = ϕ(x) in ∂Ω,

(DPε)

From Theorem 4.1 it follows that for allε > 0 there is a unique viscosity solution of (DP)ε which is Lipschitz
continuous inΩ by Theorem 5.2. The main goal is to show that the family(uε)ε is equibounded and equicontinuo
in Ω . We denote

F̃ ε(x,u,p,X) = −det
(
A(p,X)

) + kε(x,p)f (p).

We start with the following lemma which is the analogous of Lemma 5.2.

Lemma 5.3.Assumek ∈ C1 satisfies(H8). Then, for allε > 0 small, kε satisfies the condition(1.8) for some
positiveαε depending onε.

Proof. We set

I ε(x,u,p) = Dxk
ε · p + Duk

ε|p|2
(1+ |p|2)1/2

+ gn(kε)1+1/n = Dxk · p + [Duk + εq ′(u)]|p|2
(1+ |p|2)1/2

+ gn(kε)1+1/n.

Sinceq, q ′ > 0, if L > 1 is large enough we have

Iε(x,u,p) � I (x,u,p) + ε inf q ′/2+ gn(ε inf q)1+1/n � ε inf q ′/2+ gn(ε inf q)1+1/n.

Hence the conclusion follows by choosing for instanceαε = ε inf(q ′)/4 and by arguing exactly as in the proof
Lemma 5.2. �

Next we show that the familyuε is equibounded and verifies (5.9) with some constant independent ofε.

Proposition 5.2.Assume(H3)–(H5), (H7), ϕ ∈ C1,1(∂Ω). Then there is a constantK > 0 such that for allε small
we have

(i) ||uε||∞ � K ;
(ii) |uε(x) − uε(y)| � K|x − y|, for all (x, y) ∈ ∂(Ω × Ω).

Proof. To show (i) it is enough to observe that the functionsv andv which have been considered in Corollary 4
are still sub and supersolutions of (DP)ε. Indeed we observe that by (H4) the functionv is a strict subsolution o
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F = 0, thus sinceq is bounded, for allε small enough we haveFε � 0. The functionv is still a supersolution
Fε = 0, sinceq is positive.

The second property (ii) is a consequence of the fact that the functionsū andū built in Lemma 5.1 are still loca
barriers for (DP)ε. The proof of this claim follows again from the facts that the functionū is a strict subsolution o
F = 0 and the functionq is positive and bounded. Thus the conclusion follows by the same arguments of the
of Theorem 5.2. �

By combining Corollary 5.1, Lemma 5.3 and Proposition 5.2 it follows

Corollary 5.2. Assume(H3)–(H5), (H7)–(H8), ϕ ∈ C1,1(∂Ω). For all ε > 0 let uε be the unique viscosity solu
tion of (DP)ε. Then there is a constantC > 0 depending onK,L, ||k||∞, (K,L being the constant appearin
respectively in Proposition5.2and in condition(H8)) such that forε small we have∣∣uε(x) − uε(y)

∣∣ � C|x − y|, for all (x, y) ∈ Ω × Ω.

From Proposition 5.2 and Corollary 5.2 it follows that the familyuε is equicontinuous and equibounded inΩ .
Thus by applying Ascoli–Arzelà theorem we get the existence of a Lipschitz continuous solution of (DP)
the case thatk satisfies (H5). More precisely we have

Theorem 5.3.Assume(H3)–(H5) and (H7)–(H8) ϕ ∈ C1,1(∂Ω). Then there exits a Lipschitz continuous solut
of (DP).

Proof. For all ε > 0 let uε be the unique viscosity solution of (DP)ε. From Proposition 5.2 and Corollary 5.2
follows that the familyuε is equicontinuous and equibounded inΩ . Thus by applying Ascoli–Arzelà theorem the
is a subsequenceuεj

which converge uniformly asj → ∞ to a functionu which is Lipschitz continuous inΩ .
SinceFε converges locally uniformly toF , by the stability of viscosity solutions with respect to the uniform
convergence ofFε to F , we get thatu is a viscosity solution of (DP) and we conclude.�
Proof of Theorem 1.3. The proof is contained in Theorems 5.3 and 4.3.�

6. Nonexistence results on balls

In this section we present some nonexistence results which show that condition (H4) cannot be sign
relaxed when the domainΩ is a ball. We will denote byν(x) the inner normal vector to∂Ω atx ∈ ∂Ω . First of all,
by following the argument in [6, Theorem 1] and in [19, Corollary 1.1], we easily have

Proposition 6.1.Let B = B(R) ⊂ R
N be a ball of radiusR and letu ∈ C0,1(B) be a viscosity solution ofF = 0.

