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Abstract

The paper is devoted to studying controllability properties for 3D Navier–Stokes equations in a bounded domain. We establish a
sufficient condition under which the problem in question is exactly controllable in any finite-dimensional projection. Our sufficient
condition is verified for any torus in R

3. The proofs are based on a development of a general approach introduced by Agrachev
and Sarychev in the 2D case. As a simple consequence of the result on controllability, we show that the Cauchy problem for the
3D Navier–Stokes system has a unique strong solution for any initial function and a large class of external forces.

Résumé

L’article est consacré à l’étude de propriétés de contrôlabilité pour les équations de Navier–Stokes 3D dans un domaine borné.
On établit une condition suffisante sous laquelle le problème en question est exactement contrôlable en toute projection de dimen-
sion finie. Notre condition suffisante est vérifiée pour tout tore dans R

3. Les démonstrations sont basées sur un développement
d’une approche générale introduite par Agrachev and Sarychev dans le cas 2D. Comme une conséquence simple du résultat de
contrôlabilité, on montre que le problème de Cauchy pour le système de Navier–Stokes 3D possède une unique solution forte pour
toute donnée initiale et une grande classe de forces extérieures.
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0. Introduction

Let us consider the three-dimensional Navier–Stokes (NS) system

u̇ + (u,∇)u − ν�u + ∇p = f (t, x), divu = 0, (0.1)

where the space variables x = (x1, x2, x3) belong to a three-dimensional torus T
3 ⊂ R

3, ν > 0 is the viscosity,
u = (u1, u2, u3) and p are unknown velocity field and pressure, and f (t, x) is an external force. Suppose that f

is represented in the form

f (t, x) = h(t, x) + η(t, x), (0.2)

where h is a given function and η is a control taking on values in a finite-dimensional subspace E ⊂ L2(T3,R
3).

Eqs. (0.1), (0.2) are supplemented with the initial condition

u(0) = u0, (0.3)

where u0 ∈ H 1(T3,R
3) is a divergence-free vector field. Let us denote by H the space of functions u ∈ L2(T3,R

3)

such that divu = 0 on T
3. We fix an arbitrary subspace F ⊂ H and denote by PF :H → H the orthogonal projection

onto F . Problem (0.1), (0.2) is said to be controllable in a time T > 0 for the projection to F if for any initial
function u0 and any û ∈ F there exists an infinitely smooth control η : [0, T ] → E such that (0.1)–(0.3) has a unique
strong solution u(t;η), which satisfies the relation

PF u(T ;η) = û. (0.4)

One of the main results of this paper says that if the space E is sufficiently large, then for any T > 0 and ν > 0 and
any finite-dimensional subspace F ⊂ H problem (0.1), (0.2) is controllable in time T for the projection to F .

A general approach for studying controllability of PDEs in finite-dimensional projections was introduced by
Agrachev and Sarychev in the landmark article [1] (see also [2]). They considered the 2D NS system on a torus and
proved that it is controllable for the projection to any finite-dimensional space F , with a control function taking on
values in a fixed subspace E. We emphasise that the time of control T can be chosen arbitrarily small, and the control
space E does not depend on ν and T . 1 The Agrachev–Sarychev approach is based on the concept of solid controlla-
bility (cf. Definition 2.6 of the present paper). They construct explicitly an increasing sequence of finite-dimensional
subspaces {Ek}k�0 such that E0 = E, and the following two properties hold.

(i) There is an integer N � 1 such that the NS system is solidly controllable by an EN -valued control.
(ii) If the NS system is solidly controllable by an Ek-valued control for some integer k � 1, then it is solidly control-

lable by an Ek−1-valued control.

These two assertions imply the required result.

In this paper, we take a slightly different viewpoint based on uniform approximate controllability. 2 Namely, we
shall say that the NS system (0.1), (0.2) is uniformly approximately controllable (UAC) if for any constant ε > 0,
any initial function u0, and any compact subset K of the phase space there is a continuous mapping Ψ from K to
the space of E-valued controls such that for every û ∈ K problem (0.1)–(0.3) with η = Ψ (û) has a unique strong
solution u(t;η), which satisfies the inequality∥∥u(T ;η) − û

∥∥ < ε, (0.5)

where ‖ ·‖ denotes the L2-norm. It turns out that assertions (i) and (ii) remain valid for the 3D NS system if we replace
the solid controllability by uniform approximate controllability (cf. [16]). Hence, we prove that if E is sufficiently
large, then problem (0.1), (0.2) is UAC by an E-valued control. The required result on exact controllability in finite-
dimensional projections is a simple consequence of the above property. Indeed, let BF (R) be the closed ball in F of
radius R centred at origin and let K = BF (R). In this case, it follows from (0.5) that∥∥PF u(T ;Ψ (û)) − û

∥∥ < ε for any û ∈ BF (R). (0.6)

1 It is shown in [2] that the 2D Euler and Navier–Stokes equations are controllable by a control of dimension four.
2 Note that the concept of uniform approximate controllability is implicitly present in the Agrachev–Sarychev argument [1].
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The function Φ : û �→ PF u(T ,Ψ (û)) is continuous from BF (R) to F . Using the Brouwer fixed point theorem and
inequality (0.6), it is easy to show (see Proposition 1.1) that Φ(BF (R)) contains the ball BF (R − ε). Since R > 0 is
arbitrary, we conclude that (0.4) holds for any û ∈ F and an appropriate E-valued control function η.

In conclusion, we note that the problem of controllability and stabilisation for the Navier–Stokes and Euler equa-
tions was in the focus of attention of many researchers; for instance, see the papers [10,5–7,15,11,8,9,14,3,12,13,4]
and references therein. However, the powerful techniques developed in those papers do not apply to the present setting
because of the specific type of control we are interested in.

The paper is organised as follows. In Section 1, we recall a simple sufficient condition for surjectivity of a contin-
uous mapping in a finite-dimensional space and formulate two perturbative results on unique solvability of NS-type
equations. Section 2 contains the formulations of the main results of this paper. We also discuss some corollaries on
solid controllability in finite-dimensional projection and the Cauchy problem for the 3D NS system. The proofs are
presented in Section 3. Finally, in Appendix A, we prove an auxiliary result used in Section 3.

Notation. We denote by R+ the half-line [0,+∞) and by JT the interval [0, T ]. If s � 1 and r � 0 are some integers,
then we set JT (r, s) = [tr , tr+1), where tr = rT /s. Let J ⊂ R+ be a closed interval, let D ⊂ R

3 be a bounded domain,
let X be a Banach space with a norm ‖ · ‖, and let K be a metric space. We shall use the following functional spaces.

• Lp(J,X) is the space of measurable functions u :J → X with finite norm

‖u‖Lp(J,X) :=
( ∫

J

∥∥u(t)
∥∥p

X
dt

)1/p

, (0.7)

where ‖ · ‖X stands for the norm in X. If p = ∞, then (0.7) is replaced by

‖u‖L∞(J,X) := ess sup
t∈J

∥∥u(t)
∥∥

X
.

We shall write Lp(J ) instead of Lp(J,R).

• L
p

loc(R+,X) is the space of functions u :R+ → X whose restriction to any finite interval J ⊂ R+ belongs
to Lp(J,X).

