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Abstract

The Vlasov—Nordstrom system is a relativistic model describing the motion of a self-gravitating collisionless gas. A condi-
tional existence result for global smooth solutions was obtained in [Comm. Partial Differential Equations 28 (2003) 1863—-1885].
We give a new proof for this result.
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Résumé

Le systeme de Vlasov—Nordstrém est un modeéle relativiste décrivant I'évolution d'un ensemble de particules massives sou-
mises au champ gravitationnel qu’elles géneérent collectivement. Un théoréme d’existence conditionnelle a été démontré dans
[Comm. Partial Differential Equations 28 (2003) 1863-1885]. Nous donnons ici une nouvelle preuve de ce résultat.
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction
1.1. The Vlasov—Nordstrém system

This is a relativistic kinetic model describing the behaviour of a collisionless set of particles interacting through
gravitational forces. It may be thought of as a relativistic generalization of the Vlasov—Poisson system, the latter
being obtained as its Newtonian limit [5]. Using the framework of Nordstrom’s theory [11], whereby gravitational
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effects are mediated by a scalar field, the Vlasov—Nordstrom system is a much simpler model than the Vlasov—
Einstein system. Nevertheless, as it couples Vlasov equation with a hyperbolic equation, it remains less well
understood than the standard Vlasov—Poisson system. For more background and references, we refer to [4], where
thorough derivation of the Vlasov—Nordstrom system can be found. See also [1,6-8,14]. We shall consider the fol-
lowing formulation. The unknowns are functiofis= f(z, x, £) > 0 andp = ¢ (¢, x) with (7, x, £) € Ry x R®x R3,
satisfying Vlasov equation

V¢

V1+£2

T being the streaming operatdr= 9, + v(£¢) - V, andv the relativistic velocity of a particle of momentum
_5
Vi+E2

The scalar field is supposed to solve the wave equation
DI,X¢=_M9 (12)

Tf=Ve- [((Trﬁ)%‘ + )f} + fT9, (1.1

v(é) =

with
p= [ 9%
Vi+E2
The Cauchy problem for the Vlasov—Nordstrom system (VN) consists in Egs. (1.1), (1.2) and (1.3) together with
initial data

fii=0=f1, p=0=0¢1, ddy=0=9;. (1.4)

In these equations, all physical constants have been set equal to unity. The interpretation of a(goiticnthe
following: the space-time is a Lorentzian manifold with a conformally flat metric given in coordigatesby

g =€ diag-1,1,1,1)

and the particle density on the mass shell in this metric € ¢(z, x, ?¢).

This system should be compared to another kinetic model arising in plasma physics, the relativistic Vlasov—
Maxwell system (RVM), which describes the behaviour of a collisionless set of charged particles interacting
through a self-generated electromagnetic field. In particular, it is known since Glassey and Strauss [10]—and
reproved in [3,13]—that smooth solutions to (RVM) do not develop singularities as long as the momentum of par-
ticles remains bounded. The corresponding result for (VN) was shown in [6,7] by similar means. Defining the size
of the momentum support as

R(t) =sup||£]: 3x e R® f(t,x,&) #0}, (1.5)
we have the following theorem, established in [6,7].

(1.3)

Theorem 1.1. Lett > 0. Let f € C1([0, 1) x R3 x R®) and¢ € C2([0, 7) x R®) be a solution of(VN) with initial
data f; € C1(R3 x R®), ¢; € C3(R®) and¢} € C?(R®). Then for any € [0, z] we have

SUp R(s) <+o0 = | fllwrecqonxrs) + 19llwa=qo,nxr3) < +00. (1.6)
s€[0,1)

A corollary of this result is that if a smooth solution blows up in finite time tiRehecomes infinite. For if it
were not the case, the estimates (1.6) would allow to extend the solution as described in [6], p. 1881. The proof of
theorem 1.1 in [6] relies essentially on the same procedures than those found in [10]. In this paper, we give a new
proof by handling the fields and their derivatives using a method similar to [3], where an alternative derivation of
the Glassey—Strauss’ theorem is performed.
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1.2. Kinetic formulation

