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Abstract

The Vlasov–Nordström system is a relativistic model describing the motion of a self-gravitating collisionless gas. A
tional existence result for global smooth solutions was obtained in [Comm. Partial Differential Equations 28 (2003) 1863
We give a new proof for this result.

Résumé

Le système de Vlasov–Nordström est un modèle relativiste décrivant l’évolution d’un ensemble de particules mass
mises au champ gravitationnel qu’elles génèrent collectivement. Un théorème d’existence conditionnelle a été démo
[Comm. Partial Differential Equations 28 (2003) 1863–1885]. Nous donnons ici une nouvelle preuve de ce résultat.

MSC:85A05; 82C22

1. Introduction

1.1. The Vlasov–Nordström system

This is a relativistic kinetic model describing the behaviour of a collisionless set of particles interacting th
gravitational forces. It may be thought of as a relativistic generalization of the Vlasov–Poisson system, th
being obtained as its Newtonian limit [5]. Using the framework of Nordström’s theory [11], whereby gravita
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effects are mediated by a scalar field, the Vlasov–Nordström system is a much simpler model than the
Einstein system. Nevertheless, as it couples Vlasov equation with a hyperbolic equation, it remains le
understood than the standard Vlasov–Poisson system. For more background and references, we refer to [4
thorough derivation of the Vlasov–Nordström system can be found. See also [1,6–8,14]. We shall conside
lowing formulation. The unknowns are functionsf ≡ f (t, x, ξ) � 0 andφ ≡ φ(t, x) with (t, x, ξ) ∈ R+×R3×R3,
satisfying Vlasov equation

Tf = ∇ξ ·
[(

(T φ)ξ + ∇xφ√
1+ |ξ |2

)
f

]
+ f T φ, (1.1)

T being the streaming operatorT = ∂t + v(ξ) · ∇x andv the relativistic velocity of a particle of momentumξ :

v(ξ) = ξ√
1+ |ξ |2 .

The scalar fieldφ is supposed to solve the wave equation

�t,xφ = −µ, (1.2)

with

µ =
∫

f dξ√
1+ |ξ |2 . (1.3)

The Cauchy problem for the Vlasov–Nordström system (VN) consists in Eqs. (1.1), (1.2) and (1.3) togeth
initial data

f|t=0 = fI , φ|t=0 = φI , ∂tφ|t=0 = φ′
I . (1.4)

In these equations, all physical constants have been set equal to unity. The interpretation of a solution(f,φ) is the
following: the space-time is a Lorentzian manifold with a conformally flat metric given in coordinates(t, x) by

gµν = e2φ diag(−1,1,1,1)

and the particle density on the mass shell in this metric is e−4φf (t, x,eφξ).
This system should be compared to another kinetic model arising in plasma physics, the relativistic V

Maxwell system (RVM), which describes the behaviour of a collisionless set of charged particles inte
through a self-generated electromagnetic field. In particular, it is known since Glassey and Strauss [1
reproved in [3,13]—that smooth solutions to (RVM) do not develop singularities as long as the momentum
ticles remains bounded. The corresponding result for (VN) was shown in [6,7] by similar means. Defining t
of the momentum support as

R(t) = sup
{|ξ |: ∃x ∈ R3 f (t, x, ξ) �= 0

}
, (1.5)

we have the following theorem, established in [6,7].

Theorem 1.1. Let τ > 0. Letf ∈ C1([0, τ )× R3 × R3) andφ ∈ C2([0, τ )× R3) be a solution of(VN) with initial
datafI ∈ C1

c (R3 × R3), φI ∈ C3
c (R3) andφ′

I ∈ C2
c (R3). Then for anyt ∈ [0, τ] we have

sup
s∈[0,t)

R(s) < +∞ �⇒ ‖f ‖W1,∞([0,t)×R6) + ‖φ‖W2,∞([0,t)×R3) < +∞. (1.6)

