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Abstract

In this paper we look for positive solutions of the problemu + Au = uP~1in 2, u =00n3, where2 is a bounded
domaininR”,n > 3, p > 2 anda is a positive parameter. We describe new concentration phenomena, which acesr-aso,
and exploit them to construct (farlarge enough) positive solutions that concentrate near spheres of codimension2-850;
these spheres approach the boundarg @fsi — +oco. Notice that the existence and multiplicity results we obtain hold also in
contractible domains arbitrarily close to starshaped domains (no solution can (;»('Bt% ands2 is starshaped, because of
PohoZaev’s identity). The method we use is completely variational and based on a blow up analysis in the equivariant setting.
In order to avoid concentration phenomena near points and to overcome some difficulties related to the lack of compactness,
we first modify the nonlinear term in a suitable region, then we solve the modified problem by minimizing the related energy
functional on a suitable infinite dimensional manifold and, finally, we show that the solutions of the modified problem solve
also our problem, fok large enough, because they are localized in the prescribed region where the nonlinear term has not been
modified.
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

Résumé
Nous démontrons I'existence de solutions positives pour le probléme + iu = u?~1 en 2, u = 0 sura 2, ol 2 est

un domaine borné d&”, n > 3, p > 2 etA > 0. Nous décrivons de nouveaux phénoménes de concentration qui apparaissent
guandi — +oo. Grace a ceux-ci hous construisons des solutions positivesipassez grand donc qui se concentrent prés
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des sphéres de codimention 2 quane> +oo ; ces sphéres approchent du bord de omega quasdt-oco. Il faut remarquer

que I'existence de solutions est prouvée pour des domaines qui peuvent étre arbitrairement proches de domaines étoilés (quar
p= nz”Tz et 2 est étoilé il n'y a pas de solutions, ce qui se déduit de 'identité de PohoZaev). La méthode que nous suivons pour

la démonstration est complétement variationnelle. Pour surmonter les difficultés liées a la présence d’opérateurs non compact:
d’abord nous modifions le terme non linéaire ; ensuite nous trouvons des solutions du probléme modifié en minimisant la

fonctionnelle de I'énergie sur une varieté de dimension infinie ; enfin nous démontrons que les solutions du probléme modifié

sont aussi solutions du probleme original, parce-qu’elles sont localisées, dans la région ou le terme non linéaire n'a pas été
modifié.

© 2006 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved

MSC:35J20; 35J60; 35J65

Keywords:Variational methods; Lack of compactness; Concentration phenomena; Blow up analysis; Nearly starshaped domains

1. Introduction

Let us consider the following problem

—Au+ru=uPl ing,
u>0 in £, (1.1)
u=0 onos2,

wheres2 is a bounded domain &", n > 3, p > 2 andx is a positive parameter.

In [13] and [15] this problem has been studied in the qmsenﬂ_z (the critical Sobolev exponent). In this case
some concentration phenomena occur whes 0: the solutions tend to concentrate near points of the domain.
This fact is used in [13,15] to obtain, far> 0 small enough, an arbitrarily large number of positive solutions,
having an arbitrarily large number of spikes, under suitable assumptions on the d@main

In the present paper we point out other concentration phenomena, which occur gor gllash — 400 and
exploit them to construct positive solutions, for- 0 large enough, in the same domains considered in [13,15].
Notice that, while the solutions obtained in [13,15] concentrate and blow-up-ad) near a finite humber of
points, the solutions we construct in the present paper concentrate near spheres of codimension 2. In [13,15] we
proved that for all positive integérthere exist, foi. > 0 small enough, solutions blowing-up &s~ 0 at exactly
k points, which approach the boundary@fask — oo; the solutions we obtain in this paper, fotarge enough,
concentrate near spheres which approach the boundaeyasfA — +oc and the rate of concentration is greater
than the rate of approaching the boundary. In [13,15] the basic tool is a finite dimensional reduction method of
Lyapunov—Schmidt type; here we use a completely variational method. Thus, it is clear that the concentration
phenomena and the methods we used in [13,15] are deeply different in nature with respect to the ones we use in th
present paper; however, they allow us to state existence and multiplicity results in the same domains (see Example
2.2 and Remark 2.3) which may be also contractible and even arbitrarily close to starshaped domains in the sens:
we described in [13] (it is well known that the problem cannot have solutiof?sief starshaped ana > %2 asa
consequence of the PohoZaev's identity: see [22,4,5]).

Notice that, on the contrary, Dancer and Zhang (see [7]) obtained nonexistence results for supercritical problems
in some domains which are nearly starshaped in a different sense with respect to [13] (see also [19,20,25] for othel
nonexistence results concerning supercritical problems in nonstarshaped domains).

It is worth pointing out that also fok = 0 some concentration phenomena occur, related to the exppnent
Whenp — % we have concentration near points and this fact has been used to describe the effect of the domain’s
shape on the existence and the multiplicity of solutions (see [1,2,6,23]) and to construct multispike solutions when
p is sufficiently close '[onzf—2 (see, for example, [12,14] and the references therein). Vhismot close ton%,
concentration may occur not only near points but also near some more complex sets; for example, in [17] we prove
that, fora = 0 andp large enough, there exist solutions which concentrate near spheses-asco.
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The domains we consider in this paper have radial symmetry with respect tp-thes (see condition (2.1))
and we look for solutions having the same symmetry. The method we use is completely variational and the problem
reduces to minimizing the corresponding functional constrained on a suitable manifold. However, let us remark that
we do not apply this method directly to problem (1.1): we first modify in a suitable region the nonlinear term, then
we solve the modified problem and, finally, we show that the solutions of the modified problem solve also problem
(1.1) fora large enough, because they are localized in the prescribed region where the nonlinear term has not been
modified. This modification of the nonlinear term is due to several reasons, speciallysihesets thex, -axis.
In fact (see Remark 3.12) if we try to apply the minimizing arguments without having modified the nonlinear

term, we see that the minimum is not achievegd ¢ n% (because of concentration phenomena near points of the
xp-axis) while, forp < ,,Z"Tz the minimum is achieved but the minimum points give solutions which concentrate,
as) — +oo, near points of the,-axis, not near spheres (solutions of this type would not be interesting because
already well known).

Finally, let us remark that (unlike the finite dimensional reduction methods of Lyapunov—Schmidt type) our
construction does not need to know the limit profile of the solutipgnhowever, the method we use suggests
that, suitably rescaled, the functian (o, T) = u; (0,0, ..., 0, ) converges as — oo to the unique solution of

problem
—Av+v=0v""1 v>0inR?
ve HY2R?),  v(0)=maxv 1.2)
R

(see Remark 3.11 for more details).

