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Abstract

We study here instability problems of standing waves for the nonlinear Klein–Gordon equations and solitary waves for the
generalized Boussinesq equations. It is shown that those special wave solutions may be strongly unstable by blowup in finite time,
depending on the range of the wave’s frequency or the wave’s speed of propagation and on the nonlinearity.

Résumé

On étudie des problèmes d’instabilité des ondes stationnaires pour des équations de Klein–Gordon non linéaires et des ondes
solitaires pour des équations généralisées de Boussinesq. On établit que ces solutions d’ondes spéciales peuvent être fortement
instables par explosion en temps fini, selon le rang de la fréquence des ondes ou la vitesse de propagation des ondes et la non-
linéarité.
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1. Introduction

In this paper, we study strong instability of standing wave solutions eiωtφω(x) for the nonlinear Klein–Gordon
equation

∂2
t u − �u + u − |u|p−1u = 0, (t, x) ∈ R × R

n, (1.1)

and of solitary wave solutions φω(x − ωt) for the generalized Boussinesq equation

∂2
t u − ∂2

xu + ∂2
x

(
∂2
xu + |u|p−1u

) = 0, (t, x) ∈ R × R, (1.2)

where n ∈ N, −1 < ω < 1, p > 1, p < 1 + 4/(n − 2) if n � 3, and φω is the ground state, i.e., the unique positive
radially symmetric solution in H 1(Rn) of the equation

−�φ + (
1 − ω2)φ − |φ|p−1φ = 0, x ∈ R

n. (1.3)

See Strauss [28] and Berestycki and Lions [3] for the existence, and Kwong [14] for the uniqueness of φω .
The stability and instability of the ground state standing waves eiωtφω(x) for (1.1) have been studied by many

authors. Berestycki and Cazenave [1] proved that eiωtφω(x) is strongly unstable by blowup (see Definition 1.2 below)
when ω = 0 (see also Payne and Sattinger [24] and Shatah [26]). Shatah [25] proved that eiωtφω(x) is orbitally stable
when p < 1 + 4/n and ωc < |ω| < 1, where

ωc =
√

p − 1

4 − (n − 1)(p − 1)
.

On the other hand, Shatah and Strauss [27] proved that eiωtφω(x) is orbitally unstable when p < 1+4/n and |ω| < ωc

or when p � 1+4/n and |ω| < 1. Ohta and Todorova [22] proved that eiωtφω(x) is strongly unstable by blowup when
n � 3 and (p +3)ω2 � (p −1). Recently, it was proved by Ohta and Todorova [23] that eiωtφω(x) is strongly unstable
by blowup when n � 2, p < 1 + 4/n and |ω| � ωc or when n � 2, 1 + 4/n � p < 1 + 4/(n − 1) and |ω| < 1.

For related results for the nonlinear Schrödinger equations, see [1,9,29,30], and for general theory of orbital stability
and instability of solitary waves, see Grillakis, Shatah and Strauss [12,13].

In view of the result of Ginibre and Velo [11], the Cauchy problem for (1.1) is locally well-posed in the energy space
X = H 1(Rn) × L2(Rn), that is, for any (u0, u1) ∈ X there exists a unique solution �u = (u, ∂tu) ∈ C([0, Tmax), X)

of (1.1) with �u(0) = (u0, u1) such that either Tmax = ∞ or Tmax < ∞ and limt→Tmax ‖�u(t)‖X = ∞. Moreover, the
solution �u(t) satisfies the conservation laws of energy and charge

E
(�u(t)

) = E(u0, u1), Q
(�u(t)

) = Q(u0, u1), t ∈ [0, Tmax),

where

E(u,v) =
∫
Rn

{
1

2
|∇u|2 + 1

2
|u|2 + 1

2
|v|2 − 1

p + 1
|u|p+1

}
dx

and

Q(u,v) = Im
∫
Rn

ūv dx.

In what follows, we put �φω = (φω, iωφω). Then, note that

E′( �φω

) − ωQ′( �φω

) = 0.

