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Abstract

In this paper we prove comparison principles between viscosity semicontinuous sub- and supersolutions of the generalized
Dirichlet problem (in the sense of viscosity solutions) for thevi Monge—Ampeérequation. As a consequence of this result
and of the Perron’s method we get the existence of a continuous solution of the Dirichlet problem related to the prescribed Levi
curvature equation under suitable assumptions on the boundary data and on the Levi curvature of the domain. We also show
that such a solution is Lipschitz continuous by building Lipschitz continuous barriers and by applying a weak Bernstein method
introduced by Barles in [Differential Integral Equations 4 (2) (1991) 241].
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé

Dans cet article, nous prouvons des principes de comparaison entre sous et sursolutions du probléme de Dirichlet généralisé
(dans le sens des solutions de viscosité) pour I'équatidresieMonge—Ampére. Comme conséquence de ces résultats, nous
obtenons I'existence d’'une solution continue du probléme de Dirichlet associé a I'équation de la courbure de Levi sous des
hypothéses convenables sur les conditions au bord et sur I'ouvert. Nous prouvons que la solution est lipschitzienne par la
méthode de Bernstein faible introduite par Barles dans [Differential Integral Equations 4 (2) (1991) 241].
© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

If M is a hypersurface ifR”, and if IT is its second fundamental form, then the eigenvaluesl/ cdre the
principal curvatures oM. The trace oflT is called the mean curvature & and the determinant aff is the
Gauss—Kronecker curvature. The Dirichlet problem for a convex graph with prescribed curvature is classical (see
for example [13]). It has been considered by many authors in the past (see [24] for a list of references), starting
from the pioneering works by A.D. Aleksandrov and |.Ya. Bakelman. For a real hypersutface&” 1, let H
denote the:-dimensional complex subspace of the tangent spasé. tdhe restriction of the second fundamental
form of M on H is a Hermitian formA, which is called the Levi form. More precisely, M is a real manifold of
classC? which is locally defined by, then the Levi formA(p) is the restriction to the complex tangent spate

of the Hermitian form associated with the complex Hessian mé&tBss o = ( 823[ a%p )';;1: 1 0f p. The Levi form is

of great importance in the study of envelopes of holomorphy in the theory of holomorphic functiis’i{see
[11,14,18,21] for details on this matter). By using the biholomorphic invariant analogue of Euclidean convexity
(see for example [18]), it can be shown that the Levi form is the biholomorphic invariant part of the real Hessian
of the defining function. Sincet is obtained from part of the second fundamental formaf one can expect

that it will have some properties similar to curvatures. Howewxeitself depends on the defining function for the
domain. This obstacle can be avoided as followa/Ifs given locally aqp = 0} with 3p # 0, then one can define

the normalized Levi form a& (p) = %. Easy calculations show thatis independent of the defining function

p and depends only on the domain (Da proof of this assertion can be found in [19, Proposition A.1]). Bedford and
Gaveau [6] were the first to remark this fact and they used the normalized Levi form to bound the domain over
which M can be defined as the graph of a function of ck&ésThe signature of. is a biholomorphic invariant

of M, althoughL itself is not invariant. We recall that a domdip < 0} is pseudoconvex (strongly pseudoconvex)

if the Levi form p (or equivalently the normalized Levi form) is semidefinite positive (positive definite) on the
boundary. The eigenvalues bfcorrespond to mean curvatures in certain complex directions and, more generally,
symmetric functions in the eigenvalues bfare complex curvatures @ff. The product of the eigenvalues bf
corresponding to the complex version of the Gauss—Kronecker curvatifeisfthe scalar functiok,, (-) defined

by

0 d1p(2) - 9P (2)
d1p(@) 933 - Ve ()

kw () = —|9p ()| 7" det (1.1)

Ont10(2) 0,972 -+ 0y ygp7gp(2)
We will call kj(z) the totalLevi curvatureof M at a pointz € M. In (1.1) 3;, 95, 0p7 denote respectively the
derivatives%, % r)z?—;z anddp = (d1p, ..., d,+10). TO convince the reader that the total Levi curvature is the
J J J

analogous of the Gauss curvature for the complex structure, we propose the following example.

Example 1.1(Total Levi curvature of a ball If M is the ball of radius- with center at zero, then by choosing as
defining functiono = |z1|2 + - - - + |zn41|2 — r2, an easy calculation shovkg; = r .

However, a cylinder irC"*1 may not have zero total Levi curvature, as the following example shows.

Example 1.2(Total Levi curvature of a cylindgrLet B(0,r) C C" x R be a ball of radius. We consider the
following cylinder

—\2
B(O,r)xiR:{(z,w)e(C”x(C: |Z|2+(w—i2—w> —r2<0}.
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Itis easy to check that

2 2
R 1
r<+ (Rew) <

1
o SkaBonxir (2, w) = ——F " <

2rt
for every(z, w) € dB(0,r) x iR.

If M isthe graph of a function: 2 — R, 2 C C" x R, we say that: is Levi convexn £2 if epi(u) = {(z, w) €
C"*L: Imw > u(z, Rew)} is pseudoconvex at every point &f. In this situation for everyz, w) € epi(u) we have

0 Uz URew —1/2
kvt (z, w) = —2"F2(1+ | Duf?)~ "2/ det( U, s - )
URew +i/2 Uz Uww

where all the partial derivatives af are computed atz, Rew). The determinant on the right-hand side is often
called theLevi Monge—Ampéreperator LMA(u), to emphasize the comparison with the Euclidean Monge—
Ampeére operator. Even if the Levi curvature has some geometric properties similar to the Euclidean Gauss
curvature we must stress that thevi Monge—Ampéreperator is never strictly elliptic, not even on the class

of strictly convex functions. In this paper we consider the Dirichlet problem of finding a non parametric hyper-
surface with prescribed total Levi curvatuteon a domain2 ¢ C" x R ¢ C" x C where£2 x iR is strongly
pseudoconvex. The problem can be formulated as follows. Gived (3£2) andk > 0 continuous, find: € C(£2)

Levi convex such that

ulge =¢ and LMA®u) =k(, u)(1-|- |Du|2)(n+2)/2

on 2. (1.2)

In the sequel we denote b§u and D?u the gradient and the Hessian matrix:ofrespectively. The Dirichlet
problem for LMA for n = 1 was considered first by A. Debiard and Gaveau [12], who gave an estimate for the
modulus of continuity of the solution and by Z. Slodkowski and G. Tomassini in [22].

Z. Slodkowski and G. Tomassini defined in [23] viscosity solutions of the Dirichlet problem (1.2)(With
|Du|?) raised to the 312 power. The technique developed in [23] is to reduce (1.2) to a Bellman problem for
a family of quasilinear degenerate elliptic operatqr and to provide a priori estimates of the solutions of the
uniformly elliptic equation

Ly() + £ Au = kY™ (14 | Duf?)?

independent ok and ofv. The main result is the existence of a Lipschitz continuous viscosity solutitm

(1.2). However, the method in [23] requires very strong conditions and on the growth of its first and second
derivatives (see [23, Theorem 2.4 and condition (2.5), p. 488]). In addition such a solution is shown to be unique
only in the particular cask = 0. We reacll that ifu is the solution of (1.2) withk = 0, then forA > maxg u, the
setI'}(u) = {(x,is) € 2 x iR:u(x) < s < A} is both the holomorphic hull and the envelope of holomorphy of
Cop = (£2 x {ir}) U {(x,is) € 32 x iR: ¢(x) < s < A}. In this paper we consider also the casg 0 which is

seems to be significative above all from the point of view of the regularity theory of pde’s. In [20] it is shown that
LMA is degenerate elliptic in the set of Levi convex functions, namely, if are Levi convex and?u < D?v then

0< L(u) < L(v) and LMA(u) < LMA (v). Therefore one cannot expect in genef&f regularity result for this
equation. We notice that ¥ = 0 then every real function of the last variabléRew) is a solution LMA(u) = 0.

Hence, in this case the regularity of a solution comes from the regularity of the boundary data. Howey€0, if

the missing ellipticity direction can be recovered by taking into account the CR structure of the hypersurface. This
fact has been used by F. Lascialfari and the second author in [20] to prove that the Levi Monge Ampére operator
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has some hypoelliptic properties analogous to the Monge—Ampere operator. Preci€ély, denote the usual
Holder space with respect to the Euclidean metric, the following regularity result was proved in [20].

Theorem. Let 2 c R%**1 be an open set angle C®(2 x R x RZ'*1), ¢ > 0. If u € C%*(£2) is a strictly Levi
convex solution to the Levi Monge—Ampére equation

LMA (u) =g (-, u, Du), 1.3)
thenu € C*(£2).

The existence of classical solution of Eq. (1.3) for 1 is an interesting open problem while for=1 it
has been solved by Citti, Lanconelli and the second author in [7]. The main aim of this paper is to show the
existence and the uniqueness of a Lipschitz continuous viscosity solution of (1.2) under far less restrictive regularity
assumptions on the prescribed functioffo this purpose we use the main tools of the theory of viscosity solutions.
We recall that the theory of viscosity solutions, which was initiated in the early 80’s by the paper of M.G. Crandall
and P.L. Lions [8] not only provides a convenient partial differential equations framework for dealing with the
lack of the existence of classical solutions, but also leads to the correct formulation of the “generalized” boundary
conditions of fully nonlinear elliptic and parabolic pde’s. For a complete survey of the results obtained within the
theory of viscosity solutions for the first-order case we refer to the books of Bardi and Capuzzo Dolcetta [1] and
Barles [2], while for the second-order case we refer to the “User’s guide” of Crandall, Ishii and Lions [9].