2. Statement of the main results and examples

Let us consider a bounded domainof R", satisfying the following symmetry condition

x=(1,..., ) €2 = (p(x),0,...,0,%) € £2, (2.1)

wherep (x) = (Z}’;ll xl.z)l/ 2, We say that a function defined in2 has radial symmetry with respect to theaxis

if u(x)=u(p(x),0,...,0,x,) forall x € 2.
Let us set

2(2)={(p,1) €eR* p>0, (p,0,...,0,7) € 2} (2.2)

and denote by(£2) the subspace 0‘901’2({2) consisting of the functions having radial symmetry with respect to
thex, -axis.

Theorem 2.1. Let 2 be a bounded domain &", n > 3, satisfying conditiorf2.1) and assume that there exists an
open subsef of R? such that

0< inf{,o(x): x €82, (,o(x),xn) € A} < inf{,o(x): x €S2, (p(x),xn) € aA}. (2.3)
Also assume > 2. Then, there exists > 0 such that, for all. > A, problem(1.1) has a solution:; € Hg(£2).

For all » > 1, u, is a bounded smooth function and there exists: (p;, 7,) € X (§2) such that, for ally > 0,
we have

. 1
AﬂToo T sup{us(x): x € 22, (p(x),x,) & B(ca,m)} =0, (2.4)

while

supuy, = AP72 VA=A (2.5)
Q
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Furthermorec, € A for A > 0 large enough and

lim p;, = inf{p(x): x €2, (p(x),xn) € A}. (2.6)
A—>—+00
Moreover,
hm&mx4m’mmﬁHu @) < oo, (2.7)
A——400
lim supa P~/ P=2)|jy;, |2 7200y < 00, (2.8)
A—>—+00
lim supx =% (= 2)||u,\||L,,(Q) < +00. (2.9)
A— 400

The proof is reported in Section 3.

Examples 2.2. It is clear that, because of the behaviour of the solutipnas . — +oo, for A large enough
Theorem 2.1 guarantees the existence distinct solutions if the domaire satisfies condition (2.3) with respect
to k open subsetd,, ..., Ay pairwise disjoint. For example, in domaifssuch that

Q2 ={(x1,....x0) €R" a <x, <b, p1(xy) < p(x) < p2(x)} (2.10)

for suitablea, b INR, a < b, andp1, p2 honnegative functions ifu, b], the number of distinct solutions, farlarge
enough, is related to the number of local (strict) minimum points of the fungtiowith positive minimum values.

This fact allows us to construct examples of domains with trivial topology (even contractible) where the number of
solutions is arbitrarily large. For example, let us consider, fok @lN, r > 1 ands > 0, the domain

rk—{xeR” 1< x| <r, p(x)>sx,,distx,C),) >1 fOI’m:l,...,k—l}, (2.11)

where

3
C) = {x eR": p(x)=3m, x, = Tm}
If r > 31+ 52)Y/2, Theorem 2.1 applies with pairwise disjoint open subsets, ..., A; and guarantees, for
A large enough, the existence bfdistinct solutions which concentrate, as— +o0, neark distinct (n — 2)-
dimensional spheres of the boundarym;fk. Notice that similar domains have been also considered in [12-14,
16,17,21], where concentration phenomena of different type have been used to obtain existence and multiplicity
results.

Remark 2.3. The example of the domaif?;, (see (2.11)) is particularly significant wh¢n> . In fact, in this
case problem (1.1) has no solution foe= 0 if §2 is a starshaped domain, as a consequence of the well known
PohoZaev’s identity. The domains of the fosaf, allow us to show that problem (1.1), far> 0 large enough,
can have an arbitrarily large number of solutions in domains arbitrarily close to starshaped domains in a sense
(introduced in [13]) we describe below (notice that a different definition of nearly starshaped domain has been
given in [7] in order to extend PohoZaev nonexistence result).

For each smooth bounded domain R”, let us set

— X0

|x — xo|

where v(x) denotes the outward normal @2 in x. We say that$2 is nearly starshaped i (2)” =
max0, —o (£2)} is small §-nearly-starshaped if (£2)~ < 9).

o(2) = supmf{v(x)

xX0€S2

xGBQ}, (2.12)
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Sinces2;, is not a smooth domain, let us consider its neighbourhood
Ny(82)) = {x e R": dist(x, 25 ) < n}.
Then, ifn € 10,1[, N, (£2},) is a smooth domain for ands large enough, Iimﬁﬁoa(j\/n(!z;"k)) =0 and

T,

Theorem 2.1 guarantees the existenck distinct solutions for. large enough.

3. Preliminary resultsand proof of the main theorem

Notice that, for allx > 0, a functionu € H&’Z(Q) solves the equatiorAu + Au = u?~1 if and only if the
functiona=1 (=2 solves the equatiorr 1 Au +u = u?~1. Therefore, if we set = A~1/2, finding solutions of
problem (1.1) for large. > O is equivalent to finding solutions, for smallof the following problem

—&2Au+u=ul"1l ing,

u>0 in $2, (3.1)
u=0 onas2.
Let us choosé > 0 small enough such that, if we set
As={(p, 1) € A: dist((p, 1), R?\ A) > 5}, (3.2)

thenX (£2) N As # ¥ and

inf{p(x): X €S, (p(x),xn) € A,;} = inf{p(x): X €S, (p(x),xn) € A}
< inf{p(x): X €S2, (,o(x),x,,) € 8A5}. (3.3)
Then consider a smooth functien R2 — [0, 1] such thatd(p, 1) =1 V(p, 1) € As andd(p,7) =0 V(p, 1) €
R2\ A.

Let g1 : R — R* be the function defined by1(r) = 0 Vr < 0, g1(r) = t?~1 ¥+ > 0 and consider a smooth
convex functiongg : R — R™ such that lim_, ; go(t) <1, go(r) < g1(t) ¥t e R andgo(t) = g1(t) Vt < 1o for a
suitablerg > 0.

Then, let us consider the smooth functipn2 x R — R defined by

g, 1) =0(p(x), xn)g1(t) + [1 = 0(p(x), x) ] g0(?) (3:4)
and the functional; : Hs(£2) — R defined by

1
few) =3 /(82|Du|2 +u?) dx — f G (x,u)dx, (3.5)
2 Q
whereG(x, 1) = [y g(x, 7) d.
Throughout this paper, for evely C R?, we denote byt the set defined as follows

E:{x:(xl,...,xn)eR”: (p(x),x,,)eE}. (3.6)
Notice that, since irffo(x): x € 2 N A} > 0 because of condition (2.3), one can verify tifatis well defined in
Hg(£2) and is aC?-functional whose critical points (by the maximum principle) solve the problem

—ezAu—i—u:g(x,u) in £2,
u>0 in $2, (3.7)
u=0 onos2.