A corollary of this result is that if a smooth solution blows up in finite time thenR becomes infinite. For if it
were not the case, the estimates (1.6) would allow to extend the solution as described in [6], p. 1881. The
theorem 1.1 in [6] relies essentially on the same procedures than those found in [10]. In this paper, we giv
proof by handling the fields and their derivatives using a method similar to [3], where an alternative deriva
the Glassey–Strauss’ theorem is performed.
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1.2. Kinetic formulation

The starting point in [3] is an adequate ‘kinetic formulation’ of the system, which was introduced in [2]. L
show why this approach is relevant in the context of the Vlasov–Nordström system. Introduce a scalar p
u ≡ u(t, x, ξ) solving the wave equation

�t,xu = f, u|t=0 = 0, ∂tu|t=0 = 0. (1.7)

Let φ0 be the solution to

�t,xφ
0 = 0, φ0

|t=0 = φI , ∂tφ
0
|t=0 = φ′

I . (1.8)

And define

φu = φ0 −
∫

udξ√
1+ |ξ |2 , (1.9)

Ku = (T φu)ξ + ∇xφu√
1+ |ξ |2 . (1.10)

Then the Vlasov–Nordström system (VN) is equivalent to

�t,xu = f, (1.11)

Tf = ∇ξ · (f Ku) + f T φu, (1.12)

with initial data

f|t=0 = f0, u|t=0 = 0, ∂tu|t=0 = 0. (1.13)

This representation of the scalar fieldφu as aξ average ofu allows a treatment similar to [3]. That is, we deri
suitable expressions of the derivatives ofφu by working on the fundamental solution of the wave operator.
benefits of this approach are a unified treatment for all derivatives as well as a natural explanation for a k
in both the present paper and [6], namely the vanishing average of some particular coefficients. We also
that this method extends to the two-dimensional case studied in [14], see the remarks in [3] on this q
In the next section we recall the so-called division lemma, on which we shall rely heavily. Section 3 is d
to establishing estimates onf , φu and their derivatives leading to the proof of Theorem 1.1. We use stan
notations. In inequalities, constants that depend on some parametersλ1, . . . , λk are denoted byC(λ1, . . . , λk) and
may change from line to line.

2. A division lemma

Let Y ∈ D′(R4) be the forward fundamental solution of the wave operator:

Y(t, x) = 1t>0

4πt
δ
(|x| − t

)
. (2.1)

Notice that the distributionY is homogeneous of degree−2 in R4. Let Mm be the space ofC∞ homogeneous
functions of degreem on R4 \ 0. Below, we use the notation

x0 := t, and ∂j := ∂xj
, j = 0, . . . ,3. (2.2)

The following lemma can be found almost verbatim in [3].

Lemma 2.1 (Division lemma). For eachξ ∈ R3,
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• there exists functionsak
i ≡ ak

i (t, x) wherei = 0, . . . ,3 andk = 0,1, such thatak
i ∈ M−k and

∂iY = T (a0
i Y ) + a1

i Y, i = 0, . . . ,3; (2.3)

• there exists functionsbk
ij ≡ bk

ij (t, x) with i, j = 0, . . . ,3, k = 0,1,2, such thatbk
ij ∈M−k and

∂2
ij Y = T 2(b0

ij Y ) + T (b1
ij Y ) + b2

ij Y, i, j = 0, . . . ,3; (2.4)

• moreover, the functionsb2
ij satisfy the conditions∫

S2

b2
ij (1, y)dσ(y)= 0, i, j = 0, . . . ,3, (2.5)

wheredσ(y) is the rotation invariant surface element on the unit sphereS2 of R3. In both formulas(2.3)and
(2.4), a0

i Y , a1
i Y , b0

ij Y and b1
ij Y designate, for eachi, j = 0, . . . ,3, the unique extensions as homogene

distributions onR4 of those same expressions—which are a priori only defined onR4 \ 0. Likewise,b2
ij Y

designates, fori, j = 0, . . . ,3 the unique extension as a homogeneous distribution of degree−4 on R4 of that
same expressions for which the relation(2.4)holds in the sense of distributions onR4.