In framework of viscosity solutions the standard Dirichlet boundary conditions have to be relaxed and read in
the viscosity sense as

min(—LMA(u) + 2"k (-, u)(1+ |Duf?) "2 u—¢) <0 onage (1.4)
and
max(— LMA (u) + 2k, u) (1+ |Dul?) " P77 u =) >0 onag. (1.5)

Roughly speaking, these relaxed conditions mean that the equations has to hold up to the boundary, when the
boundary condition is not assumed in the classical sense.

One of the main tools to prove the existence and the uniqueness of a continuous solution to (1.2) is to provide a
comparison principle between semicontinuous sub and supersolutions to (1.2). Indeed the existence follows easily
through the Perron’s method by Ishii [15] with the version up to the boundary obtained by the first author in [10].

Hereafter we suppose th&t ¢ R?'*1 is a bounded domain with boundary of clag$. We list below some
basic assumptions we use throughout the paper.

We assume that: 2 x R — [0, +-00) is a continuous bounded function satisfying

(H1) for all R > 0, there existd > 0, such that, for every € 2,and—R <v<u <R

Cr(u—v) <KV u) — kY, v), (1.6)

(H2) forall R > 0, for all (x, y) € £2 and|u| < R, there exists a modulus of continuiggk such thatwg(s) — 0
ass — 0T and

Ko, w) — kY (v, w)| < or(1x — D).

Conditions (H1) and (H2) will be used in Section 3 to prove a comparison principle between viscosity semicontin-
uous sub- and supersolution to the problem (1.2). In Section 4 to solve the Dirichlet problem by using the Perron’s
method we will use the following additional assumptionskcamd £2:

(H3) £2 x iR is strongly pseudoconvex and, for &dle 952, sups, g k < ks xir (£0)-
(H4) sups, g k < 1/r", wherer is the radius of the minimum sphere containi2g
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Condition (H3) will guarantee that there is no loss of boundary condition and will also allow to build local barriers
to the problem (1.2). Condition (H4) will be used to build a particular global subsolution to (1.2) and thus it will
permit to get the existence of a continuous solution by the Perron’s method.

We prove the following theorems.

Theorem 1.1(The strictly monotone case). Assu(t)}-(H4) hold. Then for any € C(952) there exists a unique
continuous viscosity solutiom of (1.2). Moreover, ifc € C%1(2 x W) for everyW cc R, andg € C11(32),
thenu € CO1(2).

In order to include the case when the prescribed fundtimnconstant, (H1) may be modified and relaxed to
(H5) forall R > 0, foreveryx € 2,and—R<v<u <R
0<k(-,u) —k(-,v). a.7)
Indeed, whert is constant inx, i.e.
(H6) k(x,u)=k(u) forall (x,u) € 2 x R,
the result can be strengthened as follows.

Theorem 1.2(The x-independent caseAssume thafH2)—(H6) hold. Then, for every € C(942), there exists a
unique continuous viscosity solutiarof (1.2). Moreover, ifp € C11(32), thenu € C%1($2).

The proofs of Theorems 1.1 and 1.2 follow classical arguments from the theory of viscosity solutions (see
e.g. [9]). The Lipschitz continuity of the solution is obtained by building local barriers on the boundary and by
adapting to our setting the weak Bernstein method, which was introduced by Barles in [3] to get gradient bound
for viscosity solutions to fully nonlinear degenerate elliptic pde’s.

If in addition the prescribed functiohsatisfies

(H7) k e CO1(2 x W) for everyW CC R,
and

(H8) there arex > 0, L > 0 such that
Dk - p+ Dyk|p|?
(1+1|p1?1/?

for almost every(x, u) € £2 x R and for all|p| > L, for someg < go, wheregg is the universal constant

V22-vV2) W2+ 1)L,

+ gnk™n > o (1.8)

we prove the existence of a solution of (1.2) by an approximation argument. More precisely, by using local barriers
and the weak Bernstein method, we get a priori estimates of the Lipschitz constant and.gf-th@em of the
solution of the approximating problem. The result is

Theorem 1.3(The Lipschitz continuous casessumégH3)-(H5) and (H7)-(H8) hold. For everyp € C11(32)
there exists a Lipschitz continuous viscosity solutiaf (1.2). Moreover, ik > 0, then the solution is unique.
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We should stress that for general fully nonlinear pde’s the weak Bernstein method requires the inequality in
(1.8) to hold for somex > 0. Because of the particular structure of the Levi Monge—Ampére operator here the
constanty can be zero.

The uniqueness statement in Theorem 1.3 is obtained via a comparison principle between continuous sub- anc
supersolutions. In the cage> 0 a strong comparison principle betwe€R sub- and supersolutions has been
proved in [19], by using the fact that the nonellipticity direction can be recovered by commutations.

Our paper is organized as follows. In Section 2 we give a precise viscosity formulation of the Dirichlet problem
(1.2) and we show the equivalence with the one given in [23]. In Section 3 we analyze the loss of boundary
conditions for the Dirichlet problem (1.2). The question of loss of boundary conditions have been addressed by the
first author in [10] for general fully nonlinear second order degenerate elliptic and parabolic equations. As it is well
known, this fact may depend on various aspects such as the geometry of the domains, the structural properties of th
operator appearing in the equation and the value of the boundary data. The main result of this section is that unde|
the hypothesis (H3) there is no loss of boundary condition for the Dirichlet problem (1.2). In Section 4 we prove
comparison principles between viscosity semicontinuous sub- and supersolutions to the problem (1.2) assuming
either conditions (H1) and (H2), or (H2) and (H5)-(H6). Using a geometric property of the Levi curvature in this
section we also prove a comparison principle between continuous sub- and supersolution for Lipschitz continuous
k > 0 satisfying (H7). This result yields the uniqueness of a solution of problem (1.2) in Theorem 1.3. As a by-
product of the comparison results and the Perron’s method, under the hypothesis (H4) we get the existence of ¢
continuous solution to (1.2) for all continuous boundary data. In Section 5, we show the existence of a Lipschitz
continuous solution to (1.2). Moreover by using an approximation argument, together with some a priori estimate
for the Lipschitz constant of a solution, we also prove the existence part of Theorem 1.3. In Section 6 we give
an estimate of the maximum ball contained(nfor which the problem (1.2) is solvable in the class of Lipschitz
continuous viscosity solutions. Our argument is inspired from [6, Theorem 1] and to [19, Corollary 1.1]. Moreover,
when the domain? is a ball, we shall prove a nonexistence result which shows that conditions (H3) and (H4)
cannot be significantly relaxed.

2. Graphs with prescribed Levi curvature in a viscosity sense

In this section we give the definition of pseudoconvex domains and Levi convex functions in a suitable weak
sense. We also give a precise formulation of the Dirichlet problem (1.2) in a viscosity sense.
We start with the following

Definition 2.1. An open setD ¢ C"*! is pseudoconvex in a generalized sense if for exgry 3D and for every
¢ € C3(C"*tY) such thab. ¢ (z0) # 0 and{¢ (z) < ¢(z0)} D nearzg, we haveL(¢)(zo) > 0.

One can see that Definition 2.1 is equivalent to the definition of Hartogs pseudoconvexity given in the literature
(see e.g. [18]). More precisely we have the following equivalences.

Proposition 2.1.Let D c C"*! be an open set. The following conditions are equivalent

(1) D is pseudoconvex in a generalized viscosity sense

(2) For everyzo € D and for every quadratic polynomigl with ¢(zo) = 0, 3,¢(z0) # 0, such that{z: ¢(z) < 0}
is contained inD nearzo, thenL(¢g)(zo) > 0;

(3) D is Hartogs pseudoconvex.

Proof. The proof of Proposition 2.1 is implicitly contained in [17, Theorem 4.1.27]) and we leave details to the
reader. O
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Let M be a nonparametric hypersurface, which is the graph@# unctionu : 2 — R, where2 c R¥*+1 s
an open bounded set, namel,= {s = u(x1, y1, ..., xn, yn, 1)}. In this case the coefficients; 5 (Du, D?u) of the
Levi form L(u) are quasilinear partial differential operators whose real and imaginary parts are given by

Re(Agj(Du, D?u)) = (dxpxtt + dygy, U + A itt + apdyysu
+bg8yp,u + bpdy,u + (agap + bgbp)atzu),

(2.2)
|m(A€13(Du, Dzu)) = (wapu — Bxpy[u — ap 0y, it + a@ay,,tu
+bpdyeu — bydy i + (bpay — beay)dfu)
where
Oy, U — Oy, U Ol —0x, U — Oy, U OrlU
—ay(Du) =2 X7 by =by(Du) = — YT 59
ag = ag(Du) 15 G ¢ = be(Du) 15 G2 (2.2)
In particular for everyl =1, ..., n, the diagonal coefficienti ;;(Du, D?u) is a degenerate elliptic second order

operator, whose characteristic form
£ =(EL ... E201) — (E21+ akan1) + E2 + befan 1),

is nonnegative definite for evely e ]RZ"H, but has 2n— 1 eigenvalues identically zero. In accordance with the
notations of the Introduction, we define thevi Monge—Ampeéreperator as

LMA() = (14 u?) de{ A, 5(Du, D?u)). (2.3)

Definition 2.2. We say that a function € C2(£2) is Levi convex (strictly Levi convex) & € £2 if L(u)(£0) >0
(> 0) and Levi convex (strictly Levi convex) if? if L(u)(€) > 0 (> 0) for every¢ € £2.