Itis clear that all nontrivial critical points fof, belong to the set

Mgz{ueHS(Q): uz=0, fg’(u)[u]=0}. (3.8)
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The following lemma describes some propertiegobnd M, and, in particular, shows that looking for nontrivial
critical points for f is equivalent to searching critical points f@r constrained o/, .

Lemma 3.1. For all p > 2 ande > 0, the following properties hold for the function#l.

(@) Assumer € Hg(£2), u # 0; then, eitherf!(tu)[u] > 0Vt > 0 (what happens, for examplef =0in 2 NA)
or there exists a unique > 0 such thatt,u € M,; in this case,f/(ru)[u] > 0 Vr € 10, z.[ and f/(tu)[u] <O
V¢ > 1, (this case occurs, for examplezit £ 0in 2 N A).

(b) M. # @ andinfy, f. > 0.

(c) M, is a Cl-manifold of codimensiofi; moreover, every critical point foy, constrained onV, is a critical
point for f;.

Proof. (a) First observe that, because of the definitiog ofve have

ﬂUWM]:a/&aDuF+uadx>0 vt >0 (3.9)
2

for all u such thats™ = 0. If u* £ 0, the functiory — %fg g(x, tu)u dx is strictly increasing in0, +oo[. More-
over, for allz > 0, we haveg (x, tu)u = tP~L(u™)? if x € 2 N As while 0< g(x, tuw)u < [liMy_ o0 go(s)] 12 if
xe2\A.

Therefore, property (a) follows easily taking into account that

fltu)ul = t[/ (82|Du|2 + u2) dx — %/g(x, tu)u dx:| vt >0, (3.10)
2 2
where
lim }fg(x, tu)udx =0, (3.11)
t—01 4
% / g(x, tu)udx = P2 / whHPdx Vvi>0 (3.12)
QNAs £2NAs

and, since lim., o gp(1) < 1,

1
Og; / g(x, tu)udx < / u?dx Vt>0. (3.13)
2\A 2\A

(b) In order to prove thad, # ¢ for all ¢ > 0 andp > 2, it suffices to choose € Hs($2), ¢ > 0, such that
@ #0in £2N As (notice that2 N As #  because of the choice 8j. Then, from property (a) we infer that there
existst, > 0 such that,¢ € M.. Moreover, property (a) implies that, for alle M.,

Je(u) = fe(tu) Vi =0. (3.14)
On the other hand, we havé(0) = 0 and £’ (0)[u, u] = [,,[%|Du|? + u?] dx.

Therefore, there exists > 0 anda, > 0 such that

Mf{ﬁao:uebka?y‘/|Duﬁdx=r§}>a& (3.15)
2
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It follows that
iAr/}f fe=a. >0, (3.16)

which completes the proof of (b).
(c) The fact thatM, is a C* manifold of codimension 1 follows from the implicit function theorem. In fact,
consider the functionab, : Hs(£2) — R defined by
@ (u) = flu)u] Vu e Hs(£2). (3.17)

Taking into account condition (2.3), one can verify thatis aC? functional. Moreoverg/ (u) # 0 for allu € M,.
In fact, if u € M, thenu™ = 0 and®, (1) = 0 that is

52/|Du|2dx+/u2dx—/g(x,u)udx:O. (3.18)
2 2 2
Therefore, ifg’(x, t) denotes the derivative @f(x, t) with respect ta, we have

@é(u)[u]=282/|Du|2dx+2/u2dx—/g/(x,u)uzdx—/g(x,u)udx
2

2 2 2

=/[g(x,u)u —g’(x,u)uz] dx. (3.19)
2

On the other hand, a direct computation shows that 1)t — g/(x, 1)t? < 0 V¢ > 0. Therefore, sinca™ 0, it
follows that®/ (u)[u] < 0. So®/ () # 0 and the implicit function theorem applies.

Now, letu € M, be a critical point forf, constrained orM,. Then, there exists a Lagrange multipliersuch
that

fi(u) + p®;(u) =0. (3.20)
It follows, in particular, that
fL@)[u] + @ (u)u] =0, (3.21)

which impliesy = 0 becausef/ (u)[u] = 0 and®/(u)[u] # 0. Thusu is a critical point forf,. O

Lemma 3.2. Under the assumptions of Theor@mn, the following properties hold for the functiongl and the
manifold M, :

@ feu)> <% — %){82/ |Du|?dx + [1- gé)(oo)]/uzdx} Yu e M,
2
wheregg(00) = 1im;_ ;o g5(1);
(b) inf{ / )P dx:ue MS} > 0.
2NA

Proof. In order to prove (a), let us observe that, forialt M.,
0= /(82|Du|2 + uz) dx — / g(x, u)udx
2 2

:/(82|Du|2+u2) dx—/é(x)(u"’)” dx—/[l—é(x)]go(u)u dx, (3.22)

2 2 2
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wheref (x) =6(p(x), x,) Vx € R".
Now, setGo(t) = f(; go(t) dr and observe that

1
Go(r) < Ego(t)t VieR
becausegy is a convex function. As a consequence, we obtain

fg(u)=%/(slemz—}—uz)dx—/G(x,u)dx

2 2

2
2 2 2

It follows that, for allu € M.,

fo(u) > <% - %) [[(82|Du|2+u2) dx — /[1—é(x)]go(u)u dx:|
2 2

() ot o]
p A o

Now observe that, sincg is convex, we haveo(t)r < g(’)(oo)tz Vvt € R, which implies

/go(u)u dx < gé(oo)/uzdx.
2 Q
Thus, (a) follows easily from (3.25) and (3.26).

For the proof of (b), let us first prove that
/ whHPdx >0 YueM,.

NRNA
For allu € M, we have

/ WhHPdx > / gx, u)udx = /(82|DM|2 + uz) dx — / g(x, u)udx
QNA QNA 2 Q2\A
> 82/ |Dul?dx + [1— gh(c0)] / u?dx,
2 2
which implies (3.27) (becausg (oo) < 1 andu 5 0 Vu € M,).

> [E@pu e adyar - [ de-3 [[1-5w]eotuuds.

(3.23)

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

Now observe that, since iff (x): x € 2N A} > 0 (see condition (2.3)), the subspacetf2(s2 N A) consisting
of the radial functions, is compactly embedded.ify in particular, for a suitable positive constant, we have

2/p
/|Du|2dx>5,,(/ |u|1’dx> Vu € Hs(£2).