The starting point in [3] is an adequate ‘kinetic formulation’ of the system, which was introduced in [2]. Let us
show why this approach is relevant in the context of the Vlasov—Nordstrom system. Introduce a scalar potential
u=u(t,x, &) solving the wave equation

Orxtt=f, up=0=0, up=0=0. (1.7)
Let ¢ be the solution to
Dt,x¢0 =0, ¢|?:o = ¢y, 3z¢\?=o = ¢}- (1.8)
And define
udé
=0 | ——. (1.9)
V1+[E2
Vi
Ky= T + ———. (1.10)
T ViR
Then the Vlasov—Nordstrom system (VN) is equivalent to
Ot = f, (1.11)
Tf = VE : (fKu) + fT¢ua (1-12)
with initial data
f|t:0= fo. M\I:():Os 8tu|t:0:O- (1-13)

This representation of the scalar fielg as a& average of: allows a treatment similar to [3]. That is, we derive
suitable expressions of the derivativesggf by working on the fundamental solution of the wave operator. The
benefits of this approach are a unified treatment for all derivatives as well as a natural explanation for a key point
in both the present paper and [6], namely the vanishing average of some particular coefficients. We also mention
that this method extends to the two-dimensional case studied in [14], see the remarks in [3] on this question.
In the next section we recall the so-called division lemma, on which we shall rely heavily. Section 3 is devoted
to establishing estimates ofy ¢, and their derivatives leading to the proof of Theorem 1.1. We use standard
notations. In inequalities, constants that depend on some paramgters A, are denoted by’ (A1, ..., ) and

may change from line to line.

2. A divison lemma

Let Y € D'(R*) be the forward fundamental solution of the wave operator:

1.
Y(t,x) = 4’n‘t’3(|x| —1). (2.1)

Notice that the distributiort is homogeneous of degree2 in R*. Let M,, be the space of > homogeneous
functions of degree: on R*\ 0. Below, we use the notation

xo:=t, and 9;:=d,,, j=0,....3. (2.2)

The following lemma can be found almost verbatim in [3].

Lemma 2.1 (Division lemma) For eacht € R?,
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there exists functionsf = af (¢, x) wherei =0, ..., 3andk =0, 1, such tha} € M_ and
%Y =T @) +aly, i=0,...,3; (2.3)
there exists functionlsf.‘j = bf.‘/. (r,x)withi, j =0,...,3,k=0,1,2, such thalbf.‘/. e M_; and

OFY =T?(bJY) +T(bLY) +b5Y. i,j=0,....3; (2.4)

moreover, the functiorislzj satisfy the conditions

/b?j(l,y)da(y)=o, i,j=0,...,3, (2.5)
&

wheredo (y) is the rotation invariant surface element on the unit spt&ef R3. In both formulag2.3)and
(2.4),a?Y, al.lY, b?jY and bile designate, for each, j =0, ..., 3, the unique extensions as homogeneous

distributions onR* of those same expressions—which are a priori only define®R 0. Likewise,bl?jY

designates, fof, j =0, ..., 3the unique extension as a homogeneous distribution of degtan R* of that
same expressions for which the relati@#) holds in the sense of distributions &1.

Remarks.

1.

2.

3.

The proof of Lemma 2 isin [3]. Itis based on the commutation properties of the wave operator with the Lorentz
boosts.
We refer the reader to the reference for the expressions of coeffia]%{nts, &) andbf.‘j (t,x,&). Inthe sequel,

all we shall need are the following two propertie$; bf.‘j € C®(R*\ 0 x R3) and for anyt € R® anda € N3
we havedfaf (-, -, ) € My andagbf; (., -, §) € M_y.

. We recall here some facts about homogeneous distributions. Any homogeneous distribution of degike

onR*\ 0 has a unique extension &f that is also homogeneous of degieeA homogeneous distribution
of degree—4 on R*\ 0 may not be extendable dR*. If such a homogeneous extension exists, then it is
not unique: two extensions may differ by a multipled&f.o. For more details, see the appendix of [3] and
references therein [9,12].

Proof of Theorem 1.1

3.1. Estimates orf

We begin by showing that the needed estimateg @md its first derivatives will follow from estimates af).