Remark 2.1.The following conditions are equivalent (see [20]):

(1) u is Leviconvexing2,

.....

(3) the epigraph of: is pseudoconvex.

In [20] it has been proved thatif e C?(£2) is convex in the classical sense, theis Levi convex. In particular,
if D%u >0, thenA(Du, D?u) > 0. The converse obviously is not true.

For anyO € R™, we denote by US@)) the set of upper semicontinuous functionsirand by LSQO) the
set of lower semicontinuous functions dh

Definition 2.2 can be generalized to upper semicontinuous functions as follows (see also [23]).

Definition 2.3. We say that a function € USC(£2) is Levi convex (strictly Levi convex) in a viscosity sense at
£ € 82 if for all ¢ € C2(2) and for all local maximungg of u — ¢ we haveL (¢)(&) =0 (> 0) and Levi convex
(strictly Levi convex) in2 if L(¢)(€) >0 (> 0).
Now we give the definition of viscosity subsolution and supersolution to the following equation
detA(Du, D%u) = k(&,u) f(Du) in £2, (2.4)
wherek : 2 x R — [0, +00) is a given continuous function and

1+ |Du|2)("+2)/2
= 2"
F(Du) A+ (3u)?)
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Our definition extends the one given by Ishii and Lions in [16] in the case of the classical Monge—Ampére equation,
and it is analogous to that introduced by Slodkowski and Tomassini in [23] for the Dirichlet problem (1.2).

Definition 2.4. We say thatu € USC(£2) (resp.v € LSC(£2)) is a viscosity subsolution (resp. supersolution) of
(2.4) if for all ¢ € C?(£2) the following holds: at each local maximugg (resp. local minimum ) point of — ¢
(v — ¢) then

detA(D¢, D¢) (o) > k(0. u(%0)) f (D¢ (%0))
and

L(¢)(0) =20
(resp. eithet(¢) (&) is not semidefinite positive or

detA(D¢, D2¢)(§o) < k(Eo, u(é‘o))f(qu ($o))
and

L(¢)(é0) = 0).

We recall that for allA € S™ (the set ofr x n symmetric matrices) the following matrix identity holds:

(detA)/" — { inf{Tr(AB): BeS",B>0,detB=n""}, if A>0,

2.5
00, otherwise. (2.5)

In view of the identity (2.5), we give another viscosity formulation of the Dirichlet problem (1.2). To this purpose
we consider the operatdt: 2 x R x RY x SN — R with N = 2n + 1, defined by

FE . p.X) = {kl/"(s, u) Y7 (p) — (deta(p, X))™", if A(p, X) >0, 2.6)
+00, otherwise

and the Dirichlet problem

{F(S,u,Du,Dzu)ZO in £2, (DP)
u(§) =g(), inas2,

whereg € C(3£2) the solutioru is a scalar function anfu and D2u denote respectively its gradient and Hessian
matrix.
We setF* and F, the usc and Isc envelope &frespectively.

Definition 2.5. A functionu € USC(£2) (resp.v € LSC(£2)) is said to be a viscosity subsolution (resp. supersolu-
tion) of (DP) in a generalized sense iff the following property holds:
for all ¢ € C2(£2), at each maximum poirgy € 2 of u — ¢ we have

Fy (80, u(&0), D¢ (£0), D?p(50)) <O if £g € £2,
min(F. (€0, u(£0). D¢ (§0). D?¢ (£0)). u(é0) — ¢(60)) <O if &0 € 312,
(resp. for allp € C2(£2), at each minimum poir € 2 of u — ¢ we have

F* (%0, u(£0), D¢ (§0), D¢ (£0)) =0 if & € 2,
max(F* (%0, u(%0), Do (§0), D?¢(%0)), u(€0) — ¢(0)) =0 if &9 € 92,

Proposition 2.2. Every solutionu of (2.4) at & € £2 in the sense of DefinitioB.4 is a solution ofF = 0 in the
sense of DefinitioR.5.
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Proof. We show that every solution df = 0 in the sense of Definition 2.5 is a solution of (2.4) in the sense of
Definition 2.4, the other implication being evident. Lebe a generalized solution of (DP) and ¢et C?(£2) be
such thatx — ¢ has a maximum ajg € £2, then the inequalityF, (€0, u(£0), D¢ (£0), D¢ (£0)) < O implies that
L(¢)(&p) = 0. Thus we have

detA (D¢, D?¢) (o) > k(&0 u(€0)) f (Do (80))

and

L(¢)(0) = 0.

Now suppose that — ¢ has a minimum ag € £2 and thatF* (&, u (&), D¢ (£0), D%¢ (£0)) > 0. We distinguish
the following two cases:
(1) L(¢)(&0) = 0 andL(¢)(&0) has at least one null eigenvalue. In this case we have

0=detA(D¢, D?p)(%0) < k(%0. u(60)) f (Do (£0)).-
(2) L(¢)(&0) > 0, then there is a baB (&g, r), r > 0, such that.(¢)(y) > 0 for all y € B(&p, r). It follows that

F* (&0, u(&0), D¢ (£0), D?¢ (§0)) = F (0, u(0), Do (§0), D% (£0))
and the inequality™ (&g, u(£0), D (£0), D¢ (£0)) > 0 implies

detA(D¢, D%$)(Eo) < k(&o, u(£0)) f (D (£0))
and

L(¢)(&0) > 0.
Hence we can conclude.O

In the sequel when we talk about sub- and supersolutions of (DP), we will always mean in a viscosity sense.

We explicitly remark that subsolutions of (DP) are Levi convex in a viscosity sense. Moreover, standard calcu-
lations show that ift € C2(£2) N C(£2) is Levi convex, then: is a classical solution of (DP) iff is a viscosity
solution of (DP) (see [23]).

3. Loss of boundary conditions

Let 2 be a bounded open setBf¥, N = 2n + 1, with C? boundary. Denote by a smooth function agreeing
in a neighborhoodV of 352 with the signed distance function &2 which is positive in2 and negative iR \ £
and we denote by(¢) := —Dd (&) forall § e W. If £ € 082, n(§) is just the unit outward normal @2 até.

In this section we analyze the loss of boundary conditions for the Dirichlet problem (DP) whisrgiven
by (2.6). The question of loss of boundary conditions have been addressed by the first author in [10] for general
fully nonlinear second order degenerate elliptic and parabolic equations. As it is well known this fact may depend
on various aspects, such as the geometry of the domains, the structural properties of the operator appearing in the
equation and the value of the boundary data (see e.g. the example in [5]). Here we are going to test on the operator
(2.6) the conditions which have been found in [10] implying that the Dirichlet boundary conditions are assumed
continuously by the solutions of (DP). To this end we introduce the following subsets of the bowrsaavye
denote byX _ the set of the points € 352 such that, for allR > 0 either

iminfl F(w, —g, 2@ F0e@ 1 e+ 2PV o (3.1)
wTOE o a? G
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or

Iiminf{F(u}, —R,
w—&

“nw +oa@® La, 04 MD)} >0 (3.2)
o
«l0

o o

and we denote by, the set of the point§ € 952 such that, for allR > 0

lim sup F(w, R MWD L) @nw) + 0“(21)>} <0 (3.3)
w—£& o o o
a0
or
lim sup| F(w, R MW Hoe® 1o+ 0“—(1)>} <0, (3.4)
w—E o o o
al0

whereo, (1) > 0 ase | 0 andp ® p is the matrix(pipj)ff’/zl, forall p=(p1,..., pn). Finally we set

=R\ (Z_UZX,).

We premise some comments on the s8ts In Section 4 of [10], it is proved that there cannot be loss of boundary

conditions respectively for the sub- and supersolutions of (DP), namely for éver¥_ (resp.X.) and any
subsolutions: (resp. supersolutions) we haveu (&) < (&) (v(x) > @ (&)).
We will show that condition (H3) 0ds2 is enough to guarantee that= ¢.

Now we are going to test the conditions (3.1)—(3.3) and (3.4) in the case of the operator (2.6). We first note that

if u is a defining function fos2 then the Levi curvature (1.1) off = {(¢, s) € R%"*+2: u(x, y,t) —s = 0} can be
represented as follows

ky (€, u) = —h(Du) detB(Du, D?u) (3.5)
with A(Du) = 2"+2(1 4 | Du|?)~((+2/2) gand
8[” —i
0 s
U 32
1w
alu 07U cee _—
B(Du, D%u) = 1 2 . (3.6)
81u+l 8tiu 81‘[”
2 2
Define
ky (8) := lim ky (&, ns).
n—00
Then
k57 (&) = —2"|Du|~ "2 detBo (Du, D?u), (3.7)
with
0 9du - O
01 O0qqu  --- Opu
Boo(Du, D%u) := 1 '

8[14 atiu anu
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andk{; (&) is exactly the Levi curvaturg; o g Of the cylinderd 2 x iR = {(¢, s): u(§) = 0}. By algebraic com-
putations one can rewritg, also as follows (see e.g [20])

1 1+ u?)

- 2_11 1+ |Du|2)(n+2)/2
whereA(p, X) is then x n Hermitian matrix defined in (2.1).