• Ck(J,X) is the space of continuous functions u :J → X that are k times continuously differentiable. In the case
k = 0, we shall write C(J,X).

• C(K,X) is the space of continuous functions u :K → X. If X = R, then we write C(K).

• Hs(D,R
3) is the space of vector functions (u1, u2, u3) whose components belong to the Sobolev space of order s.

In the case s = 0, it coincides with the Lebesgue space L2(D,R
3).

• H , V , U , and XT are standard functional spaces arising in the theory of Navier–Stokes equations; they are defined
in Section 1.2.

1. Preliminaries

1.1. Image of continuous mappings

Let F be a finite-dimensional vector space with a norm ‖ · ‖F , let BF (R) be the closed ball in F of radius R

centred at origin, and let Φ :BF (R) → F be a continuous mapping. The following result is a simple consequence of
the Brouwer theorem.

Proposition 1.1. Suppose there is a constant ε ∈ (0,R) such that∥∥Φ(u) − u
∥∥

F
� ε for any u ∈ BF (R). (1.1)

Then Φ(BF (R)) ⊃ BF (R − ε).

Proof. Let us fix any point û ∈ BF (R − ε) and consider the continuous mapping

Ψ :BF (R) → F, Ψ (u) = û − Φ(u) + u.
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It follows from (1.1) that Ψ (BF (R)) ⊂ BF (R). Therefore, by the Brouwer theorem (e.g., see Section 1.19 in [17]),
Ψ has a fixed point u0 ∈ BF (R). Direct verification shows that Φ(u0) = û. Thus, any point û ∈ BF (R − ε) has a
preimage, and we obtain the required inclusion. �
1.2. Strong solutions of Navier–Stokes type equations

We first introduce some standard functional spaces arising in the theory of 3D Navier–Stokes (NS) equations. Let

H = {
u ∈ L2(D,R

3): divu = 0 in D, (u,n)|∂D = 0
}
,

where n is the outward unit normal to ∂D, and let Π be the orthogonal projection in L2(D,R
3) onto the closed

subspace H . We denote by Hs = Hs(D,R
3) the space of vector functions u = (u1, u2, u3) with components in the

Sobolev class of order s and by Hs
0 (D,R

3), s > 1/2, the space of functions u ∈ Hs vanishing on ∂D. Let ‖ · ‖s be the
usual norm in Hs . In the case s = 0, we write ‖ · ‖. Define the spaces

V = H 1
0

(
D,R

3) ∩ H, U = H 2(D,R
3) ∩ V

and endow them with natural norms.
It is well known (e.g., see [18]) that the NS system is equivalent to the following evolution equation in H :

u̇ + νLu + B(u) = f (t), (1.2)

where L = −Π� is the Stokes operator and B(u) = Π{(u,∇)u} is the bilinear form resulting from the nonlinear
term in the original system. Let E ⊂ U be a finite-dimensional vector space and let E⊥ be its orthogonal complement
in H . Denote by P = PE and Q = QE the orthogonal projections in H onto the subspaces E and E⊥, respectively.
Along with (1.2), consider the Cauchy problem

ẇ + νLEw + Q
(
B(w) + B(v,w) + B(w,v)

) = f (t), (1.3)

w(0) = w0, (1.4)

where LE = QL, B(v,w) = Π{(v,∇)w}, and v ∈ L4(JT ,V ) and f ∈ L2(JT ,E⊥) are given functions. We set

XT = C(JT ,V ) ∩ L2(JT ,U), XT (E) = C
(
JT ,V ∩ E⊥) ∩ L2(JT ,U ∩ E⊥)

.

The following result is established in [16, Section 1.4] (see Theorem 1.8).

Proposition 1.2. For any ν > 0 and R > 0 there are positive constants ε and C such that the following assertions
hold.

(i) Let v̂ ∈ L4(JT ,H 1), f̂ ∈ L2(JT ,E⊥), and ŵ0 ∈ V ∩ E⊥ be some functions such that problem (1.3), (1.4) with
v = v̂, f = f̂ , w0 = ŵ0 has a solution ŵ ∈XT (E). Suppose that

‖v̂‖L4(JT ,H 1) � R, ‖f̂ ‖L2(JT ,E⊥) � R, ‖ŵ‖XT
� R.

Then, for any triple (v, f,w0) satisfying the inequalities

‖v − v̂‖L4(JT ,H 1) � ε, ‖f − f̂ ‖L2(JT ,E⊥) � ε, ‖w0 − ŵ0‖V � ε, (1.5)

problem (1.3), (1.4) has a unique solution w ∈ XT (E).
(ii) Let

R :L4(JT ,H 1) × L2(JT ,E⊥) × (
V ∩ E⊥) →XT (E)

be an operator that is defined on the set of functions (v, f,w0) satisfying (1.5) and takes each triple (v, f,w0) to
the solution w ∈XT (E) of (1.3), (1.4). Then R is uniformly Lipschitz continuous, and its Lipschitz constant does
not exceed C.

We now consider Eq. (1.3) in which E is a finite-dimensional vector space spanned by some eigenfunctions of the
Stokes operator L. Namely, let {ej } be a complete set of normalised eigenfunctions for L, let HN be the vector span
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of {ej ,1 � j � N}, and let H⊥
N be the orthogonal complement of HN in the space H . We denote by PN and QN the

orthogonal projections in H onto the subspaces HN and H⊥
N , respectively.

Let us consider the equation

ẇ + νLN(w + v) + QNB(w + v) = f (t), (1.6)

where LN = QNL.

Proposition 1.3. For any R > 0 and ν > 0 there is an integer N0 � 1 and a constant C > 0 such that the following
assertions hold.

(i) Let N � N0 be an integer and let functions v ∈XT , f ∈ L2(JT ,H⊥
N ), and w0 ∈ H⊥

N ∩ V satisfy the inequalities

‖v‖XT
� R, ‖f ‖L2(JT ,H) � R, ‖w0‖V � R. (1.7)

Then problem (1.6), (1.4) has a unique solution w ∈XT (HN).
(ii) Let S be an operator that takes each triple (v, f,w0) satisfying (1.7) to the solution w ∈ XT (HN) of (1.6),

(1.4). Then S is uniformly Lipschitz continuous in the corresponding spaces, and its Lipschitz constant does not
exceed C.

Proof. The existence and uniqueness of solution is established in [16] (see Proposition 1.10). The proof of (ii) is
rather standard, and we only outline it.

Let w1,w2 ∈ XT (HN) be two solutions of (1.6), (1.4) that correspond to some triples (vi, f i,wi
0), i = 1,2. Then

the function w = w1 − w2 ∈ XT (HN) is a solution of the problem

ẇ + νLNw = g(t), w(0) = w1
0 − w2

0,

where we set

g(t) = (
f 1 − f 2) − νLN

(
v1 − v2) − QN

(
B

(
w1 + v1) − B

(
w2 + v2)).

