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Abstract

We study existence and regularity of distributional solutions for possibly degenerate quasi-linear parabolic problems having
a first order term which grows quadratically in the gradient. The model problem we refer to is the following

ur — div(a()Vu) = @) Vul2 + f(x,1), in2x10,T[;
u(x,1)=0, onaRx10,T[; (1)
u(x,0) =ug(x), in Q.

Heres$2 is a bounded open set®Y, T > 0. The unknown functiom = u(x, 1) depends on € £2 andr €10, T[. The symbol
Vu denotes the gradient af with respect tax. The real functiong, 8 are continuous; moreover is positive, bounded and
may vanish attoco. As far as the data are concerned, we require the following assumptions:

/<1§(u0(x))dx <00
2
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where® is a convenient function which is superlineattato and

.1 N
fx,1)eL"(0,T;L9(82)) with =+ 2% <L
r
We give sufficient conditions o@ andg in order to have distributional solutions. We point out that the assumptions on the data
do not guarantee in general the boundedness of the solutions; this means that the coercivity of the principal part of the operatol
can really degenerate. Moreover, a boundedness result is proved when the assumptions on the data are strengthened.

© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
Résumé

Nous étudions I'existence et la régularité des solutions au sens des distributions de problemes paraboliques quasi-linéaire
qui présentent un terme du premier ordre a croissance quadratique par rapport au gradient et dont la partie principale peu
dégénérer.

Le probleme modéle auquel nous nous référons est (1) ci-dessous, ou les fom@ighsont & valeurs réelles et continues;;
de plusax est positive et bornée mais peut s’annulek@. En ce qui concerne les donnéggx) et f(x, 7), NOUS SUPPOSONS
quef_Q @ (ug(x)) dx < oo, ou la fonction®d est superlinéaire &oo, et quef(x,t) € L" (0, T; L1(82)) avec% + % <1

Nous donnons des conditions suffisantes st 8 qui assurent I'existence de solutions au sens des distributions. Ces
conditions sur les données n'impliquent pas en général que les solutions soient bornées, donc la coercivité de la partie principals
de I'opérateur peut vraiment dégénérer. Mais quand nous imposons des conditions plus fortes sur les données, nous démontrol
que les solutions sont bornées.
© 2006 L'Association Publications de I'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved
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1. Introduction

Our aim is to study existence for a class of quasi-linear parabolic problems involving first order terms with
natural growth with respect to the gradient. The model problem we refer to is (1) above, &hsra bounded
open setiRY, T > 0, andu = u(x, 1), with x € 22 andr €10, T[.
Let us remark that, if the functiong 8 are bounded on the real line, aads) > ag > 0 for everys e R (i.e.,
if the principal part is assumed to be uniformly coercive), in the case where the initial datumbelongs td
L>®(£2) and
-1 N
f(xvt)ELr(ovT; Lq(Q))a L)>Es (2)
r
it is possible to prove existence of bounded weak solutions for problem (1) (see, for instance, [8,24,25] and [13]).
Recently, in the case whete may vanish at infinity, Boccardo and Porzio (see [9]) assumedttgtand S(s)
satisfy
i
o
Then, ifug e L*°(2) and f (x, 1) € L™ (£2x]0, T[), withm > 1+ % (which is a very special case of condition (2)),
they prove the existence of bounded weak solutions for problem (1).

a e L®MR), «¢ LY (—00,0)U L0, +00), e LY(R). (3)

1 The symbolsL?(2), L" (0, T; L9(52)), and so forth, denote the usual Lebesgue spaces, see for instance [11] or [16]. Moreover we will
sometimes use the shorter notatidn8ly, [ f -4 instead of|| fliza(2), I fllLr 0,714 (2)), respectively. The symbd‘l&(.@) denotes the

Sobolev space of functions with distributional derivativeiﬁ((z) which have zero trace an2. H~1(£2) denotes the dual spaceHﬂ(Q).
The spaces.2(0, T; H3($2)) andL2(0, T; H~1(£2)) have obvious meanings, see again [11] or [16].
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In the present paper we are interested in finding more general conditiangond 3 (which include (3)) and
also in dealing with the case where the integrability of the datand f is not so high to allow bounded solutions.
The assumptions for the model problem are the following: if we define

s

W(s)= fa(a)ely(g)l do,
0

M do,

y(s) = 2©)

we will require, instead oB /o € L1, the weaker hypothesis
Ol c(1+|w(s)) (4)

for all s € R. To better understand the role of this assumption on the fungtidet us first consider the model case
wherea = 1 and f > 0; as pointed out, for instance, in [17] (for the stationary problem with conatantd 3),
we can perform the change of unknown functiog ¥ (1), obtaining the following equation far

v — Av=fe’®,
that under the assumption (4) gives
vy —Av < Cf(1+v), (5)

for which it is not too difficult to obtain some a priori estimates, under suitable assumptions on the data. In the
general case, that is, if the operator has the same growth as in the model case, but has a more complicated structure
it is not possible to perform such a change of variable, therefore we need to use suitable exponential test functions
related to andy which allow to get rid of the gradient term and to obtain estimates on the functfe remark

that, in the case = 1 (for simplicity), condition (4) is satisfied i is bounded or if8 is integrable, but it is a

more general assumption (see Remark 2.1 below). We point out that for this class of problems the regularity of the
dataug and f plays an important role. Indeed, if they have enough integrability (same as in (2)), we will prove
the existence of bounded solutions. In this case, the coercivity of the operator is a posteriori not really degenerate.
The case where the equality of the exponents in (2) holds is more difficult, because one cannot expect bounded
solutions, therefore an actual degeneration of the operator takes place. In this case, we prove the existence of
solutionsu such that? (1) belongs to the so calleshergy spaceshat is,

W(u) e L(0,T; L%(2)) N L3(0, T; Hy(£2)).

Actually, if the initial datumug is regular enough, one can prove that all powerg af) are in these same spaces.

If f isless regular than that, i.e., if the opposite inequality holds in (2), the problem of existence is open, even in
the uniformly coercive case, since it is not possible to use exponential functions to get rid of the quadratic term
(or equivalently, because after change of unknown function, one obtains the inequality (5), for which no a priori
estimates hold under these assumptiong T he existence result is achieved by approximating the principal part

of the equation with uniformly coercive operators, and by truncating the first order term. The first aim is to find

a priori estimates on the solutiong of the approximate problems. Then one has to show that, up to subsequences,
u, converges strongly to some functian To this aim, one would like to employ a compactness result of Aubin

type (see [4] and [29]), but our estimates do not allow to do this directly, since the funktioay have a very

weak growth (see, for instance, Remark 2.6). Therefore, we prove a compactness result (see Proposition 6.1 and
Corollary 6.1) which apply in this case, and whose proof has been suggested by a similar result by Alt and Luckhaus
(see [1]). Then it is necessary to prove pointwise convergence of the gradientsTiis is the most technical

part of the paper, and uses an approximating technique to deal with the time derivatjyepoéviously used in
[22,23,14,13,6,26]. We point out that no sign assumption is made on the nonlinear first order term throughout the
paper. If a “good” sign condition is assumed in the first order nonlinearity (more precisely that this term has the
opposite sign of:), existence of unbounded solutions in the uniformly coercive case is proved in [23] and [14],
under weaker assumptions on the data. In a forthcoming paper the corresponding problem for nonlinear operators
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of p-Laplace type will be investigated. Moreover weaker assumptions on the operator will be considered, which
will lead quite naturally to the use of the notion of entropy solution introduced in [5,28,2]. As far as the stationary
problem associated to (1) is concerned, the uniformly coercive case has been studied in many papers (see fo
instance [7,17,12,18] and references therein). In the case wilgrenay vanish at infinity, which corresponds to

a degenerate coercivity of the principal part, existence and regularity results are proved in [10] and [27].