Then necessarily

R � sup
Ω×R

(1/k)1/n. (6.1)

Proof. For 0< r < R we have that

φ(x) = C − (
r2 − |x|2)1/2
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r

ot

ds
is in C2(B(r)), and ∂φ
∂ν

is −∞ on the boundary. Sinceu ∈ C0,1(B) thenu − φ has a maximum point at an interio
point x0 ∈ B(r). By definition of a viscosity solution ofF = 0, we have thatF(x0, u(x0),Dφ(x0),D

2φ(x0)) � 0,
i.e.

k
(
x0, u(x0)

)
� detA(Dφ,D2φ)

f (Dφ)
= 1

rn
,

for all r < R. By letting r → R we get (6.1). �
The estimate (6.1) can be obviously regarded as a first nonexistence result:If (6.1)does not hold, then we cann

find a viscosity solutionu ∈ C0,1(Ω) of F = 0. We shall prove a stronger result whenΩ is a ball. Our main tool is
the following variant of the comparison principle.

Proposition 6.2. Let Ω ⊂ R
N be a bounded domain andΓ ⊆ ∂Ω be relatively open and of classC1. If u ∈

C(Ω) ∩ C0,1(Ω ∪ Γ ) is a viscosity solution ofF � 0 andv ∈ C(Ω) ∩ C0,1(Ω) is a viscosity solution ofF > 0
such that for allx ∈ Γ

lim inf
t→0+

v(x + tν(x)) − v(x)

t
= −∞ onΓ

andu � v in ∂Ω \ Γ , thenu � v in Ω .

Proof. By the comparison principle we have supΩ(u − v) � supΓ (u − v)+, but onΓ we have

lim inf
t→0+

v(x + tν(x)) − v(x)

t
= −∞.

Hence,u − v cannot achieve a maximum value onΓ . Thenu � v on ∂Ω . �
Now assume thatk > 0 is independent ofu andu ∈ C0,1(B(R)) is a viscosity solution ofF = 0 in B(R).

Assume that there is a pointξ0 ∈ ∂B such that

k(ξ0) >
1

Rn
. (6.2)

It is not restrictive to assumeξ0 = 0 and that the interior unit normal to∂B atξ0 is (0n,0n,1). We shall show that the
boundary value of the functionu cannot be arbitrarily onξ0. By the continuity ofk we can assume that (6.2) hol
in a neighborhood ofξ0. In particular there is a positivea < R such that (6.2) holds inBa = {(x, y, t) ∈ B: t < a}.
Next define the function

w(x,y, t) = m + ψ(t),

wherem = sup∂B\Ba
u, ψ ∈ C2((a,2R)) is such thatψ(2R) = 0,ψ′ � 0,ψ′(a) = −∞. In B \ Ba we have that

F(ξ,w,Dw,D2w) = k(ξ) > 0. By Proposition 6.2 we have

sup
B\Ba

u � m + ψ(a). (6.3)

Now we consider

wa(ξ) = ma − (
R2 − |ξ − ξ ′|2)1/2 + Ma

with ma = supB∩{t=a} u,Ma = supB∩{t=a}(R2 − |ξ − ξ ′|2)1/2 andξ ′ is the center of the ballB. In Ba we have
F(ξ,wa,Dwa,D

2wa) = k(ξ) − R−n > 0. Proposition 6.2 yields that

supu � ma + Ma. (6.4)

Ba
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Finally, by applying estimate (6.3) toma in (6.4) we obtain

u(ξ0) � m + ψ(a) + Ma = sup
∂B\Ba

u + ψ(a) + Ma. (6.5)

We remark that lima→0 Ma = 0 and that we can chooseψ such that lima→0 ψ(a) = 0 [13, Eq. (14.67), p. 348]
Hence the estimate (6.5) shows thatu cannot be prescribed arbitrarily on∂Ω . Thus we have proved the followin
nonexistence theorem.

Theorem 6.1(Nonexistence result on balls). Assumek > 0 is independent ofu and there is a pointξ0 ∈ ∂B such
that (6.2) holds. Then there isϕ ∈ C∞(�B) such that the Dirichlet problem(DP) (or (1.2)) is not solvable in the
class of Lipschitz continuous viscosity solution.
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