Repeating literally the argument used in Step 2 of the proof of Proposition 1.10 in [16], we show that if N is sufficiently
large, then

‖w‖XT
� C1

(∥∥f 1 − f 2
∥∥

L2(JT ,H)
+ ∥∥v1 − v2

∥∥
L2(JT ,U)

+ ∥∥w1
0 − w2

0

∥∥
V

) + 1

2
‖w‖XT

, (1.8)

where C1 > 0 is a constant depending only T , R, and ν. Inequality (1.8) implies the required result. �
2. Main results

2.1. Exact controllability in observed projections

Consider the controlled Navier–Stokes (NS) equations

u̇ + νLu + B(u) = h(t) + η(t), (2.1)

u(0) = u0, (2.2)

where h ∈ L2
loc(R+,H) and u0 ∈ V are given functions and η is a control function with range in a finite-dimensional

vector space E ⊂ U . For any h ∈ L2(JT ,H), u0 ∈ V , and T > 0, we denote by ΘT (h,u0) the set of functions
η ∈ L2(JT ,H) for which problem (2.1), (2.2) has a unique solution u ∈ XT . It follows from Proposition 1.2 with
E = {0} and v ≡ 0 that ΘT (h,u0) is an open subset of L2(JT ,H).

Let us fix a constant T > 0, a finite-dimensional space F ⊂ H , and a projection PF :H → H onto F .

Definition 2.1. Eq. (2.1) with η ∈ L2(JT ,E) is said to be PF -controllable in time T if for any u0 ∈ V and û ∈ F there
is η ∈ ΘT (h,u0) ∩ L2(JT ,E) such that

PF u(T ) = û, (2.3)

where u ∈XT denotes the solution of (2.1), (2.2).
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To formulate the main result of this paper, we introduce some notation. For any finite-dimensional subspace E ⊂ U ,
we denote by F(E) the largest vector space G ⊂ U such that any element η1 ∈ G is representable in the form

η1 = η −
k∑

j=1

αjB
(
ζ j

)
,

where η, ζ 1, . . . , ζ k ∈ E are some vectors and α1, . . . , αk are non-negative constants. Since B is a quadratic operator,
we see that F(E) ⊂ U is a well-defined finite-dimensional subspace containing E. For a finite-dimensional subspace
E ⊂ U , we set

E0 = E, Ek =F(Ek−1) for k � 1, E∞ =
∞⋃

k=1

Ek. (2.4)

The following theorem is the main result of this paper.

Theorem 2.2. Let h ∈ L2
loc(R+,H) and let E ⊂ U be a finite-dimensional subspace such that E∞ is dense in H . Then

for any T > 0, any finite-dimensional subspace F ⊂ H , and any projection PF :H → H onto F the Navier–Stokes
system (2.1) with η ∈ L2(JT ,E) is PF -controllable in time T . Moreover, the control function η can be chosen from
the space C∞(JT ,E).

In the case of a general bounded domain, it is difficult to check whether E∞ is dense in H . However, Theorem 2.2
remains valid for the NS equation (2.1) on a 3D torus, and it is shown in [16, Section 2.3] that3 if E ⊃ HN for a
sufficiently large N � 1, then E∞ contains all the eigenfunctions of L. Thus, we obtain the following result.

Corollary 2.3. Let T
3 be a torus in R

3. Then there is an integer N � 1 such that if the control space E contains HN ,
then for any constants ν > 0 and T > 0, any function h ∈ L2

loc(R+,H), any finite-dimensional subspace F ⊂ H , and
any projection PF :H → H onto F the Navier–Stokes system (2.1) on T

3 with η ∈ L2(JT ,E) is PF -controllable in
time T , and the control function η can be chosen from the space C∞(JT ,E).

The proof of Theorem 2.2 is based on a property of uniform approximate controllability for (2.1). That concept is
of independent interest and is discussed in the next subsection.

2.2. Uniform approximate controllability

Let us fix any T > 0 and h ∈ L2(JT ,H) and denote by R(u0, η) an operator that is defined on the set

D(R) = {
(u0, η) ∈ V × L2(JT ,H): η ∈ ΘT (h,u0)

}
and takes each pair (u0, η) ∈ D(R) to the solution u ∈ XT of problem (2.1), (2.2). Proposition 1.2 with E = {0} and
v ≡ 0 implies that D(R) is an open subset of V × L2(JT ,H), and R is locally Lipschitz continuous on D(R). For
any t ∈ JT , we denote by Rt (u0, η) the restriction of R(u0, η) to the time t .

Let X ⊂ L2(JT ,H) be an arbitrary vector space, not necessarily closed. We endow X with the norm of L2(JT ,H).

Definition 2.4. Eq. (2.1) with η ∈ X is said to be uniformly approximately controllable in time T if for any initial
point u0 ∈ V , any compact set K ⊂ V , and any ε > 0 there is a continuous function

Ψ :K → X ∩ ΘT (h,u0)

such that

sup
û∈K

∥∥RT

(
u0,Ψ (û)

) − û
∥∥

V
< ε. (2.5)

3 Recall that HN denotes the vector space spanned by the first N eigenfunctions of the Stokes operator L.
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The following result shows that, under the conditions of Theorem 2.2, Eq. (2.1) is uniformly approximately con-
trollable (UAC).

Theorem 2.5. Let h ∈ L2
loc(R+,H) and let E ⊂ U be a finite-dimensional subspace such that E∞ is dense in H . Then

for any T > 0 and ν > 0 the Navier–Stokes system (2.1) with η ∈ C∞(JT ,E) is UAC in time T .

Theorem 2.5 will be established in Section 3. Here we show that the exact controllability in a projection is a simple
consequence of UAC; in the next subsection, we deduce some corollaries from Theorems 2.2 and 2.5.

Proof of Theorem 2.2. Let us fix a time T > 0, an initial point u0 ∈ V , and a projection PF :H → H onto a finite-
dimensional subspace F ⊂ H . Recall that BF (R) stands for the closed ball in F of radius R centred at origin and
denote by C the norm of PF :H → H . Let us fix any R > C and choose δ > 0 so small that

sup
û∈BF (R)

∥∥e−δLû − û
∥∥ � 1

2
. (2.6)

Denote by K the image of BF (R) under e−δL. This is a compact subset of V , and by Theorem 2.5, there is a continuous
mapping4

Ψ :K → C∞(JT ,E) ∩ ΘT (h,u0)

such that

sup
v̂∈K

∥∥RT

(
u0,Ψ (v̂)

) − v̂
∥∥

V
<

1

2
. (2.7)

It follows (2.6) and (2.7) that

sup
û∈BF (R)

∥∥RT

(
u0,Ψ

(
e−δLû

)) − û
∥∥ < 1.

Therefore the continuous mapping

Φ :BF (R) → F, û �→ PFRT

(
u0,Ψ

(
e−δLû

))
,

satisfies inequality (1.1) with ε = C. Hence, by Proposition 1.1, we have Φ(BF (R)) ⊃ BF (R − C). In particular, it
follows that for any û ∈ BF (R − C) there is η ∈ C∞(JT ,E) ∩ ΘT (h,u0) such that PFRT (u0, η) = û. Since R > C

is arbitrary, we obtain the conclusion of Theorem 2.2. �
2.3. Solid controllability and Cauchy problem for the NS system

In this subsection, we establish some corollaries of Theorems 2.2 and 2.5. Let E ⊂ U and F ⊂ H be finite-
dimensional subspaces, let PF :H → H be a projection onto F , and let T > 0 be a constant.