Remarks.

1. The proof of Lemma 2 is in [3]. It is based on the commutation properties of the wave operator with the L
boosts.

2. We refer the reader to the reference for the expressions of coefficientsak
i (t, x, ξ) andbk

ij (t, x, ξ). In the sequel

all we shall need are the following two properties:ak
i , b

k
ij ∈ C∞(R4 \ 0× R3) and for anyξ ∈ R3 andα ∈ N3

we have∂α
ξ ak

i (·, ·, ξ) ∈M−k and∂α
ξ bk

ij (·, ·, ξ) ∈ M−k .
3. We recall here some facts about homogeneous distributions. Any homogeneous distribution of degreek > −3

on R4 \ 0 has a unique extension onR4 that is also homogeneous of degreek. A homogeneous distributio
of degree−4 on R4 \ 0 may not be extendable onR4. If such a homogeneous extension exists, then
not unique: two extensions may differ by a multiple ofδx=0. For more details, see the appendix of [3] a
references therein [9,12].

3. Proof of Theorem 1.1

3.1. Estimates onf

We begin by showing that the needed estimates onf and its first derivatives will follow from estimates onφu.
This is done by working on the transport equation satisfied byf . Following [6], we thus rewrite (1.12) as

T (e−4φuf ) = −4e−4φuf T φu + e−4φuTf

= −4e−4φuf T φu + e−4φu
(∇ξ · (f Ku) + f T φu

)
= −3e−4φuf T φu + Ku · ∇ξ (e

−4φuf ) + e−4φuf ∇ξ · Ku.

The expression ofKu gives

∇ξ · Ku = ∇ξ ·
(

T φuξ + ∇xφu√
1+ |ξ |2

)

= (ξ · ∇ξ )(v · ∇xφu) + 3T φu + (∇xφu) · ∇ξ

(
1√

2

)
.

1+ |ξ |
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A short computation shows that

(ξ · ∇ξ )(v · ∇xφu) = v · ∇xφu

1+ |ξ |2 ,

and

(∇xφu) · ∇ξ

(
1√

1+ |ξ |2
)

= −v · ∇xφu

1+ |ξ |2 .

So that we find

T (e−4φuf ) −
(

T φuξ + ∇xφu√
1+ |ξ |2

)
· ∇ξ (e

−4φuf ) = 0. (3.1)

The characteristic curves of this equation remain the same as those derived from (1.12). These ar
t �→ (X(t),Ξ(t)) satisfying

X′(t) = v
(
Ξ(t)

)
,

Ξ ′(t) = −(T φu)
(
t,X(t),Ξ(t)

)
Ξ(t) − (∇xφu)(t,X(t),Ξ(t))√

1+ |Ξ(t)|2 ,

with initial dataX(0)= x0 andΞ(0)= ξ0. We infer from (3.1) that e−4φuf is constant along these curves and
get equality (2.7) of [6]:

f
(
t,X(t),Ξ(t)

) = fI (x0, ξ0)exp
(
4φu

(
t,X(t)

) − 4φI (x0)
)
. (3.2)

As was observed in [7],u solves the wave equation (1.7) with a right-hand sidef � 0 and vanishing initial data
so thatu � 0. From (1.9), it comesφu � φ0 and we recover proposition 1 of [7]:∥∥f (t, ·, ·)∥∥

L∞ � C(fI ,φI ,φ
′
I , τ ). (3.3)

A look at (3.2) shows that sincefI is compactly supported, the momentum support off (t, ·, ·) remains bounded
for any t < τ . From now on, we assume

sup
t∈[0,τ )

R(t) = r∗ < +∞. (3.4)

Differentiating equality (1.12) inx or ξ , we find

T (Df ) − ∇ξ · ((Df )Ku

) = [T ,D]f + ∇ξ · (f DKu) + D(f T φu),

whereD denotes∂xi
or ∂ξi

. Therefore with (3.3),

∥∥f (t, ·, ·)∥∥
W1,∞

� C(fI ,φI ,φ
′
I , τ, r

∗)
(

1+
t∫

0

∥∥f (s, ·, ·)∥∥
W1,∞

(
1+ ∥∥φu(s, ·)