We list below some facts on the matrixthat will be useful to check (3.1)—(3.4) on a boundary point. First we
have

n
Amp,nX) = ——5—
=2+ p2)?

where the coefficients of’(p, X, ) are given by

ky (€, u) detA(Du, D%u), (3.8)

Al(p, X, n) (3.9)

Re(A};(Du, D?u, n)) = (0% + uf)? By, + Dy, ) + (0% + uf)(@yds, i1t + a)yd,u
+ b3y, + b,y 1) + (aya), + byb))ofu,
IM (A} ;(Du, D?u, ) = (172 + u2)?(Dypy,u — x,ytt) + (02 + u2) (=), Dy, + aydy, o
+ b, Byt — bydy ) + (blya) — byal,)dfu
and
a,=a,(Du,n) =n"t0y,u — dyudu, b, =b,(Du,n)=—n"tdy,u—dyudu.

MoreoverA’(p, X, ) converges tdd » (p, X) asn — oo locally uniformly in (p, X), where the real part and the
imaginary part o As)¢5(Du, D?u) are given by

Re((Aco)ep (Du, D21)) = () Dy, + dy,y, ) + uZ(a5 B + @S Oy,

b0y, + DY By, ) + (@Ca + bbY)ofu,

IM((Aco)ep(Du, D?u)) = (1) (Bxyy, 1t — D,y ) + Ul (—a dyyu + a®dy,u (310
b — b0y ) + (DX ag® — bCaY)dfu
with
a;° =ag®(Du) = —0dy,u du, by° =b7°(Du) = —dy,u d;u. (3.11)

Next we start analyzing the two conditions (3.1), (3.3). Standard computations show tBat @det ® n) =
detBoo(—n, —n ® n) = 0.
Now we taketp € 952 and we distinguish two cases.
Case 1for all « > 0 small and for allw close too the matrixA (=22t @ " Ly ) @ n(w) + 2«3y is not
. . . ey . .. o o
semidefinite positive. In this case we trivially have

lim inf{F(w, gD L o + "“(21)>} >0.
w—& o o o

al0

Case 2 there are subsequenags — 0 andw, — & (that we continue to denote ly andw) such that the

matrix A(M, —a—lz"(w) Qn(w)+ ‘”‘g{—(zl)) is semidefinite positive. In this case the following estimate holds.
Flw —r 2@ 0@ 1 @nw) + 2D = (2 0@ 1, g
9 9 a b az a2 a 9

— _ 1/n
—[detA<M»—a—lzn(w)®n(w)+0‘;(21)>f1<M>} }

o o
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By using the identities (3.7), (3.8) and the fact thatBigt(—n, —n ® n) = 0, we get

_ _ 1/n
|iminf_|:detA<M _ L ) @ n(w) + a<1)>f <M>}

w—&g o
o0
+ kM (w, —=R)
> lim i?f [—2(— det{ Boo (—n(w), —n(w) @ n(w))) " + k" (w, —R)]
w—&p
al0

=kY" (g9, —R) >0

Thus sincef " > 0 we finally obtain

Iiminf{F(w,—R,M, E n(w) @ n(w) + a(1)>}

w—&p

o0

> liminf f1/"
w—&p

a0

_ o (1
(D), >0

In a similar way one sees that

Iimsup{F(w,R M ! n(w) @n(w) + “(1)>}>o.

w—>§0
a0

Thus the conditions (3.1) and (3.3) are not satisfied.

This implies that we have to impose some suitable conditions obhdbiecurvatureof the domain in order that
both conditions (3.2) and (3.4) hold.

To this end we assume th& satisfies (H3). Then sinced is a defining function of2 the following two
conditions holds for every € R andé&p € 9£2:

Aoo(n(80), —D?d (§0)) > 0 (3.12)
and

2(— det{ Boo (n(£0), —D?d(€0)))) ™" > k" (&0, 5). (3.13)

Proposition 3.1.Assum&H3) then both the condition@.2) and (3.4) are satisfied.

Proof. We first notice that o (—n(&0), D?d(£0)) = — Ao (n(&0), —D?%d(£0)) is not semidefinite positive.
We claim that the matrix

A<_n(w)+0a(1), 1 D2d(w )+0a(1))
o o

is not semidefinite positive far — 0 andw — &g as well.
Indeed sinced o, (—n(£0), D%d (&o)) is not semidefinite positive, there is at least one eigenvalue which is strictly
negative. Now from (3.9) it follows that

A(—n(w)o;i-oa(l)’ 1 D2d(w )+0a(1)>

a1

T @2+ (d; + 0a(12)2

A'(Dd + 04(1), Dd + 04(1), al). (3.14)
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Since
A'(Dd(w) + 04(1), D?d(w) + 04 (1), &™) — Ac(Dd(&0), D%d(£0))

asa — 0 andw — &g, one can see that there are- 0 andag > 0 such that for all O< o < ag and for all
w € B(&o, r) the matrixA’'(Dd (w) + 0 (1), D?d(w) + 04 (1), 1) is not semidefinite positive. Thus from (3.14)
it follows that the matrix

A<—”(w)+0a(1) 1 D2d(w) + Oa(l))
a a o

is not semidefinite positive too and we prove the claim.
Hence we have

Iiminf{F(w,—R,M L D2 + "“(1)>}=+oo (3.15)
[07 o o

w—>$0

«al0

and (3.2) holds.
On the other hand ift o (1 (£0), D2d(£0)) is definite positive then the matrix

A(”(w)"i‘oa(l)’ i- Zd( )+0a( ))

o

is definite positive ag — 0 andw — &p. To show this fact one argues exactly as above. Thus we have

lim SUp{F(w, R, M’ —éDzd(w) 4 anil))} _ Iimsupfl/n <l’l(w) + 00{(1))’

w—&p w—&p o
al0 a0
1/n
Iimsup{—(det(A(n(w)+0"(1), 1 D2d(w) + a(1)>f (ﬂ(w)+0a(1))) +k1/"(w,R)}
w—Eg o o o
al0
< IimS;pfl/” (M) {—2(— del( Boo (n(£0). —D?d(¢0)))) " + k" (&0, R)} <O
w—>§0
a0

where the last inequality follows by combining (3.13) and the fact fHat > 2. Therefore (3.4) is satisfied and
we conclude. O

4. Comparison principles and existence results

In this section we provide two comparison principles between viscosity semicontinuous subsolutions and super-
solutions of (DP) under the hypothesis (H3), which guarantees that the boundary data is assumed continuously.

As a by-product of the these comparison results and the Perron’s method we get the existence of a unique
continuous viscosity solution of (DP).

The first comparison result of this section is the following theorem, which holds under the assumption that the
function k is strictly increasing with respect to. The proof of this result is standard and we provide it for the
reader’s convenience.

Theorem 4.1.AssuméH1)-(H3). Letu € USC(£2) andv € LSC(£2) be respectively a bounded viscosity subsolu-
tion and supersolution ofDP). Thenu < v in £2.
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Proof. We suppose by contradiction that mg — v) = M > 0. By (H3) such maximum is achieved at an interior
point&p. For alle > 0 we consider the auxiliary function

2
@elt, 0 =u®) —v(e) - =

Let (£, ¢,) be a maximum ofp, in 2 x 2. By standard arguments we get, up to subsequences, that— & €
2,and

_ 2
u =o0.,(1) ase—0,
&

u(e) —v(g) — u@) —vE) =M,
u(ge) — u@), v(g) = v(é).

We observe that sinae< v on 352 we havet € £2, thus fore small enougls;, ¢. € £2 as well. Hence the equation
holds for bothw andv respectively ag, and¢,.

Set¢(&,¢) = |& — ¢|?/€2. For alla > 0 there existX, Y € S(N) such that, ifp, := 2(& — ¢.)/¢%, and A =
D?p (&, &), we have

(pe, X) € T T ug),  (pe,¥) € T> (&),
_<E+||A||> |d<<x 0 ><A+aA2 4.1)
o 0 —-Y
and

F*(éfs’”@s)’ Psax)go and F*(§€7v(§€)a Ps’Y)>O (42)

We note that (4.1) implieX <Y, thusA(pe, X) < A(p., Y) for all ¢ as well. By subtracting the two inequalities
in (4.2) and by using (H1) we get

er(u@E —v(é) <o(l) ase—0
and we obtain a contradiction by lettiag— 0. O
Next we are going to prove a comparison result by assuming the weaker condition (H5). When there is not a
strict monotonicity with respect t@, one of the classical approaches from the theory of viscosity solutions, is to
try to find a strict subsolution or supersolution either of the original equation or of a suitable approximation of it.

Here we extend the techniques used in Ishii and Lions [16] for quasilinear equations.
To this purpose we need the following two lemmae.

Lemma 4.1.There is a functiony € C2(£2) such that

inf (detA(p, D%y))" =v > 0.

pERZ’H'l

Proof. Letus takey (x, y, 1) = g((Ix]I2+ 1% /2), with g € C2(R) andg’, g” > 0. We note that for alp € RY
andX € SN we haveA(p, Y) =o(p)Y& ' (p) whereo is then x N matrix given by

o(p)= (I, —il,, a(p)—ib(p)) (4.3)
a(-), b(-) being defined in (2.1). By using the above identity one can readily see that we have

A(p, D*y) = 2g’<1n + g—g(x —iy) ® (x + iy)>
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and

1/n

" 1/n
(detA(p, DY) >2g’(1+§—g(uxu2+uyu2)) =v. O

Lemma 4.2.1f u € USC(£2) is a bounded viscosity subsolution Bf= 0, thenu,, = u + %1//, with ¢ as in the
previous lemma, is a strictly viscosity subsolution of

F (&, ttm, Dty — DY /m, D?up) + fY" (D — DY /m) (K" (&, iy — Y/ m) — K" (8, up)) = —%.

