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Abstract

We study existence and regularity of distributional solutions for possibly degenerate quasi-linear parabolic problem
a first order term which grows quadratically in the gradient. The model problem we refer to is the following




ut − div
(
α(u)∇u

) = β(u)|∇u|2 + f (x, t), in Ω×]0, T [ ;
u(x, t) = 0, on ∂Ω×]0, T [ ;
u(x,0) = u0(x), in Ω.

(1)

HereΩ is a bounded open set inRN , T > 0. The unknown functionu = u(x, t) depends onx ∈ Ω andt ∈]0, T [. The symbol
∇u denotes the gradient ofu with respect tox. The real functionsα, β are continuous; moreoverα is positive, bounded an
may vanish at±∞. As far as the data are concerned, we require the following assumptions:

∫
Ω

Φ
(
u0(x)

)
dx < ∞
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whereΦ is a convenient function which is superlinear at±∞ and

f (x, t) ∈ Lr
(
0, T ;Lq(Ω)

)
with

1

r
+ N

2q
� 1.

We give sufficient conditions onα andβ in order to have distributional solutions. We point out that the assumptions on th
do not guarantee in general the boundedness of the solutions; this means that the coercivity of the principal part of the
can really degenerate. Moreover, a boundedness result is proved when the assumptions on the data are strengthene

Résumé

Nous étudions l’existence et la régularité des solutions au sens des distributions de problèmes paraboliques qua
qui présentent un terme du premier ordre à croissance quadratique par rapport au gradient et dont la partie princ
dégénérer.

Le problème modèle auquel nous nous référons est (1) ci-dessous, où les fonctionsα etβ sont à valeurs réelles et continue
de plusα est positive et bornée mais peut s’annuler à±∞. En ce qui concerne les donnéesu0(x) et f (x, t), nous supposon
que

∫
Ω Φ(u0(x))dx < ∞, où la fonctionΦ est superlinéaire à±∞, et quef (x, t) ∈ Lr(0, T ;Lq(Ω)) avec1

r + N
2q

� 1.
Nous donnons des conditions suffisantes surα et β qui assurent l’existence de solutions au sens des distributions

conditions sur les données n’impliquent pas en général que les solutions soient bornées, donc la coercivité de la partie
de l’opérateur peut vraiment dégénérer. Mais quand nous imposons des conditions plus fortes sur les données, nous d
que les solutions sont bornées.

MSC:35K55; 35K65; 35B45; 35K20

Keywords:Nonlinear parabolic problems; Gradient term with quadratic growth; Existence and regularity; Bounded and unbounded so
Lack of coerciveness

1. Introduction

Our aim is to study existence for a class of quasi-linear parabolic problems involving first order term
natural growth with respect to the gradient. The model problem we refer to is (1) above, whereΩ is a bounded
open set inRN , T > 0, andu = u(x, t), with x ∈ Ω andt ∈]0, T [.

Let us remark that, if the functionsα,β are bounded on the real line, andα(s) � α0 > 0 for everys ∈ R (i.e.,
if the principal part is assumed to be uniformly coercive), in the case where the initial datumu0(x) belongs to1

L∞(Ω) and

f (x, t) ∈ Lr
(
0, T ;Lq(Ω)

)
,

q(r − 1)

r
>

N

2
, (2)

it is possible to prove existence of bounded weak solutions for problem (1) (see, for instance, [8,24,25] an
Recently, in the case whereα may vanish at infinity, Boccardo and Porzio (see [9]) assume thatα(s) andβ(s)

satisfy

α ∈ L∞(R), α /∈ L1(−∞,0) ∪ L1(0,+∞),
β

α
∈ L1(R). (3)

Then, ifu0 ∈ L∞(Ω) andf (x, t) ∈ Lm(Ω×]0, T [), with m > 1+ N
2 (which is a very special case of condition (2

they prove the existence of bounded weak solutions for problem (1).

1 The symbolsLq(Ω), Lr(0, T ;Lq(Ω)), and so forth, denote the usual Lebesgue spaces, see for instance [11] or [16]. Moreover
sometimes use the shorter notations‖f ‖q , ‖f ‖r,q instead of‖f ‖Lq(Ω), ‖f ‖Lr (0,T ;Lq(Ω)), respectively. The symbolH1

0 (Ω) denotes the

Sobolev space of functions with distributional derivatives inL2(Ω) which have zero trace on∂Ω . H−1(Ω) denotes the dual space ofH1
0 (Ω).

The spacesL2(0, T ;H1(Ω)) andL2(0, T ;H−1(Ω)) have obvious meanings, see again [11] or [16].

© 2006 L'Association Publications de l'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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In the present paper we are interested in finding more general conditions onα andβ (which include (3)) and
also in dealing with the case where the integrability of the datau0 andf is not so high to allow bounded solution
The assumptions for the model problem are the following: if we define

γ (s) =
s∫

0

β(σ )

α(σ )
dσ, Ψ (s)=

s∫
0

α(σ)e|γ (σ )| dσ,

we will require, instead ofβ/α ∈ L1, the weaker hypothesis

e|γ (s)| � C
(
1+ ∣∣Ψ (s)

∣∣) (4)

for all s ∈ R. To better understand the role of this assumption on the functionΨ , let us first consider the model ca
whereα = 1 andf � 0; as pointed out, for instance, in [17] (for the stationary problem with constantα andβ),
we can perform the change of unknown functionv = Ψ (u), obtaining the following equation forv

vt − 	v = f eγ (u),

that under the assumption (4) gives

vt − 	v � Cf (1+ v), (5)

for which it is not too difficult to obtain some a priori estimates, under suitable assumptions on the data
general case, that is, if the operator has the same growth as in the model case, but has a more complicated
it is not possible to perform such a change of variable, therefore we need to use suitable exponential test
related toΨ andγ which allow to get rid of the gradient term and to obtain estimates on the functionu. We remark
that, in the caseα ≡ 1 (for simplicity), condition (4) is satisfied ifβ is bounded or ifβ is integrable, but it is a
more general assumption (see Remark 2.1 below). We point out that for this class of problems the regular
datau0 andf plays an important role. Indeed, if they have enough integrability (same as in (2)), we will
the existence of bounded solutions. In this case, the coercivity of the operator is a posteriori not really deg
The case where the equality of the exponents in (2) holds is more difficult, because one cannot expect
solutions, therefore an actual degeneration of the operator takes place. In this case, we prove the exi
solutionsu such thatΨ (u) belongs to the so calledenergy spaces, that is,

Ψ (u) ∈ L∞(
0, T ;L2(Ω)

) ∩ L2(0, T ;H 1
0 (Ω)

)
.

Actually, if the initial datumu0 is regular enough, one can prove that all powers ofΨ (u) are in these same space
If f is less regular than that, i.e., if the opposite inequality holds in (2), the problem of existence is open,
the uniformly coercive case, since it is not possible to use exponential functions to get rid of the quadra
(or equivalently, because after change of unknown function, one obtains the inequality (5), for which no
estimates hold under these assumptions onf ). The existence result is achieved by approximating the principal
of the equation with uniformly coercive operators, and by truncating the first order term. The first aim is
a priori estimates on the solutionsun of the approximate problems. Then one has to show that, up to subsequ
un converges strongly to some functionu. To this aim, one would like to employ a compactness result of Au
type (see [4] and [29]), but our estimates do not allow to do this directly, since the functionΨ may have a very
weak growth (see, for instance, Remark 2.6). Therefore, we prove a compactness result (see Propositio
Corollary 6.1) which apply in this case, and whose proof has been suggested by a similar result by Alt and L
(see [1]). Then it is necessary to prove pointwise convergence of the gradients ofun. This is the most technica
part of the paper, and uses an approximating technique to deal with the time derivative ofun, previously used in
[22,23,14,13,6,26]. We point out that no sign assumption is made on the nonlinear first order term throug
paper. If a “good” sign condition is assumed in the first order nonlinearity (more precisely that this term h
opposite sign ofu), existence of unbounded solutions in the uniformly coercive case is proved in [23] and
under weaker assumptions on the data. In a forthcoming paper the corresponding problem for nonlinear o
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of p-Laplace type will be investigated. Moreover weaker assumptions on the operator will be considered
will lead quite naturally to the use of the notion of entropy solution introduced in [5,28,2]. As far as the stat
problem associated to (1) is concerned, the uniformly coercive case has been studied in many papers
instance [7,17,12,18] and references therein). In the case whereα(s) may vanish at infinity, which corresponds
a degenerate coercivity of the principal part, existence and regularity results are proved in [10] and [27].

The plan of the paper is the following. Section 2 is devoted to the statement of the assumptions and of t
results. In Section 3 we recall some useful results and we define the approximating problems. In Section 4
a priori estimates for the corresponding approximate solutions under the assumptions of the main existen
Theorem 2.1. Section 5 is devoted to an a prioriL∞ estimate under the stronger hypotheses (22) and (23). Fin
Section 6 deals with the limiting process.

2. Assumptions and main results

Before stating more precisely our problem, we introduce some notation. We recall thatΩ is a bounded open se
in R

N , and thatT is a positive number. We will denoteΩ×]0, T [ by QT and∂Ω×]0, T [ by ΣT . We define, for
k > 0, the usual truncation function at level±k, i.e.,

Tk(s) = max
{−k,min{k, s}}

andGk(s) = s − Tk(s) = (s − k)+ sign(s). Throughout this paper,C will always denote a positive constant whi
only depends on the parameters of our problem; its value may be different from line to line.

We are interested in studying the following quasilinear evolution problem


ut − div
(
a(x, t, u)∇u

) = b(x, t, u,∇u) + f, in QT ;
u(x, t) = 0, onΣT ;
u(x,0)= u0, in Ω;

(6)

where the operators satisfy the following hypotheses:

Assumptions on a. The functiona :QT × R → R
N2

satisfies the Carathéodory conditions; that is, it is measur
with respect to(x, t) for all s ∈ R and continuous ins for almost all(x, t) ∈ QT ; moreover it satisfies the followin
assumptions

(A1) There exists a bounded continuous positive functionα :R → R such that

α /∈ L1(0,+∞) ∪ L1(−∞,0), (7)

and that(
a(x, t, s)ξ, ξ

)
� α(s)|ξ |2 (8)

for almost all(x, t) ∈ QT and all(s, ξ) ∈ R × R
N .