This is done by working on the transport equation satisfied biyollowing [6], we thus rewrite (1.12) as

T(e—4¢u )= —4e%u fTu + e Mu Tf
= —4e Y f T, + e % (Ve - (fKu) + fTu)
=3¢ fT¢, + K, - Ve(€ P f) + & fV; - K,.

The expression ok, gives

Vadu
Ve - Ky = Ve - (T%%' + 7)

Vit

1
=(- VE)(U Vo) + 3T ¢, + (Vigy) - VE <\/?|E|2>
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A short computation shows that

v Vidy
141827

- Vo) Vigy) =

and
v Vidy

1
Ji+ |s|2> 1t

(Vx¢u) . VS(

So that we find
Vidu
1+ €12

The characteristic curves of this equation remain the same as those derived from (1.12). These are curves
t— (X (1), Z (1)) satisfying

T f)~ (T«pué + ) Ve(e™ f)=0. (3.1)

X'(y=v(E®),
(Vi) (@, X (1), E(1))
VIFIEORZ

with initial data X (0) = xo and & (0) = &. We infer from (3.1) that 8%« f is constant along these curves and we
get equality (2.7) of [6]:

f(t. X(®), E@®)) = fr(xo. &) exp(deu (1, X (1)) — 4 (x0)). (3.2)

As was observed in [7} solves the wave equation (1.7) with a right-hand sfde 0 and vanishing initial data,
so thatx > 0. From (1.9), it come#, < ¢° and we recover proposition 1 of [7]:

[f, ) o SCUf1 1. 07,7, (3.3)

A look at (3.2) shows that sincg is compactly supported, the momentum supporf ¢f, -, -) remains bounded
for anyr < . From now on, we assume

E'(1)=—T¢,)(t. X(1), EM))E () —

sup R(t) =r* < +o0. (3.4)
t€[0,7)

Differentiating equality (1.12) in or &, we find

T(Df) — Ve - (Df)Ku) =T, D1f + Ve - (f DKu) + D(f T hu),

whereD denotes),; or dg,. Therefore with (3.3),

[ £ e
1
g C(fla ¢17 ¢}’ T, r*) <1+ f Hf(s7 y )H Wloo(1+ ”¢M(S7 )H W2,00 + H al¢u(s7 )H Wloo) ds) (35)
0

The next three subsections are devoted to estimatjngs first and second derivatives. Note that we aim at using
inequality (3.5) with Gronwall’s lemma. This requires bounds that do not grow too fast with respect to the quantity

(RAGEND] NZEESR
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3.2. Bound orp,

The easiest one. We have to estimate

$u = 9° ude (3.6)

) Ve
We recall the following elementary inequalities for the wave equation
|I¢O||Wk,oo([o,,]xR3) < @A4DN¢r1llwrrroo + 21197 koo (3.7)
Thus the first term in (3.6) can be estimated by
(6%t )] oo < A+ Dlbsllwroe +1l16] 1l Lov.

Lety e C§°(R3) be a cut-off function such that(¢) = 1 when|&| < r* and vanishing whett| > 2r*. Define

1
m(§) = ——=x(&).
V1+|E2

From relation (1.7), we know that the momentum support ahd f are equal. Therefore the second term in (3.6)
satisfy

/ u(t,x,&)ds
The functionu solves the wave equation (1.7), so that
u=Y x(fl-o). (3.8)

m(&)u(t, x,§)ds.

And sinceY (¢, -) is a positive measure of total masst comes

t
4
H/m(é)u(t, ~,$)dEH < ém*3f(t — )| (s, o ds.
LOO
0

With (3.3), we find
|but, )| oo < CCf1o b1, b7, T.75). (3.9)

3.3. Bounds on first derivatives ¢f

We intend here to estimate

()= sup [8i¢u(t, )] e
i=0,...,3

,,,,,

Derivating (3.6), we find

ipu(t.x) = 0i¢°(t, x) — 3i/m(§)u(t,x,é)d€,
fori =0,..., 3. The first term is estimated with (3.7). It comes

[8:6°, )| oo < C(B1. 8], 1).