Definition 2.6. The control system (2.1) with η ∈ L2(JT ,E) is said to be solidly PF -controllable in time T if for
any R > 0 and u0 ∈ V there is a constant ε > 0 and a compact set C ⊂ L2(JT ,E) ∩ ΘT (h,u0) such that, for any
continuous mapping S :C → F satisfying the inequality

sup
η∈C

∥∥S(η) − PFRT (u0, η)
∥∥ � ε, (2.8)

we have S(C) ⊃ BF (R).

Proposition 2.7. Under the conditions of Theorem 2.2, for any T > 0, any finite-dimensional subspace F ⊂ H , and
any projection PF :H → H onto F , Eq. (2.1) with η ∈ L2(JT ,E) is solidly PF -controllable in time T > 0.

4 Recall that the control space C∞(JT ,E) ∩ ΘT (h,u0) is endowed with the metric generated by the norm in L2(JT ,H).
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Proof. Let us fix any constant R > 0, function u0 ∈ V , and subspace F ⊂ H . As was shown in the proof of Theo-
rem 2.2 (see Section 2.2), there is a continuous mapping Ψ :BF (R + 2) → L2(JT ,E) ∩ ΘT (h,u0) such that

sup
û∈BF (R+2)

∥∥PFRT

(
u0,Ψ (û)

) − û
∥∥ � 1. (2.9)

Let us set C = Ψ (BF (R + 2)). Since dimF < ∞ and Ψ is continuous, we conclude that C is a compact subset of
L2(JT ,E) ∩ ΘT (h,u0). Let S :C → F be an arbitrary continuous mapping such that (2.8) holds with ε = 1. Then it
follows from (2.9) that the mapping S ◦ Ψ :BF (R + 2) → F satisfies the inequality

sup
û∈BF (R+2)

∥∥S ◦ Ψ (û) − û
∥∥

V
� 2.

Applying Proposition 1.1, we see that S ◦ Ψ (BF (R + 2)) ⊃ BF (R). It follows that S(C) ⊃ BF (R). Since R > 0 was
arbitrary, this completes the proof of Proposition 2.7. �

We now show that the control function η in Theorem 2.2 can be taken from a finite-dimensional subspace. Namely,
we have the following result.

Proposition 2.8. Suppose that the conditions of Theorem 2.2 are fulfilled, and let X be a vector space dense
in L2(JT ,E). Then for any positive constants T and R, any initial function u0 ∈ V , any subspace F ⊂ H with
dimF < ∞, and any projection PF :H → H onto F , there is a ball B in a finite-dimensional subspace Y ⊂ X such
that

PFRT (u0,B) ⊃ BF (R). (2.10)

In particular, we can take X = C∞(JT ,E).

Proof. By Proposition 2.7, Eq. (2.1) with η ∈ L2(JT ,E) is solidly PF -controllable in time T . Let ε > 0 and
C ⊂ L2(JT ,E) ∩ ΘT (h,u0) be the corresponding constant and compact set entering Definition 2.6. It follows from
Proposition 1.2 with E = {0} and v ≡ 0 that ΘT (h,u0) is an open subset of L2(JT ,E). Therefore there is δ > 0 such
that

Oδ(C) = {
η ∈ L2(JT ,E): dist(η,C) � δ

} ⊂ ΘT (h,u0),

where we set

dist(η,C) = inf
ζ∈C

‖η − ζ‖L2(JT ,H).

Furthermore, since X is dense in L2(JT ,E), we can find a finite-dimensional subspace Y ⊂ X such that

sup
η∈C

‖PY η − η‖L2(JT ,E) � δ, (2.11)

where PY denotes the orthogonal projection in L2(JT ,E) onto Y . It follows that

PY C ⊂ Oδ(C) ⊂ ΘT (h,u0). (2.12)

By Proposition 1.2, the operator R(u0, ·) :ΘT (h,u0) → XT is locally Lipschitz continuous. Therefore, taking δ > 0
sufficiently small, we deduce from (2.11) and (2.12) that

sup
η∈C

∥∥RT (u0,PY η) −RT (u0, η)
∥∥

V
� ε

C
,

where C is the norm of PF regarded as an operator from V to H . Thus, the mapping S(η) = PFRT (u0,PY η) satis-
fies (2.8). Hence, by Proposition 2.7, we have PFRT (u0,PYC) ⊃ BF (R). It remains to note that PYC is contained in
a ball of the finite-dimensional space Y ⊂ X. �

We now consider the Cauchy problem for the NS equation (1.2). Let G ⊂ H be a closed vector space. For any
u0 ∈ V , T > 0, and ν > 0, let ΞT,ν(G,u0) be the set of functions f ∈ L2(JT ,G) for which problem (1.2), (2.2) has a
unique solution u ∈ XT . If E ⊂ G is a closed subspace, then we denote by G � E the orthogonal complement of E

in G and by Q(T,G,E) the orthogonal projection in L2(JT ,G) onto the subspace L2(JT ,G � E).
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Proposition 2.9. Let E ⊂ U be a finite-dimensional subspace such that E∞ is dense in H and let G ⊂ H be a closed
subspace containing E. Then ΞT,ν(G,u0) is a non-empty open subset of L2(JT ,G) such that

Q(T,G,E)ΞT,ν(G,u0) = L2(JT ,G � E) for any T > 0, ν > 0, u0 ∈ V .

Proof. The fact that ΞT,ν(G,u0) is open follows immediately from Proposition 1.2. The other claims of the propo-
sition are equivalent to the following property: for any h ∈ L2(JT ,G � E) there is η ∈ L2(JT ,E) such that
h + η ∈ ΞT,ν(G,u0). This is a straightforward consequence of Theorem 2.2. �
3. Proof of Theorem 2.5

3.1. Scheme of the proof

Let E be a finite-dimensional vector space and let E1 =F(E) (see (2.4)). Along with Eq. (2.1), consider two other
control systems:

u̇ + νL
(
u + ζ(t)

) + B
(
u + ζ(t)

) = h(t) + η(t), (3.1)

u̇ + νLu + B(u) = h(t) + η1(t). (3.2)

Here η and ζ are E-valued controls and η1 is an E1-valued control. Let us fix a constant ε > 0, an initial point u0 ∈ V ,
a compact set K ⊂ V , and a vector space X ⊂ L2(J,H). Eq. (2.1) with η ∈ X is said to be uniformly (ε,u0,K)-
controllable if there is a continuous mapping

Ψ :K → X ∩ ΘT (h,u0)

such that (2.5) holds. In what follows, if ε, u0, and K are fixed in advance, then the above property will be called
uniform ε-controllability.

The concept of uniform ε-controllability for (3.1) is defined in a similar way. Namely, let Θ̂T (h,u0) be the set of
pairs (η, ζ ) ∈ L2(JT ,H) × L4(JT ,H 2) for which problem (3.1), (2.2) has a unique solution u ∈ XT and let R̂ be an
operator that is defined on the set

D
(
R̂

) = {
(u0, η, ζ ) ∈ V × L2(JT ,H) × L4(JT ,H 2): (η, ζ ) ∈ Θ̂T (h,u0)

}
and takes each triple (u0, η, ζ ) ∈ D(R̂) to the solution u ∈XT of (3.1), (2.2). Rewriting Eq. (3.1) in the form

u̇ + νLu + B(u) + B(u, ζ ) + B(ζ,u) = h(t) + η − νLζ − B(ζ )

and applying Proposition 1.2 with E = {0}, we see that D(R̂) is an open subset of V ×L2(JT ,H)×L4(JT ,H 2), and
the operator R̂ is locally Lipschitz continuous on D(R̂).