(A2) There existsC0 > 1 such that∣∣a(x, t, s)ξ
∣∣ � C0α(s)|ξ | (9)

for almost all(x, t) ∈ QT and all(s, ξ) ∈ R × R
N .

For brevity of notation, we will sometimes writea(x, t, s)ξξ instead of(a(x, t, s)ξ, ξ). Moreover we will often
omit the explicit dependence ofa onx andt , writing a(s) instead ofa(x, t, s).

Assumptions on b. The functionb :QT × R × R
N → R satisfies the Carathéodory conditions and moreover:
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(B1) There exists a continuous nonnegative functionβ :R → R such that∣∣b(x, t, s, ξ)
∣∣ � β(s)|ξ |2 (10)

for almost all(x, t) ∈ QT and all(s, ξ) ∈ R × R
N .

As before, we will sometimes writeb(s, ξ) instead ofb(x, t, s, ξ). The two functionsa andb will not be inde-
pendent from each other. In order to give the assumption on their connection, we define some auxiliary f
by

γ (s) =
s∫

0

β(σ )

α(σ )
dσ, (11)

Ψ (s) =
s∫

0

α(σ)e|γ (σ )| dσ, (12)

Φ(s) =
s∫

0

Ψ (σ)e|γ (σ )| dσ. (13)

Relation between a and b.

(C1) We assume that there exists a constantC1 > 0 such that

e|γ (s)| � C1
(
1+ ∣∣Ψ (s)

∣∣)
for all s ∈ R.

Remark 2.1. It is easy to see that condition(C1) includes, for example, the case where

β = β1 + β2,

with

β1

α
∈ L1(R),

β2

α2
∈ L∞(R),

but is strictly more general, as we can see in the following counterexample.

Example 2.1. Consider two functions defined byα(s) = 1 and

β(s) =



0, if s � 1;
nπ

∣∣sin(nπs)
∣∣, if s ∈ [

n,n + 1
n

]
, n = 1,2, . . . ;

0, if s ∈ [
n + 1

n
, n + 1

]
, n = 1,2, . . . .

Obviously both functions are continuous and by elementary arguments the following facts can be proved:

(1)
∫ n+1
n

β(s)ds = 2 for everyn = 1,2, . . ., so thatγ (n) = 2(n− 1).
(2) 2s− 4� γ (s) � 2s for all s � 0.
(3) e−4

2 (e2s − 1)� Ψ (s) for all s � 0.
(4) eγ (s) � e2s � (e2s − 1)+ 2e4 � 2e4(1+ Ψ (s)) for all s � 0.
(5) β /∈ L1(R) + L∞(R).
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From the last two points, we may conclude that condition (C1) is strictly stronger than the one stated
previous remark.

Remark 2.2. Let us observe that, on account of (C1),

α /∈ L1(0,+∞) ∪ L1(−∞,0) ⇐⇒ α e|γ | /∈ L1(0,+∞) ∪ L1(−∞,0).

Indeed, on the one hand,∣∣∣∣∣
s∫

0

α(σ)dσ

∣∣∣∣∣ �
∣∣∣∣∣

s∫
0

α(σ)e|γ (σ )| dσ

∣∣∣∣∣
and soα /∈ L1(0,+∞) ∪ L1(−∞,0) impliesα e|γ | /∈ L1(0,+∞) ∪ L1(−∞,0).

On the other hand, it follows from (C1) that

Ψ ′(s)
1+ |Ψ (s)| = α(s)e|γ (s)|

1+ |Ψ (s)| � C1α(s).

Consequently,

log
(
1+ |Ψ (s)|) � C1

∣∣∣∣∣
s∫

0

α(σ)dσ

∣∣∣∣∣ ⇒ ∣∣Ψ (s)
∣∣ � eC1|

∫ s
0 α(σ )dσ |.

Hence,α e|γ | /∈ L1(0,+∞) ∪ L1(−∞,0) impliesα /∈ L1(0,+∞) ∪ L1(−∞,0) and the two conditions are equi
alent. Let us finally observe that both are equivalent to

lim
s→±∞Ψ (s) = ±∞. (14)

As a consequence, it yields that the functionΦ is superlinear at infinity, that is,

lim
s→±∞

Φ(s)

|s| = +∞.

Assumptions on the data. We require that∫
Ω

Φ
(
u0(x)

)
dx <∞ (15)

and that

f (x, t) ∈ Lr
(
0, T ;Lq(Ω)

)
, (16)

with

1< r < +∞,
N

2
< q < +∞ and

1

r
+ N

2q
= 1.

When the last equality is satisfied, we say that the couple(r, q) belongs to the so called Aronson–Serrin cur
beyond which, in the classical caseβ = 0 andα(s) � α0 > 0 for everys ∈ R, solutions are bounded (see [3]).

The main existence result will be the following. We will always assume that (A1), (A2), (B1) and (C1
satisfied.
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Theorem 2.1. If (15) and (16) hold, then there exists a functionu ∈ C([0, T ];L1(Ω)) which is a distributional
solution of problem(6), satisfying

a(x, t, u) ∇u ∈ L2(QT ), b(x, t, u,∇u) ∈ L1(QT ),

Ψ (u) ∈ L2(0, T ;H 1
0 (Ω)

) ∩ L∞(
0, T ;L2(Ω)

)
, (17)

sup
τ∈[0,T ]

∫
Ω

Φ
(
u(x, τ )

)
< +∞, (18)

whereΨ andΦ are defined in(12) and (13), respectively. Moreover, if the initial datumu0 satisfies the stronge
assumption∫

Ω

Φ(δ)(u0) < ∞, (19)

for someδ > 0, where

Φ(δ)(s) =
s∫

0

∣∣Ψ (σ)
∣∣2δ

Ψ (σ )e|γ (σ )| dσ,

then(17)holds withΨ (u) replaced by|Ψ (u)|δΨ (u), while (18)holds withΦ(u) replaced byΦ(δ)(u).

Remark 2.3. It is worth simplifying our situation to the following (more classical) model problem:


ut − 	u = |∇u|2 + f, in QT ;
u(x, t) = 0, onΣT ;
u(x,0)= u0, in Ω.

Then our main result states that an initial datum satisfying
∫
Ω

(e|u0| − 1)2 < ∞ andf ∈ Lr(0, T ;Lq(Ω)), with
(r, q) on the Aronson–Serrin curve, imply the existence of a distributional solutionu such that

e|u| − 1∈ L∞(
0, T ;L2(Ω)

) ∩ L2(0, T ;H 1
0 (Ω)

)
.

Similar results in a more general setting can be found also in [13] and in [19].

Remark 2.4. One can check, by adapting the proof, that the result of Theorem 2.1 also holds true in the cas
the datumf satisfies a limit case in (16), i.e.f ∈ L∞(0, T ;LN/2(Ω)), provided the following condition is verified

for everyε > 0 there exist two functionsf (ε)
1 (x, t), f

(ε)
2 (x, t) such that

f = f
(ε)
1 + f

(ε)
2 , f

(ε)
1 ∈ L∞(QT ) and ‖f (ε)

2 ‖L∞(0,T ;LN/2(Ω)) � ε.

This is true, for instance, iff (x, t) = f (x) ∈ LN/2(Ω) or if f ∈ C([0, T ];LN/2(Ω)).

Remark 2.5. Assuming that the initial datumu0(x) is summable enough, we are interested in the best estim
for u, possibly replacing the functionβ with a greater functionβ∗ which satisfies again condition (C1). For i
stance, ifα(s) ≡ 1 andβ(s) = 1/(1 + |s|), it would be better to chooseβ∗(s) ≡ 1 � β(s), which would provide
better estimates onu. The function defined by

γ̄ (s) = C

s∫
α(σ)dσ + C′
0
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realize the equality in condition (C1). Therefore anytime that there existsβ∗ � β such that the correspondin
functionγ ∗(s) = ∫ s

0
β∗(σ )
α(σ )

dσ satisfies

γ̄ (s) − C2 � γ ∗(s) � γ̄ (s) + C3 (20)

for some positive constantsC2, C3, we get the best estimate choosingγ ∗ instead ofγ (which meansβ∗ instead
of β). This is the case forβ as in Remark 2.1. Indeed, if

β = β1 + β2,

with

β1

α
∈ L1(R),

β2

α2
∈ L∞(R),

then

β � β∗ = β1 + Cα2

and condition (20) is satisfied. This is also the case for the oscillating functionβ in the Example 2.1, as one ca
easily see. Therefore the functionγ̄ and the corresponding function̄Ψ play an essential role in the optimality of th
estimates in all the known cases forβ. Let us point out that condition (20) implies condition (C1), while condit
(C1) implies, via Gronwall’s lemma, the second inequality in condition (20).

Remark 2.6. Let us consider the caseα = 1 and write condition (C1) as

e|γ (s)| � C + C

∣∣∣∣∣
s∫

0

e|γ (σ )| dσ

∣∣∣∣∣
and applying Gronwall’s lemma, we get e|γ (s)| � C eC|s|, that is,∣∣γ (s)

∣∣ � C
(|s| + 1

)
. (21)

In some papers concerning parabolic problems with coercive operators (α ≡ 1) and quadratic terms (see, for i
stance, [8,19,20] and [13]) authors assume that the functionβ is bounded, which obviously implies (21). Thu
in the caseα ≡ 1, our condition does not allow a greater growth on functionγ ; however, we can consider als
unbounded oscillating functionsβ(s) like in Example 2.1.

It is worth remarking that our condition (C1) points out the role of functionγ , instead ofβ, in obtaining
existence of solutions.

It is also worth noting that the estimates given in the previous theorem could be very weak. Indeed, for e
we can have, fors > 0, α(s) = 1/(s + e)log(s + e) andβ(s) = α2(s), which givesγ (s) = log(log(s + e)) and
Ψ (s) = log(s + e)− 1.