QNA QNA
Therefore, taking into account (3.28), we obtain

NRNA NA 2NA

2/p
/(u+)pdx252/|Du|2dx>82 / |Du+|2dx>825p(/ (u+)pdx) Yu € M,.
2

(3.29)

(3.30)
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Since [, 1 (u™)? dx # 0 (see (3.27)), it follows

f @hP dx > (£%6,)P/ P72 Vu e M,, (3.31)
2NA
which implies property (b). O

Lemma 3.3. The minimurmminy,, f: is achieved for alle > 0. Moreover, every minimizing functian. solves
problem(3.7).

Proof. Let (;); be a minimizing sequence fgf. on M,, that isu; € M, Vi € N and lim_ o fe(u;) =infp, fe.
From (a) of Lemma 3.2 we infer that the seque@gg; is bounded irHé’z(Q). It follows that, up to a subsequence,
it converges to a function € Hg(§2) weakly in Hol’z(Q) and inL2(£2). Taking into account that the subspace of

HY2(£2 N A) consisting of the radial functions is compactly embedded in(because of condition (2.3)), we
obtain

lim /(u,*)f’dxz /(u+>"dx, (3.32)
1—> 0
2nA 2nA
lim /g(x,u,')ui dx:/g(x,u)udx (3.33)
1—>00
2 Q
and
lim /G(x,uﬂdx:/G(x,u) dx. (3.34)
11— 0
2 2
In particular, (3.34) implies
z|—|>nclo feui) = fe(u). (335)

Therefore, if we show that € M., we can conclude thatis a minimizing function forf, constrained o/, .
Notice that # 0 becaus§, ; (u™)? dx > 0, as we can infer from (3.32) taking into account (b) of Lemma 3.2.
Thus, it remains to prove that (u)[u] = 0, which (because of (3.33)) is equivalent to showing that

lim /|Du,~|2dx=/|Du|2dx. (3.36)
2 2

11— 0
In order to prove (3.36), we argue by contradiction and assume that (up to a subsequence)

/|Du|2dx < lim /lDui|2dx, (3.37)
1—>00
2 2

which (because of (3.33)) implie§ (u)[«] < 0. As a consequence, taking into account (a) of Lemma 3.1, there
existst € 10, 1[ such thatu € M,. It follows that

1 1
fe(tu) :/[Eg(x, tu)tu — G (x, tu)i| dx </|:§g(x, wu — G(x, u)i| dx
Q 2

11— 00

= lim f[%g(x, uj)u; — G(x, ui):| dx= lim f.(u;) = iAr/}f fe (3.38)
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which is a contradiction (notice that here the strict inequality holds beaatise0).

Then, we can conclude thate M, and f;(u) = miny, fe.

Finally, notice that every minimizing function fof, on M, is, in particular, a critical point foif, constrained
on M.; hence, the conclusion follows taking into account (c) of Lemma 301.

For each domaitX in R?, let us set

me(X) = inf{/(82|Dv|2 +v?)dg: v e Hy (D), / lv|? dE = 1}. (3.39)
)

P
Itis well known (see [3,8,9,26)) that, fa = R2, the minimumm, (R?) is achieved by a positive function which
is unique modulo translations, radially symmetric with respect to the origin, decreasing when the radial coordinate
increases and decaying exponentially at infinity together with its derivatives.
Lemma 3.4. For each domain® of R?, the following properties hold for at > 0 and p > 2:

(@) me(X) =e2P=2/Pmy (L 5);
(b) lim._o 8—2(p—2)/pm8(2) = ml(Rz)-

Proof. For each function e Hol’z(z), consider the functiom, in Hol’z(%z) defined by

1
ve(§) = v(cE) VEe 52. (3.40)
A direct computation shows that
f(52|Dv|2+v2) ds:gz[/(|Dv5|2+v§) dg} (3.41)
P %E
and
/|u|1’ dg:&/ [ve|P dE. (3.42)
X iy
If v=£0,setv =v/||v|Lrx) andv, = v, /||ve lprts)- Then, the above computations show that
/(52|D6|2 +9%) dg = £2P72/2 f (1D, |? + 92) de, (3.43)
P %Z

which clearly implies (a).
Taking into account (a), the proof of (b) is equivalent to showing that

lim mlez) =m1(R?). (3.44)

e—0

It is clear thatml(%z) > m1(R?) for all ¢ > 0 because each function dﬂg’z(%z‘) can be extended by the

value zero inR? \ %E. Then, it is sufficient to show that for afl > O there exists a functio, e Hol’z(%z),

IimO/(|DES|2+E§) dé = m1(R?). (3.45)

1
2
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Let w € H1?(R?) be the positive function (see [3,8,9,26]) such that

supw = w(0), / |w|P ds =1, /(|Dw|2 +w?) dé = m1(R?). (3.46)
R R2 R2
Let us fix&o € X' and consider a cut-off functiop € C3°(Y), such that 0< ¢(6) <1 V& e ¥ andg(é) =1
V& € B(&o, ro) for a suitableg > 0.
Now setw, () = ¢(£)W(E — &o/e) V& € ; ¥ andie = we/|well 1.
Then, taking into account thal and its derivatives decay exponentially at infinity, a direct computation shows
that (3.45) holds for the functiom, defined as above.O

Lemma 3.5. For all p > 2, we have

lim sups 2 min f; < +oo. (3.47)

e—0

Proof. Clearly, it suffices to show that for adl> O there exists, € M. such that

lim sups =2 £, (ii,) < +oo. (3.48)

e—0

Choosetg € X (£2) N A5 andrg > 0 such thatB(&g, ro) C X (£2) N As. Since B(&o, ro) is a bounded domain
of R?, for all p > 2 there exists a minimizing function, € Hol’Z(B(éo,ro)), ve = 0 in B(&, ro), such that

fB(So,ro) lvg|? d& = 1 and
(2| Dve|? + v?) d& = m, (B(&o. r0)). (3.49)
B(&o.r0)

Letu, € Hol’z(.Q) be the function defined by, (x) = v. (o (x), x,) if (0(x), x,) € B(&o, r0), us(x) = 0 otherwise.
A simple computation shows that there exist two constantndcs, depending only 0§g andrg, such that

/(82|DM5|2+L£§) dx <1 / (82|DU8|2+U€2) dg (3.50)
2 B(£o,70)

and
/luelp dx > c2 / Ve P dE = c2; (3.51)
2 B(%0,70)

moreover, because of condition (2.3), we can chegse 0.
It follows that, if we seti, = u./|lue | Lr(2), We have

/ (2| Dite|? + i?) dx < cam (B(&o, 0)) (3.52)
Q2
for a suitable constang depending only oo, ro and p.
Taking into account thag (x, tii, (x)) = |tiis (x)|P~1 V¢ > 0, we infer that there exists > 0 such thati, =
fellg € M.
Moreover, a direct computation shows that

~ 1 1 P p/(p—2)
felile) = (5 — ;) |:/(8 |Dug| +u8) dx] . (3.53)
2
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It follows that, for a suitable constant (depending only 0o, ro, p)

int fo < came (B(Eo. ro))]""" ™. (3.54)
Hence (3.47) follows easily, taking into account (b) of Lemma 3 4.
Corollary 3.6. For all ¢ > 0, letu, be a minimizing function fof, constrained on/.. Then

limsup [ |Du.|?>dx <+oo and Iimsups‘zfufdx <400 (3.55)

e—0 e—0
2
(which, in particular, impliest, — 0in L2(£2) ase — 0).
The proof is a direct consequence of Lemma 3.5 and (a) of Lemma 3.2 (taking into accoggtdbat< 1).