Orbital stability of standing waves for (1.1) refers to stability up to translations and phase shifts. More precisely,

Definition 1.1 (Orbital stability and instability). We say that a standing wave eiωtφω(x) is orbitally stable for (1.1) if
for any ε > 0, there exists δ > 0 such that for any (u0, u1) ∈ X = H 1(Rn) × L2(Rn) with ‖(u0, u1) − �φω‖X < δ, the
solution �u(t) of (1.1) with initial value �u(0) = (u0, u1) exists for all t ∈ [0,∞) and satisfies

sup
0�t<∞

inf
θ∈R, y∈Rn

∥∥�u(t) − eiθ �φω(· + y)
∥∥

X
< ε.

Otherwise, eiωtφω(x) is said to be orbitally unstable.
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Definition 1.2 (Strong instability by blowup). We say that a standing wave eiωtφω(x) is strongly unstable by blowup
if for any ε > 0, there exists (u0, u1) ∈ X such that ‖(u0, u1) − �φω‖X < ε and the solution �u(t) of (1.1) with initial
value �u(0) = (u0, u1) blows up in finite time.

In view of the above definitions of instability, if the standing wave eiωtφω(x) is strongly unstable by blowup, then
it is orbitally unstable.

The principal result of the present paper for (1.1) is the following.

Theorem 1.3. Assume that p > 1, p < 1 + 4/(n − 2) if n � 3, −1 < ω < 1, and{
0 < 2(p + 1)ω2 < p − 1 if n = 1,

0 < (p + 3)ω2 � p − 1 if n � 2.
(1.4)

Let φω be the ground state of (1.3). Then the standing wave solution eiωtφω(x) of (1.1) is strongly unstable by blowup.

As mentioned above, the strong instability by blowup of standing waves eiωtφω(x) has been proved by [1] for the
case ω = 0 and n � 1, and by [22] for the case (p + 3)ω2 � (p − 1) and n � 3. In the proof of Theorem 1.3, we
need to assume that ω 
= 0 for technical reasons (see (2.1) and the proof of Proposition 2.1 below). Theorem 1.3 gives
a new result for the case n = 1, 2, which is a natural extension of the result for the case n � 3 by [22]. Although the
result for the case n � 3 is not new, the proof is slightly simpler than the one in [22]. In fact, the essential point in
the proof of [22] was to introduce two appropriate invariant sets for the flow of (1.1) (see (2.4) in [22]), while in the
present paper we use only one invariant set Σ1 which is defined by (2.5).

Now we turn attention to the Boussinesq equation (1.2). The original Boussinesq equation was the first model for
the propagation of weakly nonlinear dispersive long surface and internal waves [5,7]. Eq. (1.2) has the equivalent form{ut = vx,

vt = (u − uxx − |u|p−1u)x.
(1.5)

It is known in [17] that the Cauchy problem for (1.5) is locally well-posed in the space X = H 1(R) × L2(R).
Moreover, the solution �u(t) = (u(t), v(t)) with initial value (u0, v0) in C([0, Tmax),X) satisfies the conservation laws

E
(�u(t)

) = E(u0, v0), Q
(�u(t)

) = Q(u0, v0), 0 � t < Tmax,

where

E(u,v) =
∫
R

{
1

2
|∂xu|2 + 1

2
|u|2 + 1

2
|v|2 − 1

p + 1
|u|p+1

}
dx

and

V (u, v) =
∫
R

uv dx.

Put �φω = (φω,−ωφω). Then, a simple computation shows that

E′( �φω

) + ωV ′( �φω

) = 0.

The stability of solitary wave �φω(x − ωt) up to translations can be defined in the following.

Definition 1.4 (Orbital stability and instability). We say that a solitary wave solution �φω(x − ωt) of (1.5) is orbitally
stable if for any ε > 0, there exists δ > 0 such that for (u0, v0) ∈ X = H 1(R) × L2(R) with∥∥(u0, u1) − �φω

∥∥
X

< δ,

the solution �u(t) = (u(t), v(t)) of (1.5) with initial value �u(0) = (u0, v0) satisfies

sup
0�t<∞

inf
y∈R

∥∥�u(t) − �φω(· + y)
∥∥

X
< ε.