Finally, if the data are more regular, one can prove the existence of bounded solutions. More precis
assume that

u0(x) ∈ L∞(Ω), (22)

and

f (x, t) ∈ Lr
(
0, T ;Lq(Ω)

)
with

1

r
+ N

2q
< 1. (23)

Theorem 2.2. If (22)and (23)hold, then the solution found by Theorem2.1 is bounded.
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3. Approximate problems. Some useful results

To prove our result, first of all, we have to consider approximating problems. To guarantee coerciveness
change the functiona defining

an(x, t, s) = a(x, t, s) + 1

n
I,

whereI is the identity matrix, and will truncate the others terms of our equation. Consequently, we now defi

αn(s) = α(s) + 1

n
and βn(s) = αn(s)

β(s)

α(s)
, (24)

so thatβn � β andβn/αn = β/α for all n ∈ N. It also yields(
an(x, t, s)ξ, ξ

)
� αn(s)|ξ |2, and

∣∣Tn

(
b(x, t, s, ξ)

)∣∣ � βn(s)|ξ |2. (25)

Let us next define the functions

Ψn(s) =
s∫

0

αn(σ )e|γ (σ )| dσ, Φn(s) =
s∫

0

Ψn(σ )e|γ (σ )| dσ, (26)

Φ(δ)
n (s) =

s∫
0

∣∣Ψn(σ )
∣∣2δ

Ψn(σ )e|γ (σ )| dσ, whereδ > 0, (27)

and

h(s) =
s∫

0

e|γ (σ )| dσ. (28)

Observe that it follows∣∣h(s)
∣∣ � |s|, Ψn(s) = Ψ (s) + 1

n
h(s) and Φn(s) = Φ(s) + 1

2n
h(s)2

and so∣∣Ψn(s)
∣∣ �

∣∣Ψ (s)
∣∣ and Φn(s) � Φ(s) � 0 for all s ∈ R. (29)

On the other hand, we need to regularize our initial datum. We will take an approximating sequence
properties are stated in the following proposition:

Proposition 3.1. If (15)holds, there exists a sequence{u0,n} in L∞(Ω) ∩ H 1
0 (Ω) such that

1

n
‖u0,n‖H1

0 (Ω) → 0 asn → ∞, (30)

Φ(u0,n) → Φ(u0) a.e. and strongly inL1(Ω), (31)

Φn(u0,n) → Φ(u0) a.e. and strongly inL1(Ω). (32)

In the case where the stronger assumption(19) is satisfied, one may assume thatΦ
(δ)
n (u0,n) is also uniformly

bounded. Finally, ifu0 is bounded, one may assume thatu0,n are also uniformly bounded.

Proof. Let {�n}n be a strictly increasing sequence of positive numbers satisfying limn→∞ �n = +∞ and

max
{
h(�n),−h(−�n)

}
� 4

√
n. (33)
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he
1.

uality
Furthermore, consider a sequence{v0,n}n such thatv0,n ∈ L∞(Ω) ∩ H 1
0 (Ω),

1

n
‖v0,n‖H1

0 (Ω) → 0 and Φ(v0,n) → Φ(u0) a.e. and strongly inL1(Ω).

We finally denoteu0,n = T�nv0,n; obviously it satisfiesu0,n ∈ L∞(Ω) ∩ H 1
0 (Ω) and‖u0,n‖H1

0 (Ω) � ‖v0,n‖H1
0 (Ω);

thus, (30) is proved. Moreover, since∫
Ω

∣∣Φ(v0,n) − Φ(u0,n)
∣∣ �

∫
{|v0,n|��n}

Φ(v0,n) → 0,

we deduce that (31) holds. From here and the inequalitiesΦ(u0,n) � Φn(u0,n) � Φn(v0,n) � Φ(v0,n) + 1
2
√

n

(see (33)), we obtain (32). The proof of the final statements is trivial.�
Let us consider the approximating problems


(un)t − div

(
an(x, t, un)∇un

) = Tnb(x, t, un,∇un) + Tnf, in QT ;
un(x, t) = 0, onΣT ;
un(x,0)= u0,n(x), in Ω.

(34)

It is quite classical (see, for instance, [21]) that problem (34) admits at least one weak solutionun ∈ L∞(QT ) ∩
L2(0, T ;H 1

0 (Ω)) ∩ C([0, T ];L2(Ω)).
In order to prove first a priori estimates on our approximate solutionsun and then the convergence of t

sequence{un}n, we need the following cancellation result, which is a variant of that proved in [9], Lemma 2.

Proposition 3.2. Assume thatun is a bounded weak solution of(34).

(1) If v ∈ L∞(QT ) ∩ L2(0, T ;H 1
0 (Ω)), then

t∫
0

〈
(un)t ,esign(v)γ (un)v

〉 +
t∫

0

∫
Ω

esign(v)γ (un) an(x, t, un)∇un∇v �
t∫

0

∫
Ω

esign(v)γ (un)vTn(f )

holds for all t ∈ [0, T ], where〈·, ·〉 denotes the duality pairing between the spacesH−1(Ω) andH 1
0 (Ω).

(2) If ψ is a locally Lipschitz continuous and increasing function such thatψ(0)= 0, then

sup
τ∈[0,T ]

∫
Ω

φ
(
un(τ)

) +
∫

QT

αn(un)e|γ (un)|ψ ′(un)
∣∣∇un

∣∣2 �
∫

QT

|f |e|γ (un)|∣∣ψ(un)
∣∣ +

∫
Ω

φ(u0,n); (35)

whereφ(s) = ∫ s

0 e|γ (σ )|ψ(σ)dσ .

Another important tool we will use to get a priori estimates is the well known Gagliardo–Nirenberg’s ineq
for evolution spaces (see [15]):

Lemma 3.1. Let Ω be a bounded open set ofR
N andT be a real positive number. Letv(x, t) be a function such

that

v ∈ L∞(
0, T ;L2(Ω)

) ∩ L2(0, T ;H 1
0 (Ω)

)
.

Thenv ∈ Lρ(0, T ;Lσ (Ω)), where

2� σ � 2N
, 2� ρ � ∞ (36)
N − 2
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nt
and

N

σ
+ 2

ρ
= N

2
, (37)

and the following estimate holds

T∫
0

∥∥v(t)
∥∥ρ

Lσ (Ω)
dt � C(N)‖v‖ρ−2

L∞(0,T ;L2(Ω))

T∫
0

∥∥∇v(t)
∥∥2

L2(Ω;RN)
dt.

4. A priori estimate on Aronson–Serrin’s curve: unbounded solutions

In this section, we will obtain a priori estimates under the assumptions (15) and (16).

Proposition 4.1. Assume that(15)and(16)are satisfied, and let{un}n be a sequence of solutions of problems(34).
Then there exists a constantC > 0, depending only on the data of problem(6), such that, for everyn ∈ N,∫

Ω

Φn

(
un(x, τ )

)
� C for almost allτ ∈ [0, T ], (38)

∫
Ω

Ψ 2
n

(
un(x, τ )

)
� C for almost allτ ∈ [0, T ], (39)

∫
QT

∣∣∇Ψn(un)
∣∣2 � C, (40)

whereΦn and Ψn are defined by(26). Moreover, ifu0 satisfies(19) for someδ > 0, then there exists a consta
Cδ > 0, depending only onδ and on the data of problem(6), such that, for everyn ∈ N,∫

Ω

Φ(δ)
n

(
un(x, τ )

)
� Cδ for almost allτ ∈ [0, T ], (41)

∫
Ω

∣∣Ψn

(
un(x, τ )

)∣∣2(δ+1) � Cδ for almost allτ ∈ [0, T ], (42)

∫
QT

∣∣∇(∣∣Ψn(un)
∣∣δ+1)∣∣2 � Cδ, (43)

whereΦ
(δ)
n is defined by(27).

Proof. We takeψ = Ψn in part (2) of Proposition 3.2, getting

sup
τ∈[0,T ]

∫
Ω

Φn

(
un(x, τ )

) +
∫

QT

αn(un)e|γ (un)|Ψ ′
n(un)|∇un|2 �

∫
QT

|f |e|γ (un)|Ψn(un) + C,

whereC is a constant such that∫
Φn(u0,n) � C
Ω
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sis

o–
(see (32)). Let us point out that, by the definition of functionΨn,

αn(un)e|γ (un)|Ψ ′
n(un)|∇un|2 = ∣∣∇Ψn(un)

∣∣2.
Moreover hypothesis (C1) implies the following estimates on the right-hand side (recall that|Ψ (s)| � |Ψn(s)| for
everys ∈ R)∫

QT

|f |e|γ (un)|∣∣Ψn(un)
∣∣ � C

∫
QT

|f |∣∣Ψn(un)
∣∣(1+ ∣∣Ψn(un)

∣∣) � C

(
3

2

∫
QT

|f |Ψ 2
n (un) + 1

2

∫
QT

|f |
)

= C

∫
QT

|f |Ψ 2
n (un) + C.

From the previous estimates we get

sup
τ∈[0,T ]

∫
Ω

Φn

(
un(x, τ )

) +
∫

QT

∣∣∇Ψn(un)
∣∣2 � C

∫
QT

|f |Ψ 2
n (un) + C. (44)

Let us now estimate the term
∫
QT

|f |Ψ 2
n (un) in the right-hand side of inequality (44). Having in mind hypothe

(16) onf , and applying Hölder’s inequality, we obtain∫
QT

|f |Ψ 2
n (un) � ‖f ‖r,q

∥∥Ψ 2
n (un)

∥∥
r ′,q ′ = ‖f ‖r,q

∥∥Ψn(un)
∥∥2

2r ′,2q ′ . (45)

Let us defineρ = 2r′, σ = 2q′, and point out that(ρ,σ ) satisfy conditions (36) and (37) of the Gagliard
Nirenberg Lemma 3.1, and therefore

∥∥Ψn(un)
∥∥2

2r ′,2q ′ � C
∥∥Ψn(un)

∥∥2/r

∞,2

[ ∫
QT

∣∣∇Ψn(un)
∣∣2]1/r ′

� C

[
sup

τ∈[0,T ]

∫
Ω

Φn

(
un(x, τ )

)]1/r[ ∫
QT

∣∣∇Ψn(un)
∣∣2]1/r ′

, (46)

where we have used the inequality

Φn(s) � 1

‖α + 1‖∞

s∫
0

αn(σ )e|γ (σ )|Ψn(σ )dσ = Ψ 2
n (s)

2‖α + 1‖∞
. (47)

Using (44)–(46) and applying Young’s inequality, we get

sup
τ∈[0,T ]

∫
Ω

Φn

(
un(x, τ )

) +
∫

QT

∣∣∇Ψn(un)
∣∣2 � C‖f ‖r,q

[
sup

τ∈[0,T ]

∫
Ω

Φn

(
un(x, τ )

)]1/r[ ∫
QT

∣∣∇Ψn(un)
∣∣2]1/r ′

+ C

� 1

2

∫
QT

∣∣∇Ψn(un)
∣∣2 + C‖f ‖r

r,q sup
τ∈[0,T ]

∫
Ω

Φn

(
un(x, τ )

) + C.