Now let X̂ ⊂ L2(J,H) × L4(J,H 2) be a vector space, not necessarily closed. Eq. (3.1) with (η, ζ ) ∈ X̂ is said to
be uniformly (ε,u0,K)-controllable if there is a continuous mapping

Ψ̂ :K → X̂ ∩ Θ̂T (h,u0)

such that

sup
û∈K

∥∥R̂T

(
u0, Ψ̂ (û)

) − û
∥∥

V
< ε, (3.3)

where R̂t (u0, η, ζ ) denotes the restriction of R̂(u0, η, ζ ) to the time t .
The proof of Theorem 2.5 is based on the following three propositions (cf. Propositions 3.1 and 3.2 and Section 2.2

in [16]). Let us fix a constant ε > 0, an initial point u0 ∈ V , and a compact subset K ⊂ V .

Proposition 3.1 (Extension principle). Let E ⊂ U be a finite-dimensional vector space. Then Eq. (2.1) with η ∈
C∞(JT ,E) is uniformly ε-controllable if and only if so is Eq. (3.1) with (η, ζ ) ∈ C∞(JT ,E × E).

Proposition 3.2 (Convexification principle). Let E ⊂ U be a finite-dimensional subspace and let E1 = F(E). Then
Eq. (3.1) with (η, ζ ) ∈ C∞(JT ,E ×E) is uniformly ε-controllable if and only if so is Eq. (3.2) with η1 ∈ C∞(JT ,E1).
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Proposition 3.3. Let E ⊂ U be a finite-dimensional vector space such that E∞ is dense in H . Then there is an
integer k � 1 depending on ε, u0, and K such that Eq. (2.1) with η ∈ C∞(JT ,Ek) is uniformly ε-controllable.

If Propositions 3.1–3.3 are established, then for any ε > 0, u0 ∈ V , and K ⊂ V we first use Proposition 3.3 to
find an integer k � 1 such that Eq. (2.1) with η ∈ C∞(JT ,Ek) is uniformly (ε,u0,K)-controllable. Combining this
property with Propositions 3.2 and 3.1 in which E = Ek−1, we conclude that Eq. (2.1) with η ∈ C∞(JT ,Ek−1) is
uniformly (ε,u0,K)-controllable. Repeating this argument k − 1 times, we see that the same property is true for
Eq. (2.1) with η ∈ C∞(JT ,E). Since ε, u0, and K are arbitrary, this completes the proof of Theorem 2.5.

To prove the above propositions, we repeat the scheme used in [16] (see Sections 2.2, 3.2, and 3.3). The important
point now is that we have to follow carefully the dependence of controls on the final state û. The proofs of Propo-
sitions 3.1–3.3 are carried out in next three subsections. Here we formulate a lemma on uniform ε-controllability; it
will be used in Sections 3.2–3.4. As before, we fix a constant ε > 0, an initial point u0 ∈ V , and a compact set K ⊂ V .

Lemma 3.4. Let X,Y ⊂ L2(JT ,H) be vector spaces such that X is contained in the closure of Y and Eq. (2.1) with η ∈
X is uniformly ε-controllable. Then there is a finite-dimensional subspace Y0 ⊂ Y such that Eq. (2.1) with η ∈ Y0 is
uniformly ε-controllable.

To prove this lemma, it suffices to repeat the argument used in the proof of Proposition 2.8; we shall not dwell on
it. Also note that an analogue of Lemma 3.4 is true for Eq. (3.1).

3.2. Extension principle: proof of Proposition 3.1

We need to show that if Eq. (3.1) with (η, ζ ) ∈ C∞(JT ,E × E) is uniformly ε-controllable, then so is Eq. (2.1)
with η ∈ C∞(JT ,E). Since C∞(JT ,E) is dense in L2(JT ,E), in view of Lemma 3.4, it suffices to establish that
property for Eq. (2.1) with η ∈ L2(JT ,E).

Recall that P and Q stand for the orthogonal projection in H onto the subspaces E and E⊥, respectively. Let

Ψ̂ :K → C∞(JT ,E × E) ∩ Θ̂T (h,u0), Ψ̂ (û) = (
η(t, û), ζ(t, û)

)
,

be an operator for which (3.3) holds. We choose any sequence of functions ϕk ∈ C∞(R) with the following properties:

0 � ϕk(t) � 1 for all t ∈ R, (3.4)

ϕk(t) = 0 for t � 0 and t � T , (3.5)

ϕk(t) = 1 for 1/k � t � T − 1/k. (3.6)

We now define a sequence of continuous mappings Ψk :K → L2(JT ,E) by the following rule:

• for any û ∈K and k � 1, set

vk(t, û) = ϕk(t)ζ(t, û) + PR̂t

(
u0, Ψ̂ (û)

)
, t ∈ JT ; (3.7)

• denote by wk(·, û) ∈XT (E) the solution of the problem 5

ẇ + νLEw + Q
(
B(w) + B(vk,w) + B(w,vk)

) = fk(t, û),

w(0) = Qu0,
(3.8)

where vk = vk(t, û) and

fk(t, û) = Q
(
h(t) − B

(
vk(t, û)

) − νLvk(t, û)
); (3.9)

• denote uk(t, û) = vk(t, û) + wk(t, û) and define Ψk by the formula

Ψk(û) = ηk(t, û) := v̇k + P
(
νLuk + B(uk) − h

)
. (3.10)

5 We shall show that such a solution exists for k � 1.
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We claim that for sufficiently large k � 1 the function Ψk is well defined and continuous and satisfies (2.5). Indeed,
let us write

v(t, û) = PR̂t

(
u0, Ψ̂ (û)

)
, w(t, û) = QR̂t

(
u0, Ψ̂ (û)

)
.

Then w(·, û) ∈ XT (E) is a solution of the problem

ẇ + νLEw + Q
(
B(w) + B(v + ζ,w) + B(w,v + ζ )

) = f (t, û),

w(0) = Qu0,
(3.11)

where v = v(t, û) and f (t, û) = Q(h−B(v + ζ )− νL(v + ζ )). We wish to consider (3.8) as a perturbation of (3.11).
Since K is compact and R̂(u0, Ψ̂ (·)) :K → XT is continuous, we have

sup
û∈K

(∥∥v(·, û)
∥∥
XT

+ ∥∥w(·, û)
∥∥
XT

)
< ∞. (3.12)

It follows from (3.4), (3.6), and (3.7) that

sup
û∈K

∥∥vk(·, û) − (
v(·, û) + ζ(·, û)

)∥∥
L4(JT ,U)

→ 0 as k → ∞. (3.13)

Combining this with standard estimates for the nonlinear term and the fact that dimE < ∞, we conclude that (cf. (3.8)
in [16])

sup
û∈K

∥∥fk(·, û) − f (·, û)
∥∥

L2(JT ,H)
→ 0 as k → ∞. (3.14)

Proposition 1.2 and relations (3.12)–(3.14) imply that there is an integer k0 � 1 such that, for any k � k0 and û ∈ K,
problem (3.8) has a unique solution wk(·, û) ∈ XT (E). Moreover, the function û �→ wk(·, û) is continuous from K
to XT (E). It follows from (3.10) that the operator Ψk is well defined and continuous for k � k0.