∥∥
W2,∞ + ∥∥∂tφu(s, ·)

∥∥
W1,∞

)
ds

)
. (3.5)

The next three subsections are devoted to estimatingφu, its first and second derivatives. Note that we aim at us
inequality (3.5) with Gronwall’s lemma. This requires bounds that do not grow too fast with respect to the q
‖f (t, ·, ·)‖W1,∞.
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3.2. Bound onφu

The easiest one. We have to estimate

φu = φ0 −
∫

udξ√
1+ |ξ |2 . (3.6)

We recall the following elementary inequalities for the wave equation

‖φ0‖Wk,∞([0,t]×R3) � (1+ t)‖φI‖Wk+1,∞ + t‖φ′
I‖Wk,∞ . (3.7)

Thus the first term in (3.6) can be estimated by∥∥φ0(t, ·)∥∥
L∞ � (1+ t)‖φI‖W1,∞ + t‖φ′

I‖L∞ .

Let χ ∈ C∞
c (R3) be a cut-off function such thatχ(ξ) = 1 when|ξ | � r∗ and vanishing when|ξ | > 2r∗. Define

m(ξ) = 1√
1+ |ξ |2χ(ξ).

From relation (1.7), we know that the momentum support ofu andf are equal. Therefore the second term in (3
satisfy∫

u(t, x, ξ)dξ√
1+ |ξ |2 =

∫
m(ξ)u(t, x, ξ)dξ.

The functionu solves the wave equation (1.7), so that1

u = Y  (f 1t>0). (3.8)

And sinceY(t, ·) is a positive measure of total masst , it comes

∥∥∥∥
∫

m(ξ)u(t, ·, ξ)dξ

∥∥∥∥
L∞

� 4

3
πr∗3

t∫
0

(t − s)
∥∥f (s, ·, ·)∥∥

L∞ ds.

With (3.3), we find∥∥φu(t, ·)
∥∥

L∞ � C(fI ,φI ,φ
′
I , τ, r

∗). (3.9)

3.3. Bounds on first derivatives ofφu

We intend here to estimate

I (t) = sup
i=0,...,3

∥∥∂iφu(t, ·)
∥∥

L∞ .

Derivating (3.6), we find

∂iφu(t, x) = ∂iφ
0(t, x) − ∂i

∫
m(ξ)u(t, x, ξ)dξ,

for i = 0, . . . ,3.The first term is estimated with (3.7). It comes∥∥∂iφ
0(t, ·)∥∥

L∞ � C(φI ,φ
′
I , t).

1 In the sequel, denotes convolution in the space and time variables, whilex denotes convolution in the space variable only.
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Consider now the second term. In view of the remark following (3.5), straightforward estimates on∂iu = Y 

∂i(f 1t>0) would not lead to interesting bounds. Instead, we use (3.8) with Lemma 2.1 to get

∂iu = (a1
i Y )  (f 1t>0) + (a0

i Y )  T (f 1t>0). (3.10)

Besides, we infer from equation (1.12)

T (f 1t>0) = (Tf )1t>0 + fI δt=0 = ∇ξ · (f Ku)1t>0 + f (T φu)1t>0 + fI δt=0.

It only remains to get rid of derivatives in theξ variable by integrating by parts, leading eventually to the expres

∂i

∫
m(ξ)u(t, x, ξ)dξ =

∫
m(ξ)

(
(a1

i Y )  (f 1t>0)
)
(t, x, ξ)dξ

+
∫

m(ξ)
((

a0
i Y (t, ·)) x fI

)
(x, ξ)dξ

+
∫ ((−∇ξ (ma0

i )Y
)
 (f 1t>0Ku)

)
(t, x, ξ)dξ

+
∫ (

(ma0
i Y )  (f 1t>0T φu)

)
(t, x, ξ)dξ.