If ‖f ‖r,q is sufficiently small we get the desired estimates on

sup
τ∈[0,T ]

∫
Φn

(
un(x, τ )

) +
∫ ∣∣∇Ψn(un)

∣∣2,

Ω QT
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lowing
and estimate (39) follows from (47). If this is not the case, let us taket1 instead ofT in such a way that

C‖f ‖r
Lr (0,t1;Lq(Ω)) = 1

2
.

By the previous argument we get estimate on

sup
τ∈[0,t1]

∫
Ω

Φn

(
un(x, τ )

) +
∫

Qt1

∣∣∇Ψn(un)
∣∣2.

Then we taket2 > t1 such that

C‖f ‖r
Lr (t1,t2;Lq(Ω)) = 1

2
and we repeat the same argument as before.

It is clear that in a finite number of steps one covers the whole interval[0, T ], getting the quoted estimates.
In the case whereu0 satisfies the stronger assumption (19), we can assume thatΦ

(δ)
n (u0,n) are also uniformly

bounded inL1(Ω); by takingψ = |Ψn|2δΨn in part (2) of Proposition 3.2, one obtains:

sup
τ∈[0,T ]

∫
Ω

Φ(δ)
n

(
un(x, τ )

) +
∫

QT

∣∣∇(∣∣Ψn(un)
∣∣δ+1)∣∣2 � C

∫
QT

|f |∣∣Ψn(un)
∣∣2(δ+1) + C. (48)

It is easy to check that the functionΦ(δ)
n , defined by (27), satisfies the inequality

Φ(δ)
n (s) � |Ψn(s)|2(δ+1)

2(δ + 1)‖α + 1‖∞
(49)

for everys ∈ R. From (48) and (49) one easily obtains the estimates (41)–(43).�
Corollary 4.1. The sequence{an(x, t, un)∇un}n is bounded inL2(QT ;R

N).

Proof. This is a straightforward consequence of (9) and (40). Indeed,∣∣an(x, t, un)∇un

∣∣2 � C0αn(un)
2|∇un|2 � C0

[
αn(un)e|γ (un)|]2|∇un|2 = C0

∣∣∇Ψ (un)
∣∣2. �

Next, we will prove the estimates we need on the lower order term.

Proposition 4.2. The following statements hold true:

(1) There exist positive constantsC ands0 such that∫
{|un|>k}

∣∣Tn

(
b(x, t, un,∇un)

)∣∣ � C‖f χ{|un|>k}‖Lr(0,T ;Lq(Ω)) + C

∫
Ω∩{|u0,n|>k}

Φ(u0,n)

holds for everyn ∈ N andk � s0.
(2) The sequence{Tn(b(x, t, un,∇un))}n is bounded inL1(QT ).

Proof. On account of (25), the first claim of Proposition 4.2 is a straightforward consequence of the fol
inequality∫

{|u |>k}
βn(un)|∇un|2 � C‖f χ{|un|>k}‖r,q + C

∫
Ω∩{|u |>k}

Φ(u0,n).
n 0,n
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To see this, we begin by taking

ψ(s) = χ{|s|>k}(s)
s∫

k sign(s)

βn(σ )

αn(σ )
e−|γ (σ )| dσ = χ{|s|>k}(s)sign(s)

(
e−|γ (k sign(s))|− e−|γ (s)|)

in (35). Dropping nonnegative terms, we deduce that∫
{|un|>k}

βn(un)|∇un|2 �
∫

{|un|>k}
|f |(e|γ (un)|−|γ (k sign(un))| − 1

) +
∫
Ω

φk(u0,n),

where

φk(s) = χ{|s|>k}(s)sign(s)

s∫
k sign(s)

(
e|γ (σ )|−|γ (k sign(σ ))|− 1

)
dσ.

Since lims→±∞ Ψ (s) = ±∞, we may finds0 > 0 such that|s| � s0 implies |Ψ (s)| � 1. So that, ifk � s0, then

φk(s) � χ{|s|>k}(s)sign(s)

s∫
k sign(s)

e|γ (σ )| dσ � χ{|s|>k}(s)
s∫

k sign(s)

Ψ (σ )e|γ (σ )| dσ � Φ(s)χ{|s|>k}(s).

On the other hand, ifk � s0,∫
{|un|>k}

|f |(e|γ (un)|−|γ (k sign(un))| − 1
)
�

∫
{|un|>k}

|f |e|γ (un)|∣∣Ψn(un)
∣∣ � C

∫
{|un|>k}

|f |∣∣Ψn(un)
∣∣2 + C

∫
{|un|>k}

|f |

as a consequence of (C1) and Young’s inequality. Thus, applying Hölder’s inequality, we obtain∫
{|un|>k}

|f |(e|γ (un)|−|γ (k sign(un))| − 1
)
� C‖f χ{|un|>k}‖r,q

∥∥Ψn(un)
∥∥2

2r ′,2q ′ + C‖f χ{|un|>k}‖r,q .

Since the sequence{‖Ψ (un)‖2r ′,2q ′ } is bounded (by (39), (40) and Lemma 3.1), it follows that∫
{|un|>k}

|f |(e|γ (un)|−|γ (k sign(un))| − 1
)
� C‖f χ{|un|>k}‖r,q

from where the first assertion of Proposition 4.2 follows.
The second claim of Proposition 4.2 is proved by taking

ψ(s) =
s∫

0

βn(σ )

αn(σ )
e−|γ (σ )| dσ = sign(s)

(
1− e−|γ (s)|)

in (35). Indeed, then∫
QT

βn(un)|∇un|2 �
∫

QT

|f |(e|γ (un)| − 1
) +

∫
Ω

φ(u0,n), (50)

whereφ(s) = sign(s)
∫ s

0 (e|γ (σ )| − 1)dσ . As above, we obtain∫
QT

|f |(e|γ (un)| − 1
) =

∫
{|un|�s0}

|f |(e|γ (un)| − 1
) +

∫
{|un|>s0}

|f |(e|γ (un)| − 1
)

� C‖f ‖L1(Q ) + C‖f χ{|u |>s }‖r,q .

T n 0
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nse-

at
On the other hand,

φ(s) = sign(s)

s0 sign(s)∫
0

(
e|γ (σ )| − 1

)
dσ + sign(s)

s∫
s0 sign(s)

(
e|γ (σ )| − 1

)
dσ � C + Φ(s)χ{|s|�s0}

and so∫
Ω

φ(u0,n) � C +
∫

{|u0,n|�s0}
Φ(u0,n).

Hence, from these inequalities, having in mind (50) and (31), we conclude that the sequence{βn(un)|∇un|2}n
is bounded inL1(QT ). The boundedness of{Tn(b(un,∇un))}n then follows from (25). �

Taking into account thatun is a solution of problem (34), the two previous results imply the following co
quence.

Corollary 4.2. The sequence{(un)t }n is bounded inL2(0, T ;H−1(Ω)) + L1(QT ).

5. Beyond Aronson–Serrin’s curve: bounded solutions

In this section, we will prove Theorem 2.2. Actually, we only have to prove anL∞-estimate for{un}, since after
that Theorem 2.2 is easy to see following the reasoning of ([9], Theorem 1.1). The estimate is as follows.

Theorem 5.1. If 1/r + N/2q < 1, u0,n are bounded inL∞(Ω) and un ∈ L2(0, T ;H 1
0 (Ω)) is a distributional

solution of (34), then there exists a constantC > 0, depending only on the parameters of the problem, such th∥∥Ψn(un)
∥∥∞ � C

which implies, taking(14)and (29) into account,

‖un‖∞ � max
{
Ψ −1(C),−Ψ −1(−C)

}
.

Proof. There are several steps in the proof. First, we will prove that

sup
τ∈[0,T ]

∫
Ω

[
Gk

(
Ψn

(
un(τ)

))]2 +
∫

QT

∣∣∇Gk

(
Ψn(un)

)∣∣2

� C

∫
QT

|f |[Gk

(∣∣Ψn(un)
∣∣)]2 + Ck2

∫
{|Ψn(un)|>k}

|f |, (51)

for all k big enough,C > 0 being a constant that does not depend on‖f ‖r,q .
To this end, since we can always assume thatu0,n is bounded inL∞(Ω), we can choosek such that, for every

n, k > ‖Ψ (u0,n)‖L∞ + ‖h(u0,n)‖L∞ , whereh is defined as in (28). This implies thatk > |Ψn(u0,n)|. Then we take
ψ(s) = Gk(Ψn(s)) in (35). Denotingφ(s) = ∫ s

0 e|γ (σ )|Gk(Ψn(σ ))dσ , one has

sup
τ∈[0,T ]

∫
Ω

φ
(
un(τ)

) +
∫

{|Ψn(un)|>k}
e|γ (un)|αn(un)Ψ

′
n(un)|∇un|2

�
∫

|f |e|γ (un)|Gk

(∣∣Ψn(un)
∣∣) � C

∫
|f |(1+ ∣∣Ψn(un)

∣∣)Gk

(∣∣Ψn(un)
∣∣), (52)
QT QT
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de
by applying (C1).
We prove (51) by analyzing each term in this inequality. Observe first that

φ(s) =
s∫

0

e|γ (σ )|Gk

(
Ψn(σ )

)
dσ � 1

‖αn‖∞

s∫
0

e|γ (σ )|αn(σ )Gk

(
Ψn(σ )

)
dσ

= 1

‖αn‖∞

s∫
0

Ψ ′
n(σ )Gk

(
Ψn(σ )

)
dσ � 1

2(‖α‖∞ + 1)

[
Gk

(
Ψn(s)

)]2
.