Otherwise, �φω(x − ωt) is considered to be orbitally unstable.
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Definition 1.5 (Strong instability by blowup). We say that a solitary wave solution �φω(x − ωt) is strongly unstable by
blowup if for any ε > 0, there exists (u0, v0) ∈ X such that ‖(u0, v0) − �φω‖X < ε and the solution �u(t) of (1.5) with
initial value �u(0) = (u0, v0) blows up in finite time.

The stability of solitary waves �φω(x − ωt) with |ω| < 1 has been the subject of a number of studies, and a satis-
factory stability theory is now in hand. For example, Bona and Sachs [4] proved that the solitary wave �φω(x − ωt) is
orbitally stable if 1 < p < 5, (p−1)/4 < ω2 < 1. Liu [17] proved the orbital instability under the conditions 1 < p < 5
and ω2 < (p−1)/4 or p � 5 and |ω| < 1. On the other hand, Liu [18] showed that solitary wave �φω(x−ωt) is strongly
unstable by blowup for the wave speed ω = 0 (see also [19]).

The principal result for (1.5) is stated as follows.

Theorem 1.6. Assume 1 < p < ∞ and 0 < 2(p + 1)ω2 < p − 1. Let φω be the ground state of (1.3). Then the solitary
wave solution �φω(x − ωt) = (φω(x − ωt), −ωφω(x − ωt)) of (1.5) is strongly unstable by blowup.

In next section, we give the proofs of Theorems 1.3 and 1.6. The method of the proofs is based on the idea
by Berestycki and Cazenave [1] in the study of strong instability of standing waves for the nonlinear Schrödinger
equation as well as the nonlinear Klein–Gordon equation. The crucial point in their proof is to construct some suitable
invariant sets under the flow of the evolution equations. Then the strong instability results are obtained by use of the
virial identities with the variational characterization of ground states. This method is recently developed by many
authors [18–23]. To optimally use these virial identities, we need to construct some particular invariant sets of the
flows of (1.1) or (1.5).

Notation. As above and henceforth, we denote the norm of the Lebesgue space Lp(Rn) by ‖ · ‖p for 1 � p � ∞. The
function space in which we shall work is the Sobolev space X = H 1(Rn) × L2(Rn).

2. Proof of strong instability

In this section, we prove the main results, Theorems 1.3 and 1.6.
Define functionals Jω and Kω on H 1(Rn) by

Jω(v) = 1

2
‖∇v‖2

2 + 1 − ω2

2
‖v‖2

2 − 1

p + 1
‖v‖p+1

p+1,

Kω(v) = 2α + n − 2

2
‖∇v‖2

2 + (1 − ω2)(2α + n)

2
‖v‖2

2 − (p + 1)α + n

p + 1
‖v‖p+1

p+1,

where we put

α = (p − 1) − (p + 3)ω2

2(p − 1)ω2
. (2.1)

Note that

Kω(v) = ∂λJω(vλ)|λ=1, vλ(x) = λαv(x/λ),

and by assumption (1.4) we have 2α > 1 if n = 1; α � 0 if n � 2; and 2α + n − 2 > 0 except the case n = 2 and
(p + 3)ω2 = p − 1.

Moreover, we put

dω = inf
{
Jω(v): v ∈ H 1(Rn) \ {0}, Kω(v) = 0

}
,

Sω = {
v ∈ H 1(Rn) \ {0}: J ′

ω(v) = 0
}
,

Gω = {
w ∈ Sω: Jω(w) � Jω(v) for all v ∈ Sω

}
,

Mω = {
v ∈ H 1(Rn) \ {0}: Jω(v) = dω, Kω(v) = 0

}
and
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J̃ω(v) = Jω(v) − 1

(p + 1)α + n
Kω(v)

= (p − 1)α + 2

(p + 1)α + n

{
1

2
‖∇‖2

2 + (p − 1)α

(p − 1)α + 2
· 1 − ω2

2
‖v‖2

2

}
.