The interest of Lemma 2.1 is now obvious: we don’t need to differentiatef in the previous decomposition. R
peatedly using the fact thatY(t, ·) is a positive measure of total masst , we get

I (t) � C(φI ,φ
′
I , t) + 4

3
πr∗3

(
‖mta1

i ‖L∞

t∫
0

∥∥f (s, ·, ·)∥∥
L∞ ds + ‖ma0

i ‖L∞ t‖fI‖L∞

+ ‖ma0
i ‖L∞

t,x (W
1,∞
ξ )

t∫
0

(t − s)
∥∥f Ku(s, ·, ·)

∥∥
L∞ ds + ‖ma0

i ‖L∞

t∫
0

(t − s)
∥∥f T φu(s, ·, ·)

∥∥
L∞ ds

)
.

It follows from expression (1.10) that∥∥Ku(s, ·, ·)
∥∥

L∞(R3×B(0,r∗)) � C(r∗)I (s). (3.11)

With inequality (3.3) and expression (1.9), we find

I (t) � C(fI ,φI ,φ
′
I , τ, r

∗)
(

1+
t∫

0

I (s)ds

)
. (3.12)

Applying Gronwall’s lemma to inequality (3.12), it comes

sup
t∈[0,τ )

I (t) � C(fI ,φI ,φ
′
I , τ, r

∗). (3.13)

3.4. Bounds on second derivatives ofφu

We define

J (t) = sup
i,j=0,...,3

∥∥∂ijφu(t, ·)
∥∥

L∞ .

Differentiating (3.6) twice,

∂ijφu(t, x) = ∂ijφ
0(t, x) + ∂ij

∫
m(ξ)u(t, x, ξ)dξ,
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s
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d

for anyi, j = 0, . . . ,3. From (3.7), it comes∥∥∂ijφ
0(t, ·)∥∥

L∞ � C(φI ,φ
′
I , t). (3.14)

Using (3.8) and Lemma 2.1,

∂ij

∫
m(ξ)u(t, x, ξ)dξ =

∫
m(ξ)

(
(b2

ij Y )  (f 1t>0)
)
(t, x, ξ)dξ +

∫
m(ξ)

(
(b1

ij Y )  T (f 1t>0)
)
(t, x, ξ)dξ

+
∫

m(ξ)
(
(b0

ij Y )  T 2(f 1t>0)
)
(t, x, ξ)dξ = S0 + S1 + S2.

Estimates forS0. The key point here is the fact that the average of the coefficientsb2
ij vanishes, which allows u

to obtain sharp estimates forS0. As will be seen below, the contribution of this term toJ (t) is crucial. First, let us
determine a homogeneous extension ofb2

ij Y on R4. Let φ ∈ C∞
c (R4 \ 0) be a test function and consider

〈b2
ij Y,φ〉 =

∞∫
0

∫
|y|=1

b2
ij (1, y, ξ)φ(t, ty)

dSy

4πt
dt,

where we used the homogeneity ofb2
ij (·, ·, ξ) ∈M−2 for anyξ . Sinceb2

ij satisfy (2.5), the following equality hold
for anyθ � 0:

〈b2
ij Y,φ〉 =

θ∫
0

∫
|y|=1

b2
ij (1, y, ξ)

(
φ(t, ty) − φ(t,0)

)dSy

4πt
dt +

∞∫
θ

∫
|y|=1

b2
ij (1, y, ξ)φ(t, ty)

dSy

4πt
dt. (3.15)

But the right-hand side of (3.15) still makes sense for test functions onR4. Denote by p.v.(b2ij Y ) the distribution

defined by this expression.2 This is a homogeneous distribution of degree−4 onR4 that extendsb2
ij Y . It follows

from the third remark in Section 2 the relation

b2
ij Y − p.v.(b2

ij Y ) = c(ξ)δ(t,x)=(0,0),

wherecij ∈ C∞(R3); indeed, the left-hand side of this equality is smooth as a function ofξ − see the secon
remark below the lemma. Thus, forθt to be chosen later,