Moreover, we obviously have∫
{|Ψn(un)|>k}

e|γ (un)|αn(un)Ψ
′
n(un)|∇un|2 =

∫
{|Ψn(un)|>k}

Ψ ′
n(un)

2|∇un|2 =
∫

QT

∣∣∇Gk

(
Ψn(un)

)∣∣2.
Thus, (52) becomes

sup
τ∈[0,T ]

∫
Ω

[
Gk

(
Ψn

(
un(τ)

))]2 +
∫

QT

∣∣∇Gk

(
Ψn(un)

)∣∣2 � C

∫
QT

|f |(1+ ∣∣Ψn(un)
∣∣)Gk

(∣∣Ψn(un)
∣∣). (53)

Finally, since Young’s inequality implies

Gk

(∣∣Ψn(un)
∣∣) + ∣∣Ψn(un)

∣∣Gk

(∣∣Ψn(un)
∣∣) = [

Gk

(∣∣Ψn(un)
∣∣)]2 + (k + 1)Gk

(∣∣Ψn(un)
∣∣)

� 3

2

[
Gk

(∣∣Ψn(un)
∣∣)]2 + 1

2
(k + 1)2χ{|Ψn(un)|>k},

it follows from (53) that (51) holds true.
Now, note that our hypothesis 1/r + N/2q < 1 impliesN/q ′ + 2/r′ > N and so there existsε > 0 such that

N/q ′ + 2/r′ = (1+ ε)N . Then, denotingρ = 2(1+ ε)r ′ andσ = 2(1+ ε)q ′, we conclude that these paramet
satisfy the assumptions of the Gagliardo–Nirenberg lemma.

Our next step is to see that

( T∫
0

(∫
Ω

∣∣Gk

(
Ψn(un)

)∣∣σ )ρ/σ )1/ρ

� Ck

( T∫
0

∣∣{x ∈ Ω:
∣∣Ψn

(
un(x, t)

)∣∣ > k
}∣∣ρ/σ dt

)(1+ε)/ρ

(54)

holds true. To do this, applying Gagliardo–Nirenberg and Young’s inequalities, we deduce from (51) that

( T∫
0

(∫
Ω

∣∣Gk

(
Ψn(un)

)∣∣σ )ρ/σ )2/ρ

� C sup
τ∈[0,T ]

(∫
Ω

[
Gk

(
Ψn

(
un(τ)

))]2

)(ρ−2)/ρ( ∫
QT

∣∣∇Gk

(
Ψn(un)

)∣∣2)2/ρ

� C sup
τ∈[0,T ]

∫
Ω

[
Gk

(
Ψn

(
un(τ)

))]2 + C

∫
QT

∣∣∇Gk

(
Ψn(un)

)∣∣2

� C

∫
QT

|f |[Gk

(∣∣Ψn(un)
∣∣)]2 + Ck2

∫
{|Ψn(un)|>k}

|f |. (55)

As in the proof of Proposition 4.1, we may assume that||f ||r,q is small. Then the first term in the right-hand si
may be absorbed by the left hand one. Indeed, by Hölder’s inequality
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), that

e

quence
ted by
the

e proof

n Aubin

strongly

ction
C

∫
QT

|f |[Gk

(∣∣Ψn(un)
∣∣)]2 � C‖f ‖r,q

∥∥[
Gk

(∣∣Ψn(un)
∣∣)]2∥∥

r ′,q ′

� C‖f ‖r,q

( T∫
0

(∫
Ω

∣∣Gk

(
Ψn(un)

)∣∣σ )ρ/σ )2/ρ

,

where this last constant only depends on the previous one,ε, measΩ , andT . It follows from (55) that( T∫
0

(∫
Ω

∣∣Gk

(
Ψn(un)

)∣∣σ )ρ/σ )2/ρ

� Ck2
∫

{|Ψn(un)|>k}
|f |. (56)

Note that from now onC > 0 is a constant that does depend on‖f ‖r,q .
Now the right-hand side in (56) may be estimated as follows:

∫
{|Ψn(un)|>k}

|f | � ‖f ‖r,q

( T∫
0

∣∣{x ∈ Ω:
∣∣Ψn

(
un(x, t)

)∣∣ > k
}∣∣r ′/q ′

dt

)1/r ′

� C

( T∫
0

∣∣{x ∈ Ω:
∣∣Ψn

(
un(x, t)

)∣∣ > k
}∣∣ρ/σ dt

)2(1+ε)/ρ

.

Hence, we obtain from (56) that (54) holds. This inequality implies, by ([21], Chapter II, Theorem 6.1
‖Ψn(un)‖∞ < C, whereC only depends on the parameters of problem (6).�

6. Convergence of the approximate solutions

This section deals with the convergence of the sequence{un}n of approximate solutions of (34). First of all w
will prove that there existsu such that, up to a subsequence,{un}n converges tou, for almost every(x, t) ∈ QT .
Then we will prove the convergence of gradients, namely: we will prove in Proposition 6.2 that the se
{∇Tk(un)}n strongly converges inL2(QT ) and, as a consequence, it yields that a subsequence, still deno
{∇un}n, converges to∇u for almost all(x, t) ∈ QT . In Proposition 6.3 we will prove the convergence of
quadratic term inL1(Ω). Finally, we will see in Proposition 6.4 that{un}n converges tou in C([0, T ];L1(Ω)),
which gives meaning to the initial condition. Once these facts have been proved, it will be easy to finish th
of Theorem 2.1.

To see the pointwise convergence of the sequence of approximate solutions of a parabolic problem, a
type theorem is usually applied (see [4] and [29]). This can still be done in our framework, providedΨ (s) has
at least linear growth, that is,Ψ ′(s) � c0 > 0. However this is not always the case, sinceΨ (s) can have a very
slow growth (see Remark 2.6). Thus, we have to prove the following compactness result, whose proof is
inspired on a result by Alt and Luckhaus [1].

Proposition 6.1. Let {un}n be a sequence of functions such that

un ∈ L2(0, T ;H 1
0 (Ω)

)
, (un)t ∈ L2(0, T ;H−1(Ω)

)
(not necessarily bounded in these spaces). Assume that there exists a continuous and strictly increasing fun
Ψ :R → R satisfying

Ψ (0)= 0, lim Ψ (s) = ±∞

s→±∞



114 A. Dall’Aglio et al. / Ann. I. H. Poincaré – AN 23 (2006) 97–126
such that{
Ψ (un)

}
n

is bounded inL2(0, T ;H 1
0 (Ω)

)
.

Assume moreover that{
(un)t

}
n

is bounded inL2(0, T ;H−1(Ω)
) + L1(QT ), (57)

and finally that there exists a continuous functionΦ :R → [0,+∞) satisfying

lim
s→±∞

Φ(s)

|s| = ∞ (58)

such that{
Φ(un)

}
n

is bounded inL∞(
0, T ;L1(Ω)

)
. (59)

Then the sequence{un}n is relatively compact inL1(QT ).

Proof. We divide the proof in some steps.
Step 1: Assume that(57) holds. Then it is easy to see that the sequence{(un(t + h) − un(t))/h}n is bounded in
L2(0, T − h;H−1(Ω)) + L1(QT −h), uniformly with respect ton andh. Therefore there exists a constantC such
that

1

h

T −h∫
0

dt

∫
Ω

[
un(t + h) − un(t)

]
T1

(
Ψ

(
un(t + h)

) − Ψ
(
un(t)

))
� C.

Step 2: For eachM > 0 andε > 0 there existsδ = δε,M such that, for everyv,w ∈ H 1
0 (Ω) satisfying∥∥Ψ (v)

∥∥
H1

0 (Ω)
� M,

∥∥Ψ (w)
∥∥

H1
0 (Ω)

� M,∫
Ω

Φ(v) � M,

∫
Ω

Φ(w) � M,

∫
Ω

(v − w)T1
(
Ψ (v) − Ψ (w)

)
< δ,

one has∫
Ω

|v − w| < ε.

Indeed, by contradiction, assume that there exist two positive constantsM0 andε0 and two sequences{vn}n and
{wn}n such that∥∥Ψ (vn)

∥∥
H1

0 (Ω)
� M0, ‖Ψ (wn)‖H1

0 (Ω) � M0,∫
Ω

Φ(vn) � M0,

∫
Ω

Φ(wn) � M0, (60)

∫
Ω

(vn − wn)T1
(
Ψ (vn) − Ψ (wn)

) → 0, (61)

∫
|vn − wn| � ε0. (62)
Ω
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ce

ion of
By Rellich’s theorem, the sequences{Ψ (vn)}n and{Ψ (wn)}n are relatively compact inL2(Ω), therefore, up to a
subsequence which we shall still denote with the indexn, one can findξ andη in L2(Ω) such that

Ψ (vn) → ξ, Ψ (wn) → η a.e. inΩ.

Therefore, settingv(x) = Ψ −1(ξ(x)) andw(x) = Ψ −1(η(x)), one has

vn → v, wn → w a.e. inΩ.

Applying (58), (60) and De la Vallée Poussin’s Theorem, we deduce that

vn → v, wn → w strongly inL1(Ω).

Using this, we obtain that∫
Ω

(vn − wn)T1
(
Ψ (vn) − Ψ (wn)

) →
∫
Ω

(v − w)T1
(
Ψ (v) − Ψ (w)

)
,

therefore, by (61), the last integral is zero. By the strict monotonicity ofΨ , this implies thatv = w a.e. inΩ , which
contradicts (62).
Step 3: We wish to show that

T −h∫
0

∫
Ω

∣∣un(t + h) − un(t)
∣∣ h→0+−→ 0 uniformly w.r.t.n. (63)

For fixedn, h, M , we consider the measurable set

E = En,h,M =
{

t ∈ (0, T − h):
∥∥Ψ

(
un(t + h)

)∥∥
H1

0 (Ω)
+ ∥∥Ψ

(
un(t)

)∥∥
H1

0 (Ω)

+ 1

h

∫
Ω

(
un(t + h) − un(t)

)
T1

(
Ψ

(
un(t + h)

) − Ψ
(
un(t)

))
> M

}
.