Then, we have

J̃ω(v) = (p − 1)α + 2

(p + 1)α + n

{
1

2
‖∇v‖2

2 + αω2‖v‖2
2

}
, (2.2)

dω = inf
{
J̃ω(v) | v ∈ H 1(Rn) \ {0}, Kω(v) = 0

}
� 0. (2.3)

Our first goal is to show that the ground state φω belongs to the set Mω under the assumption (1.4). To this end,
we need to consider the case n = 2 and (p + 3)ω2 = p − 1 separately. For this case, see [2] and [8, Theorem 8.1.5].
In what follows, we assume that (p + 3)ω2 < p − 1 if n = 2.

Proposition 2.1. If n = 1 or n � 3 assume (1.4); if n = 2 assume (p + 3)ω2 < p − 1. Then the set Mω is not empty.

To prove Proposition 2.1, we need the following lemmas.

Lemma 2.2. If v ∈ H 1(Rn) satisfies Kω(v) < 0, then J̃ω(v) > dω.

Proof. Let v ∈ H 1(Rn) satisfy Kω(v) < 0. Then, there exists λ1 ∈ (0,1) such that Kω(λ1v) = 0. Since v 
= 0, we
have dω � J̃ω(λ1v) = λ2

1J̃ω(v) < J̃ω(v). �
Remark. In view of relation (2.3) and Lemma 2.2, it is found that

dω = inf
{
J̃ω(v): v ∈ H 1(Rn) \ {0}, Kω(v) � 0

}
.

The following compactness lemmas are obtained by Fröhlich, Lieb and Loss [10], Lieb [16] and Brezis and
Lieb [6].

Lemma 2.3. [10,16] Let {fj } be a bounded sequence in H 1(Rn). Assume that there exists q ∈ (2,2∗) such that
lim supj→∞ ‖fj‖q > 0, where 2∗ = ∞ if n = 1,2, and 2∗ = 2n/(n − 2) if n � 3. Then, there exist {yj } ⊂ R

n and

f ∈ H 1(Rn) \ {0} such that {fj (· − yj )} has a subsequence that converges to f weakly in H 1(Rn).

Lemma 2.4. [6] Let 1 � q < ∞ and {fj } be a bounded sequence in Lq(Rn). Assume that fj → f a.e. in R
n. Then

we have

‖fj‖q
q − ‖fj − f ‖q

q − ‖f ‖q
q → 0.

Proof of Proposition 2.1. Let {vj } be a minimizing sequence of (2.3). By (2.2), we see that {vj } is bounded in
H 1(Rn). Indeed, when n = 1,2, by the assumptions of Proposition 2.1 and (2.1), we have αω2 > 0, so {vj } is bounded
in H 1(Rn). When n � 3, by (1.4) and (2.1), we have α � 0, so {‖∇vj‖2} is bounded. Since 2 < p + 1 < 2∗, for any
ε > 0 there exists Cε > 0 such that sp+1 � εs2 +Cεs

2∗
for all s � 0. Thus, by Kω(vj ) = 0 and the Sobolev inequality,

we have

2α + n − 2

2
‖∇vj‖2

2 + (1 − ω2)(2α + n)

4
‖vj‖2

2 � C‖vj‖2∗
2∗ � C‖∇vj‖2∗

2 .