S0 −
∫

m(ξ)cij (ξ)f (t, x, ξ)dξ =
∫

m(ξ)
(
p.v.(b2

ij Y )  (f 1t>0)
)
(t, x, ξ)dξ

=
∫

m(ξ)

θt∫
0

∫
|y|=1

b2
ij (1, y, ξ)

(
f (t − s, x − sy, ξ) − f (t − s, x, ξ)

) dSy

4πs
dsdξ

+
∫

m(ξ)

t∫
θt

∫
|y|=1

b2
ij (1, y, ξ)f (t − s, x − sy, ξ)

dSy

4πs
dsdξ.

For the first term in the right-hand side, we write∣∣∣∣∣
θt∫

0

∫
|y|=1

b2
ij (1, y, ξ)

(
f (t − s, x − sy, ξ) − f (t − s, x, ξ)

) dSy

4πs
ds

∣∣∣∣∣
� θt

∥∥b2
ij (1,·, ξ)

∥∥
L∞(S2)

‖∇xf ‖L∞([0,t)×R6).

2 p.v. stands for principal value.
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3.10).

,

ve: our
For the second term, we have∣∣∣∣∣
t∫

θt

∫
|y|=1

b2
ij (1, y, ξ)f (t − s, x − sy, ξ)

dSy

4πs
ds

∣∣∣∣∣ � ln

(
t

θt

)∥∥b2
ij (1,·, ξ)

∥∥
L∞(S2)

‖f ‖L∞([0,t]×R6).

Thus if we choose

θt = inf

(
1

‖∇xf ‖L∞([0,t]×R6)

, t

)

we get

|S0| � Cr∗3‖m‖L∞
[‖cij‖L∞(B(0,r∗3))‖f ‖L∞([0,t]×R6) + ‖b2

ij‖L∞(S2×R3)

× (
1+ ‖f ‖L∞([0,t]×R6) ln

(
1+ t‖∇xf ‖L∞([0,t]×R6)

))]
.

In view of (3.3), this gives

|S0| � C(fI ,φI ,φ
′
I , τ, r

∗)
(
1+ ln

(
1+ t‖∇xf ‖L∞([0,t]×R6)

))
. (3.16)

Estimates forS1. This term is very similar to the one arising from the second part of the right-hand side of (
We find

S1 =
∫

m(ξ)
((

b1
ij Y (t, ·)) x fI

)
(x, ξ)dξ +

∫ ((−∇ξ (mb1
ij )Y

)
 (f 1t>0Ku)

)
(t, x, ξ)dξ

+
∫ (

(mb1
ij Y )  (f 1t>0T φu)

)
(t, x, ξ)dξ.

The only difference with the estimates following (3.10) is the fact thatb1
ij ∈ M−1 whereasa0

i ∈M0. Consequently

|S1| � 4

3
πr∗3(‖mtb1

ij‖L∞‖fI‖L∞ + ‖mtb1
ij‖L∞

t,x (W
1,∞
ξ )

t∫
0

∥∥f Ku(s, ·, ·)
∥∥

L∞ ds

+ ‖mtb1
ij‖L∞

t∫
0

∥∥f T φu(s, ·, ·)
∥∥

L∞ ds
)
.

With (3.3), (3.11) and (3.13), we infer thatS1 is bounded by a constant:

|S1| � C(fI ,φI ,φ
′
I , τ, r

∗). (3.17)

Estimates forS2. This last term requires lengthy computations but the strategy remains the same as abo
goal is to avoid differentiatingf by using Eq. (1.12). Let us start with

T 2(f 1t>0) = T (δt=0fI ) + T
(
1t>0

(∇ξ · (f Ku) + f T φu

))
= δ′

t=0fI + δt=0
(
v · ∇xfI + ∇ξ · (fIK

I
u) + fIφ

′
I + fI v · ∇xφI

)
+ 1t>0T

(∇ξ · (f Ku)
) + 1t>0T (f T φu).