The plan of the paper is the following. Section 2 is devoted to the statement of the assumptions and of the main
results. In Section 3 we recall some useful results and we define the approximating problems. In Section 4 we give
a priori estimates for the corresponding approximate solutions under the assumptions of the main existence result
Theorem 2.1. Section 5 is devoted to an a pridfi estimate under the stronger hypotheses (22) and (23). Finally,
Section 6 deals with the limiting process.

2. Assumptionsand main results

Before stating more precisely our problem, we introduce some notation. We recall ieat bounded open set
in RY, and thatT is a positive number. We will denot@ x 10, 7[ by Q7 andd$2x 10, T[ by 7. We define, for
k > 0, the usual truncation function at lev&k, i.e.,

Tic(s) = max{—k, min{k, s} }

andGy(s) =s — Ti(s) = (s — k)T sign(s). Throughout this pape€; will always denote a positive constant which
only depends on the parameters of our problem; its value may be different from line to line.
We are interested in studying the following quasilinear evolution problem

Uy — div(a(x, t, u)Vu) =b(x,t,u,Vu)+ f, inQr;
u(x,1) =0, onXr; (6)
u(x,0)=uo, in £2;

where the operators satisfy the following hypotheses:

Assumptionson a. The functiona: Q7 x R — RV satisfies the Carathéodory conditions; that is, it is measurable
with respect tqx, ¢) for all s € R and continuous in for almost all(x, 1) € QO7; moreover it satisfies the following
assumptions

(A1) There exists a bounded continuous positive functioi® — R such that

a ¢ L0, +00) U LY(—00, 0), (7)
and that
(alx, 1, $)E,£)> a(s)[E|? ®)

for aimost all(x, r) € Q7 and all(s, £) e R x RV.
(A2) There exist€p > 1 such that

|ax, 1, 5)&| < Coa(s)|§] Q)

for aimost all(x, ) € Q7 and all(s, £) e R x RV,

For brevity of notation, we will sometimes writgx, ¢, s)£& instead of(a(x, ¢, s)&, &). Moreover we will often
omit the explicit dependence afon x andz, writing a(s) instead ofa(x, ¢, s).

Assumptionson b. The functionb: Q7 x R x RY — R satisfies the Carathéodory conditions and moreover:
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(B1) There exists a continuous nonnegative funcfof® — R such that
|b(x,1,5,8)| < B(s)IEI? (10)

for almost all(x, r) € Q7 and all(s, £) e R x RV.

As before, we will sometimes writk(s, &) instead ofb(x, t, s, &£). The two functionsa andb will not be inde-
pendent from each other. In order to give the assumption on their connection, we define some auxiliary functions

by

y(s) = @da, (11)
a(o)
W (s) :/a(o)e'V<<’)‘da, (12)
0
qs(s):/qI(o)e‘V(“)'da. (13)

0

Relation between a and b.

(C1) We assume that there exists a constant 0 such that
g7 )l < C1(1+ |g/(s)})

forall s € R.

Remark 2.1. It is easy to see that conditig®1) includes, for example, the case where

B=P1+ P,

with
P, /3_; € L(R),
o o

but is strictly more general, as we can see in the following counterexample.

Example 2.1. Consider two functions defined lay(s) = 1 and
0, if s <1;
B(s) = nr|sin(ns)|, ifse[n,n—i—%], n=12,...;
0, ifse[n+%,n+1],n:l,2,....

Obviously both functions are continuous and by elementary arguments the following facts can be proved:

Q) /" B(s)ds=2foreveryn =1,2, ..., so thaty (n) = 2(n — 1).
(2) 2s—4<y(s)<2sforalls > 0.

(3) & (e — 1)< W(s) forall s >0,

(4) @) <e® < (¥ —1)+ 2" <2e*(1+ ¥ (s)) forall s > 0.

(5) B¢ L R) + L®(R).
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From the last two points, we may conclude that condition (C1) is strictly stronger than the one stated in the
previous remark.

Remark 2.2. Let us observe that, on account of (C1),
a ¢ LY0,400) UL Y (—00,0) < ae?l¢ L0, +00)U L (—00,0).

Indeed, on the one hand,

S

/(x(a)da

0

S

/(x(a) 7@l dy
0

<

and sox ¢ L1(0, +00) U L1(—00, 0) impliesa € ¢ L1(0, +00) U L1 (—00, 0).
On the other hand, it follows from (C1) that

') als)er®l
1+ W) 14[¥ ()l
Consequently,

< Cra(s).

N

/a(a) do

0

log(1+ ¥ (s)]) < C1 —  |w(s)| <efll@dl

Hencew ! ¢ L1(0,4+00) U L1 (—o00, 0) impliesa ¢ L1(0,4+00) U L1(—oc0, 0) and the two conditions are equiv-
alent. Let us finally observe that both are equivalent to

ﬂToo W (s) = too. (14)

As a consequence, it yields that the functibns superlinear at infinity, that is,

im 29 _ oo

s—>Fo00 |§|

Assumptions on the data. We require that

/ <D(uo(x)) dx <o0 (15)
2
and that
f(x,t) e L"(0, T; LY(£2)), (16)
with
N 1 N
l<r<+4oo, —<g<+4+o0 and -+ —=1.
2 r 2q

When the last equality is satisfied, we say that the cogplg) belongs to the so called Aronson—Serrin curve,
beyond which, in the classical cage= 0 anda(s) > ap > O for everys € R, solutions are bounded (see [3]).

The main existence result will be the following. We will always assume that (Al), (A2), (B1) and (C1) are
satisfied.
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Theorem 2.1. If (15) and (16) hold, then there exists a functione C ([0, T]; L1(£2)) which is a distributional
solution of problen{6), satisfying

alx,t,u) Vu e LZ(QT), b(x,t,u,Vu) € Ll(QT),

W) e L%(0, T; HF(£2)) N L*=(0, T; L%(£2)), 17)
sup q)(u(x, r)) < +00, (18)
'rE[O,T].Q

where¥ and @ are defined in(12) and (13), respectively. Moreover, if the initial datumy satisfies the stronger
assumption

/Q)(‘s)(uo) < 00, (19)
2
for somes > 0, where

oD (s) =/‘J/(o)]25l1/(a)e|y(")|do,
0

then(17) holds with (1) replaced by\¥ (u)|° ¥ (), while (18) holds with® («) replaced byd @ (x).

Remark 2.3. It is worth simplifying our situation to the following (more classical) model problem:

ur — Au=|Vul?+ f, inQr;
u(x,t) =0, onXxr;
u(x,0)=uo, in 2.

Then our main result states that an initial datum satisfyfgge‘“o‘ — 1Y <ooandf e L0, T; L1(£2)), with
(r, g) on the Aronson-Serrin curve, imply the existence of a distributional solutgurch that

el —1e L>(0,T; L3(2)) N L%(0, T; H(£2)).

Similar results in a more general setting can be found also in [13] and in [19].

Remark 2.4. One can check, by adapting the proof, that the result of Theorem 2.1 also holds true in the case where
the datumy satisfies a limit case in (16), i.¢.€ L>°(0, T; LN/?(2)), provided the following condition is verified:

for everye > 0 there exist two function$l(5)(x, 1), fz(‘”(x, t) such that
F=R2+1 7@ and 157 1~0r v <.

This is true, for instance, if (x, 1) = f(x) € LN/2(2) orif f € C([0, T]; LN/2(2)).