Since {‖∇vj‖2} is bounded, we see that {vj } is bounded in H 1(Rn).
Moreover, by Kω(vj ) = 0 and the Sobolev inequality, there exist positive constants C1, C2 and C3 such that

C1‖vj‖2
H 1 � C2‖vj‖p+1

p+1 � C3‖vj‖p+1
H 1 . Since vj 
= 0, we have C1/C3 � ‖vj‖p−1

H 1 and lim supj→∞ ‖vj‖p+1 > 0.
Therefore, by Lemma 2.3, there exist {yj } ⊂ R

n, a subsequence of {vj (· − yj )} (we denote it by {wj }) and w ∈
H 1(R) \ {0} such that wj ⇀ w weakly in H 1(Rn). By the weakly lower semicontinuity of J̃ω, we have

J̃ω(w) � lim inf J̃ω(wj ) = dω.

j→∞
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Moreover, by Lemma 2.4, we have

Kω(wj ) − Kω(wj − w) − Kω(w) → 0,

which implies Kω(w) � 0. Indeed, suppose that Kω(w) > 0. Since Kω(wj ) = 0, we have Kω(wj −w) < 0 for large j .
By Lemma 2.2, we have J̃ω(wj − w) > dω, and

J̃ω(w) = lim sup
j→∞

{
J̃ω(wj ) − J̃ω(wj − w)

}
� 0.

On the other hand, by w 
= 0 and (2.2), we have J̃ω(w) > 0. This is a contradiction. Therefore, we see that Kω(w) � 0.
Finally, by Lemma 2.2 and J̃ω(w) � dω, we have Kω(w) = 0 and dω = J̃ω(w). Hence, w ∈ Mω. �

Proposition 2.5. If n = 1 or n � 3 assume (1.4); if n = 2 assume (p + 3)ω2 < p − 1. Then we have

Mω = Gω = {
eiθφω(· + y): θ ∈ R, y ∈ R

n
}

if translations and phase shifts are considered or

Mω = Gω = {±φω(· + y): y ∈ R
n
}

if only translations are considered, where φω is the ground state of (1.3).

Proof. First, we show that Mω ⊂ Gω . Let w ∈ Mω. Then, there exists a Lagrange multiplier η ∈ R such that J ′
ω(w) =

ηK ′
ω(w). That is, w satisfies

−{
1 − (2α + n − 2)η

}
�w + {

1 − (2α + n)η
}(

1 − ω2)w = (
1 − {

(p + 1)α + n
}
η
)|w|p−1w (2.4)

in H−1(Rn). By Kω(w) = 0 and 〈J ′
ω(w),w〉 = η〈K ′

ω(w),w〉, we have

2(p + 1)

p − 1
‖∇w‖2

2 = (
n − η(2α + n)

{
(p + 1)α + n

})‖w‖p+1
p+1.

Since w 
= 0, we have

η <
n

(2α + n){(p + 1)α + n} ,

which implies 1 − (2α + n − 2)η > 0 and 1 − (2α + n)η > 0 in (2.4). Thus, by [8, Theorem 8.1.1], we have x · ∇w ∈
H 1(Rn), and we have

0 = Kω(w) = ∂λJω(wλ)|λ=1 = 〈
J ′

ω(w),αw − x · ∇w
〉 = η

〈
K ′

ω(w),αw − x · ∇w
〉 = η∂λKω(wλ)|λ=1,

where wλ(x) = λαw(x/λ). Moreover, by Kω(w) = 0, we have

∂λKω(wλ)|λ=1 = (2α + n − 2)2

2
‖∇w‖2

2 + (1 − ω2)(2α + n)2

2
‖w‖2

2 − {(p + 1)α + n}2

p + 1
‖w‖p+1

p+1

= − (2α + n − 2){(p − 1)α + 2}
2

‖∇w‖2
2 − (1 − ω2)(2α + n)(p − 1)α

2
‖w‖2

2 < 0.

Thus, we have η = 0, and w ∈ Sω . Moreover, for any v ∈ Sω, we have Kω(v) = 0. By the definitions of dω and Mω,
we have Jω(w) = dω � Jω(v). Therefore, we have w ∈ Gω, and we conclude Mω ⊂ Gω.