Proof. We notice that for alip € C2(£2), & is a maximum point ofi,, — ¢, iff &g is a maximum point oft — (¢ —
¥/m). Thus, since: is a viscosity subsolution of = 0, at each maximum point af, — ¢, we have

F (%0, u(£0), (D¢ — Dyr/m)(£0), (D%¢p — D*y/m)(£0)) < O.
Therefore, by the convexity of the functioh— —(detA)Y/" and by Lemma 4.1, we get

F (%0, tm, D§ — Dyr/m, D?¢) + fY/"(Dp — Dy /m) (kK" (&0, tm — ¥/ m) — K" (50, )
= —(detA(Dp — Dy /m, D?9))"" + fY" (DY — Dy /m)k" (6o, u)
< —(detA(Dg — Dyr/m, D?p — D?yr/m))" — (detA(D$ — Dy /m, D>y /m))™"
+ Y (Dp — Dy /m)kM" (o, u)
= F(&0,u, Dp — Dyr/m, D’ — D?y/m) — (detA(D$ — Dyr /m, D>yr/m))""
< —(detA(Dg — Dyr/m, D>y /m)) " < —v/m. O

Now we shall prove a comparison principle, by assuming that (H6) holdg,:iR— [0, +00) is a continuous
function which does not depend én

Theorem 4.2.AssumgH2)—~(H3) and (H5)-(H6). Letu € USC(£2) and v € LSC(£2) be respectively a bounded
viscosity sub- and supersolution @P). Thenu < v in £2.

Proof. We considem,, = u + %llf with ¢ as in Lemma 4.1. We may suppose without restriction thaf +
ly|2) # 0in £2, otherwise in the definition o we replace|x|? + |y|2) with (]x — xo|2+ |y — yo|?)with a suitable
(x0, yo). Moreover we choosg in such a way thaf{y |« < +o0c. Our aim is to show that sypu,, — v) <
%HI//”OO. Suppose by contradiction that for ail large enough we hav#,, = maxs (i, — v) > %kuoo. Since
by (H3) we have:(x) < ¢(x) < v(x) forall x € 9£2, such a maximum is achieved at an interior pgintdepending
onm). For alle > 0 let us consider the auxiliary function

2
D (&, 8)=upn’) —v©) — i 82“ .

Let (£, ¢) be a maximum ofp, in 2 x £2. By standard arguments we get, up to subsequetiges, — & € £2,
and

Y
@7;}' =0.(1) ase—0,
I3

U (&) — V(&) = U (€) — v(E) = My,
U (Es) = um (&), v(ge) — v(E).



16 F. Da Lio, A. Montanari / Ann. |. H. Poincaré — AN 23 (2006) 1-28

Sinceé is necessarily in2, for ¢ small enough we havg, ¢, € £2 as well. Hence the equation holds for bath
andv respectively irg; andé,.
There existX, Y € SN such that, ifp, := 2(& — &) /€2, we have

(Pe, X) € T?*Tum(&e),  (pe, Y) € T2 0(Le),
8 X 0 31 -1
Sas(d 9)<3(4 ) @

and by Lemma 4.2

FEerttm. pe — DY /m. X) + FH(pe — DY /m) (K"  — r/m) — K (1)) < ——,
n (4.5)
F(Cé‘v v’ pé‘a Y) 2 0

Moreover,(p, — 2, X — D?y/m) € J?>*u(&,), and

Fy(&e,u(&), pe — DY /m, X — D*y/m) < 0. (4.6)

SetX1 =o(p. — 711D‘/’) and X = o (p.), Whereo is then x N matrix defined in (4.3). Multiply both sides of
the inequality (4.4) by the matrigy;  X») on the left, and by the transpose of its conjugate on the right, to get

_ - 3 - 1
D1IXT) — 5Y 5] < Z(T1— 2 (31— )" = el 4.7)
with
1 _ 1
n= [a(pa - —Dw> —a(pa)] - I[b<ps - —DW) - b(ps)}
m m
_ & (y —x(pe)ont1 —ix + y(pg)2n+1)) _ g ( (Pe)ont1 — ) .
= 2 = N\Ti 2z )EW:
m 1+ (Pa)z,H_l m\1+ (p8)2n+1
Thus,

(g)?
£2m2(1+4 (pe)3,. 1)

SIXZ] - DY E) < (Ix1%+ 1lyI1%) 1d.

From (4.6) it follows that
Z1(X - DXy /m)Z{ >0

and

D%y 1

lTwl (¢"(x —iy) ® (x +iy) +2¢'Id) > 0.

oXZ > ==
m

We will choose the functiog in a such way that, fom large enough and for adl, we have
" "2
<g—— — &) ; )>o. (4.8)
m - meec(1+ (p8)2n+]_)

Thus the following estimate holds

= = 1 .1 . ) 1 _
DY 53 > BXE] = 500> —(g"( —iy) ® (v +iy) +2¢1d) - S ®

( g (¢)?
m m2e2(1+ (pe)3,.1)

2¢  2¢
)(x—iy)®(x+iy)+—g|d>—g|d=y|d>o.
m m
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Now, set
_ (g)?
£2m2(1+4 (pe)3,41)

we have

(Ix 12 + 1y 11%),

1/n 1/n

(detZ1Xx 2)) 7" — (det( Z,Y £3))

1/n 1/n

< (detZoy =F +a1d)) ™" — (det Zpv £3)) (del(Z‘zYEz )" (deld+1(Zpy £3) )Y — 1)

T\—1 1
traceld +A(nEZY22) ) B 1) (det(Z 5] ))1/,1<trace{Id:A(y) ) 1)

_8 1/n<>w71> 16( 1 2 2)1/"< g Ux I+ yl?) )
°Z( )<= 14 2 (laps b(pe
2( et(EZEZ)) 2g/ < &2 + 2(|a(p )| +| (p )| ) 2m82(1+(}75)§n+1)
C (gUxIZ+IyI?)
= g2g2/n 2me2 ’

where, in the last inequality, we use the fact that| < C/e, forsomeC > 0 independent of, m. Seté = (x, y, 0),
we also have

< (det():ﬂ):{))”"(

(4.9)

D
fY"(pe) — fYn (pg - 7‘”) = Y (pe) — FY(pe — g'E/m)

1
<Cpm & (112 + 1312) V(1 + 0. (D). (4.10)
By subtracting the two inequalities in (4.5) and by using (H2), (H5), (4.9) and (4.10), we finally obtain
v _ 28/(L+(g"/28) (x4 Iy IP)M”

m m

c n1/2 C (gUxIZ+yI?

(4.11)

Now we takeg(s) = exp(8s — &) with 8 andw to be determined as follows. We haye= Bg, andg” = B2g. Since
(x,y) # (0,0), if we choosen = @D/ ande = g~/ 6" then forB large enough we get a contradiction
in (4.11). We finally taker (depending o and the diameter aR) in such a way thag < 1. We point out that by
this choice ofg, ¢ andm the inequality (4.8) is satisfied. Thus we can conclude.

Remark 4.1.0ne can prove a variant of Theorems 4.1 and 4.2 in which the condition on 32 is dropped and
the conclusion is changed to— v < sup,, (u — v)™ (see e.g. User's guide [9]).

In the general case whéndepends or and it is not strict monotone with respectitove are able to prove
a comparison result between continuous sub and supersolution of (DP) by following a dilation argument (see e.g
[24, Theorem 2.2], [16,4]).

Theorem 4.3.AssumdH5) and (H7) and suppose that > 0. Letu, v € C(£2) be respectively viscosity sub- and
supersolution of DP). Then

sup(u — v) <supu —v)*.
o} 892
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Proof. Let R = max(||u||oo, ||v||eo)- It IS NOt restrictive to assume thatis nonnegative in2 and|&| < diam(£2)
for every& € 2. Actually we may always replacg by G(&,s, p, X) = F(§ — &,s — R, p, X). For a suitable

gge RV,
For allr > 1 we set2, = r~1£2 and we introduce the function
ur(x)=r"tu(rx), xe2,. (4.12)

We claim that there i8 < 0 such that for all > 1 close to 1y, is a viscosity solution of
F(x,u;(x), Duy, D?u,) < —=8(r — 1) in £2,.
Indeed letp € C%(£2,) and¢ € £2, such thau, — ¢ has a local maximum &t Thenu(y) — r¢ (r—1y) has a local
maximum at-£. Sinceu is a subsolution of (DP) we have
Fi(r&, u(ré), Do, r1D%p) <O0.
The above inequality implies théip (¢§) > 0 and
—detA(Dg, D?¢) + r"k(r&, u(ré)) f (D¢) < 0.
SetLo = sUp;y o xo.r) (K€, u) — k(&o,u))/|§ — &ol) and suppose for the moment that
ninfoxrk
diam(2) °
The following estimate holds
—detA(De, D?p) + k(£, u, (£)) f (Do)
<k(€,ur () f(DP) — r"k(ré, u(ré)) f (D)
=1 —r"k(ré, u(rd)) (D) + [k(&, ur (§)) — k(&. ru(£))] f (Do)
+ [k, rur (§)) — k(ré, u(r§))] f (D)
<FOR[A=rm(inf k) + ¢ ~DLolsl]

Lo < (4.13)

<(r— 1)f(D¢)[—n (_inf k) Y Lo diam(s?)].
2 xR
From (4.13) and the fact thgi(D¢) > 1, it follows that there i$ > 0 such that we have
—detA(De, D?¢) + k(& u, (€)) f (D) < =5(r — 1).
Now by arguing as in the proof of Theorem 4.1 one gets

sup (u, —v) < sup (u, —v)* (4.14)
282, 3(2N2,)

and the conclusion follows by letting— 17.
If (4.13) is not satisfied one proceeds by coverfagvith small balls of radiug < Lo tinfoxrk. O

Remark 4.2.We remark that Theorem 4.3 is a consequence of the fact that we are considering a curvature equation.
Precisely sep, (z) = p(rz), with p(z) = u(§) — s and letK the Levi curvature ofp = 0}. Then we have

3.0 (D) =1 (B.0)(r2),  zpr(2) =r%(3z0)(r2)
and

—n— 0 9zp —n—2 0 3-,0)} n
—19p,| "2 det zPr ="} 3p| "2 det z ="K (r7).
{| prl (azp, am»)}@ r{| pl (3Z,O b ) (7D ="K (D)
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By the comparison results and the Perron’s method we get the existence of a unique continuous solution of (DP).