Remark 2.5. Assuming that the initial datumg(x) is summable enough, we are interested in the best estimates
for u, possibly replacing the functiog with a greater functior* which satisfies again condition (C1). For in-
stance, ifx(s) =1 andB(s) = 1/(1 + |s]), it would be better to choosg*(s) = 1 > B(s), which would provide
better estimates am. The function defined by

N

7(s) = Cfa(a)da +C’
0
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realize the equality in condition (C1). Therefore anytime that there egists 8 such that the corresponding
functiony*(s) = fy ’Z(ET")) do satisfies
7() = Coa<y™(s) <y (s) +Cs (20)

for some positive constants,, Cs, we get the best estimate choosipng instead ofy (which meanss* instead
of B). This is the case fof as in Remark 2.1. Indeed, if

B =PB1+ B2,

with
P i), ﬂ—g e L¥R),
o (04

then

B<B*=pr+Ca?

and condition (20) is satisfied. This is also the case for the oscillating fungtiarthe Example 2.1, as one can
easily see. Therefore the functigrand the corresponding functi@h play an essential role in the optimality of the
estimates in all the known cases frLet us point out that condition (20) implies condition (C1), while condition
(C1) implies, via Gronwall's lemma, the second inequality in condition (20).

Remark 2.6. Let us consider the cagse= 1 and write condition (C1) as

N

/ely(a)l do

0

e‘y(5)| < cC+C

and applying Gronwall’s lemma, we get & < C e“l, that is,
ly ()] < C (sl +1). (21)

In some papers concerning parabolic problems with coercive operatessl] and quadratic terms (see, for in-
stance, [8,19,20] and [13]) authors assume that the fungtisnbounded, which obviously implies (21). Thus,
in the casex = 1, our condition does not allow a greater growth on functiorhowever, we can consider also
unbounded oscillating functiorsy(s) like in Example 2.1.

It is worth remarking that our condition (C1) points out the role of functjgninstead ofg, in obtaining
existence of solutions.

Itis also worth noting that the estimates given in the previous theorem could be very weak. Indeed, for example,
we can have, fos > 0, a(s) = 1/(s + e)log(s + e) and B(s) = «?(s), which givesy (s) = log(log(s + e)) and
¥ (s)=log(s +e)— 1.

Finally, if the data are more regular, one can prove the existence of bounded solutions. More precisely, we
assume that

ug(x) € L>(£2), (22)

and

fx,1)eL"(0,T; LI(£2)) with 1 + zﬁ <1. (23)
ro 2q

Theorem 2.2. If (22)and(23) hold, then the solution found by Theor@m is bounded.
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3. Approximate problems. Some useful results

To prove our result, first of all, we have to consider approximating problems. To guarantee coerciveness, we will
change the functioa defining

1
A (x,t,8)=alx,t,s)+ =,
n

wherel is the identity matrix, and will truncate the others terms of our equation. Consequently, we now define

an(s) =a(s) + 1 and B,(s) =ay, (S)&, (24)
n a(s)
so thatg, > B8 andg,/a, = B/« for all n € N. It also yields
(B (x. 1, )8, &) > an(®)IEP,  and [T, (b(x,1,5,8))] < Bals)IE]2. (25)
Let us next define the functions
W, (s) = /an(a)ely(”)l do, Dy (s) = [ ¥, (o) e” @l do, (26)
0 0
2P (s) = /‘Wn(o)’%llfn(a)ely(”)‘ do, wheres >0, (27)
0
and
h(s) = / 7@l do. (28)

0
Observe that it follows

|h(s)| = Is], lIIn(s):lll(s)—}-Eh(s) and d)n(s):cb(s)+2ih(s)2
n n
and so
@ ()| = |w(s)] and ®,(s) > P(s) >0 forallseR. (29)

On the other hand, we need to regularize our initial datum. We will take an approximating sequence whose
properties are stated in the following proposition:

Proposition 3.1. If (15) holds, there exists a sequeneg ,} in L*°(£2) N H&(Q) such that

1

;Iluo,nIIHg(Q) — 0 asn— oo, (30)
@ (up,) — ©(ug) a.e.and strongly i1 (£2), (31)
@, (ug,) — P(uo) a.e.and strongly i} (£2). (32)

In the case where the stronger assumpt{@f) is satisfied, one may assume thb,i‘s)(uo,,,) is also uniformly
bounded. Finally, it« is bounded, one may assume thay, are also uniformly bounded.

Proof. Let{¢,}, be a strictly increasing sequence of positive numbers satisfying.ligW,, = +o00 and
max{i(£,), —h(—€y)} < J/n. (33)
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Furthermore, consider a sequereg, }, such thatg , € L>(£2) N H&(Q),
1 .
—||”0,n||H1(9) —0 and ®(vo,) — ®(up) a.e.and strongly inl(£2).
n 0

We finally denote:g , = Ty, vo,,; Obviously it satisfies , € L>(£2) N H&(Q) and||uo,n||H&(9) < ||UOJ1”H01(Q);
thus, (30) is proved. Moreover, since

/|q>(vo,n>—q>(uo,n)|< / ® (v0,) — O,
2 {lvo,nl=€n}

we deduce that (31) holds. From here and the inequalit®s: ) < @, (1o,n) < Py (von) < P(von) + ﬁﬁ
(see (33)), we obtain (32). The proof of the final statements is trivial.

Let us consider the approximating problems

(un)e — div(a, (x, 1, up)Vuy) = T,b(x, t,un, Vi) + T, f, in Or;
uy(x,t)=0, onXr; (34)
up(x,0)=upn(x), in £2.
It is quite classical (see, for instance, [21]) that problem (34) admits at least one weak sojutidri°(Qr) N
L?(0,T; H}(£2)) N C([0, T]; L%(£2)).
In order to prove first a priori estimates on our approximate solutignand then the convergence of the
sequencéu, },, we need the following cancellation result, which is a variant of that proved in [9], Lemma 2.1.

Proposition 3.2. Assume that,, is a bounded weak solution ¢84).

(1) If ve L®(Q7) N L2(0, T; H}(£2)), then
t t t
f((un)t,eS‘Q”(”W<“")u)+// eS‘Qr‘”W(”")an(x,t,un)Vu,,Vvg/f SOV T (£
0 0 0

holds for allr € [0, T], where(-, -) denotes the duality pairing between the spabes (£2) and Hol(Q).
(2) If ¥ is a locally Lipschitz continuous and increasing function such thd) = 0, then

sup | ¢ (un(0)) + / 0 (1) €7 (1) Vit 2 < / 17y ()| + f Swon);  (35)
or 2

‘L’E[O,T]Q or
whereg (s) = [; € @ly (o) do.

Another important tool we will use to get a priori estimates is the well known Gagliardo—Nirenberg’s inequality
for evolution spaces (see [15]):

Lemma 3.1. Let £2 be a bounded open set®f¥ and T be a real positive number. Le{x, r) be a function such
that

ve L™(0,T; L%(£2)) N L?(0, T; HF (2)).
Thenv € LP(0, T; L° (£2)), where

2N
N-2

2<0 < 2<p< oo (36)
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and

N 2 N
N,2_N (37)
o p 2
and the following estimate holds
T

T
/HU(I)HPJ(Q) dtgC(N)”U”'ZO_OZ(O’T;LZ(Q))/.va(t)”iZ(Q;RN) dt-
0 0

4. A priori estimate on Aronson—Serrin’s curve: unbounded solutions
In this section, we will obtain a priori estimates under the assumptions (15) and (16).