Then in the integral in (63), we can split the parts wheret ∈ E andt ∈ Ec. As far as the former is concerned, sin
|s| � Φ(s) + C, one has, by the assumption (59),∫

E

dt

∫
Ω

∣∣un(t + h) − un(t)
∣∣ �

∫
E

dt

∫
Ω

[
Φ

(
un(t + h)

) + Φ
(
un(t)

) + 2C
]
� CL1(E),

whereL1 denotes the 1-dimensional Lebesgue measure. Since the quantities which appear in the definitE

have bounded integrals with respect tot , one has

L1(E) � C

M
.

Therefore (63) follows from Step 2. Obviously one also has

T∫
h

∫
Ω

∣∣un(t) − un(t − h)
∣∣ h→0+−→ uniformly w.r.t.n.

Step 4: We wish to approximateun with functions which are piecewise constants in time. ForM > 0, we define the
set

F = FM,n = {
t ∈ (0, T ):

∥∥Ψ
(
un(t)

)∥∥
1 > M

}
.

H0 (Ω)
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han

n

As before, one has

L1(F ) � C

M
.

Moreover we set

vn(t) = un(t)χFc (t).

We will show that for everyε > 0 one can chooseM , h (for simplicity of notation we will take a divisor ofT ) and
sε = sε,n,M,h ∈ (0, h) such that

T∫
0

∫
Ω

∣∣∣∣∣un(t) −
T/h∑
i=1

vn

(
(i − 1)h+ sε

)
χ((i−1)h,ih)(t)

∣∣∣∣∣ < ε for everyn. (64)

To do this, we compute the average with respect tos:

1

h

h∫
0

ds

T∫
0

dt

∫
Ω

∣∣∣∣∣un(t) −
T/h∑
i=1

vn

(
(i − 1)h+ s

)
χ

((i−1)h,ih)
(t)

∣∣∣∣∣
= 1

h

h∫
0

ds

T /h∑
i=1

ih∫
(i−1)h

dt

∫
Ω

∣∣un(t) − vn

(
(i − 1)h+ s

)∣∣

= 1

h

T/h∑
i=1

ih∫
(i−1)h

dτ

ih∫
(i−1)h

dt

∫
Ω

∣∣un(t) − vn(τ )
∣∣

� 1

h

h∫
−h

dτ

(T −τ)∧T∫
(−τ)∨0

dt

∫
Ω

∣∣un(t) − vn(t + τ)
∣∣.

We now distinguish between the valuest such thatt + τ ∈ F , wherevn(t + τ) = 0, and those such thatt + τ ∈ Fc,
wherevn(t + τ) = un(t + τ). Therefore

1

h

h∫
0

ds

T∫
0

dt

∫
Ω

∣∣∣∣∣un(t) −
T/h∑
i=1

vn

(
(i − 1)h+ s

)
χ

((i−1)h,ih)
(t)

∣∣∣∣∣
� 1

h

h∫
−h

dτ

(T −τ)∧T∫
(−τ)∨0

dt

∫
Ω

∣∣un(t) − un(t + τ)
∣∣ + 1

h

h∫
−h

dτ

∫
F

dt

∫
Ω

∣∣un(t)
∣∣

� 2 sup
|τ |�h

(T −τ)∧T∫
(−τ)∨0

dt

∫
Ω

∣∣un(t) − un(t + τ)
∣∣ + 2

∫
F

dt

∫
Ω

∣∣un(t)
∣∣.

If we chooseM large enough the latter integral is less thanε/2, while the previous one can be made smaller t
ε/2 by choosingh small enough, using Step 3. Thus one can findsε such that (64) holds.

Hence, we have shown that for everyε we can find a sequencew(ε)
n of functions which are constant in time o

the intervals((i − 1)hε, ihε) and such that∫ ∫
|un − w(ε)

n | < ε,
∥∥Ψ (w(ε)

n )
∥∥

L∞(0,T ;H1
0 (Ω))

� Mε.
QT
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ob-

e previ-

e [22,
Using Rellich’s theorem, for every fixedε one can extract a subsequence of indices{m(ε)
n } such that{Ψ (w

(ε)

m
(ε)
n

)}
converges strongly inL∞(0, T ;L2(Ω)) and therefore, using the assumption (59), such that{w(ε)

m
(ε)
n

} converges

strongly inL1(QT ) (in L∞(0, T ;L1(Ω)), actually). By repeating the argument forε = 1/k (k ∈ N) and taking a
diagonal subsequence, one can find a subsequence of indices{mn} such that, for everyk,∫ ∫

QT

∣∣umn − w
(1/k)
mn

∣∣ <
1

k
,

{
w

(1/k)
mn

}
converges strongly to somew(1/k) in L1(QT ) for n → ∞.

Step 5: We conclude using Cauchy’s criterium: For fixedε > 0 we choosek > 3/ε, then

‖umn − umj
‖L1(QT ) �

∥∥umn − w
(1/k)
mn

∥∥+
∥∥w

(1/k)
mn

− w
(1/k)
mj

∥∥+
∥∥w

(1/k)
mj

− umj

∥∥ � 2ε

3
+ ∥∥w

(1/k)
mn

− w
(1/k)
mj

∥∥.

Now the last norm can be made smaller thanε/3 by choosingn andj large enough. This concludes the proof
Proposition 6.1. �
Corollary 6.1. Assume that(15) and (16) hold true. If{un}n is a sequence of solutions of the approximate pr
lems(34), then there exist a subsequence, still denoted by{un}n, and a functionu ∈ L1(QT ) such that

un → u a.e. and strongly inL1(QT ).

Proof. We only have to check that the sequence of approximate solutions satisfies the assumptions of th
ous result. Recalling (24) and (29), we have the inequalitiesΨ ′

n(s) � Ψ ′(s) � 0, |Ψn(s)| � |Ψ (s)| andΦn(s) �
Φ(s) � 0. Thus,∥∥Ψ (un)

∥∥
L2(0,T ;H1

0 (Ω))
�

∥∥Ψn(un)
∥∥

L2(0,T ;H1
0 (Ω))

� C,

by (40), and∥∥Φ(un)
∥∥

L∞(0,T ;L1(Ω))
�

∥∥Φn(un)
∥∥

L∞(0,T ;L1(Ω))
� C,

by (38). Furthermore, by Corollary 4.2, the sequence{(un)t }n is bounded inL2(0, T ;H−1(Ω)) + L1(QT ). �
We will prove now that, for eachk > 0, the sequence{∇Tk(un)}n strongly converges to∇Tk(u) in L2(QT ).

Proposition 6.2. Assume that(15) and (16) are satisfied, and let{un}n be a sequence of solutions of problem(34)
which converges tou a.e. and strongly inL1(QT ). Then, for every fixedk > 0,

∇Tk(un) → ∇Tk(u) strongly inL2(QT ).

Proof. To prove this proposition, we begin by introducing a suitable regularization with respect to time (se
23]). For everyν ∈ N, we define(Tk(u))ν as the solution of the Cauchy problem


1

ν

[(
Tk(u)

)
ν

]
t
+ (

Tk(u)
)
ν
= Tk(u);(

Tk(u)
)
ν
(0)= Tk(u0,ν).

Then, using the assumptions (30)–(32) on the approximations of the initial datum, one has (see [22]):(
Tk(u)

)
ν
∈ L2(0, T ;H 1

0 (Ω)
)
,

((
Tk(u)

)
ν

)
t
∈ L2(0, T ;H 1

0 (Ω)
)
,∥∥(

Tk(u)
) ∥∥ ∞ �

∥∥Tk(u)
∥∥ ∞ � k,
ν L (QT ) L (QT )
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3.1,
and asν goes to infinity(
Tk(u)

)
ν
→ Tk(u) strongly inL2(0, T ;H 1

0 (Ω)
)
.

Use the functionv = vν,n = ϕ((Tk(un) − (Tk(u))ν)
+)e−γ (Tk(un)) as test in Proposition 3.2(1), where

ϕ(s) = eλs − 1,

andλ > 0 will be conveniently chosen hereafter. Then we obtain

T∫
0

〈
(un)t ,eγ (un)v

〉 + ∫
QT

eγ (un)an(x, t, un)∇un∇v �
∫

QT

Tn(f )eγ (un)v.

Now, we estimate the terms of this inequality. For the sake of convenience, we will denote byω(ν) a quantity
which goes to zero asν goes to infinity, whileων(n) will denote a quantity which goes to zero asn goes to infinity,
for every fixedν. On the other hand, to simplify the exposition we divide the proof into various steps.
Step 1: To begin with, one can prove that

T∫
0

〈
(un)t ,eγ (un)v

〉
� ων(n) + ω(ν).

This result may be proved as in Lemma 3 of [13] (see also [23]) with some minor modifications.
Step 2: We will prove that∫

QT

Tn(f )eγ (un)v � ων(n).

Indeed, using the hypothesis (C1), we can write∫
QT

Tn(f )eγ (un)v =
∫

QT

Tn(f )ϕ
((

Tk(un) − (
Tk(u)

)
ν

)+)
eγ (un)−Tk(γ (un))

�
∫

QT

|f |ϕ((
Tk(un) − (

Tk(u)
)
ν

)+)
e|γ (un)|,

� C

∫
QT

|f |ϕ((
Tk(un) − (

Tk(u)
)
ν

)+)(
1+ ∣∣Ψn(un)

∣∣)

� C
(3

2

∫
QT

|f |ϕ((
Tk(un) − (

Tk(u)
)
ν

)+) + 1

2

∫
QT

|f |ϕ((
Tk(un) − (

Tk(u)
)
ν

)+)∣∣Ψn(un)
∣∣2)

= ων(n) + ω(ν) + C

∫
QT

|f |ϕ((
Tk(un) − (

Tk(u)
)
ν

)+)∣∣Ψn(un)
∣∣2

= ων(n) + ω(ν) + F.