Let us show that Ψk satisfies (2.5) for k � 1. Since the resolving operator associated with (3.11) is locally Lipschitz
continuous (see Proposition 1.2), for any û ∈ K and k � k0, we have∥∥wk(·, û) − w(·, û)

∥∥
XT

� C
(∥∥fk(·, û) − f (·, û)

∥∥
L2(JT ,H)

+ ∥∥vk(·, û) − v(·, û)
∥∥

L4(JT ,V )

)
,

where C > 0 does not depend on k and û. Combining this inequality with (3.13) and (3.14), we derive

sup
û∈K

∥∥wk(·, û) − w(·, û)
∥∥
XT

→ 0 as k → ∞. (3.15)

Now note that, in view of (3.5) and (3.7), we have∥∥RT

(
u0,Ψk(û)

) − û
∥∥

V
�

∥∥RT

(
u0,Ψk(û)

) − R̂T

(
u0, Ψ̂ (û)

)∥∥
V

+ ∥∥R̂T

(
u0, Ψ̂ (û)

) − û
∥∥

V

�
∥∥wk(·, û) − w(·, û)

∥∥
V

+ ∥∥R̂T

(
u0, Ψ̂ (û)

) − û
∥∥

V
.

Taking the supremum over û ∈ K and using (3.3) and (3.15), we see that Ψk satisfies (2.5) for sufficiently large k � k0.
The proof of Proposition 3.1 is complete.

3.3. Convexification principle: proof of Proposition 3.2

We need to prove that if Eq. (3.2) with η1 ∈ C∞(JT ,E1) is uniformly ε-controllable, then so is Eq. (3.1) with
(η, ζ ) ∈ L2(JT ,E) × L4(JT ,E); the converse assertion is obvious in view of Proposition 3.1. Let us outline the main
idea.

Let Ψ1 :K → L2(JT ,E1) be a continuous mapping such that

ε̂ := sup
û∈K

∥∥RT

(
u0,Ψ1(û)

) − û
∥∥

V
< ε. (3.16)

By definition, the function u1(t, û) = Rt (u0,Ψ1(û)) satisfies Eq. (3.2) in which η1 = η1(·, û) := Ψ1(û). We wish
to approximate u1(t, û) by a solution u(t, û) of Eq. (3.1) with some functions η(·, û), ζ(·, û) ∈ L∞(JT ,E). This
approximation should be such that

sup
∥∥u

(
T , û)

) − u1(T , û)
∥∥

V
� ε − ε̂, (3.17)
û∈K
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and the mapping û �→ (η(·, û), ζ(·, û)) is continuous as an operator from K to the space L2(JT ,E) × L4(JT ,E).
To construct u(t, û), one could try to apply the argument used in Section 3.3 of [16] for approximating individual

solutions. Unfortunately, it does not work because it is difficult to ensure that the resulting control functions η and ζ

continuously depend on û. To overcome this difficulty, we first approximate η1(t, û) by a family of piecewise constant
controls η̃1(t, û) with range in the convex envelope of a finite set not depending on û (cf. Section 12.3 in [1]). We next
repeat the scheme of [16] to construct an approximation for solutions ũ1(t, û) corresponding to η̃1(t, û). A difficult
point of the proof is to follow the dependence of the control functions on û. In what follows, we shall omit the tilde
from the notation.

The realisation of the above scheme is divided into several steps. We begin with a generalisation of the concept of
uniform approximate controllability.

Step 1. Let A = {ηl
1, l = 1, . . . ,m} ⊂ E1 be a finite set. For any integer s � 1, denote by Ps(JT ,A) the set of

functions η1 ∈ L2(JT ,E1) satisfying the following properties:

• there are non-negative functions ϕl ∈ L∞(JT ), l = 1 . . . ,m, such that

m∑
l=1

ϕl(t) = 1, η1(t) =
m∑

l=1

ϕl(t)η
l
1 for 0 � t < T ;

• the functions ϕl are representable in the form

ϕl(t) =
s−1∑
r=0

clr Ir,s(t) for 0 � t < T ,

where clr � 0 are some constants and Ir,s denotes the indicator function of the interval JT (r, s) = [tr , tr+1) with
tr = rT /s.

The set Ps(JT ,A) is endowed with the metric

dP (η1, ζ1) =
m∑

l=1

‖ϕl − ψl‖L∞(JT ), η1, ζ1 ∈ Ps(JT ,A),

where {ϕl} and {ψl} are the families of functions corresponding to η1 and ζ1, respectively.
Recall that we have fixed a constant ε > 0, an initial point u0 ∈ V , and a compact set K ⊂ V . We shall say that

Eq. (3.2) with η1 ∈ Ps(JT ,A) is uniformly ε-controllable if there is a continuous6 mapping Ψ1 : K → Ps(JT ,A) such
that Ψ1(û) ∈ ΘT (h,u0) for any û ∈ K, and (3.16) holds. A proof of the following lemma is based on a standard
argument of the control theory and is given in Appendix A.

Lemma 3.5. Let us assume that Eq. (3.2) with η1 ∈ C∞(JT ,E1) is uniformly ε-controllable. Then there is a finite set
A = {ηl

1, l = 1, . . . ,m} ⊂ E1 and an integer s � 1 such that Eq. (3.2) with η ∈ Ps(JT ,A) is uniformly ε-controllable.

Let Ψ1 :K → Ps(JT ,A) be the function constructed in Lemma 3.5. We write

Ψ1(û) = η1(t, û) =
m∑

l=1

ϕl(t, û)ηl
1.

The definition of the space Ps(JT ,A) and of its metric imply that the functions ϕl have the form

ϕl(t, û) =
s−1∑
r=0

clr (û)Ir,s(t), (3.18)

6 We emphasise that, in contrast to Definition 2.4 in which the vector space X is endowed with the norm of L2(JT ,H), the mapping Ψ1 is
required to be continuous with respect to the topology of Ps(JT ,A), which is stronger than that of L2(JT ,H).
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where clr :K → R are non-negative continuous functions such that
m∑

l=1

clr (û) = 1 for any û ∈ K.

Since ηl
1 ∈ F(E), by Lemma 3.3 in [16], there are vectors ηl, ζ 1l , . . . , ζ kl ∈ E and non-negative constants λ1l , . . . , λkl

such that
∑

j λjl = 1 and

B(u) − ηl
1 =

k∑
j=1

λjl

(
B

(
u1 + ζ jl

) + νLζ jl
) − ηl for u ∈ V .