1 Inthe sequelx denotes convolution in the space and time variables, whildenotes convolution in the space variable only.
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Consider now the second term. In view of the remark following (3.5), straightforward estimat®s enY x
9; (f 1;~0) would not lead to interesting bounds. Instead, we use (3.8) with Lemma 2.1 to get

diu = (@lY) * (fli=0) + @’Y) * T (f1,-0). (3.10)
Besides, we infer from equation (1.12)

T(.f1t>0) = (Tf)1t>0 + fl‘st:O = VS . (fKu)1t>0 + f(T¢u)1t>O + f181=0~
It only remains to get rid of derivatives in tlijevariable by integrating by parts, leading eventually to the expression:

aifm(é)u(z,x,s)ds=/m(s>((a,-1Y>*(f1,>o>)(r,x,§>ds
+ / (@) ((a0Y (1, ) xe f1)(x, €) dé
+ / (= Vemad)¥) + (FL-0K,))(t, x, §) dg

+ / ((mal¥) x (=0T ¢)) (1, x. €) dE.

The interest of Lemma 2.1 is now obvious: we don’t need to differentfate the previous decomposition. Re-
peatedly using the fact that(z, -) is a positive measure of total massve get

t
4
()< C(pr. 7.0+ §m*3<”mmi1”m f | £ 50| oo ds + limalll Lot | fr1l o
0

t t
+ ||ma?||m(w§.oo) / (t = )| FKu(s. -, )| oo ds + mal g / =) fTpuls. )| ds).
0 0

It follows from expression (1.10) that

| KuCss )| oo posmy < COHIE). (3.11)
With inequality (3.3) and expression (1.9), we find
t
I(t)<C(f1,¢1,¢§,r,r*)(l—i—/l(s)ds). (3.12)
0
Applying Gronwall's lemma to inequality (3.12), it comes
sup 1(t) < C(fr, 1,7, 7,7"). (3.13)
te[0,7)

3.4. Bounds on second derivativespf

We define
J)y=sup | 3;j¢ut, )] ec-
i,j=0,...,3

i,j=0,...,
Differentiating (3.6) twice,

aij¢u<r,x)=ai,»¢°<r,x)+a,-,-/m(é)u(r,x,é;)ds,
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foranyi, j =0,..., 3. From (3.7), it comes

18:7¢°t. )| oo < C@1. 07 1). (3.14)
Using (3.8) and Lemma 2.1,

Bj / m@Eu(t, x,§)ds = / mE(BFY) % (f11-0)) (¢, x, §) dE + / m(E) (b5 Y) * T(f120) (1. x.6) dé

+ [ m@(OF 1)« T2 10201 3. )86 = S+ 1+ 52

Estimates forSp. The key point here is the fact that the average of the coefficightgmnishes, which allows us
to obtain sharp estimates f85. As will be seen below, the contribution of this term¢) is crucial. First, let us
determine a homogeneous extensiob%)Y onR*. Let¢ € C°(R*\ 0) be a test function and consider

b2V, $) = / / (Lyf)zb(mﬁ?dr,
Tt

Olyl=1

where we used the homogeneltylﬁ]f( , - &) e M_sforanyé. Smceb2 satisfy (2.5), the following equality holds
for any6 > 0:

0 oo
ds ds,
wiro=[ [ Baroeem-seo)ar [ [ Barosemza @)
Tt 4t
Olyl=1 0 1yl=1
But the right-hand side of (3.15) still makes sense for test functiorR%iDenote by p.v. (ﬁ Y) the distribution

defined by this expressignThis is a homogeneous distribution of degre4 on R* that extend$z2 Y. It follows
from the third remark in Section 2 the relation

bZY — pN.(BY) = c(€)8(1.0)=(0.0)-
wherec;; € C>(R®); indeed, the left-hand side of this equality is smooth as a function of see the second
remark below the lemma. Thus, férto be chosen later,
So—fM(S)Cij(S)f(t,x,E)dE=fm(é)(p-v-(b,ij)*(flt>o))(t,x,$)d5
0,

= [mef [ Barora—ss-so- o)