Corollary 4.1. Assume either the hypotheses of Theotehor of Theorend.2 and supposéH4) holds. Then for
any g € C(952) there exists a unique continuous viscosity solutio(?).

Proof. We use the Perron’s method introduced for viscosity solutions by H. Ishii [15] with the version up to
the boundary of the first author [10]. We observe thauifis large enough then the functiané) = M is a
supersolution of (DP). Let us denote kythe center of the sphere of minimum radiusontaining2. Under the
assumption (H4) the function(¢) = (-2 — |& — &|%)Y2 — M is subsolution of (DP). Indeed if we spt&, s) =
(r® — | — £0))Y2 — M — 5 then the zero level set ¢f is a subset of a sphere of radiusind one knows that in
this casek(,=0)(z) = 1/r". ThUSF (€, (&), Du(£), D%v(§)) = —1/r + k¥/" (€, v(£)) <O.

The Perron’s method provides us with a (possibly discontinuous) solutad{DP) such thav < u < 7 in £2.
The condition thaf’ = ¢ implies that there is no loss of boundary conditiordgh and therefore, every subsolution
w and every supersolution of (DP) satisfies

o<e<w 0Nnais2.

The first consequence of this inequality is that= u* = ¢ on 9§2 and therefore: is continuous at points dfs2.
The second one is the uniqueness of the continuous solutidriDP) which follows from either Theorem 4.1 or
Theorem 4.2. O

5. Lipschitz estimates and proofs of Theorems 1.1, 1.2, 1.3

In this section we denote bya pointinRY, with N = 2rn+ 1. We show the existence of a Lipschitz continuous
viscosity solution of (DP) under suitable assumptiong and geometric conditions on the domain. To this purpose
we follow two different approaches. More precisely in the particular casectbaes not depend on the variable
x we adapt the method of translation (see e.g. [16]), whereas in the casekwdepends onr andu, since it is
not possible in general to obtain the existence through the Perron’s method we use a Bernstein type method and a
proper approximation argument that we explain later.

Throughout this section we assume tlfatsatisfies (H3). We recall that under (H3) the boundary data are
assumed in a classical sense by the viscosity subsolutions and supersolutions of (DP), and the conditions (3.12)
and (3.13) are satisfied.

We introduce the following notation: for > 0 we set

2, = {x eR:dx) <y}

We observe that sinc&? is of classC? then fory > 0 small the distance functiafie CZ(Q,,).
We start with the following lemma.

Lemma 5.1. AssumgH3), ¢ € C11(3£2). Then there are.’ > 0, and0 < y’ < y such that for allx > A’ the
functionsii(x) = ¢(x) — Ad(x), andi(x) = ¢(x) + Ad(x) are respectively classical subsolution and supersolution
of (DP)in £, andu(x) = i(x) = ¢(x) in 352. Moreoveru andu are Lipschitz continuous i, .

Proof. Let us continue to denote lgythe smooth extension gf to £2.

Subsolution case: We show that there afeC y and)’ > 0 such that for alh > )/, i(x) is a classical subsolu-
tion of (DP) in$2,. We haveDii(x) = D¢(x) —ADd(x), D?ii(x) = D?p(x) — AD?d(x). From the condition (3.12)
and the continuity ofd, there isrg > 0 such that for alk € B(xg, ro) we haveA,(—Dd(x), —D?%d(x)) > 0. We
notice that
A

A(Dii(x), D?ii(x)) =
(P, P0) = (G T o ibac i 2

A'(AIDi(x), 27 tD%i(x), A)
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and A’(A1Dii(x), A~ 1D%i(x), 1) converges toAo(Dd(x), D?d(x)) uniformly in B(xg, rg) asi — oo. Thus
there existsig := A(xo, ) such that for allx > 1o and for all x € B(xo, ro) the matrix A’(A"1Dg(x) —
Dd(x), »~1D?%p(x) — D?d(x)) is definite positive as well. Sincés2 is compact, we can fing’’ < y and A’
such that for alh. > 1" and for allx € £2,, the matrix the matrixA (Di(x), DZii(x)) is definite positive.

On the other hand one sees that

h(Dii(x)) det(B(Dii(x), D?ii(x))) — 2" det( B (Dd(x), D%d(x)))

asi — oo uniformly in x € B(xg, ro). Sinceds2 is a compact set, the condition (3.13) implies that Xdarge
enough and for alt € £2,» we have

(—h(Dii(x)) detB(Dii(x), D%i(x)))"" > k" (x, i(x))

and in particular

1/n

(detA(Dii(x), D%i(x)) f~H(Di(x))) " > kY™ (x, i(x)).

Thus fori > 0 large enough and for all € £2, we get

Fy(x, @(x), Dii(x), D?i(x))

1/n

= fY"(Di(x)) - | (-~ detA(Di(x), D%i(x)) f~H(Di(x))) " + k" (x, @)} <O.

This proves thai is a classical subsolution of (DP) i,

Supersolution case: Let us consider the functiofx) = ¢(x) + Ad(x). We first notice that for every
X0 € 382, Aso(Dd, D%d) = —Aso(—Dd, —D?d) is not semidefinite positive. This means that there exists at least
one eigenvalue which is strictly negative. By analogous arguments as above one can showihaOftarge
enough and fop’ small the matrixA(Dg(x) + A Dd(x), D%p(x) + 1 D?d(x)) is not semidefinite positive for all
x € £2,. This implies thatF*(x, i, Dit, D?it) = +oo. Finally the Lipschitz continuity ofi andi follows from the
fact thatp € C+1(£2,) andd € C?(£2,). Thus we can conclude.0

Next we prove the Lipschitz continuity of the solution to (DP) under the assumptiort tiiaes not depend
onx.

Theorem 5.1(The x-independent caseAssumgH2)—(H6), ¢ € C11(3£2). Then there exists a unique Lipschitz
continuous viscosity solutianof (DP).

Proof. Let us continue to denote lgythe smooth extension gfto 2. The existence of a continuous solutioto
(DP) follows from Corollary 4.1. Moreover by comparingvith the barriers defined in Corollary 4.1 one gets that
llu|loo < R for someR > 0. Now we consider the functionsandi defined in Lemma 5.1. We have=u = u
onds2, andi <u <uond(x) =y’ providedr > (|lulloo + Il@lloc)/y’. Theorem 4.2 yields that < u < it in £2,/.

To show the Lipschitz continuity of we adapt the method of translations (see [16]). GiwenR", the function

u(- + h) is a viscosity solution of the same equation as thatftut set in2 — &, since the equation does not
depend orx. Theorem 4.2 and Remark 4.1 yield

sup  Ju—u(-+h)|< sup  |u—u(-+h)c
2,0(2,—h) 8(82,/N(2,~)

< sup max{|it — (- + h)
8(82,/N(82,1—h))

<Clhl.

i —i(-+h}

3
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Thusu is Lipschitz continuous i2,/. Next we show that this implies thatis Lipschitz continuous i2. Indeed
by Theorem 4.2 and Remark 4.1 we have

sup |u—u(-+h|<  sup |u—u(-+h). (5.1)
2N(2—h) 9(£2N(£2—h))
We estimate the l.h.s of (5.1).Af< y/, then SUB(2n(2—hy) [u —u(-+h)| < C|h| by the above estimates./f> y’
we havelu(x) —u(x + h)| < 2||ulleo < 2||u||oo%. In any case we get

sup |u—u(-+h)| < Clnl,
an—h

and we can conclude.O

Proof of Theorem 1.2. In view of (2.3) and of (2.4), the Dirichlet problem (1.2) is equivalent to (DP). Hence
Theorem 1.2 follows from Theorem 5.10

Next we prove the existence of a Lipschitz continuous solution to (DP) under more general conditioios on
which we cannot applying directly the Perron’s method not having a comparison result. To this end we use a “weak
Bernstein method” introduced by Barles in [3] to obtain gradient bound for viscosity solutions to fully nonlinear
pde’s. Roughly speaking in [3] it is shown that if a continuous degenerate elliptic opéra@ix R x R x SV — R
satisfies in a neighborhood of the set{6f, u, p, M): |u| < R, |p| > L, G = 0} the condition

DG -p+D,G|p|?>—gDyG -M?>>a>0 (5.2)

for some constants, g > 0 andL large and for allR > 0 then any viscosity solution @ = O satisfies
sug Du(x)| < max(L,squu(x)D. (5.3)
ol a2
Next we will use the hypothesis (H8).
Remark 5.1.We observe that

(i) if ke CH(2 xR, [0,+00)), then (H8) is satisfied if for instance one the following conditions hold:
1) b, > 0;
(2) |Dik| < LD,k + gnk*Y" for someL > 0 andg < go.