Working on the last two terms, we find:

T
(∇ξ · (f Ku)

) = ∇ξ · (f T Ku + (∇ξ · (f Ku) + f T φu)Ku

) + [T ,∇ξ ·](f Ku)

= ∇ξ · (f T Ku + f (T φu)Ku

) + ∇⊗2 : f K⊗2
u − (∇ξ v)T : ∇x(f Ku).
ξ
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parts.
Note that the last term, which arises from the commutator, will require further computations. Besides,

T (f T φu) = (Tf )T φu + f T 2φu

= ∇ξ · (f Ku)T φu + f (T φu)
2 + f T 2φu

= ∇ξ · (f (T φu)Ku

) − (f Ku) · ∇ξ (T φu) + f (T φu)
2 + f T 2φu

= ∇ξ · (f (T φu)Ku

) − (
(f Ku) · ∇ξ v

) · ∇xφu + f (T φu)
2 + f T 2φu.

This leads to the following decomposition:

T 2(f 1t>0) = δ′
t=0fI + δt=0

(
v · ∇xfI + ∇ξ · (fIK

I
u) + fIφ

′
I + fI v · ∇xφI

)
+ 1t>0∇ξ · (f T Ku + 2f (T φu)Ku

) + 1t>0∇⊗2
ξ : f K⊗2

u

− (∇ξ v)T : ∇x(f 1t>0Ku) − f 1t>0(Ku · ∇ξ v) · ∇xφu + f 1t>0
(
T 2φu + (T φu)

2).
We are now ready to integrate in theξ variable. The corresponding derivatives are removed by integrating by
ThusS2 can be written as a sumS′

20 + S20 + S21 + S22 + S23 + S24 + S25 with

S′
20 =

∫
m(ξ)(b0

ij Y ) 
(
δ′
t=0fI

)
dξ,

S20 =
∫

m(ξ)(b0
ij Y ) 

(
δt=0

(
v · ∇xfI + ∇ξ · (fIK

I
u) + fIφ

′
I + fI v · ∇xφI

))
dξ,

S21 =
∫ (−∇ξ (mb0

ij )Y
)

(
f 1t>0

(
T Ku + 2(T φu)Ku

))
(t, x, ξ)dξ,

S22 =
∫ (∇⊗2

ξ (mb0
ij Y )  (f 1t>0K

⊗2
u )

)
(t, x, ξ)dξ,

S23 =
∫

m(ξ)
((∇ξ v · ∇x(b

0
ij Y )

)
 (f 1t>0Ku)

)
(t, x, ξ)dξ,

S24 =
∫

m(ξ)
(
(b0

ij Y ) 
(
f 1t>0(Ku · ∇ξ v) · ∇xφu

))
(t, x, ξ)dξ,

S25 =
∫

m(ξ)
(
(b0

ij Y ) 
(
f 1t>0(T

2φu + (T φu)
2))(t, x, ξ)dξ.

The first two terms only involve initial data. They are estimated by

|S′
20 + S20| � 4

3
πr∗3‖mb0

ij‖L∞
x (W

1,∞
t,ξ )

(1+ t)2‖fI‖W1,∞

× (
1+ ‖KI

u‖L∞(R3×B(0,r∗)) + ‖φI‖W1,∞ + ‖φ′
I‖L∞

)
.

The third, fourth, sixth and last terms are estimated in a familiar way:

|S21| � 4

3
πr∗3‖mb0

ij‖L∞
t,x (W

1,∞
ξ )

t∫
0

(t − s)
∥∥f

(
T Ku + 2(T φu)Ku

)
(s, ·, ·)∥∥

L∞ ds,

|S22| � 4

3
πr∗3‖mb0

ij‖L∞
t,x (W

2,∞
ξ )

t∫
0

(t − s)
∥∥f K⊗2

u (s, ·, ·)∥∥
L∞ ds,

|S24| � 4

3
πr∗3‖mb0

ij‖L∞

t∫
(t − s)

∥∥f (Ku · ∇ξ v) · ∇xφu(s, ·, ·)
∥∥

L∞ ds,
0
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f the
|S25| � 4

3
πr∗3‖mb0

ij‖L∞

t∫
0

(t − s)
∥∥f

(
T 2φu + (T φu)

2)(s, ·, ·)∥∥
L∞ ds.