0 |yl=1

t
+/m<s>/ / 2Ly 8= 5,5 —53,6) 5 s,
0 |}'|=l
For the first term in the right-hand side, we write
0,
/ bZ (L, y. E)(f(t—s5.x —sy.&) — f(t —s5,x s))%ds
A ’ ’ TP Ags

Olyl=1
2
<6 Hbij(l, &) HLOC(SZ) ”vxf”LOO([O,t)xRe)'

2 p.v. stands for principal value.
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For the second term, we have

t
dsy t
2 p) 2
/ / blj(l» Yy, g)f(t — 5, X =S8y, ;;:)47'[5 dS < |n<9_t> ||bt](11 y E)||LOO(SZ)||f||LOC([OJ]XR6)

0 ly|=1

Thus if we choose

. 1
0, = inf t
”VXf”LOO([O,t]xRG)

we get

3
|Sol < Cr* ||m||L°°[||Cij||L°0(B(0,r*3))||f||LDO([o,t]XR6) + ||bi2j||Loc(32xR3)
X (L4 1l oo qqo.nxre) ML+ 211V £l Lo g0.01xRS))) -
In view of (3.3), this gives

1Sol < C(f1. 0107, T. 7)) (X4 IN(L+1[ Vi fll Lo g0.11xRS) )) - (3.16)

Estimates foiS;. This term is very similar to the one arising from the second part of the right-hand side of (3.10).
We find

S1= f mE)((b5Y () *x f1)(x, &) dE + f ((=VembH)Y) * (fL-0K)) (@, x, €) dE

+ [ (1)« (FLoaT ) 2. 6.

The only difference with the estimates following (3.10) is the factblﬁjaé M1 whereaszzl.O € Mo. Consequently,

t
4
111 < 3 (mebjs e fillss + Imtbiyl e gy, f | FKuls, )| o ds
0

t
T Imeb / |/ Tduts. )] ds).
0

With (3.3), (3.11) and (3.13), we infer th&t is bounded by a constant:
1S11 < C(f1, b1, 97, T, 77). (3.17)

Estimates forS,.  This last term requires lengthy computations but the strategy remains the same as above: our
goal is to avoid differentiating’ by using Eqg. (1.12). Let us start with

T?(f1i-0) =T Si=0f1) + T (L=0(Ve - (fKu) + fTu))
=08,_o.f1 +8i=0(v - Vi f1 + Ve - (KD + f1) + frv - Vir)
+ 10T (Ve - (fKu)) + Lis0T (f Tu).
Working on the last two terms, we find:
T(Ve (fKu)=Ve - (fTKu+ (Ve - (fK) + fTou)Ku) + T, Ve 1(f Ki)
=V (fTK,+ f(T¢)KL) + VE?: FKE? = (Vev)T : Vi(fKL).
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Note that the last term, which arises from the commutator, will require further computations. Besides,

T(fT¢u) = (T)Thu+ TPy
=Ve - (fK)T¢u+ f(Tu)> + fT?¢,
=Ve - (f(To)Ku) — (fKu) - Ve(T ) + f(T) + [T,
= Ve (f(To)Ku) — ((FKu) - Vev) - Vit + f(Thu)? + fT%u.
This leads to the following decomposition:

T2(fLi=0) =8_of1 +8=0(v - Vi f1 + Ve - (f1KD + f1) + frv- Vi)
+1m0Ve - (FTKy +2f (To)Ku) + 1m0VE? s FRE?
- (VSU)T Vi (fL=0Ky) — fli=0(Ky - Vev) - Vi + flt>0(T2¢u + (T¢u)2)

We are now ready to integrate in thevariable. The corresponding derivatives are removed by integrating by parts.
ThusS» can be written as a suﬁ‘go + 820+ S21 + S22 + S23+ S24 + So5 wWith

Sho= / mEGLY) » (80 f1) dé,

Spo= /m(g)(b?jY)* (8=0(v- Vi f1 + Ve - (f1K}) + f1¢7 + frv - Vigr)) dE,
So1= / (—=Vemb)Y) % (FLimo(T Ky + 2T @) KL)) (1, x. §) i,