Proposition 4.1. Assume thatl5) and (16) are satisfied, and I€,, },, be a sequence of solutions of proble(34).
Then there exists a constafit> 0, depending only on the data of probl€), such that, for every € N,

/q)n (un(x,7)) <C foralmostallr €0, T], (38)
2
/lllnz(u,,(x, 1)) <C foralmostallr € [0, 71, (39)
2
/|vwn(un)|2<C, (40)
or

where®,, and ¥, are defined by26). Moreover, ifug satisfieg(19) for somes > 0, then there exists a constant
C;s > 0, depending only oA and on the data of problel(®), such that, for every € N,

/@,(l‘” (un(x,7)) < Cs foralmostallr € [0, T1, (41)
2
/]wn (ten Cx, 1_))’2(8—',-1) < Cs foralmostallr € [0, T7, (42)
2
/!v(\wn(un)r“)\z <G, (43)
or

whered” is defined by27).
Proof. We takey = ¥, in part (2) of Proposition 3.2, getting

sup | @n(un(x, 7)) + / () €7 U (1,) |V, |? < / | f1e7 @, (u,) + C,

t€[0,T]
2 or or
whereC is a constant such that
/¢n (Mo,n) <C

2
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(see (32)). Let us point out that, by the definition of functign
ot (1) € NG (1) | Vit [ = |V () [,

Moreover hypothesis (C1) implies the following estimates on the right-hand side (recalPtat < |¥, (s)| for
everys € R)

f || &y @)

l1/(un)|<C/|fI|ﬂl’(un)|(1+|11’(un)| < fIfIW (un) + 5 /Ifl)

Or
:cf | f1¥2(uy) + C.
or
From the previous estimates we get
sup [ @u(un(x, 7)) + / Ve P< C / 192 + C. (44)

t€[0,7T]
2

Let us now estimate the terﬁ2 | £1¥2(uy,) in the right-hand side of inequality (44). Having in mind hypothesis
(16) on f, and applying Holder's inequality, we obtain

/ 1920 < U F g |92 0y = 1 F g [ #0050 5, (45)

Let us definep = 21/, 0 = 24/, and point out thaip, o) satisfy conditions (36) and (37) of the Gagliardo-
Nirenberg Lemma 3.1, and therefore

/

[0 5 < C 2, [ [ }

1/r 1/r
< c[ sup [ @, (s x. r))] [ /|an(un)|2] , (46)
t€[0,7T]
2 or
where we have used the inequality
1 w2(s)
D, (s) > —fa,,(a)e‘y“’)'w,,(a)da =_—nr’ 47
2la + 1l “7)

llr + 1lloo
0

Using (44)—(46) and applying Young’s inequality, we get

1/r 1/
sup (pn(“n(x» T)) + /|an(un)|2 < C||f||rq|: sup / (un(xa ":)):| |: f |an(un)|2:| +C
or .Q or

t€[0,T 7€[0,T
[ ].Q [

1
<§/\Vllfn(un) +C||f||rq SUp (un(x,f))+c
.Q

TG

If || £l is sufficiently small we get the desired estimates on

sup ¢n(un(x,r))+/|vwn<un>|2,

t€[0,T]
2 or
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and estimate (39) follows from (47). If this is not the case, let us takestead ofT" in such a way that

1
ClA N r ;L2002 = 2°

By the previous argument we get estimate on
2
sup ¢n(un<x,r>)+/|vm(un>| :
t€[0,71]
2 0y

Then we take, > 11 such that

1
C||f||rLf(t1,zz;L‘1(Q)) )

and we repeat the same argument as before.
It is clear that in a finite number of steps one covers the whole intgdydl], getting the quoted estimates.

In the case whereg satisfies the stronger assumption (19), we can assum@ﬂs?auo,n) are also uniformly
bounded inL1(£2); by takingy = |¥,|? W, in part (2) of Proposition 3.2, one obtains:

sup [ 00 (untx. ) + / V(|2 < C / |1 ) [+ C. (48)
£2 or or
It is easy to check that the functitm(,‘”, defined by (27), satisfies the inequality
| W (5) PO+
260+ 1) o+ 1loo
for everys € R. From (48) and (49) one easily obtains the estimates (41)—(43).

o (s) =

(49)

Corollary 4.1. The sequencgs,, (x, 7, u,) Vi, }, is bounded inL2(Q7; RVY).
Proof. This is a straightforward consequence of (9) and (40). Indeed,
|8 (x, 7, 1) Vit |* < Con ()2 Vit 2 < Colan (1) & @ 2| Vu, 2 = Co| VW u) . D
Next, we will prove the estimates we need on the lower order term.
Proposition 4.2. The following statements hold true:
(1) There exist positive constanfsand s such that

}Tn (b(x, t,upy, Vun))| < C||fX{\u,,|>k} ||Lr(0,T;Lq(Q)) +C / ‘P(uo,n)
{lun|>k} £20{|ug,n|>k}

holds for every: e N andk > so.
(2) The sequenctl;, (b(x, t, u,, Vuy,))}, is bounded inL1(Q7).

Proof. On account of (25), the first claim of Proposition 4.2 is a straightforward consequence of the following
inequality

B ) |Vitnl2 < CILf Xtpunioty g + € f (o).
{lun|>k} 20{luog, >k}
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To see this, we begin by taking
[ o)
n 0) |y ; — ign(s —|y(s
¥ () = X{lsl>k) () et Ol do = xjs1=4) (5) Sign(s)(e~7 €SI _ g7 )
ksign(s) 8

in (35). Dropping nonnegative terms, we deduce that

B )| Vity | < f | (el Iy ksign@@l _ 1) 4 / ok (0.0),
{lun|>k} {lun|>k} 2
where

s
15 = X(1s1r) (5) SIGN(s) / (& @I-lyksign)l _ 1) g
k sign(s)
Since lim_ 100 ¥ (s) = 00, we may findsg > 0 such thats| > so implies |¥ (s)| > 1. So that, ifk > so, then
s N
i (5) < X(js]>) () Sign(s) / &7 ldo < x(jg54) (5) / ¥ (0) € ldo < B () x4y (5)-
ksign(s) k sign(s)
On the other hand, i > sg,

| f1(& =l signenl _ gy / || @)

2
nunl<c [ islmanfec [
{lun|>k} {lun|>k} {lun|>k} {lun|>k}
as a consequence of (C1) and Young’s inequality. Thus, applying Holder's inequality, we obtain

_ i 2
| f1(e v SO —2) < CI1f Xty 151 g [ @) [ 510 2+ C IS Xtlital kI

{lun|>k}
Since the sequend@¥ (u,)ll2 2./} is bounded (by (39), (40) and Lemma 3.1), it follows that

|17 @ I=r GSIMD] _ 1) < C|| £ ik g
{un|>k)

from where the first assertion of Proposition 4.2 follows.
The second claim of Proposition 4.2 is proved by taking

Bn(o) o

@) 4 = signis)(1 — e~ 17!
() gris)( )

V(s) =

in (35). Indeed, then
/ﬁn<un>|wn|2</|f|(e'V<“">‘—1)+f¢<uo,n), (50)
or or 2

whereg (s) = sign(s) [, (€71 — 1)do. As above, we obtain

/ |f|(e|7/(un)\ _ 1) — / |f|(e|y(un)| _ 1) + f |f|(ely(un)\ _ 1)
or {lun|<s0} {lun|>s0}
SCUflzrory + CUS Xyuni=sgr 1ra-
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On the other hand,

s0Sign(s) s
& (s) = sign(s) / (€7@ — 1) do + sign(s) / (€7@ —1)do < C+ B () X 5
0 50Sign(s)
and so
/¢(uo,n) <Cc+ f (o).
2 {luo.n| =50}

Hence, from these inequalities, having in mind (50) and (31), we conclude that the se¢8gnge Vi, |2},
is bounded in.1(Q7). The boundedness 6T, (b(u,, Vu,))}, then follows from (25). O

Taking into account that,, is a solution of problem (34), the two previous results imply the following conse-
guence.

Corollary 4.2. The sequencfuy,);}» is bounded in.2(0, T; H1(£2)) + L1(07).

5. Beyond Aronson-Serrin’s curve: bounded solutions

In this section, we will prove Theorem 2.2. Actually, we only have to prové@restimate for{u, }, since after
that Theorem 2.2 is easy to see following the reasoning of ([9], Theorem 1.1). The estimate is as follows.