It follows that the function u1(·) =R(u0,Ψ1(û)) is a solution of the equation

∂tu1 + νLu1 +
k∑

j=1

m∑
l=1

λjlϕl(t, û)
(
B

(
u1 + ζ jl

) + νLζ jl
) = h(t) +

m∑
l=1

ϕl(t, û)ηl. (3.19)

Indexing the pairs (j, l) by a single sequence i = 1, . . . , q , we can write (3.19) as

∂tu1 + νL

(
u1 +

q∑
i=1

ψi(t, û)ζ i

)
+

q∑
i=1

ψi(t, û)B
(
u1 + ζ i

) = h(t) + η(t, û). (3.20)

Here ζ i ∈ E, i = 1, . . . , q , are some vectors, η(·, û) denotes the sum on the right-hand side of (3.19), and

ψi(t, û) =
s−1∑
r=0

dir (û)Ir,s(t), (3.21)

where dir ∈ C(K) are non-negative functions such that
∑

i dir ≡ 1.
Step 2. We now approximate u1(t, ·) by solutions of Eq. (3.1). To this end, we first assume that there is only one

interval of constancy, that is, s = 1. In this case, the sums in (3.18) and (3.21) contain only one term, and Eq. (3.20)
takes the form

∂tu1 + νL

(
u1 +

q∑
i=1

di(û)ζ i

)
+

q∑
i=1

di(û)B
(
u1 + ζ i

) = h(t) + η(û), (3.22)

where di ∈ C(K) and η ∈ C(K,E). Let us fix an integer k � 1 and, following a classical idea in the control theory,
define a sequence of continuous mappings ζk :K → L4(JT ,H 2) as

ζk(t, û) = ζ(kt/T , û), (3.23)

where ζ(·, û) is a 1-periodic function on R such that

ζ(s, û) = ζ i for 0 � s − (
d1(û) + · · · + di−1(û)

)
< di(û), i = 1, . . . , q. (3.24)

It is easy to see that {ζk(·, û), û ∈ K, k � 1} is a bounded subset in L∞(JT ,E). Let us rewrite (3.22) in the form

∂tu1 + νL
(
u1 + ζk(t, û)

) + B
(
u1 + ζk(t, û)

) = h(t) + η(û) + fk(t, û), (3.25)

where fk(t, û) = fk1(t, û) + fk2(t, û),

fk1(t, û) = νL

(
ζk(t, û) −

q∑
i=1

di(û)ζ i

)
, (3.26)

fk2(t, û) = B
(
u1(t, û) + ζk(t, û)

) −
i∑

i=1

di(û)B
(
u1(t, û) + ζ i

)
. (3.27)

We shall need the following result, which will be proved in the next steps. Denote by BV (u, r) the closed ball in V of
radius r centred at u.
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Lemma 3.6. For any ε0 > 0 there is an integer k0 � 1 and a constant δ0 > 0 such that for any k � k0, û ∈ K, and
v0 ∈ BV (u0, δ0), the problem

∂tv + νL
(
v + ζk(t, û)

) + B
(
v + ζk(t, û)

) = h(t) + η(û), v(0) = v0

has a unique solution vk(·, û) ∈ XT , which satisfies the inequality∥∥vk(·, û) − u1(·, û)
∥∥

C(JT ,V )
� ε0. (3.28)

In particular, taking ε0 = ε̂, where ε̂ is the constant in (3.16), and defining the operator

Ψ̂k :K → L2(JT ,E) × L4(JT ,E), û �→ (
η(û), ζk(·, û)

)
, (3.29)

we conclude that Ψ̂k(û) ∈ Θ̂T (h, v0) for v0 ∈ BV (u0, δ0) and k � k0, and

sup
û∈K

∥∥R̂T

(
u0, Ψ̂k(û)

) − u1(T , û)
∥∥

V
� ε̂ for k � k0.

Combining this with (3.16), we obtain

sup
û∈K

∥∥R̂T

(
u0, Ψ̂k(û)

) − û
∥∥

V
< ε for k � k0.

Hence, Eq. (3.1) with (η, ζ ) ∈ L2(JT ,E) × L4(JT ,E) is uniformly ε-controllable.
Step 3. We now prove Lemma 3.5. Literal repetition of the arguments in [16, Section 3.3] (see Step 2) shows that

the required assertion will be established if we prove the convergence

sup
û∈K

(∥∥Kνfk(·, û)
∥∥

C(JT ,V )
+ ∥∥B

(
Kνfk(·, û)

)∥∥
L2(JT ,H)

) → 0 as k → ∞, (3.30)

where

Kνf (t) =
t∫

0

e−ν(t−s)Lf (s)ds.

Furthermore, in view of the calculations of Steps 3–4 in [16, Section 3.3], it suffices to show that

sup
û∈K

∥∥Fk(·, û)
∥∥

C(JT ,H)
→ 0 as k → ∞, (3.31)

where Fk(t, û) = ∫ t

0 fk(s, û)ds. To this end, we first note that7∥∥Fk(·, û)
∥∥

C(JT ,H)
→ 0 as k → ∞ for any û ∈K. (3.32)

Suppose now that we have proved the uniform equicontinuity of the family of mappings

fk :K → L1(JT ,H), û �→ fk(·, û). (3.33)

In this case, the family {û �→ ∫ ·
0 fk(s, û)ds, k � 1} is uniformly equicontinuous from K to C(JT ,V ). Combining this

property with (3.32), we arrive at (3.31).
Step 4. We now show that (3.33) is uniformly equicontinuous. The explicit formulas (3.26) and (3.27) and standard

estimates for the bilinear form B show that it suffices to prove that the function û �→ ζk(·, û) is uniformly equicontin-
uous from K to L4(JT ,U). It follows from (3.23) and (3.24) that

∥∥ζk(·, û1) − ζk(·, û2)
∥∥4

L4(JT ,U)
=

T∫
0

∥∥ζ(kt/T , û1) − ζ(kt/T , û2)
∥∥4

U
dt

= T

1∫
0

∥∥ζ(s, û1) − ζ(s, û2)
∥∥4

U
ds � C

q∑
i=1

∣∣di(û1) − di(û2)
∣∣,

7 See Step 5 in [16, Section 3.3].
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where û1, û2 ∈ K are arbitrary points and C > 0 is a constant depending only on T , q , and maxi ‖ζ i‖U . Since the
functions di are uniformly continuous on the compact set K, we obtain the required result. This completes the proof
of Proposition 3.2 in the case s = 1.

Step 5. We now consider the case of any s � 2. Let us set Ir = [tr , tr+1] and X r = C(Ir ,V ) ∩ L2(Ir ,U). For any
r = 0, . . . , s − 1, we denote by Θr(h,u0) the set of functions (η, ζ ) ∈ L2(Ir ,H) × L4(Ir ,H

2) for which Eq. (3.1)
has a unique solution u ∈X r satisfying the initial condition

u(tr ) = u0. (3.34)

Introduce the set

Dr = {
(u0, η, ζ ) ∈ V × L2(Ir ,H) × L4(Ir ,H

2): (η, ζ ) ∈ Θr(h,u0)
}

and define an operator Sr :Dr → V that takes each triple (u0, η, ζ ) ∈ Dr to u(tr+1), where u ∈ X r is the solution
of (3.1), (3.34). It follows from Proposition 1.2 that the operator Sr is locally Lipschitz continuous.

We now define positive constants βr , r = 0, . . . , s, and continuous operators Ψ r :K → L2(Ir ,E) × L4(Ir ,E),
r = 0, . . . , s − 1, by the following rule:

• set βs = ε̂, where ε̂ is the constant in (3.16);
• if βr+1 is constructed for some r � s − 1, then apply Lemma 3.6 with ε0 = βr+1 to the interval Ir and denote

by δ0 and k0 the corresponding parameters;
• set βr = δ0 and Ψ r = Ψ̂ r

k0
, where Ψ̂ r

k denotes the operator defined by (3.29) for the interval Ir .