Lemma 3.7. For all ¢ > 0, letu. be a critical point for f, constrained onV.. Then

supu, > 1. (3.56)
2

Proof. Arguing by contradiction, assume that, for some 0,
supu, < 1. (3.57)
2

Then, we have
0< g(x, ug(x)) <ug(x) Vxef2 (3.58)
because of the maximum principle and the definitiorg of

Leteq be afunction ian*z(.Q) suchthak; > 01in £2 andAe; + A1e1 = 0, wherel1 denotes the first eigenvalue
of the Laplace operater A in H&’Z(Q). Sinceu, solves problem (3.7), a direct computation shows that

/[g(x, Ug) — g — 82/\1%]61 dx =0, (3.59)
2
which is a contradiction because of (3.58)1

Lemma3.8. For all ¢ > 0, letu, be a minimizing function fof, constrained onV,. Thenu, is bounded in2 and
it is a smooth solution of probleg3.7).

Proof. First observe that, sincﬁx2 |Du,|?dx < +o00 and inflp(x): x € 2 N A} > 0, the functionu, (which has

radial symmetry with respect to thg-axis) belongs td.4($2 N A) for all ¢ > 1. In particular, forg > (p — 13,
it follows that the functionw, defined by

p—1
e (x) = 1 / us () g

n(n — 2)w, &2 lx — y|n—2 >
2NA
wherew, denotes the measure of the unit balli®Rf, is a bounded function it/ ($2). Taking into account that
go(t) <t Vt >0, we haveA(w, — u,) < 0 (in weak sense) if2; sincew, > 0 on 942, it follows thatu, < w,
in £2. Thereforeu. is bounded too; thus, singdx, r) is a smooth function, it follows that, is a smooth solution
of (3.7). O
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Lemma 3.9. For all @ € 10, 1[ ande > 0, letu, be a minimizing function foy, constrained om/, and consider
the set

24 ={(p.1) € Z(2): us(p,0,...,0,7) > a}. (3.60)
Then

(a) measX?) >0, Ve >0, Va €10, 1[;
(b) limgomeagXy) =0, Yo € 10,1[;
(c) forall e > 0anda € 10, 1], there exiSty ¢ = (pu.e, Tae) € X (§2) andrq . > 0 such that

XY C B(caesTae) and |im0ra!€ =0 Vae]0,1]. (3.61)
E—>

Moreover, we have
IimOdist(ca,g, A)=0. (3.62)

Proof. Property (a) is a direct consequence of Lemma 3.7, while (b) follows from Corollary 3.6 (becaus®
in L2(£2) ase — 0).

Property (c) is a consequence of the fact tfidi.) = minyy, f¢, which implies the existence @f, . € X' (£2)
andrq . > 0 such that (3.61) holds. In fact, let us argue by contradiction and assume that, forsentel],
(3.61) does not hold for any choice f . andr, .. Taking into account the definition gf(x, 7), we can fixa > 0,
small enough, such that(x, @) —« < 0 Va € 10,&[, Vx € 2. SinceX, . C ¥, . for &' > «, it is clear that, in
order to prove our assertion, it suffices to consider only the eas¢0, /.

Then, fixa € ]0,&[, consider the seA? = {(p, T) € R% #(p, t) > 0} and observe that, . N A? # @ Ve > 0;
in fact, otherwise, we should hay&x, u.(x)) — u.(x) < 0 a.e. in £2(sincegp(t) <t V¢t > 0) which is impossible
(by the maximum principle) becauseg > 0.

If the diameter ofX, . does not tend to zero as— 0 (as we are assuming by contradiction), tkﬁ@,s
(see (3.6)) has at least two connected components$od small enough.

In fact, assume that (up to a subsequence)

IimOdiam(Z‘a,g) >0 (3.63)
e—>

and, arguing by contradiction, assume also that (up to a subseq@t;]g:és connected for alt > 0.
From (3.63) and condition (2.3) we infer that there exiéts O such that

d < min{% Iimodiam(Z‘a,g), inf{p: (p,7) € Z(2)N A}} (3.64)

Since Xy . N A? £ Ve >0 andA? c A, we can choose a point, in Yae N A Ve > 0; then, fore > 0 small

enough, there exist, € ¥, ., such that dist(p, p,) = d, and a continuous path &, . N B(p;, d), joining p,

andp,, (in fact X, . is open connected, just ai,,g, and cannot be contained B(p,, d) as diantX, ;) > 2d).
Now observe that, because of (3.64), we can chgase such that

2p+d <inf{p: (p,7) € Z(2)N A} (3.65)

Then, consider a smooth functign R — [0,1] such thatz (r) =0Vt < p, ¢(t) =1Vt > 2p and selp.(p, 1) =
L(p)ug(p,0,...,0,7) V(p, ) € X(£). It is clear thaty, is a smooth function irHol(ZJ(SZ)) and g, (p, 1) =
ug(p,0,...,0,71)V(p, 1) € X(2) N B(pe, d).

Moreover, since > 0, Corollary 3.6 implies that

1
limsup | |Dg.|?dpdr <+oo and limsup= / @?dpdr < +o0. (3.66)

=0 e—0 g2
X (2) 2(£2)
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Now, consider a balB in R? with centre in (0,0) and radius large enough so thaf2) C B; set

d
Sd={(;0,f)€R21 p=0, |f|<§}

(notice thatS; c B) and denote by, the function inH&(B) which realizes the following minimum (see, for
example, [11])

min{/ |Dg|?dpdr: ¢ € HF(B), ¢l 2(5) = I19ell 2(5(2))» @ = ON Sy in the sense oﬂol(B)}. (3.67)
B

Sinceg, > « in the sense oH&(B) on a continuous path iB, joining p. and p., and since dist(n p.) =d, we
have

/ D@, |2dpdr < / |D<pg|2dpdr Ve >0
B ()
(symmetry reasons justify this minimality property of the segn#gnwiith respect to all the continuous pathsBn
joining two arbitrary points having distanag.