Theorem 5.1. If 1/r + N/2q <1, ug,, are bounded inL>(£2) andu, € L(0, T; H}(£2)) is a distributional
solution of (34), then there exists a constafit> 0, depending only on the parameters of the problem, such that
(RACH] NN
which implies, taking14) and (29) into account,
ltnlloo < max{w —H(C), —¥~H(=0)}.

Proof. There are several steps in the proof. First, we will prove that

sup [Gk(‘I’n(un(T)))]2+/|VGk(Wn(”n))|2

0,7
el ]9 or

SC/IfI[Gk(|‘1’n(un)|)]2+Ck2 / Lf1, (51)
or {|Wn (un) | >k}

for all k£ big enough( > 0 being a constant that does not depend| 6, .

To this end, since we can always assume #fagt is bounded inL*°(§2), we can choosg such that, for every
n, k> ¥ uon)llLe + |h(uon)llLe, whereh is defined as in (28). This implies that- |¥, (uo.»)|. Then we take
¥ (s) = G (¥, (s)) in (35). Denotingp (s) = [, €7 @!Gx(¥,(0)) do, one has

sup [ ¢(un(0)) + f &7 0l g ()0 (1) | Vit

t€[0,T]
2 {1 (un)| >k}

). (52)

</|f|e'”“">'Gk(|wn<un>|)<c/|f|(1+|l1/n<un)|)Gk(|lI/n<un>
or or
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by applying (C1).
We prove (51) by analyzing each term in this inequality. Observe first that

N N

¢(s)=/e'V<">‘Gk(l1/n(o))da> —/e'V("”an(a)Gk(wn(a))da

=
llotn ll oo

0
- / ) Gr (W) do > 5 [Gi (#a()
lleen ll oo 2(Jlafloo + 1)
Moreover, we obviously have
&7l g ()W, ()| Vitn)? = / W (1) | V| = /|VGk(‘1’n(un))|2-

{1¥n (un) | >k} {1¥n (un) | >k} or

Thus, (52) becomes
sup. [ [Gu(# (a())]? + / |V G () | < C/ 1L+ | ) ) G (| ) ) (53)
Tell,
2 Or or

Finally, since Young’s inequality implies

Gr (| @ ) )P + tk + DG (| wn)|)

—

G ([P un)|) + | ) | Gic (| W () |) =

1
< [Gk(|‘1/n(un)|)]2 + E(k + 12X (10 )] k)

NI W

it follows from (53) that (51) holds true.

Now, note that our hypothesigad+ N/2¢ <1 impliesN/q' +2/r > N and so there exists > 0 such that
N/q'+2/r =(1+¢€)N. Then, denoting = 2(1+ ¢)r’ ando = 2(1+ ¢€)q’, we conclude that these parameters
satisfy the assumptions of the Gagliardo—Nirenberg lemma.

Our next step is to see that

T ploy 1/p T A+e)/p
(/(ﬂck(wn(u,,))r’) ) < Ck(/|{x € 21 |, (un(x, )| > K} |7 dt) (54)
0 ' 0

holds true. To do this, applying Gagliardo—Nirenberg and Young’s inequalities, we deduce from (51) that

( O/T ( / |Gk(lI/n(Mn))|g>p/0)2/p <C sup 1( / [Gk(%(unﬁ)))]Z)(p_Z)/p( f |VGk(an(un))|2>

2 2 or

2/p

<c sup [[Gu( )] +C [ 196 )
T€|V,
R

or
sc/|f|[Gk(|wn(un>|)]2+Ck2 / . (55)
or {1 (un) >k}

As in the proof of Proposition 4.1, we may assume thAt,., is small. Then the first term in the right-hand side
may be absorbed by the left hand one. Indeed, by Hdlder’s inequality
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!l
r.q

T ploy 2/p
<C||f||r,q( ( |Gk(wn(un>)\”) ) :
I\

where this last constant only depends on the previousegmaeas2, andT . It follows from (55) that

T ploy 2/p
(/</|Gk(lpn(un))|o> ) < Ck? f |l (56)
0 ‘2

{1 (up) | >k}

c/ UG (% @) 2 < ClLF g [[Gr (|9 ) ) P
or

Note that from now orC > 0 is a constant that does dependjigfy|, -
Now the right-hand side in (56) may be estimated as follows:

t 1/r
IfI< ||f||r,q</|{x € 21 |, (un(x, )| > k)| dt)
0

(W i) k)
L 21+6)/p
SC(/’{XG.QZ ’U’,l(u,l(x,t))’>k}|p/‘7dt) .

0

Hence, we obtain from (56) that (54) holds. This inequality implies, by ([21], Chapter Il, Theorem 6.1), that
|, (un) |l < C, whereC only depends on the parameters of problem (6).

6. Convergence of the approximate solutions

This section deals with the convergence of the sequéngg of approximate solutions of (34). First of all we
will prove that there exists such that, up to a subsequenge,}, converges ta, for almost every(x, 1) € Q7.
Then we will prove the convergence of gradients, namely: we will prove in Proposition 6.2 that the sequence
{VTi(un)}, strongly converges i?(Q7) and, as a consequence, it yields that a subsequence, still denoted by
{Vu,},, converges tovu for almost all (x, 1) € Q7. In Proposition 6.3 we will prove the convergence of the
quadratic term inL1(£2). Finally, we will see in Proposition 6.4 thét,}, converges ta: in C([0, T1; L1(£2)),
which gives meaning to the initial condition. Once these facts have been proved, it will be easy to finish the proof
of Theorem 2.1.

To see the pointwise convergence of the sequence of approximate solutions of a parabolic problem, an Aubin
type theorem is usually applied (see [4] and [29]). This can still be done in our framework, pra¥idedas
at least linear growth, that i/’ (s) > co > 0. However this is not always the case, sing&) can have a very
slow growth (see Remark 2.6). Thus, we have to prove the following compactness result, whose proof is strongly
inspired on a result by Alt and Luckhaus [1].

Proposition 6.1. Let {u,}, be a sequence of functions such that
u, € L2(0, T; H3(£2)), (un); € L?(0,T; H1(£2))

(not necessarily bounded in these spacéssume that there exists a continuous and strictly increasing function
¥ :R — R satisfying

¥ (0)=0, lim W(s)=+o0
s—+00
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such that
{@(uy)}, is bounded inL2(0, T; Hy (£2)).

Assume moreover that

{(un);}, is bounded inL2(0, T: H~1(£2)) + LY(Q1). (57)
and finally that there exists a continuous functibnR — [0, +o0) satisfying

i = )
such that

{®(un)}, is bounded inL> (0, T: L(£2)). (59)

Then the sequende,,}, is relatively compact i.1(Q7).

Proof. We divide the proof in some steps.

Step 1: Assume thd67) holds. Then it is easy to see that the sequdiieg(r + #) — u,,(t))/ h}, is bounded in
L2(0, T — h; H-Y(£2)) + LY(Q7_5), uniformly with respect ta: andh. Therefore there exists a const@hsuch
that

T—h
1
- f dt/[un(t +h) — un ()] T2 (¥ (un(t + 1)) — ¥ (un(1))) < C.
0 2
Step 2: For eacl¥ > 0 ande > 0O there exist$ = . » such that, for every, w € Hol(Q) satisfying
E401 HE (@) <M, | @ (w) ”Hg(.(z) <M,

fqb(v) <M, /<1><w) <M,
2

2

/(v —w)T1 (¥ () — ¥ (w)) <3,
2

one has

/|v—w|<s.
Q

Indeed, by contradiction, assume that there exist two positive condt@rdaadesg and two sequencds;, }, and
{w,}, such that

HW(UH)HH&(Q) < Mo, ”W(wn)”HOl(Q) < Mo,
2 2
/(Un - wn)Tl(lI/(Un) - "I/(wn)) — 0, (61)

2
/ [vy — wy| 2 0. (62)
2
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By Rellich’s theorem, the sequencgB(v,)}, and{¥ (w,)}, are relatively compact ii.?(£2), therefore, up to a
subsequence which we shall still denote with the indeane can find andy in L2(£2) such that

(v, — €&, Y(w,) —n ae.ins.