Expression (1.10) shows that∥∥T Ku(s, ·, ·)
∥∥

L∞(R3×B(0,r∗))) � C(r∗)J (s).

Using estimates (3.3) and (3.13), it comes then

|S21 + S22 + S24 + S25| � C(fI ,φI ,φ
′
I , τ, r

∗)
(

1+
t∫

0

J (s)ds

)
.

As said above, the remaining termS23 requires an additional step. We brought the derivatives to the left side o
convolution in order to use Lemma 2.1 one more time. We have

∂k(b
0
ij Y ) = T (b0

ij a
0
kY ) + (

b0
ij a

1
k − a0

kT (b0
ij ) + ∂kb

0
ij

)
Y,

which yields

∇ξ v · ∇x(b
0
ij Y ) = T (c0

ij Y ) + c1
ij Y,

where we set

c0
ij = b0

ij∇ξ v · a0,

c1
ij = b0

ij∇ξ v · a1 − (∇ξ v · a0)T b0
ij + ∇ξ v · ∇xb

0
ij .

ThereforeS23 can be written as

S23 =
∫

m(ξ)
(
(c0

ij Y )  T (f 1t>0Ku)
)
(t, x, ξ)dξ +

∫
m(ξ)

(
(c1

ij Y )  (f 1t>0Ku)
)
(t, x, ξ)dξ.

Using another time the transport equation,

T (f 1t>0Ku) = fIK
I
uδt=0 + 1t>0f T Ku + 1t>0∇ξ · (f K⊗2) − 1t>0f (Ku · ∇ξ )Ku + f (T φu)Ku,

it is now routine work to see that

|S23| � C(fI ,φI ,φ
′
I , τ, r

∗)
(

1+
t∫

0

J (s)ds

)
.

Using (3.13) and gathering the inequalities above, we infer that

|S2| � C(fI ,φI ,φ
′
I , τ, r

∗)
(

1+
t∫

0

J (s)ds

)
. (3.18)

Collecting estimates (3.14), (3.16), (3.17) and (3.18),

J (t) � C(fI ,φI ,φ
′
I , τ, r

∗)
(

1+ ln(1+ t‖∇xf ‖L∞([0,t]×R6)) +
t∫

0

J (s)ds

)

for any 0< t < τ . Applying Gronwall’s lemma, we get for 0< t < τ ,

J (t) � C(fI ,φI ,φ
′
I , τ, r

∗) ln
(
1+ t‖∇xf ‖L∞([0,t]×R6)

)
. (3.19)

Note that the behaviour of this bound is governed by the contribution from the most singular term, namelyS0.
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5.
3.5. Proof of Theorem 1.1

With (3.9) and (3.13), (3.19) yields

‖φu‖W2,∞([0,t]×R3) � C(fI ,φI ,φ
′
I , τ, r

∗)
(
1+ ln

(
1+ ‖f ‖W1,∞([0,t]×R6)

))
. (3.20)

Using this in (3.5) gives

∥∥f (t, ·, ·)∥∥
W1,∞ � C(fI ,φI ,φ

′
I , τ, r

∗)
(

1+
t∫

0

∥∥f (s, ·, ·)∥∥
W1,∞

(
1+ ln

(
1+ ‖f ‖W1,∞([0,s]×R6)

))
ds

)
.

The growth rate in this estimate is decisive and allows the use of a logarithmic Gronwall’s lemma, showing

‖f ‖W1,∞([0,τ )×R6) � C(fI ,φI ,φ
′
I , τ, r

∗).

We eventually infer from (3.20) the expected estimate

‖φu‖W2,∞([0,τ )×R6) � C(fI ,φI ,φ
′
I , τ, r

∗).

This ends the proof of Theorem 1.1.
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