(i) if k satisfies (H5), (H6) and (H7), then it satisfies (H8) too. Hence, the following approach provides an alter-
native proof of Theorem 5.1 for Lipschitz continudus

We first show that ifk € C1(£2 x R, [0,+00)) satisfies (H8) for somer > 0, then a Lipschitz continuous
solution of (DP) satisfies (5.3).
To this end we denote

Fx,u,p,X)= —det(A(p, X)) +k(x,u) f(p).

We start with the following lemma in which we prove thatkit C1(£2 x R, [0, +00)) satisfies (H8) for some
a > 0, then the operatoF satisfies the condition (5.2) in a neighborhood of theseR, L) = {(x, u, p, M):
lul <R,|pl =L, F(x,u, p, M)=0}.

Lemma 5.2.1f k € C1(£2 x R, [0, +00)) satisfiegH8) for somex > 0, then the condition5.2)is satisfied bﬁ in
a neighborhoodV (R, L) of the setV (R, L).
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Proof. We start by showing that (5.2) holds in the $&iR, L). ~
We first observe that ifx, u, p, M) € V(R, L) thenwe haved(p, X) > 0 andF (x,u, p, X) = —detA(p, X) +
k(x,u) f(p) =0. The following equalities hold.

D.F = f(p)Dxk(x,u),  D,F = f(p)Dyk(x,u). (5.4)

Now setX (p) =& " (p)o(p), whereo (p) is the matrix defined in (4.3). We notice th&t p) > 0 with minimum
eigenvalue identically zero and

S <TrE(p) - I, (5.5)

where TrE (p) =2n +la(p)|? + |b(p)1> = 2n+ (7" p?/(L+ p3).
By denotingA*(p, X) the cofactor matrix oft(p, X), recalling that det*(p, X) = (detA(p, X))" 1 and using
the inequality (5.5), we have

—Dy F- M2 =Tr[(A*(p. M))o (p)M?5 T (p)] = n(de{(A*(p. M) (p)o (p) M35 T]) ™"

> n[Tr2(p)] " (de{(A* (p. M))o (M = (p)M&T (p)])™"
=ndet(A(p, M) T [Tez(p)] " =n(kx, ) £(p)) T [TrEm] " (5.6)
In (5.6) we use the fact that for all Hermitian matricésB > 0 we have
def(AB) < (Tr(AB)) .
n
Moreover we have
—1n 1+ 2\(n+2)/(2n) (1+p2 )1/n
Prpftes) = [PEHED IR ]
(1+PN) /n (2n+|p| +(2n_1)p]v) /n
L+ |p2)nta/z 1/2
> >(1+ . 5.7
@+ ppyr - D) &0
We set
) 2
I(x,u, p)= Dk p + Dukip| + gnk*/m, (5.8)

(1+1p1A/2

We recallk € C1(£22 x R, [0,400)) and therefore the map is a continuous function. By combining the above
estimates and using the fact thétp) (1 + |p|® Y2 > 1, for all (x, u, p, M) € V(R, L) we obtain

D.F - p+ D,F|p|* - goDy F - M?
= F(P)Dk(x,u0) - p+ f(P)Duk(x, 1) + gon(k(x, w) £ () " [Tr 2(p)]
> f(p)(+1p1) Y
The above estimate holds in a neighborhoo® ¢R, L) by continuity. O

—1/n

I(x,u,p)>a=>0.

Proposition 5.1(Weak Bernstein Methodpssume that € C1(£2 x R, [0, +-00)) satisfiegH5) and (H8) for some
o > 0. Letu be a continuous solution dDP) such that

lu(x) —u(w)| < Klx —w|, forall (x,w)ed(2 x 2). (5.9)
Then we have
lu(x) —u(w)| < Clx —w|, forall (x,w)e N x 2

whereC = max(L, K).
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Proof. We follow the arguments of [3, Theorem 1]. We consider the function
D(x,w):=ulx)—u(w)—Clx —w|. (5.10)

We assume by contradiction that for @ll> max(L, K) there is a pointx, w) such that (x, w) > 0. We observe
that because of (5.9),d > Oislarge therix, w) € 2 x £2. We setyy (x —w) = C|x —w|. There exisX, Y € S(N)
such that, ifp := Dy (x — w), we have

(P, X) e T*Tu(x),  (p,Y)eT* uw),

X 0 D*(x —w) —D*(x—w)
<0 —Y><<—D2w(x—w) Dzw(x—w)> (5.11)

and
F*(x,u(x),p,X) <0 and F*(w,u(w),p, Y) >0. (5.12)

From (5.11) it follows thatd(p, Y) > A(p, X) > 0. Moreover for allt € [0, 1] we haveA(p,tX + (1 —1)Y) >0
as well. Moreover from (5.12) it follows that we have

—det(A(p, X)) + k(x,u(x)) f(p) <0 and —def{A(p,Y))+k(w,u(w))f(p)=0.
We setF (x, u, p, M) =—det(A(p, M)) + k(x,u) f(p). We consider the functiop defined by

g(t) = I?(tx +A1-Hw,tu(x)+ 1 —-tu(w), p,t X+ (11— t)Y).
Sinceg(t~) is continuous there ang < r2 such thatg(¢1) > 0, g(t2) <0 andg(r) € W(R, L) for all ¢ € [t1, 2]. We
assumeF smooth. We sef = C/|x — w|. By using (5.10) and (H5) we get

1 ~ ~ ~ ~
g = ;{DXF -p+DyF|pl?+yDyF - (X =Y)+yD,F - ®(x,w)}

1 ~ ~ ~
2;{DXF-p~I—DuF|p|2+yDMF~(X—Y)}. (5.13)
By Lemma 2 in [3] we have

y(¥ —X) > go(tX + (1 —0)Y)

Hence from Lemma 5.2 it follows that'(r) > 0 for ¢ € [11, t2], but this is in contradiction with the fact that
g(n) >20,g(t2) <0. O

Let us mention that whehis only Lipschitz continuous and (H8) holds with some- 0 then the above a priori
estimate comes from an approximation argument.

More precisely, lek be the nonnegative function defined B x R such thak (x, u) = k(x, u) if x € 22 and
k(x,u)= 2(5—”)"/@“) if x ¢ 2. We set

Dx]E 4 + Du];|p|2
A+ p»t/2

We denote by, and/, the convolution with respect of the variables «) of k and] respectively. With a positive
mollifier J. and by (DP) the Dirichlet problem (DP) fok.. The following result holds.

[(x,u, p)= +gnl;1+l/”.

Corollary 5.1. Assume thak satisfies(H7) and that(H8) holds for somex > 0 and for a.e.(x,u) € £2 x R.
Suppose that for any > 0 there is a continuous solutian, of (DP),. If the family(u,) is equibounded if2 and
there is a positive consta such that for every > 0

|ue(x) — up(w)| < K|x —w|, forall (x,w)ed(2 x Q) (5.14)
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then, up to a subsequenag, uniformly converges to a Lipschitz continuous solutioaf (DP) on the compact
subsets of2.

Proof. We claim that ifk is Lipschitz continuous and satisfies condition (H8) a.e. then, far all0 small,k, =

k = J, satisfies condition (H8) for some9& < «. The thesis will then follow by applying Proposition 5.1:tg,

by remarking that the constaftis independent of, and by using the Ascoli-Arzela Theorem. To prove the claim,
we observe that by (H8) and by the constructior! afie havel (x, u, p) > «, for almost everyr € RV, |u| < R,

|p|l > L. Moreover sincé, converge uniformly tg for all x € £2, [u] < Rthenforallx € 2, |u| < R, |p| > L we
have

D.ky - p + Dyke|p|?
1+ |p|»HY2

_ Dyke - p+ Duke|pl?
1+ |p|»HY2

< Deke  p+ Dukelpl?
1+ |p|»HY2

for some positive constait depending on the Lipschitz constantkah £ x [—R, R]. Then, fore small, we have
a — gnCe > 5 and we conclude. O

a <I:(x,u, p) = + gn (Y % Iy (x, u)

+ gk Y gn (Y s T (e ) — K (x, w))

+ gnkXY" 4 gncCe

We explicitly remark that ik is Lipschitz continuous and satisfies (H1) then (H8) is clearly satisfied a.e. for some
« > 0. Moreover in this case the existence and uniqueness of a continuous solution follows from Corollary 4.1.
Thus in view of Corollary 5.1 in order to prove the Lipschitz regularity of the solution it is enough to verify that
(ue) is equibounded and the condition (5.14) holds. This is the purpose of the following

Theorem 5.2 (The strict monotone caseAssumegH1)-(H4), (H7), ¢ € CY1(8£2). Then there exists a unique
Lipschitz continuous viscosity solutiarof (DP).

Proof. Foralle > 0 small, letu, be a solution of (DR). The existence of a continuous solutianof (DP), follows
from Corollary 4.1, because fersmallk, satisfies (H1)—(H4), (we observe thi || < |1k||oo)- The family (i)
is equibounded i2 by a positive constani/y because fos small we have < u, < 7, wherev, v are the functions
defined in Corollary 4.1. Because of Corollary 5.1 in order to prove that the familyis equicontinuous, it is
enough to show that the condition (5.14) is satisfied for séme0 independent of. Let us consider the function
i andu defined in Lemma 5.1. In Lemma 5.1 it is shown that fdargei: is a supersolution of (DP) andis a
strict super subsolution of (DP) if2,, for somey > 0 small. Moreover they are Lipschitz continuousfy with
|| Dit|| oo, || Dit]|oo < C, for someC > 0 depending on.. One can readily see thatsf> 0 is small then: andi are
super and subsolutions of (DP3s well. If we taker > (Mg + ||¢(xX)|loo0)/ ¥, theni(x) <u(x) <u(x) for all x
such thatd(x, 32) = y. Thus by Theorem 4.1 we haviéx) < u.(x) < i(x) in £2,,.