Therefore, setting(x) = ¥ ~1(£(x)) andw(x) = ¥ ~1(5(x)), one has
v, =~ v, w,—w a.e.ins.

Applying (58), (60) and De la Vallée Poussin’s Theorem, we deduce that
vn— v, w,—w stronglyinL(£2).

Using this, we obtain that

/(Un —w)T1(¥ (vp) — ¥ (wy)) — /(v —w)T1(¥ (v) — ¥ (w)),
2 2

therefore, by (61), the last integral is zero. By the strict monotonicity ghis implies that = w a.e. in§2, which
contradicts (62).
Step 3: We wish to show that

T—h
f [|un(t +h) = un(t)] "=~ uniformly w.r.t.n. (63)
0 2

For fixedn, h, M, we consider the measurable set

E=Eypm= {t € 0.7 = h): ¥ (unt+ )| g1 + ¥ (n®)] 1)

+%/(M;1(t+h) _un(t)) Tl(ll/(un(l +h)) — lI/(un(z‘))) > M}
2

Then in the integral in (63), we can split the parts whegeE andr € E€. As far as the former is concerned, since
Is| < @(s) + C, one has, by the assumption (59),

/dt/|un(t+h) — un (1) gfdt/[q>(un(t+h))+<p(un(z))+zc] <cLiE),
2 E 2

E

where£! denotes the 1-dimensional Lebesgue measure. Since the quantities which appear in the defifiition of
have bounded integrals with respect fone has

C
< —.
LYE) < i

Therefore (63) follows from Step 2. Obviously one also has
T

h—0t .
/f|u,,(t)—u,,(t—h)| — uniformly w.r.t.n.
h 2

Step 4: We wish to approximatg with functions which are piecewise constants in time. Hor 0, we define the
set

F=Fy,={te©T): |¥(u,®)] i@ > M}.
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As before, one has
C
LYFy< =.
Moreover we set
Un (1) = un (1) X e ().
We will show that for every > 0 one can choos¥, & (for simplicity of notation we will take a divisor of ) and
Se = Se.n.m.i € (0, h) such that

/]

To do thls we compute the average with respect to
h

oo

0

T/h

un(t) = > vn (G = D+ ) X(Gi—h.im ()
i=1

<¢ foreveryn. (64)

T/h

wn(t) = > vn (G = Dh+8) Xy )

i=1

T/h ik
/ds / dt/|u,,(t)—v,,((i—1)h+s)|
=iy @
LT/ ih ih
—Z / dr / dt/|un(t)—vn(t)|
=1y Sph 2
h o (T—DAT

1

< Zfdr / dtf|un(t)—vn(t+r)|.
—h (—7)vO0 2

We now distinguish between the valuesuch that + 7 € F, wherev, (r 4+ t) = 0, and those such that+ t € F°,

wherev,, (t 4+ 1) =u,(t + t). Therefore

o faf

h (T—t)AT

T/h

un(t) Zvn (l - l)h+s)X((, 1)h, ,h)(t)

< %/dr / dt/|un(t)—un(t—l-t)‘+%/dr/dt/|un(t)|
Zh (—ov0 & o F R
(T—1)AT
<2 sup dt/\un(t)—un(t+r)| +2/dt/|un(t)|.
Ielsch (-t)v0 2 F Q

If we chooseM large enough the latter integral is less thg@, while the previous one can be made smaller than

&/2 by choosing: small enough, using Step 3. Thus one can finduch that (64) holds.
Hence, we have shown that for everyve can find a sequence, (8) of functions which are constant in time on
the intervals((i — 1)A,, ih.) and such that

// lup —w®| <e, ¥ (w 6))||L°°(0T i@y S M-
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Using Rellich’s theorem, for every fixedone can extract a subsequence of ind'{mg)} such thal{l‘l/(w(s()g))}
my
converges strongly i (0, T; L(£2)) and therefore, using the assumption (59), such thé‘i()g)} converges
my,

strongly inL1(Q7) (in L>=(0, T; L1(£2)), actually). By repeating the argument for= 1/ (k € N) and taking a
diagonal subsequence, one can find a subsequence of if@igesuch that, for every,

i

{ (1/k)} converges strongly to some™’® in L(Q7) for n — ooc.
Step 5: We conclude using Cauchy'’s criterium: For fixed O we choosé > 3/¢, then
1/k) A/k) _ (1/ 9] (1/ ky _ 1/k) _ (1/ k)
ity =ty < Jotm, = wmi ™| Jwm, o™ = | < 5+ ™ = wni ™

Now the last norm can be made smaller thd8 by choosmgq andj large enough. This concludes the proof of
Proposition 6.1. O

Coroallary 6.1. Assume thaf15) and (16) hold true. If{u,}, is a sequence of solutions of the approximate prob-
lems(34), then there exist a subsequence, still denoteflby,, and a function: € L1(Q7) such that

u, — u a.e.and strongly iL*(Q7).
Proof. We only have to check that the sequence of approximate solutions satisfies the assumptions of the previ-

ous result. Recalling (24) and (29), we have the inequali#igs) > ¥'(s) > 0, [¥,(s)| = [¥(s)| and D, (s) >
@ (s) > 0. Thus,

||‘1’(”")||L2(0,T;Hg(rz)) <| W”(M”)HLZ(O,T;H&(Q)) <G
by (40), and

<C,

Hq)n(”n)||Loo(o,T;Ll(9)) X

||‘p(“n) ||L°°(O T:L1(2) X
by (38). Furthermore, by Corollary 4.2, the sequefi@),}, is bounded in.2(0, T; H=1(22)) + LY(Q7). O

We will prove now that, for each > 0, the sequenceV Ty (u,)}, strongly converges t& 7y (u) in L2(Q7).

Proposition 6.2. Assume thatl5) and (16) are satisfied, and I€f,, },, be a sequence of solutions of probléd)
which converges te a.e. and strongly i.1(Q7). Then, for every fixed > 0,
VTi(up) — VTi(w) strongly inL?(07).

Proof. To prove this proposition, we begin by introducing a suitable regularization with respect to time (see [22,
23)). For every € N, we defing(T; (1)), as the solution of the Cauchy problem

Hmw),], + (1), = Tew;
(Ti()), (0) = T (uo,v).
Then, using the assumptions (30)—(32) on the approximations of the initial datum, one has (see [22]):
(Tew)), € L3(0, T; HY(2)).  ((Tk)),), € L3(0, T; HY(2)),
” (Tk(“)) ”LO"(QT) <k,
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and asv goes to infinity
(Te(w)), — Te(u) strongly inL2(0, T; H)(£2)).
Use the function = v, , = ((Ti (u,) — (T (w)),)T) €7V k) as test in Proposition 3.2(1), where
o(s) =€ -1,
anda > 0 will be conveniently chosen hereafter. Then we obtain
T
/((u,,),, ey(“")v) + / & Wa, (x,t, un) Vi, Vo < / T, (f) e Wy,
0 or or

Now, we estimate the terms of this inequality. For the sake of convenience, we will denef@bg quantity
which goes to zero asgoes to infinity, whilew” (n) will denote a quantity which goes to zeroragoes to infinity,
for every fixedv. On the other hand, to simplify the exposition we divide the proof into various steps.