On the other hand, by [8, Theorems 8.1.4 to 8.1.6], we have Gω = {eiθφω(· + y): θ ∈ R, y ∈ R
n}. Since Mω is not

empty by Proposition 2.1, we have Mω = Gω . �
Define the set Σ1 by

Σ1 = {
(u, v) ∈ X | E(u,v) − ωQ(u,v) < dω, Kω(u) < 0

}
. (2.5)

Note that λ(φω, iωφω) ∈ Σ1 for any λ > 1.
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Lemma 2.6. The set Σ1 is invariant under the flow of (1.1). That is, if the data (u0, u1) ∈ Σ1, then �u(t) =
(u(t), ∂tu(t)) ∈ Σ1 for any t ∈ [0, Tmax), where �u(t) is the solution of (1.1) with initial value (u0, u1) and Tmax is
the life span of �u(t).

Proof. For the sake of convenience, we put

Lω(u, v) = E(u,v) − ωQ(u,v).

It is immediately observed that

Jω(u) = Lω(u, v) − 1

2
‖v − iωu‖2

2 � Lω(u, v). (2.6)

From the conservation of energy and charge, we have Lω(�u(t)) = Lω(u0, u1) < dω for any t ∈ [0, Tmax). So, to
conclude the proof of the lemma, it suffices to show that Kω(u(t)) < 0 for any t ∈ [0, Tmax). Suppose that there
exists t0 ∈ (0, Tmax) such that Kω(u(t0)) = 0 and Kω(u(t)) < 0 for t ∈ [0, t0). It then follows from Lemma 2.2 that
J̃ω(u(t)) � dω > 0 for t ∈ [0, t0). Thus, we see that u(t0) 
= 0. Since Kω(u(t0)) = 0 and u(t0) 
= 0, it follows from
relation (2.6) and the definition of dω that dω � Jω(u(t0)) � Lω(�u(t0)) < dω, which is a contradiction. �

For λ > 1, let �uλ(t) = (uλ(t), ∂tuλ(t)) be the solution of (1.1) with data �uλ(0) = λ �φω, where �φω = (φω, iωφω) and
φω is the ground state of (1.3). Let Tλ be the life span of �uλ(t). Define

Iλ(t) = 1

2

∥∥uλ(t)
∥∥2

2, 0 � t < Tλ.

The key lemma to prove the strong instability is the following lower estimate for the virial identity.

Lemma 2.7. For any λ > 1, there exists a constant aλ > 0 such that

d2

dt2
Iλ(t) � p + 3

2

∥∥∂tuλ(t) − iωuλ(t)
∥∥2

2 + aλ, 0 � t < Tλ.

Proof. By simple computations, we have

I ′
λ(t) = Re

∫
Rn

∂tuλ(t)uλ(t)dx = Re
∫
Rn

(
∂tuλ(t) − iωuλ(t)

)
uλ(t)dx

and

I ′′
λ (t) = ∥∥∂tuλ(t)

∥∥2
2 + Re

∫
Rn

∂2
t uλ(t, x)uλ(t, x)dx

= p + 3

2

∥∥∂tuλ(t)
∥∥2

2 + p − 1

2

{∥∥∇uλ(t)
∥∥2

2 + (
1 − ω2)∥∥uλ(t)

∥∥2
2

} − (p + 1)E
(�uλ(t)

)
= p + 3

2

∥∥iωuλ(t) − ∂tuλ(t)
∥∥2

2 + (p − 1)

(
1

2

∥∥∇uλ(t)
∥∥2

2 + αω2
∥∥uλ(t)

∥∥2
2

)
− (p + 1)Lω

(�uλ(t)
) + 2ωQ

(�uλ(t)
)

= p + 3

2

∥∥∂tuλ(t) − iωuλ(t)
∥∥2

2 + (p − 1)((p + 1)α + n)

(p − 1)α + 2
J̃ω

(
uλ(t)

)
− (p + 1)Lω

(
λ �φω

) + 2ωQ
(
λ �φω

)
. (2.7)

Here, in the last equality, we have used the fact that Lω and Q are conserved quantities. For any λ > 1, it is easy to
see that

Lω

(
λ �φω

) = Jω(λφω) < Jω(φω) = dω (2.8)

and

ωQ
(
λ �φω

) = ω2λ2‖φω‖2 > ω2‖φω‖2. (2.9)
2 2
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On the other hand, it is found that

‖φω‖2
2 = (n + 2) − (n − 2)p

(p − 1)(1 − ω2)
dω. (2.10)

Here, we put

aλ = (p − 1)((p + 1)α + n)

(p − 1)α + 2
dω − (p + 1)Lω

(
λ �φω

) + 2ωQ
(
λ �φω

)
.