Take (x, w) € 9(£2 x £2) and suppose that € 952. There are two possibilities: eithef(w, 92) < y or
dw,08) >y.Ifd(w,08) <y then

e (x) — ug(w) <a(x) —uw) < Clx — wl.
If d(w,082) > y then|x — w| > y and therefore

lx —w
e (x) — ue(w) < 2luelloo < 2fuelloo ,

We observe that the Lipschitz constant of the solutiprdepends on the Lipschitz constant of the barrigrs,
on the functionk and on thel.>**-norm of the solution:,. Thus if we choos&€ = max(C, 2Mp/y), the condition
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(5.14) holds. Since (H8) hold a.e., the conclusion follows from Corollary 5.1 and by the uniqueness of a viscosity
solution of (DP) proved in Corollary 4.1.0

Proof of Theorem 1.1. The proof is contained in Corollary 4.1 and in Theorem 5.2

In the general case, namely whieis not strictly monotone with respect to thevariable, we prove the existence
by approximating the operatdt by a sequence of operataf$ which are strictly monotone with respecttoMore
precisely for alle > 0 we define

ke (x,u) = equ) +k(x,u);
whereg :R — [0, +00) is a bounded function of clags! such thay’ > 0. We consider
1 1 .
Fe(x,u, p, X) = { (ke Ce, 1) " £ (p) — (detA(p, X)), if A(p. X) >0, (5.15)
+o00, otherwise
and the Dirichlet problem

{F‘E(x,u,Du,Dzu)zo in $2, (DP")

u(x) = p(x) in 082,

From Theorem 4.1 it follows that for all > O there is a unique viscosity solution of (DRyhich is Lipschitz
continuous in2 by Theorem 5.2. The main goal is to show that the farqify).. is equibounded and equicontinuous
in £2. We denote

F®(x,u, p, X) = —det(A(p, X)) +k(x, p) f(p).
We start with the following lemma which is the analogous of Lemma 5.2.

Lemma 5.3. Assumek € C? satisfies(H8). Then, for alls > 0 small, k° satisfies the conditiofil.8) for some
positivea, depending on.

Proof. We set

D.k® - p+ D, k| p|?
(1+1p|?)/2?

Sinceq, q’ > 0, if L > 1 is large enough we have

Dyk - p+ [Dyk + &g’ ()| p|?
+gn(k£)1+l/n — X (1+Tp|2)l/2 +gn(k8)l+1/”.

I°(x,u, p)=

Io(x,u, p) = 1(x,u, p) +einfq’/2+ gn(einfg) " > einfq' /2 + gn(einfg) /",

Hence the conclusion follows by choosing for instange= ¢ inf(¢’)/4 and by arguing exactly as in the proof of
Lemma5.2. O

Next we show that the family® is equibounded and verifies (5.9) with some constant independent of

Proposition 5.2.AssuméH3)—(H5), (H7), ¢ € C11(352). Then there is a constait > 0 such that for alle small
we have

() Nufllo < K;
@iy [uf(x)—u®(y)| < Kl|x —y|, forall (x,y) € 9(£2 x £2).

Proof. To show (i) it is enough to observe that the functierendv which have been considered in Corollary 4.1
are still sub and supersolutions of (BP)hdeed we observe that by (H4) the functioiis a strict subsolution of
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F =0, thus since; is bounded, for ale small enough we havé® < 0. The functionv is still a supersolution
F? =0, sincey is positive.

The second property (ii) is a consequence of the fact that the funétiandiz built in Lemma 5.1 are still local
barriers for (DP). The proof of this claim follows again from the facts that the funciids a strict subsolution of
F =0 and the functiory is positive and bounded. Thus the conclusion follows by the same arguments of the proof
of Theorem 5.2. O

By combining Corollary 5.1, Lemma 5.3 and Proposition 5.2 it follows

Corollary 5.2. AssumegH3)-(H5), (H7)-(H8), ¢ € C11(352). For all ¢ > 0 let u® be the unique viscosity solu-
tion of (DPY. Then there is a constarit > 0 depending oK, L, ||k||«, (K, L being the constant appearing
respectively in PropositioB.2and in condition(H8)) such that fore small we have

[uf(x) —u*(y)| < Clx —y|, forall (x,y) € 2 x .
From Proposition 5.2 and Corollary 5.2 it follows that the famifyis equicontinuous and equiboundedi

Thus by applying Ascoli—Arzela theorem we get the existence of a Lipschitz continuous solution of (DP) also in
the case thak satisfies (H5). More precisely we have

Theorem 5.3.AssumgH3)—(H5) and (H7)-(H8) ¢ € C11(8£2). Then there exits a Lipschitz continuous solution
of (DP).

Proof. For all ¢ > 0 let «* be the unique viscosity solution of (DRP)From Proposition 5.2 and Corollary 5.2 it
follows that the family.? is equicontinuous and equibounded Thus by applying Ascoli—Arzela theorem there
is a subsequenae.; which converge uniformly ag — oo to a functionu which is Lipschitz continuous 2.
Since F¢ converges locally uniformly ta, by the stability of viscosity solutions with respect to the uniformly
convergence of“ to F, we get thai is a viscosity solution of (DP) and we concludex

Proof of Theorem 1.3. The proof is contained in Theorems 5.3 and 4.81

6. Nonexistence results on balls

In this section we present some nonexistence results which show that condition (H4) cannot be significantly
relaxed when the domaif? is a ball. We will denote by (x) the inner normal vector tos2 atx € 952. First of all,
by following the argument in [6, Theorem 1] and in [19, Corollary 1.1], we easily have

Proposition 6.1.Let B = B(R) c R" be a ball of radiusk and letu € C%1(B) be a viscosity solution af = 0.
Then necessarily

R < sup(1/k)Y". (6.1)
2 xR

Proof. For O<r < R we have that

p(x)=C— (2= 1x)"*
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is in C2(B(r)), andg—‘f is —oo on the boundary. Sinaee C%1(B) thenu — ¢ has a maximum point at an interior
pointxg € B(r). By definition of a viscosity solution of = 0, we have thaF (xq, u(xg), D¢ (x0), D¢ (x0)) <0,
ie.

detA(Dg, D%¢) 1

k(xo,u(xo)) < W T

forall » < R. By lettingr — R we get (6.1). O

The estimate (6.1) can be obviously regarded as a first nonexistencelfeult) does not hold, then we cannot
find a viscosity solution € C%1(§2) of F = 0. We shall prove a stronger result whenis a ball. Our main tool is
the following variant of the comparison principle.

Proposition 6.2.Let 2 C R be a bounded domain antl C 92 be relatively open and of clasg!. If u €
C(£2) N %2 U ) is a viscosity solution of <0 andv e C(2) N C%1(2) is a viscosity solution of > 0
such that for allx € I”

v(x +tv(x)) —v(x) _

liminf =—00 onl
t—0t t

andu <vindaR2\ I',thenu <vin £2.

Proof. By the comparison principle we have sy — v) < sup-(u —v)*, but onI” we have

limin v H i) —vx)
t—0t t

Henceu — v cannot achieve a maximum value bh Thenu <vondf2. O

Now assume that > 0 is independent of andu € C%1(B(R)) is a viscosity solution ofF = 0 in B(R).
Assume that there is a poiég € B such that

1
ko) > . 6.2)

Itis not restrictive to assumiy = 0 and that the interior unit normal 8B at&g is (0,, 0,, 1). We shall show that the
boundary value of the functiam cannot be arbitrarily 08y. By the continuity ofk we can assume that (6.2) holds
in a neighborhood ofg. In particular there is a positive < R such that (6.2) holds iB, = {(x, y,t) € B: t <a}.
Next define the function

wx,y, t)=m+ (1),
wherem = sup,g\g, u, ¥ € C?((a, 2R)) is such thaty (2R) =0, ¥/ < 0, ¥/(a) = —oc. In B\ B, we have that
F(¢,w, Dw, D?>w) =k(&) > 0. By Proposition 6.2 we have

supu <m+ y¥(a). (6.3)
B\B,

Now we consider
1/2
wa(§) =mq — (R~ 1§ —§'17) % + M,
With mg = SUPA(—q) U, Ma = SUPgr—ay (R? — € — §'1%)Y/2 and£’ is the center of the balB. In B, we have
F(€, wa, Dwy, D?w,) =k(€) — R™" > 0. Proposition 6.2 yields that

supu <mg + M,. (6.4)
By
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Finally, by applying estimate (6.3) ta, in (6.4) we obtain

u(go) <m+y(a)+ M, = sup u+y(a)+ M,. (6.5)
aB\Ba

We remark that lim_, o M, = 0 and that we can choosg such that lim_.o ¥ (a) = 0 [13, Eq. (14.67), p. 348].
Hence the estimate (6.5) shows thatannot be prescribed arbitrarily @r2. Thus we have proved the following
nonexistence theorem.

Theorem 6.1(Nonexistence result on balls). Assukne 0 is independent of and there is a poingo € 3 B such
that (6.2) holds. Then there i € C°°(B) such that the Dirichlet problentDP) (or (1.2))is not solvable in the
class of Lipschitz continuous viscosity solution.
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