Step 1 To begin with, one can prove that

T
/((”n)t» ey(u")v) >0’ (n) + o).
0

This result may be proved as in Lemma 3 of [13] (see also [23]) with some minor modifications.
Step 2: We will prove that

f T,(f) e “y < o’ (n).
or
Indeed, using the hypothesigl), we can write

/ Tu(f) ey = f Tu (o ((Tiun) — (Tiw)), ) ) € =Ty (e

or Or
< / | Flo((Tetun) — (Ti@)) ) 7) 7@,
or
< C/ | Flo((Ten) — (Ti@)) ) ") (L4 | @ un)])
or

3 1
< C(E f [ Flo((Tx (un) — (Tk(u))v)+) t3 / | flo((Tx (un) — (Tk(u))v)+)|l[/n(un)|2>
or Or

=w'(n) +w®)+C / | Fle((Ti ) — (Te@) ) ¥) [ Wn ) |2
or
=w'()+wl)+F.
Let us now estimate the integral Hypothesis (16) orf and Hdélder’s inequality yield
F <[ (T = (7e0),) ), o 190w o < [ 70 ((Tetin) = (), ) ), o 190 0 5,

Definingp =21, 0 = 24/, so that(p, o) satisfy conditions (36) and (37) of the Gagliardo—Nirenberg Lemma 3.1,
the estimates (39) and (40) lead to

F<C|| fo((Tiun) — (Te@),) )|

g =" )+ o),
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which concludes the proof of Step 2.
Step 3: We will prove that

IV (Tetun) = (Tew),) " P < 0" ) + 0 (). (65)
{lun| <k}
Thanks to the first two Steps we have proved that

/e”(“")an(x,t,un)Vuan <@’ (n) + o). (66)
Or

Let us now estimate the left-hand side. From now on we will wajte:,,) instead ofa, (x, ¢, u,)). We can write
/ & “a, (uy) Vi, Vu
or

- / B4 1) VitV (Titatn) — (Te@)),) ) (Tewn) — (Tewy), ) ) € @) =7 Titan)

or
Buy)
- [ 2 Vu L (1) - (new),))
{lun|<k}
= / 8 )V (T () — (T @), )V (T (n) — Te@)y) "' (T (un) — (Te)),) ™)
{lun|<k}
b e V() V(T - (1)) ¢ () - (7)) )
{lun|<k}
— f 8 () Vit V(T @), @' (Tk (un) — (Tew)),) ) € )= Titun))
{up>k}
- / an<un>wnwna(un)cp((Tk(un)—(Tk<u>)u)+)
{lun|<k}
=A1+ A2+ A3+ Ag.

Now,

Ax= / a, (un)V (Ti (), V(Tx () — (Tk(u))v)+‘ﬂ/((Tk(”n) - (Tk(u))v)+)X{\u,,|<k}
{lul#k}
4 / 8 () V (Te (), ¥ (TeCatn) — (Te@), ) ¢/ (Tetatn) = (Te@),) )t tun <t
{lul=k}
=) +w’(n)
+ / 8 () V (Te ), V(T n) — (Te@)),) ) (Telwn) — (Te@)) ) ") Xtjuni<ir-
{lu|=k}

Here we have used the weak convergenc&/@f (u,) to VTi(x) in L2(Qr;RY), the strong convergence of

V(T (u))y to VT () in L2(Q7; RY) and the fact tha(u,, | <k X{lul£k) COnverges tQ(. <« almost everywhere.
Moreover, by Hdlder’s inequality, we have
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8 () V (T (), V(T ) — (Te)),) "0 (TeCwn) — (Te@)) ) ") Xjuni<iy
{lul=k}

<C(k)</|v((Tk(un)—(Tk(u))v)+)|2)1/2( /
01

{Jul=k}

12
|V(Tk(u))v|2> < Ck)o ).

In conclusion
|[A2] < @"(n) + @ (v). (67)
Applying (9) and (40) we can estimatg; in the following way:

|A3| < / |8y (1) Vit V (Te @), @ ((Ti () — (Tiw)) ) ) € @) = Teun)
{up >k}

1/2
<Ck) f |Wn<un>||V(Tk<u))v|<C<k>< / |V(Tk(u>)v|2>

(tn k) {un >k}
1/2

ccw [ o, Frt [ 1900, P

{usk) {u=k}

1/2

<C(k)< / V(1) [+ o + / |V(Tk<u>)u|2)

{u>k} {u=k}
=w'(n)+ o), (68)

by Lebesgue’s Theorem. As far as the te4mis concerned, using the first inequality in (25), we obtain

Ar> / 0 )|V (Te ) — (i), ) P (Tetun) — (Tiw)) ) )
{lun| <k}

> C1(k) / IV (Tetwn) — (1)), ) 12! (Tetun) — (Tew), ). (69)
{lun | <k}
for some positiveC1 (k). We only have to deal with the terry:

Ag=— / 0 )V (T ) — (Te@)),) 9 (Tian) — (T ). ) 2 o (Tt — (11 0)), ) )

o (un)
{lun| <k}

- / 8 () V (T ),V (Ti () — (Tk(u))v)+§ EZH;(P((Tk(Mn) — (Tkw),) ")
{lunl <k} "

Vo (up)

_ f 8 (1) VT (1) ¥ (T (1))
{lun| <k}

o((Tiun) — (Tcw)),) ™

Using techniques similar to the ones employed above, the last two integrals can be easily shown to be equal tc
" (n) + w(v). Therefore we can write

Ag > —Ca(k) / IV (Ti(un) = (Te@),) P lo (Tiun) = (Te@),) )| + 0 @) + 0 (v).
{lun <k}
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This is where we use the functign Indeed we can choose the parameter A (k) in the definition ofy such that

Ci1(b)
— ¢
for everys € R. Therefore

Ca(k)|g(s)| < (s)

A42—%A1+w”(n)+w(v). (70)

Putting together formulas (66)—(70), we get (65).
Step 4: Using = —o((Tx (un) — (Tr(n)),) ™) e~ Tk)) as test function in Proposition 3.2(2), and working exactly
as in the previous step, we obtain the analogous of (65),

IV (Telun) — (Te@),) P < 0" () + 0 (). (72)
{lun| <k}

The two estimates (65) and (71) lead to

V(T ) — (T ), P < 0" 1) + 0 (). (72)
{lun|<k}

Step 5: Adding and subtractingl () from (72), we deduce that, for eveky= 0,
|V (Ticun) — Te) | < 0 () + 0 (v),
{lun| <k}

and, finally,

/ |V(Tk(un) - Tk(”))|2 <o’(n) +o)+ / |VTk(u)|2 =w’'(n)+oW) + o),
Or {lun|>k}
which concludes the proof.0O

The following result follows easily from Corollary 6.1, Proposition 6.2, Corollary 4.1:

Corollary 6.2. One can extract a subsequence, still denote@hy,,, such that
u, — u a.e.inQr and strongly inL*(Q7), (73)
Vu, — Vu a.e.inQr,
VTi(un) — VTi(u) strongly inL?(Qr; RY), for everyk > 0,
an (n) Vi, — a@w)Vu  weakly inL?(Q7; RY),
ay, (un)Vu, — a(u)Vu  strongly inL?(Qr; RY), for everyl < gq <2, (74)
T (b(un, Vun)) = b(u, Vu) a.e.inQr. (75)

From now on we will assume thét,, } is a subsequence like in the previous statement.