It follows that limsup_, /5 |D@,|2dpdr < +oo (because of (3.66)). On the other haggd— 0 in L2(B) as
e — 0, becausg, — 0 in L2(X(£2)) (see (3.66) and (3.67)). Therefore, up to a subsequence; 0 ase — 0
weakly in Hol(B). Now, applying a theorem of Banach and Saks (see, for example, [24] and [11]), we infer that
there exists a sequent®);, ¢; — 0 asi — +o0, such that;l(L Zle@i — 0 ask — oo (strongly) ian}(.Q).

Clearly, this gives a contradiction becauéezgc:l @s; =1 0nS, in the sense oH(}(B) forall k e Nand

capS, = min{/ |Dg|?dpdz: ¢ € H}(B), ¢ >10n § in the sense oﬂol(B)} > 0.
B

Therefore, fore > 0 small enoughf,m must have at least two connected components; as a consequence, for
¢ > 0 small enough, there exist . and vy, in H&(Q), vie 20,02, >0, [pv1,dx >0, [Hv2.dx >0,
Jo viev2,edx =0, such that, = ue Ao+ v1e + v2,.

Notice that, asZ, . N A? # @ Ve > 0, we must have

meagA’ N suppvy,) >0 (3.68)

or measgA? N suppvz,¢) > 0. So we can assume that (3.68) holds for evesyO0.
Then, let us consider the functiaR = u. A @ 4+ v1 . = u, — v2. Itis clear thati, € Hol(!z); moreover, notice
that

feliie)[ie] > 0; (3.69)

infact,ii; > 0in 2, e2Aug —us +g(x, us) = 0in £2 (see Lemma 3.8%(x, @) —a < 0Vx € £2 because € 10, &,
ie =u, Wherevo, =0, i, = < u, wherevy, >0 (indeed,—&?Aii, + i, — g(x, ii;) iS a nonnegative measure
on £2).

Now, for everyr € R, let us consider the functian. ; = u. A @ + tv1 . and observe that, since (3.68) holds for
everye > 0, we have

lim  fl(ue)ue,]=—00 Ve>0. (3.70)
t——+00

From (3.69) and (3.70) it follows that there exists 1 such thatf/(u, 7)[u. ;1 =0, thatisu, ; € M,.

We shall prove thaf; (u, ;) < f:(us), which gives a contradiction becauggu,) = miny, f; andu,; € M,.

First we prove thaff. (iz.) < fe(u.); in fact, for everyr € [0, 1],



R. Molle, D. Passaseo / Ann. I. H. Poincaré — AN 23 (2006) 63—-84 77

d
afe(ue - tUZ,e) = fg/(u€ - tUZ,s)[_UZ,s]

= /[SZD(Mg —tv2:)Dv e + (U — V2 )V2 — (X, U — tvz,g)vz,s] dx; (3.71)
2

for r = 0, we havef/(u;)[—v2.] = 0 because of Lemma 3.8; for= 1, taking into account thai, = o where
v2. # 0, we obtain

felie)[—vz.e]l = — /[Ot —g(x,a)]vzdx <0 (3.72)
2

becauser < &. Thus, sincez(x, -) is convex, it follows thatf,(u, — tvp)[—v2,.] < O for everyr € 10, 1[, which
implies fe(ite) < fe(ue).
Now we prove thatf, (1, ;) < f:(it¢); in fact

d
g fewen) = filue)lvrel = /[82Du8,1Dv1,g + e V1 — (X, Ue )V | Ox; (3.73)
2
for r =0, sinceu, o = o« wherevy . # 0, we obtain

folueo)vrel = /[a —g(x,a)]vy.dx >0 (3.74)
2
becauser < «; for r = 1, sinceu, 1 = u. wherevy . # 0, we have
fg/(us,l)[vl,s] = /[EZDuaDvl,s + UV — gx, us)vl,s] dx = fg/(ua)[vl,e] =0 (375)
2

because of Lemma 3.8. Therefore, sigce, -) is convex, it follows thatf, (u. )[v1,c] < O for everyr > 1, which
implies fe (u, 7) < fe(us,1) because > 1.

Thus, sincer, 1 = ite, We havefe (u, ;) < fe(ile) < fe(ue), Which is impossible.

In order to prove (3.62), let us argue by contradiction and assume that (up to a subsequengga)istec, ., A)
> 0. Then, since:, is a smooth solution of problem (3.7) (see Lemma 3.8)gfer 0 small enough there exists
a maximum pointc, for u,, such that dist(y A) > 0 andu,(x,;) > 1. It is clear that this gives a contradiction
because (x., 1) = go(¢) <t for all ¢ > 0; in particular, forr = u,(x,), we obtainAu.(x.) > 0 which is impossible
because:, is a maximum point for.. O

Lemma3.10. For all « € 10, 1[ande > 0, letcy s = (pa.es Tas) € X' (§2) be as in Lemma&.9. Then, we have

|im0,00,,5 = inf{p(x): x €82, (,o(x),xn) € A} Yo €10, 1]. (3.76)

Proof. Let us argue by contradiction and assume that, for séme]0,1[, (up to a subsequence) we have
lim, ,ocgz.c =Cc=(p,T) € AN XZ(£) with

0> inf{p(x): x € $2, (p(x),x”) € A}. (3.77)
Lemma 3.9 implies that, if we set
ve(p,T) =ue(p,0,...,0,7) V(p, 7)€ X(£2), (3.78)

thenv, — 0, ase — 0, uniformly in ¥ (£2) \ B(c, n) for all n > 0; in fact, since lim_ory, =0 Vo € 10,1[
and Xy . € X, for o’ > o, we have lim_.ocq, = ¢ for everya € 10,1[; so, for everye € 10,1[, we have
Yu.e C B(c, n) for e > 0 small enough.
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Now observe that, for eveny < 10, 5[, we have