The construction implies that, for any v0 ∈ BV (u1(tr ), βr), r = 0, . . . , s − 1, and û ∈K, we have

Ψ r(û) ∈ Θr(h, v0),
∥∥Sr

(
v0,Ψ

r(û)
) − u1(tr+1, û)

∥∥
V

� βr+1. (3.35)

Let us define an operator Ψ̂ :K → L2(JT ,E) × L4(JT ,E) as

Ψ̂ (û)(t) = Ψ r(û)(t) for t ∈ Ir , r = 0, . . . , s − 1.

It follows from (3.35) that

Ψ̂ (û) ∈ ΘT (h,u0),
∥∥RT

(
u0, Ψ̂ (û)

) − u1(T , û)
∥∥

V
� βs = ε̂ for û ∈ K.

Comparing this with (3.16), we obtain (2.5). It remains to note that since the functions Ψ r are continuous, so is Ψ̂ .
This completes the proof of Proposition 3.2.

3.4. Proof of Proposition 3.3

Step 1. We first show that if the integer N � 1 is sufficiently large, then Eq. (2.1) with η ∈ L2(JT ,HN) is uniformly
ε-controllable. To this end, we fix a (small) constant δ > 0 and define a family of functions

vN(t, û) = T −1PN

(
te−δLû + (T − t)e−tLu0

)
, 0 � t � T . (3.36)

It is easy to see that

Kδ := sup
û,N

∥∥vN(·, û)
∥∥
XT

< ∞ for any δ > 0, (3.37)

cδ := sup
û,N

∥∥vN(T , û) − PNû
∥∥

V
→ 0 as δ → 0, (3.38)

where the supremums are taken over N � 1 and û ∈K. We now choose a constant δ > 0 so small that

cδ � ε

3
. (3.39)

Consider the Cauchy problem

ẇ + νQNL(w + vN) + QNB(w + vN) = QNh(t), w(0) = QNu0. (3.40)
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Proposition 1.3 and inequality (3.37) imply that there is an integer Nδ � 1 not depending on û ∈ K such that for any
N � Nδ problem (3.40) has a unique solution wN(·, û) ∈ XT (HN). It follows that the function uN(t, û) = vN + wN

belongs to XT for any N � Nδ and satisfies Eq. (2.1) with

η(t) = ηN(t, û) := v̇N + PN

(
νLuN + B(uN) − h

)
. (3.41)

The required assertion will be established if we prove the following two claims:

(a) For any N � Nδ , the function Ψ : û �→ ηN(·, û) is continuous from K to L2(JT ,H).
(b) We have

sup
û∈K

∥∥wN(T , û)
∥∥

V
→ 0 as N → ∞. (3.42)

Indeed, the very construction of Ψ implies that

Ψ (û) ∈ ΘT (h,u0), R
(
u0,Ψ (û)

) = uN.

Furthermore, it follows from (3.38), (3.39), and (3.42) that if N � Nδ is sufficiently large, then

sup
û∈K

∥∥RT

(
u0,ΨN(û)

) − û
∥∥

V
� cδ + sup

û∈K

(∥∥wN(T , û)
∥∥

V
+ ‖QNû‖V

)
� 2ε

3
+ sup

û∈K
‖QNû‖V . (3.43)

Since K ⊂ V is compact, the second term on the right-hand side of (3.43) can be made smaller than ε
3 by choosing a

sufficiently large N � Nδ .
Step 2. Let us prove (a) and (b). Since δ > 0, it follows from (3.36) that the function û �→ vN(·, û) is continuous

from K to XT . By Proposition 1.3, the solution wN ∈ XT (HN) of problem (3.40) continuously depends on vN ∈ XT .
The continuity of Ψ follows now from (3.41) and (3.36).

The proof of (b) literally repeats the argument used in [16] (see the proof of (2.12)), and therefore we omit it.
Step 3. We now show that if k � 1 is sufficiently large, then Eq. (2.1) with η ∈ C∞(JT ,Ek) is uniformly ε-

controllable. To this end, we use Lemma 3.4.
Let us denote by Y ⊂ L2(JT ,H) the union of the vector spaces C∞(JT ,Ek), k � 1. Since E∞ is dense in H , we

conclude that L2(JT ,HN) is contained in the closure of Y for any N � 1. By Lemma 3.4, there is a finite-dimensional
subspace Y0 ⊂ Y such that Eq. (2.1) with η ∈ Y0 is uniformly ε-controllable. Since {C∞(JT ,Ek)}k�1 is an increasing
sequence of subspaces, we see that Y0 ⊂ C∞(JT ,Ek) for a sufficiently large k � 1. This completes the proof of
Proposition 3.3.

Appendix A. Proof of Lemma 3.5

Let d be the dimension of E1 and let E = {e1, . . . , ed} be a basis in E1. We endow E1 with a scalar product (· , ·)
for which E is an orthonormal system. Let Ψ1 :K → C∞(JT ,E1) be a continuous operator satisfying (3.16). In view
of Lemma 3.4 (in which X = Y = C∞(JT ,E1)), we can assume without loss of generality that Ψ1(û) ∈ Y0 for any
û ∈ K, where Y0 ⊂ C∞(JT ,E1) is a finite-dimensional subspace. Let us set η1(·, û) = Ψ1(û) and write

η1(t, û) =
d∑

l=1

ζl(t, û)el, (A.1)

where ζl(t, û) = (ηl(t, û), el). Since all the norms in the finite-dimensional space Y0 are equivalent, what has been
said implies that ζl ∈ C(JT ×K) for l = 1, . . . , d . Let

M = max
l,t,û

∣∣ζl(t, û)
∣∣,

where the maximum is taken over l = 1, . . . , d and (t, û) ∈ JT ×K. We now set m = 2d ,

ηl = dMel for l = 1, . . . , d, ηl = −dMel for l = d + 1, . . . ,m.
1 1
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In this case, we can rewrite (A.1) in the form

η1(t, û) =
m∑

l=1

ζ̃l (t, û)ηl
1,

where ζ̃l ∈ C(JT ×K), l = 1, . . . ,m, are non-negative functions whose sum is equal to 1.
For any integer s � 1, let us set

Ψ s
1 (û) =

m∑
l=1

ψls(t, û)ηl
1,

where ψls(t, û) = ζ̃l (rT /s, û) for t ∈ JT (r, s). It is clear that Ψ s
1 (·) is a continuous function from K to Ps(JT ,A),

where A = {ηl
1, l = 1, . . . ,m}. Furthermore, since K ⊂ V is compact, it is not difficult to show that

sup
û∈K

∥∥Ψ s
1 (û) − Ψ1(û)

∥∥
L2(JT ,H)

→ 0 as s → ∞.

Proposition 1.2 now implies that Ψ s
1 (û) ∈ ΘT (h,u0) for any û ∈K and sufficiently large s, and we have

sup
û∈K

∥∥RT

(
u0,Ψ

s
1 (û)

) −RT

(
u0,Ψ1(û)

)∥∥
V

→ 0 as s → ∞.

Combining this with (3.16), we conclude that Eq. (3.2) with η1 ∈ Ps(JT ,A) is uniformly ε-controllable.
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