Let us now estimate the integralF . Hypothesis (16) onf and Hölder’s inequality yield

F �
∥∥f ϕ

((
Tk(un) − (

Tk(u)
)
ν

)+)∥∥
r,q

∥∥Ψn(un)
2
∥∥

r ′,q ′ �
∥∥f ϕ

((
Tk(un) − (

Tk(u)
)
ν

)+)∥∥
r,q

∥∥Ψn(un)
∥∥2

2r ′,2q ′ .

Definingρ = 2r′, σ = 2q′, so that(ρ,σ ) satisfy conditions (36) and (37) of the Gagliardo–Nirenberg Lemma
the estimates (39) and (40) lead to

F � C
∥∥f ϕ

((
Tk(un) − (

Tk(u)
) )+)∥∥ = ων(n) + ω(ν),

ν r,q
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.

which concludes the proof of Step 2.
Step 3: We will prove that∫

{|un|�k}

∣∣∇(
Tk(un) − (

Tk(u)
)
ν

)+∣∣2 � ων(n) + ω(ν). (65)

Thanks to the first two Steps we have proved that∫
QT

eγ (un)an(x, t, un)∇un∇v � ων(n) + ω(ν). (66)

Let us now estimate the left-hand side. From now on we will writean(un) instead ofan(x, t, un). We can write∫
QT

eγ (un)an(un)∇un∇v

=
∫

QT

an(un)∇un∇
((

Tk(un) − (
Tk(u)

)
ν

)+)
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)
eγ (un)−γ (Tk(un))

−
∫

{|un|�k}
an(un)∇un∇un

β(un)

α(un)
ϕ
((

Tk(un) − (
Tk(u)

)
ν

)+)

=
∫

{|un|�k}
an(un)∇

(
Tk(un) − (

Tk(u)
)
ν

)∇(
Tk(un) − Tk(u)ν

)+
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)

+
∫

{|un|�k}
an(un)∇

(
Tk(u)

)
ν
∇(

Tk(un) − (
Tk(u)

)
ν

)+
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)

−
∫

{un>k}
an(un)∇un∇

(
Tk(u)

)
ν
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)
eγ (un)−γ (Tk(un))

−
∫

{|un|�k}
an(un)∇un∇un

β(un)

α(un)
ϕ
((

Tk(un) − (
Tk(u)

)
ν

)+)
= A1 + A2 + A3 + A4.

Now,

A2 =
∫

{|u|�=k}
an(un)∇

(
Tk(u)

)
ν
∇(

Tk(un) − (
Tk(u)

)
ν

)+
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)
χ{|un|�k}

+
∫

{|u|=k}
an(un)∇

(
Tk(u)

)
ν
∇(

Tk(un) − (
Tk(u)

)
ν

)+
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)
χ{|un|�k}

= ω(ν) + ων(n)

+
∫

{|u|=k}
an(un)∇

(
Tk(u)

)
ν
∇((

Tk(un) − (
Tk(u)

)
ν

)+)
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)
χ{|un|�k}.

Here we have used the weak convergence of∇Tk(un) to ∇Tk(u) in L2(QT ;R
N), the strong convergence

∇(Tk(u))ν to ∇Tk(u) in L2(QT ;R
N) and the fact thatχ{|un|�k}χ{|u|�=k} converges toχ{|u|<k} almost everywhere

Moreover, by Hölder’s inequality, we have
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equal to
∣∣∣∣
∫

{|u|=k}
an(un)∇

(
Tk(u)

)
ν
∇(

Tk(un) − (
Tk(u)

)
ν

)+
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)
χ{|un|�k}

∣∣∣∣

� C(k)

( ∫
QT

∣∣∇((
Tk(un) − (

Tk(u)
)
ν

)+)∣∣2)1/2( ∫
{|u|=k}

∣∣∇(
Tk(u)

)
ν

∣∣2)1/2

� C(k)ω(ν).

In conclusion

|A2| � ων(n) + ω(ν). (67)

Applying (9) and (40) we can estimateA3 in the following way:

|A3| �
∫

{un>k}

∣∣an(un)∇un∇
(
Tk(u)

)
ν
ϕ′((Tk(un) − (

Tk(u)
)
ν

)+)
eγ (un)−γ (Tk(un))

∣∣

� C(k)

∫
{un>k}

∣∣∇Ψn(un)
∣∣∣∣∇(

Tk(u)
)
ν

∣∣ � C(k)

( ∫
{un>k}

∣∣∇(
Tk(u)

)
ν

∣∣2)1/2

� C(k)

( ∫
{u �=k}

∣∣∇(
Tk(u)

)
ν

∣∣2χ{un>k} +
∫

{u=k}

∣∣∇(
Tk(u)

)
ν

∣∣2χ{un>k}

)1/2

� C(k)

( ∫
{u>k}

∣∣∇(
Tk(u)

)
ν

∣∣2 + ω(n) +
∫

{u=k}

∣∣∇(
Tk(u)

)
ν

∣∣2)1/2

= ων(n) + ω(ν), (68)

by Lebesgue’s Theorem. As far as the termA1 is concerned, using the first inequality in (25), we obtain

A1 �
∫

{|un|�k}
αn(un)

∣∣∇(
Tk(un) − (

Tk(u)
)
ν

)+∣∣2ϕ′((Tk(un) − (
Tk(u)

)
ν

)+)

� C1(k)

∫
{|un|�k}

∣∣∇(
Tk(un) − (

Tk(u)
)
ν

)+∣∣2ϕ′((Tk(un) − (
Tk(u)

)
ν

)+)
, (69)

for some positiveC1(k). We only have to deal with the termA4:

A4 = −
∫

{|un|�k}
an(un)∇

(
Tk(un) − (

Tk(u)
)
ν

)+∇(
Tk(un) − (

Tk(u)
)
ν

)+ β(un)

α(un)
ϕ
((

Tk(un) − (
Tk(u)

)
ν

)+)

−
∫

{|un|�k}
an(un)∇

(
Tk(u)

)
ν
∇(

Tk(un) − (
Tk(u)

)
ν

)+ β(un)

α(un)
ϕ
((

Tk(un) − (
Tk(u)

)
ν

)+)

−
∫

{|un|�k}
an(un)∇Tk(un)∇

(
Tk(u)

)
ν

β(un)

α(un)
ϕ
((

Tk(un) − (
Tk(u)

)
ν

)+
.

Using techniques similar to the ones employed above, the last two integrals can be easily shown to be
ων(n) + ω(ν). Therefore we can write

A4 � −C2(k)

∫ ∣∣∇(
Tk(un) − (

Tk(u)
)
ν

)+∣∣2∣∣ϕ((
Tk(un) − (

Tk(u)
)
ν

)+)∣∣ + ων(n) + ω(ν).
{|un|�k}
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tly
This is where we use the functionϕ. Indeed we can choose the parameterλ = λ(k) in the definition ofϕ such that

C2(k)
∣∣ϕ(s)

∣∣ � C1(k)

2
ϕ′(s)

for everys ∈ R. Therefore

A4 � −1

2
A1 + ων(n) + ω(ν). (70)

Putting together formulas (66)–(70), we get (65).
Step 4: Usingv = −ϕ((Tk(un)− (Tk(u))ν)

−)e−γ (Tk(un)) as test function in Proposition 3.2(2), and working exac
as in the previous step, we obtain the analogous of (65),∫

{|un|�k}

∣∣∇(
Tk(un) − (

Tk(u)
)
ν

)−∣∣2 � ων(n) + ω(ν). (71)

The two estimates (65) and (71) lead to∫
{|un|�k}

∣∣∇(
Tk(un) − (

Tk(u)
)
ν

)∣∣2 � ων(n) + ω(ν). (72)

Step 5: Adding and subtracting∇Tk(u) from (72), we deduce that, for everyk > 0,∫
{|un|�k}

∣∣∇(
Tk(un) − Tk(u)

)∣∣2 � ων(n) + ω(ν),

and, finally,∫
QT

∣∣∇(
Tk(un) − Tk(u)

)∣∣2 � ων(n) + ω(ν) +
∫

{|un|>k}

∣∣∇Tk(u)
∣∣2 = ων(n) + ω(ν) + ω(n),

which concludes the proof.�
The following result follows easily from Corollary 6.1, Proposition 6.2, Corollary 4.1:

Corollary 6.2. One can extract a subsequence, still denoted by{un}n, such that

un → u a.e. inQT and strongly inL1(QT ), (73)

∇un → ∇u a.e. inQT ,

∇Tk(un) → ∇Tk(u) strongly inL2(QT ;R
N

)
, for everyk > 0,

an(un)∇un ⇀ a(u)∇u weakly inL2(QT ;R
N

)
,

an(un)∇un → a(u)∇u strongly inLq
(
QT ;R

N
)
, for every1� q < 2, (74)

Tn

(
b(un,∇un)

) → b(u,∇u) a.e. inQT . (75)

From now on we will assume that{un} is a subsequence like in the previous statement.

Proposition 6.3. Assuming that(15)and (16)hold true, then

Tn

(
b(x, t, un,∇un)

) → b(x, t, u,∇u) in L1(QT ). (76)
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-

Proof. By (75), using Vitali’s theorem, we only have to prove the equi-integrability of the sequence{Tn(b(un,

∇un))}n.
Let E be a measurable subset ofQT ; then∫

E

∣∣Tn

(
b(un,∇un)

)∣∣ �
∫

E∩{|un|�k}

∣∣Tn

(
b(un,∇un)

)∣∣ +
∫

E∩{|un|>k}

∣∣Tn

(
b(un,∇un)

)∣∣

�
∫
E

β(un)
∣∣∇Tk(un)

∣∣2 +
∫

{|un|>k}

∣∣Tn

(
b(un,∇un)

)∣∣

�
(

max
|s|�k

β(s)
)∫

E

∣∣∇Tk(un)
∣∣2 + C‖f χ{|un|>k}‖r,q + C

∫
Ω∩{|u0,n|>k}

Φ(u0,n),

for k large enough by Proposition 4.2. It follows fromf ∈ Lr(0, T ;Lq(Ω)) andΦ(u0,n) → Φ(u0) in L1(Ω) that

lim
k→∞

[
‖f χ{|un|�k}‖r,q +

∫
Ω∩{|u0,n|>k}

Φ(u0,n)

]
= 0

uniformly with respect ton. Thus, for everyε > 0, we may fixk satisfying∫
E

∣∣Tn

(
b(un,∇un)

)∣∣ �
(

max
|s|�k

β(s)
)∫

E

∣∣∇Tk(un)
∣∣2 + ε

2
.