/(52|Du8|2+u§) dx > / (2| Due)? + u?) dx
Q 2nB@E,n)
=(n—1Daop_1 / (2| Dve|? + v?) p" 2 dpdr
> (2)NB(E,n)
~ n—2 2 2, .2
> (n— Dan_1(5 — ) f (e21Dve 2 + v2) dpdir. (3.79)
2($2)NB(c,m
Therefore, taking into account Corollary 3.6, we infer that
lim supe 2 / (6‘2|DU8|2+U82) dodt < 400, (3.80)
0 s@nseEn
that is (if we set.(p, ) =0V (p, 1) € B(c,n) \ X(£2))
limsup / (|Dw£|2+w82) dpdt < 400, (3.82)
0
77 B@/ense
wherew, denotes the function defined by (o, 7) = v (ep, 7).
Foralle > 0, let(p., t)) € X (£2) be a maximum point fop, (i.e. v:(p;, t}) = Maxs () v:) and consider the
functionw, defined by
We(p, T) = we(p + pp/6, T +7./8) = ve(ep + pp, €T + 7).
Notice that Lemma 3.9 implies lim.o(p., 7)) = ¢; therefore, for every bounded subsgtof R?, we haves ¥ +
(pe»70) € B(¢, n) thatis
X+ (p./e,t./€) C B(c/e,n/e) (3.82)

for ¢ > 0 small enough.
It follows that, for alle > 0 small enough,

/(|Dwg|2+w§) dodr < / (IDwe [+ w?) dpdr, (3.83)
z B(/e.n/e)

which, because of (3.81), implies

limsup | (|Dw,|? + w?)dpdr <400 (3.84)
&€

for every bounded domaif of R

As a consequence, there exigte H1(R?) such that (up to a subsequenag)— w weakly in H1(R?), a.e. in
R? and inL4(X) Vg > 1 for every bounded domail of R?.

Now observe that the functiofi., defined byii, (x) = us(ex + x,), with x, = (p.,0,...,0, 7)), solves the
following problem

—Allg + i, =glex +x,d:) N 82,
fie >0 in 2., (3.85)
i, =0 onos2e,
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where 2, = ;—L(Q — x}). Therefore, taking also into account that Jigy o, = ¢ > 0 and thati.(0) = w,(0) =
max. u, > 1, we can say that, in its suppoii,solves the equation

— AW+ W= g(F, W), (3.86)

wherex = (p,0,...,0,7), and thatw # 0 (in fact, if w = 0, sincew, — w in LY(X) Vq > 1 for every bounded
domainX of R? andii, solves problem (3.85), we could infer that(0) — O, which is a contradiction).
Now, consider the functionaf : H1(R?) — R defined by

f(w):%/(|Dw|2+wz)dpdr—/G()E,w)d,odr
RZ RZ

and observe that, sinc&(w) = max.o f (tw) andG(x, 1) < %|t|1’ Vi € R, then f(w) > max-o f (tw), where
f is the functional defined iff1(R?) by

R 1 1
f(w) = Ef(|Dw|2+w2)d,odr— —f|w|pdpdr. (3.87)
R2 pR2

On the other hand, we have

2/p
/(|Dw|2+wz) dpdr>ml(R2)(/|w|P> ; (3.88)
R2 R2

thus, we obtain
7 1 20 2112 b (1 1 2.1/ (p—2)
fw) > ljl%x{ Eml(R )t IIwIILp(Rz) - ;IIwIIU(Rz) =5~ ; [ml(R )] . (3.89)

Now observe that, since, € M, and%g(x, Nt —G(x,t) > 0Vx € 2,Vr e R, we have

1
Se(ue) :/[Eg(x’ ugug — G(x, “5):| dx
2

1
> / [ég(x, ugus — G(x, Ms):| dx

2nB@E.n)

o 1
2(’7_1)%71(,0_77) 2 / Eg(p7o9"'707 T, UE)UE:‘_G(p507"'707T7 v&‘)] dpdt'
Z(§2)NB(c,n)

(3.90)
It follows that
imint &2 ue) > (1~ Dyo-s(5 — )" Pliminte 2 [%g(p,o, 0w
X ($2)NB(c,n)
- G(p,0,...,0,1, vg):| dodr (3.91)

that is (since we sat, =0in B(¢, n) \ X (£2))
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. o 1
liminf &2 fo(ug) = (n — Dam—1(p — n)" 2 liminf / |:—g(sp, 0,...,0,e7, w)w,
e—0 e—0 2
B(c/e,n/e)

—G(gp,0,...,0,¢r, wg)] dpdr. (3.92)
Taking into account (3.82), for every bounded domaimf R? we have

. o 1
lim |r3f 72 fu(ug) = (n — Day—1(p — n)" 2 lim ngf / [Eg(w +0,,0,...,0, 6T+ T, We) W,
£—> £—>
X

—G(ep+p.,0,...,0,eT+ rg,wg)i| dpdr. (3.93)
Sincew, — w in L?(X"), we obtain
1
lim igf e 2 feue) = (n — Dwy—1(p — 77)"_2/[58()?, w)w — G(x, w)} dpdz (3.94)
E—>
z

for every bounded domaif in R2, which implies

o 1
limin e 72 fo(ue) = (n — Dawy—1(p — )" 2 f [ég(x, w)w — G(x, w)} dpdr. (3.95)
E—> Rz
On the other hand, we have
1 _
/[Eg(i,w)w—c;(i,w)} dpdr = f(w), (3.96)
RZ
becausey, g(¥, w)wdpdr = [p(|IDw|? +w?) dpdr.
Thus, by (3.89), we get

. 1 1 _ _ - -
liminf e~ f, (ue) > (5 - ;)(n — Den-1(5 — 0" mi®)] "™ vy e 0.4l (3.97)
and, lettingn — 0,
imint &2, ue) > (% - 3><n ~ D15 " m @], (3.98)
£— p

In order to prove that (3.98) gives a contradiction, observe that, gineanf{p(x): x € 2, (p(x),x,) € A},
because of the choice 6f(see (3.3)) there exists = (0o, To) € As N X (£2) such thatog < p. Fix 77 > 0 small
enough so thaB(Go, 1) C As N £(£2); then consider a functiod. € Hy*(B(co, 7)), ¥ > 0 in B(Go, 7), such that

/ 3P dpdr=1 and /(82|Dl_15|2+ﬁgz)dpd‘r:ms(B(Eo,r_})). (3.99)
B(co.m) B(co.m)

Let i, be the function inHg(£2) defined byii, (x) = v (p(x), x,) if (0(x), x,) € B(co, ), is(x) = 0 otherwise;
notice that, sinceB(co, 77) € As, there exists, > 0 such that.iz, € M.. Moreover, a direct computation shows

that
_ 1 1 —2/p r/(p—2)
felteite) = (5 - ;> [(/ i? dx) /(82|Dﬁg|2 +ii?) dxi| . (3.100)
2 2
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Now, observe that