Proposition 6.3. Assuming thaf15) and (16) hold true, then
Tu(bCx,t, up, Vuuy)) = b(x,t,u, Vu) in LY(Qr). (76)
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Proof. By (75), using Vitali’'s theorem, we only have to prove the equi-integrability of the sequgh¢e(u,,,

Vu ).
Let E be a measurable subset@f ; then

/|Tn(b(un,wn>)}< / | T (b, Vun))| + / | T (bun. Vun))|
E

EN{lun| <k} EN{|un|>k}

</ﬂ<un>|vmun>|2+ / 1T, (bt V)|
E

{lun|>k}

2
< (mgfﬂ(s)) /}VT]((M”)} + C”fX(\u,,bk) ”r,q +C / (p(uo,n)v
E

20{Juo,n|>k}
for k large enough by Proposition 4.2. It follows frofne L" (0, T; L1(£2)) and® (ug,,) — P (ug) in L1(£2) that
kli—>moo|:||fX“u”>k) ”r,q + / ¢(”0,n)j| =0
20{Jug,n|>k}

uniformly with respect ta:. Thus, for every > 0, we may fixk satisfying

Is|<

&
/|Tn(b<un’ Vi)| < (maxp(s)) f}VTk(un)}2+ >
2 E

Therefore, the equi-integrability of the sequetifeT} (u,)|%}, implies that of{T}, (b(u,, Vu,))}, and so Proposi-
tion 6.3 is proved. O
Proposition 6.4. We assume thgi.5) and (16) hold true. Then

up — u  strongly inC ([0, T1; L*(£2)).

Proof. Recalling thatt,, € C([0, T]; LY(£2)), we just have to see that
up — u  strongly inL>(0, T; L1(£2)).

We begin by denoting(s) = fg T1(o) do and pointing out that

1
E(SZX{IS|<1} + 181X 51) < Js) <|s| foralls eR. (77)

Letus fixr € [0, T] and takeTs (u, — (T (u))v) X0, @S test function in the weak formulation of (34), whefg(u)),
is the regularization with respect to time Bf(x) introduced in the proof of Proposition 6.2. Then

t
f (e, Ta (i — (Te(w)), )}z + / 80 () Vit VT3 (1 — (Te(w)), )
0 0O

- / (To (b, Vi) + T () Ta(atn — (Tiw),)-
O
Hence, adding and subtracti[fgt((Tk(u))v),Tl(un — (Tx(u)),) and integrating by parts, we obtain
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/ J1(un(®) = (Te@)) , (1)) + / (Tcw)),), T1(un — (Te)),) + / 8 (1) Vit VT3 (uy — (Te(w)),)
2 (o O

- / (To (bt Vi) + Tu () Ta(itn — (T ), ) + f J1(0 — Te(wo,)- (78)
(o} 2

Our aim is to estimate syo 7 fQ J1(u, (1) — (Tx(u)), (¢)) and, to this end, we begin by analyzing the left-hand
side of (78). First observe that

[ (@), 1 - (nw),)

Qs

= [[(@w),), Al = (), ) + [ (7160),), (730 = (1:0),) = Tale = (7))

O o,
B / (Te@),), T1(u = (Te@),) + o ().
o

Since|(Ty (u)),| < k, the functionsly, (u) — (Tx (u)), andu — (Ti (1)), have the same sign, so that, by the definition
of (Ti(u))y,

(1), Ta( — (1)) = v(Tetw) — (T3w) ) Ti — (Tew),) > 0.
Thus,
/ (1)), Ta (1 — (Tew)), ) > & (). (79)

Qs

On the other hand, performing easy computations, we have

/an(un)VunVTl(un - (Tk(u))v)

[on
= / an(un)vunv(un - Tk(un)) + [ an(un)V“nV(Tk(”n) - (Tk(u))v)
OiN{lun— (T (u))v| <1} QrN{Jun— (T )y | <1}
> f 8y (1) Vier V(Ti () — (Ti(w)) ). (80)

OrN{lun— (T (w))v|<1}

Having in mind (79) and (80), Eq. (78) becomes

/Jl(un (1) — (Tcw)), (1) + V() + / 8y, (1) Vity V(Ti () — (Tr(w)) )
Q OrN{|up— (T (u))y] <1}
< / (T (bt Vi) + T () Ta(itn — (Te(w)) ) + / J(ton — Te(uo,)).
Q0 2

so that
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f J1(un(0) = (Ti(w)) (1)) < / |2 ) Vi | |V (T ) — (Te ), |
2 or
+ / 17, (bt Vi) + T (|| Ta(itn — (Tew) )| + / o — Te(wo)| + " (n).
or 2
Therefore, since this inequality holds uniformly oa [0, T], we obtain

sup | Ji(un(®) — (Te@)) () < 1+ L2+ I3+ o*¥ (n). (81)
te[0,T]
2

Now, we are going to estimate each term in the above equality. To hanatkcall that
a,(un)Vu, — aw)Vu weakly inL?(Qr) and a.e. inQr,

which implies
|an (1) V| — |a@)Vu| weakly inL3(Q7).

This fact and the strong convergence of truncations yield

I = / |a@) Vu |V (Tiw) — (Tew)) )| + &*¥ () = o* ) + 0" ().
or

The estimate on the second tefpis an easy consequence of the strong convergenté(i@ ) of the sequence
{T(b(un, Vun)) + T (f)}n (se€ Proposition 6.3):

2= [ b6 V0 + £~ (), )| + 0 )
or
= /|b(u, Vu) + f||To(u — Te) | + o (n) + oF (v)
or
=’ () + * (V) + k).
Finally, it is straightforward that
Is= /|uo,n — Te(wow)| =k () + &k ) + 0 (k).

2
Thus, it follows from (81) that

sup [ Ji(un(®) — (Te@)) (1) < (0) + 0" ) + 0 (k).
te[O,T]Q

Thanks to (77), we deduce that

sup / lun (1) — (Te)), ]
t€[0,T]
{lun ()= (T )y (D] <1}
+ sup / |un () = (i), ()] < Y () + &' (V) + 0 (k).
te[0,T

]
{lun () — (T 1))y (D21}

From here, applying Hélder’s inequality, a unifori estimate follows:
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sup [ |ua() = (Ti(w)), ()]

te[O,T]Q

< sup / |un (1) — (Te(w)) ()] + sup f |un (@) — (Te(w)), )]

t€[0,7T] 1€[0,7]

{lun (1) = (T (W) v ()] <1} {lun (1) = (Tie (u)) v (1) 21}
1/2
2
<y/meas) sup ( |un (@) — (Ti(w)), ©] )
0,1
relo T {lun (1) = (Tie (W) v (1) <1}
+ sup / |un (0) — (Te (W), (@)
tel0.

,T]
{lun (1) — (T (u))v (1)1 21}
<*P () + F (V) + 0 k).
Therefore, giverr > 0, we may findk andv such thaiw* (v) + w(k) < ¢. Now, we can choosep € N such that
n > ng impliesw®’ (n) < ¢ and consequently

sup [ |un () = (Tu(w)),, (1)] < 2e.
te[O,T]Q

Thus, ifm, n > ng, one has

sup [ |un(®) —un(@)| < sup | |un(6) = (Te@)), ()] + sup [ |un(@) = (Te(w)), (1) < 4e.
te[O,T]Q te[O,T]_(2 te[O,T]:2

Therefore {u,}, is a Cauchy sequence Ir?°(0, T; L1(£2)) and consequently Proposition 6.4 holds trues
We can now prove Theorem 2.1.

Proof of Theorem 2.1. If we multiply problem (34) by a functiog € C3°(Qr), we obtain

_/un¢t+/an(xst7uiz)vuizv¢=/Tn(b(uns Vun))¢+/Tn(f)¢
or or or or

We can easily pass to the limit using (73), (74) and (76). Therefore, we conclude ¢h@t[0, T]; L1(£2)) is a
distributional solution of problem (6). The estimates (17) and (18) follow from Proposition 4.1. In the case where
the stronger assumption (19) is satisfied for séme0, using the estimates (41)—(43) for the approximate solutions
u,, one easily concludes that

W )" e L2(0, T; H(2)) N L™(0, T; LA(2)),

®®w) e L0, T; LY(£2)).
This completes the proof of Theorem 2.13
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