Therefore, the equi-integrability of the sequence{|∇Tk(un)|2}n implies that of{Tn(b(un,∇un))}, and so Proposi
tion 6.3 is proved. �
Proposition 6.4. We assume that(15)and (16)hold true. Then

un → u strongly inC
([0, T ];L1(Ω)

)
.

Proof. Recalling thatun ∈ C([0, T ];L1(Ω)), we just have to see that

un → u strongly inL∞(
0, T ;L1(Ω)

)
.

We begin by denotingJ1(s) = ∫ s

0 T1(σ )dσ and pointing out that

1

2

(
s2χ{|s|<1} + |s|χ{|s|�1}

)
� J1(s) � |s| for all s ∈ R. (77)

Let us fixt ∈ [0, T ] and takeT1(un−(Tk(u))ν)χ(0,t)
as test function in the weak formulation of (34), where(Tk(u))ν

is the regularization with respect to time ofTk(u) introduced in the proof of Proposition 6.2. Then

t∫
0

〈
(un)t , T1

(
un − (

Tk(u)
)
ν

)〉
dτ +

∫
Qt

an(un)∇un∇T1
(
un − (

Tk(u)
)
ν

)

=
∫
Qt

(
Tn

(
b(un,∇un)

) + Tn(f )
)
T1

(
un − (

Tk(u)
)
ν

)
.

Hence, adding and subtracting
∫

((Tk(u))ν)tT1(un − (Tk(u))ν) and integrating by parts, we obtain

Qt
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nd

ion
∫
Ω

J1
(
un(t) − (

Tk(u)
)
ν
(t)

) +
∫
Qt

((
Tk(u)

)
ν

)
t
T1

(
un − (

Tk(u)
)
ν

) +
∫
Qt

an(un)∇un∇T1
(
un − (

Tk(u)
)
ν

)

=
∫
Qt

(
Tn

(
b(un,∇un)

) + Tn(f )
)
T1

(
un − (

Tk(u)
)
ν

) +
∫
Ω

J1
(
u0,n − Tk(u0,ν)

)
. (78)

Our aim is to estimate supt∈[0,T ]
∫
Ω

J1(un(t) − (Tk(u))ν(t)) and, to this end, we begin by analyzing the left-ha
side of (78). First observe that∫

Qt

((
Tk(u)

)
ν

)
t
T1

(
un − (

Tk(u)
)
ν

)

=
∫
Qt

((
Tk(u)

)
ν

)
t
T1

(
u − (

Tk(u)
)
ν

) +
∫
Qt

((
Tk(u)

)
ν

)
t

(
T1

(
un − (

Tk(u)
)
ν

) − T1
(
u − (

Tk(u)
)
ν

))

=
∫
Qt

((
Tk(u)

)
ν

)
t
T1

(
u − (

Tk(u)
)
ν

) + ωk,ν(n).

Since|(Tk(u))ν | � k, the functionsTk(u)− (Tk(u))ν andu− (Tk(u))ν have the same sign, so that, by the definit
of (Tk(u))ν ,((

Tk(u)
)
ν

)
t
T1

(
u − (

Tk(u)
)
ν

) = ν
(
Tk(u) − (

Tk(u)
)
ν

)
T1

(
u − (

Tk(u)
)
ν

)
� 0.

Thus,∫
Qt

((
Tk(u)

)
ν

)
t
T1

(
un − (

Tk(u)
)
ν

)
� ωk,ν(n). (79)

On the other hand, performing easy computations, we have∫
Qt

an(un)∇un∇T1
(
un − (

Tk(u)
)
ν

)

=
∫

Qt∩{|un−(Tk(u))ν |<1}
an(un)∇un∇

(
un − Tk(un)

) +
∫

Qt∩{|un−(Tk(u))ν |<1}
an(un)∇un∇

(
Tk(un) − (

Tk(u)
)
ν

)

�
∫

Qt∩{|un−(Tk(u))ν |<1}
an(un)∇un∇

(
Tk(un) − (

Tk(u)
)
ν

)
. (80)

Having in mind (79) and (80), Eq. (78) becomes∫
Ω

J1
(
un(t) − (

Tk(u)
)
ν
(t)

) + ωk,ν(n) +
∫

Qt∩{|un−(Tk(u))ν |<1}
an(un)∇un∇

(
Tk(un) − (

Tk(u)
)
ν

)

�
∫
Qt

(
Tn

(
b(un,∇un)

) + Tn(f )
)
T1

(
un − (

Tk(u)
)
ν

) +
∫
Ω

J1
(
u0,n − Tk(u0,ν)

)
,

so that
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∫
Ω

J1
(
un(t) − (

Tk(u)
)
ν
(t)

)
�

∫
QT

∣∣an(un)∇un

∣∣∣∣∇(
Tk(un) − (

Tk(u)
)
ν

)∣∣

+
∫

QT

∣∣Tn

(
b(un,∇un)

) + Tn(f )
∣∣∣∣T1

(
un − (

Tk(u)
)
ν

)∣∣ +
∫
Ω

∣∣u0,n − Tk(u0,ν)
∣∣ + ωk,ν(n).

Therefore, since this inequality holds uniformly ont ∈ [0, T ], we obtain

sup
t∈[0,T ]

∫
Ω

J1
(
un(t) − (

Tk(u)
)
ν
(t)

)
� I1 + I2 + I3 + ωk,ν(n). (81)

Now, we are going to estimate each term in the above equality. To handleI1, recall that

an(un)∇un → a(u)∇u weakly inL2(QT ) and a.e. inQT ,

which implies∣∣an(un)∇un

∣∣ → ∣∣a(u)∇u
∣∣ weakly inL2(QT ).

This fact and the strong convergence of truncations yield

I1 =
∫

QT

∣∣a(u)∇u
∣∣∣∣∇(

Tk(u) − (
Tk(u)

)
ν

)∣∣ + ωk,ν(n) = ωk(ν) + ωk,ν(n).

The estimate on the second termI2 is an easy consequence of the strong convergence inL1(QT ) of the sequence
{Tn

(
b(un,∇un)

) + Tn(f )}n (see Proposition 6.3):

I2 =
∫

QT

∣∣b(u,∇u) + f
∣∣∣∣T1

(
u − (

Tk(u)
)
ν

)∣∣ + ωk,ν(n)

=
∫

QT

∣∣b(u,∇u) + f
∣∣∣∣T1

(
u − Tk(u)

)∣∣ + ωk,ν(n) + ωk(ν)

= ωk,ν(n) + ωk(ν) + ω(k).

Finally, it is straightforward that

I3 =
∫
Ω

∣∣u0,n − Tk(u0,ν)
∣∣ = ωk,ν(n) + ωk(ν) + ω(k).

Thus, it follows from (81) that

sup
t∈[0,T ]

∫
Ω

J1
(
un(t) − (

Tk(u)
)
ν
(t)

)
� ωk,ν(n) + ωk(ν) + ω(k).

Thanks to (77), we deduce that

sup
t∈[0,T ]

∫
{|un(t)−(Tk(u))ν(t)|<1}

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣2

+ sup
t∈[0,T ]

∫
{|un(t)−(Tk(u))ν(t)|�1}

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣ � ωk,ν(n) + ωk(ν) + ω(k).

From here, applying Hölder’s inequality, a uniformL1 estimate follows:
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where
ions

Modelli
he same
partially
sup
t∈[0,T ]

∫
Ω

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣
� sup

t∈[0,T ]

∫
{|un(t)−(Tk(u))ν(t)|<1}

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣ + sup
t∈[0,T ]

∫
{|un(t)−(Tk(u))ν(t)|�1}

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣

�
√

meas(Ω) sup
t∈[0,T ]

( ∫
{|un(t)−(Tk(u))ν(t)|<1}

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣2)1/2

+ sup
t∈[0,T ]

∫
{|un(t)−(Tk(u))ν(t)|�1}

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣
� ωk,ν(n) + ωk(ν) + ω(k).

Therefore, givenε > 0, we may findk andν such thatωk(ν) + ω(k) < ε. Now, we can choosen0 ∈ N such that
n � n0 impliesωk,ν(n) < ε and consequently

sup
t∈[0,T ]

∫
Ω

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣ � 2ε.

Thus, ifm,n � n0, one has

sup
t∈[0,T ]

∫
Ω

∣∣un(t) − um(t)
∣∣ � sup

t∈[0,T ]

∫
Ω

∣∣un(t) − (
Tk(u)

)
ν
(t)

∣∣ + sup
t∈[0,T ]

∫
Ω

∣∣um(t) − (
Tk(u)

)
ν
(t)

∣∣ � 4ε.

Therefore,{un}n is a Cauchy sequence inL∞(0, T ;L1(Ω)) and consequently Proposition 6.4 holds true.�
We can now prove Theorem 2.1.

Proof of Theorem 2.1. If we multiply problem (34) by a functionφ ∈ C∞
0 (QT ), we obtain

−
∫

QT

unφt +
∫

QT

an(x, t, un)∇un∇φ =
∫

QT

Tn

(
b(un,∇un)

)
φ +

∫
QT

Tn(f )φ.

We can easily pass to the limit using (73), (74) and (76). Therefore, we conclude thatu ∈ C([0, T ];L1(Ω)) is a
distributional solution of problem (6). The estimates (17) and (18) follow from Proposition 4.1. In the case
the stronger assumption (19) is satisfied for someδ > 0, using the estimates (41)–(43) for the approximate solut
un, one easily concludes that∣∣Ψ (u)

∣∣δ+1 ∈ L2(0, T ;H 1
0 (Ω)

) ∩ L∞(
0, T ;L2(Ω)

)
,

Φ(δ)(u) ∈ L∞(
0, T ;L1(Ω)

)
.

This completes the proof of Theorem 2.1.�
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