/ (£%1Dite|? + i) dx < (n — Dy —1(fo + )"~ / (£*1DU|? + 07) dpde

2 B(co,n)
= (n — Dn—1(po + )" %m (B(Co, 7)) (3.101)
and
/ a2 dx > (n — Dan_1(50 — 7). (3.102)
2

It follows that

_ 1 1 D) o2 o _
folluits) < (5—;)<n—1)wn_1<po+n)“ 20102 (5o — iy =202/ =2, (B(G, 7)) ]” "2,
(3.103)

which, because of Lemma 3.4, implies

. o - 1 1 e L2 s e 2(n—2)/(p— -2
lim supe =2 f. (fpite) < (5_;)(n_1)wn_1(po+n)<z 2p/(p=2)(po — i) ~2n=2/(p 2)[m1(R2)]"/(” )

e—0
(3.104)
Notice that, sinceg < p, we can choosé small enough so that, in addition, it satisfies the condition
(po + i) " 2P/ P2 (5o — i) 2D/ (=2 < G2, (3.105)

Thus, from (3.98) and (3.105) we infer th#t(z.it.) < fe(ue) for ¢ > 0 small enough. It is clear that it is a
contradiction becausg (u.) = miny, f. andz.i, € M;. O

Proof of Theorem 2.1. Letu, be a minimizing function forf, constrained o/, (which there exists for at > 0
because of Lemma 3.3). Singg is a solution of problem (3.7), in order to prove that it solves also problem (3.1),
it suffices to observe that, farsmall enoughg (x, u, (x)) = [us (x)]?~1 for all x € §2, which follows easily from
Lemmas 3.9 and 3.10, since they imply that

|im08up{u8(x): x €82, (,o(x), xn) ¢ A(;} =0. (3.106)

Therefore, since the solvability of problem (1.1) for lavges equivalent to the solvability of (3.1) for small the
existence of a solution of (1.1) for larges proved.

Lemma 3.8 guarantees that the solution is bounded and smogth in

Property (2.4) is a direct consequence of Lemma 3.9, while (2.5) is proved in Lemma 3.7. The asymptotic
behaviour of;, asi — +o00, follows from Lemmas 3.9 and 3.10.

Finally, Corollary 3.6 guarantees (2.7), (2.8) and (taking into accounuthatM,) also (2.9). O

Remark 3.11. The rescaling arguments used in the proof of Theorem 2.1 and the concentration-compactness
principle (see [10]) can be also used to obtain information on the asymptotic shape of the sgl@sin— +oo.
In particular, using this methods, one can show that there &¥isis;) R? (for all » > A) such that the function

,0,...,0,—="
v v

converges, as — 400, to the solution of problem (1.2).

-0 T—71
v.(0, T) :)L—l/(p—Z),“(u *)
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Remark 3.12. Notice that solutions of problem (3.1) can be also obtained as critical points for the fundtjonal
defined by

F.(u) = %f[szwmz +u?]dx — %/(uﬂp dx, (3.107)
2 2
constrained on the manifold
Ve = {u € Hs(£2): u#0, f(82|1)u|2 +u?)dx = /(f)l’ dx}. (3.108)
2 2
In particular, one can try to minimizé, on V.. But, if 2 meets thex,-axis, this approach gives solutions of
different nature wherp < % and does not work whep > % In fact, if p < % one can show that the

minimizing functions forf, on V, concentrate near points of thg axis, ase — 0, while a functionu. which
minimizes f, on M, concentrates near a sphere of codimension 2; the arguments used in this section for the proof
of Theorem 2.1 show thaf, (u,) behaves as? whene — 0; on the contrary, mip. F, behaves as”, as one can
verify in the following way. Letx = (0, ..., 0,x,) be a point of thex,-axis belonging ta2; choose a function
i € C3°(B(0,1)) radially symmetric with respect to the origin,” =0, a ™ # 0, and, for alle > 0, consider
the functionu, defined byi,(x) = ﬁ(xa;’z) (u is extended by the value zero outsi@€0, 1)); for ¢ > 0 small
enough,i, € Hg(£2) and there exists a uniqug > 0 such that.i. € V,; then, a direct computation shows that
limg,_o0e " Fy(tzits) < +00.

If £2 meets thex,-axis andp = % then the infimum inf, F; is not achieved for any > 0. In fact, if x is a
point of thex,,-axis belonging ta2, we can consider the functiofis € Hs(£2) defined by

fis(x) = £ (0)[82 + |x — 712 E 72
where¢ e Cg°(£2) N Hg(£2) is a cut-off function, 0< ¢ < 1, ¢ = 1 in a neighbourhood of. Notice that, for

all § > 0 ande > 0, there exists; . > 0 such thatis .iis € V.. Since the functiongs? + |x — %|2]®"/2 are
minimizing functions for the best Sobolev constant (see [27]), lettirg O one can see that inf F, is related to

the best Sobolev constant and, arguing for example as in [4,5], one can prove hat ichnnot be achieved for

anye > 0 because of the nonexistence result of PohoZaev (see [22]). However, even if the infimum is not achieved,
for p = nz"TZ under suitable assumptions &b, one can find critical points foF, constrained orV, as local

minimum points arguing as in [18]. On the contrary, whes ,IZ”TZ and £2 meets thex,-axis, F, constrained on

V. does not admit neither minimum, nor local minimum points (this difficulty has been first pointed out in [21]). In
fact, infy, F. =0, as one can verify in the following way: consider, as above, the fundiigng = 12("3)E ), which
belong toHs(£2) for § > 0 small enough; then, a direct computation shows that, faralD, there exists a unique

75, > 0 such that; .iis € V, and (sincep > :2) lims_, Fe (i, iis) = 0.

In order to prove thaf, constrained orV, does not have any local minimum point, it suffices to prove that
for all u € V, there exists a sequencg;); in V., which converges ta in H&’Z(.Q) and in L?(£2), such that
Fe(u;) < Fe(u) forall i e N.

In order to find such a sequence, let us consider the functions

1\Yr 1\? ,
i = (1 - f) “r (—) LD (3110)
1

i) lusllLr(2)

Vx € 2, (3.109)

andu; s = f.; sit; 5, Whereis is defined as above ang; s is the unique positive number such thatsi; s € V..
One can verify that

lim /ﬁ{’ﬂx:/uﬂdx VieN (3.111)
§—0 ’
2 2
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2n

n—2

' 1\2/P
glmO/(SlelZi,Slz +ﬁ,~25) dx= (l— —_) f(eleulz—i-uz) dx
— ’ 1

2 2

and, sincep >

< /(sleu|2+u2) dx VieN, (3.112)
2

where the strict inequality holds becausg 0 in £2 (asu € V;). It follows that there exists a sequence of positive
numberss; — 0 such that, if we sei; =7 ; 5,1, 5,, then the sequenda;); satisfies the desired properties.
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