Spp = f(v?z(mbgy) * (fL-0KP?)(t, x, &) dé,

Sya— / m(E)((Vev - Ve %)) » (fL-0Ku)) (1, x, £) dE,

Saa= / mE(B2Y) * (fLi=0(Ky - Vev) - Vo)) (1. x, §) A,

Sas= [ m(©)(@%)+ (FL0T26, + (T9))0.3.6) .
The first two terms only involve initial data. They are estimated by
0

4 .3 2
S50+ Sz0l < G 2 lmbj e yace) L+ O fi oo
X (L4 1K) N oo r3x oy + 101 lwios + 97 1lL).
The third, fourth, sixth and last terms are estimated in a familiar way:
4 t
3y(,,,7,0
|S21l < g7 limbiil oo e f (t = )| f(TKu +2(T¢)Ku) (5. -, ) | 1 s,
0

t

4
|S22] < 7 Imbjl e 2o, / (t =) FKE2 (s, )| oo s,
0

t
4
(S2al < 7 S lmbS / (t = )| f (Ko - Ve) - Vadu(s. - )| o s,
0
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t
4
|S25] < g 3lmbfj | 1~ / (t =) | F(T%pu + (T¢)?)(5. )| oo Gs.
0

Expression (1.10) shows that

||TKu(S, s ')||LOO(R3XB(OJ.*))) < C(V*)J(S)
Using estimates (3.3) and (3.13), it comes then

t

|S21 + S22+ S24+ So5| < C(f1, 91, 97, f,r*)(l-i- / J(S)dS)-
0

As said above, the remaining teips requires an additional step. We brought the derivatives to the left side of the
convolution in order to use Lemma 2.1 one more time. We have

U (bYY) =T BYaly) + (bai — apT (b)) + ab))Y,
which yields

Veu - Vx(b?jY) = T(c?jY) +c Y,
where we set

0_ ;0 0
Cij —bingv -a-,

c,-lj =b?ngv cat— (Vev ~a0)Tb?j + Vev - be?j.

ThereforeS,3 can be written as

Saz= / mE) () * T(fL=0K.)) (@, x, €) dE + / m(E)((c;Y) * (fLi-0Ku) (¢, x, §) dE.
Using another time the transport equation,

T(fL-o0Ku) = fiKl8i—o+ Lin0f T Ky +L-0Ve - (fK®%) — Lo0f (Ky - Ve) Ky + f(Thu) K,

it is now routine work to see that
t

|S23| < C(f1, 1. 97, 7, r*)<1+/J(S)dS>.
0
Using (3.13) and gathering the inequalities above, we infer that

t

|S2| <C(f1,¢1,¢>},r,r*)(1+/J(s)ds). (3.18)
0
Collecting estimates (3.14), (3.16), (3.17) and (3.18),

t
J(t) < C(f[s ¢17 ¢}’ T, r*) <1+ In(1+ t||vxf||L°°([O,t]><R6)) + / J(s) dS)
0
for any O< ¢t < r. Applying Gronwall’'s lemma, we getfor@ ¢ < r,
J(0) SC(f1, 61,07, T. r) IN(L4 1] Ve £l Loo (0.1 xRS) ) - (3.19)
Note that the behaviour of this bound is governed by the contribution from the most singular term, Samely
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3.5. Proof of Theorem 1.1

With (3.9) and (3.13), (3.19) yields

llullwzqo.01xR3) < C(f1. 91,97, T, ) (1+In(1+ ||f||W1»00([0,t]><R6)))~ (3.20)
Using this in (3.5) gives

t
£ @) i < Cfrodr )T, r®) 1+/]|f(s,',')||W1,oo(1+|n(1+ £l wioe(o.s1xRE)) ) ds
0

The growth rate in this estimate is decisive and allows the use of a logarithmic Gronwall's lemma, showing that

||f||W1-OC([0J)XR6) < C(f1, %1, ¢}» T, ”*)-
We eventually infer from (3.20) the expected estimate

“d)u ”WZ’OQ([O,I))(RG) < C(f[v ¢I’ d)}v T, r*)'

This ends the proof of Theorem 1.1.
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