Then, by (2.8)–(2.10), we have aλ > 0. Moreover, by (2.7), we have

I ′′
λ (t) � p + 3

2

∥∥∂tuλ(t) − iωuλ(t)
∥∥2

2 + aλ + (p − 1)((p + 1)α + n)

(p − 1)α + 2

{
J̃ω

(
uλ(t)

) − dω

}
(2.11)

for 0 � t < Tλ. Since �uλ(t) is the solution of (1.1) with data λ �φω ∈ Σ1, it follows from Lemma 2.6 that �uλ(t) ∈ Σ1
for any 0 � t < Tλ. Hence, it then follows from (2.11) and Lemma 2.2 that

I ′′
λ (t) � p + 3

2

∥∥∂tuλ(t) − iωuλ(t)
∥∥2

2 + aλ

for 0 � t < Tλ. This completes the proof of Lemma 2.7. �
Proof of Theorem 1.3 then follows from Lemma 2.7 and concavity arguments due to Levine [15] as in Payne and

Sattinger [24]. For the sake of completeness, we give the proof.

Proof of Theorem 1.3. We use the notation of Lemma 2.7. Since λ �φω → �φω in X as λ → 1, it suffices to prove that
Tλ < ∞ for any λ > 1. We prove this by contradiction. Assume that Tλ = ∞. By Lemma 2.7, we have I ′′

λ (t) � aλ > 0
for any t ∈ [0,∞). This implies that there exists t1 ∈ (0,∞) such that I ′

λ(t) > 0 and Iλ(t) > 0 for any t ∈ [t1,∞). Let
β = (p − 1)/4. Then by using Lemma 2.7 we obtain the following estimate

I ′′
λ (t)Iλ(t) − (β + 1)I ′

λ(t)
2

� p + 3

4

{∥∥∂tuλ(t) − iωuλ(t)
∥∥2

2

∥∥uλ(t)
∥∥2

2 −
(

Re
∫
Rn

(
∂tuλ(t) − iωuλ(t)

)
uλ(t)

)2

dx

}
� 0.

Thus, for t ∈ [t1,∞), we have(
Iλ(t)

−β
)′ = −βIλ(t)

−β−1I ′
λ(t) < 0,(

Iλ(t)
−β

)′′ = −βIλ(t)
−β−2{I ′′

λ (t)Iλ(t) − (β + 1)I ′
λ(t)

2} � 0.

Therefore,

Iλ(t)
−β � Iλ(t1)

−β − βIλ(t1)
−β−1I ′

λ(t1)(t − t1), t ∈ [t1,∞),

so there exists t2 ∈ (t1,∞) such that Iλ(t2)
−β � 0. However, this is a contradiction. This completes the proof. �

Having established the strong instability by blowup of standing waves for (1.1), attention is now given to the proof
of Theorem 1.6, that is, strong instability of solitary waves for (1.5). The proof of Theorem 1.6 is similar to that of
Theorem 1.3 and is approached via the following two main lemmas.

Lemma 2.8. Let

Σ2 = {
(u, v) ∈ X | E(u,v) + ωV (u, v) < dω, Kω(u) < 0

}
.

Then the set Σ2 is invariant under the flow of (1.5). That is, if (u0, v0) ∈ Σ2, then �u(t) = (u(t), v(t)) ∈ Σ2 for any
t ∈ [0, Tmax), where �u(t) is the solution of (1.5) with initial value (u0, v0) and Tmax is the life span of �u(t).

Proof. We omit the proof because it is similar to that of Lemma 2.6. �
Note that λ(φω,−ωφω) ∈ Σ2 for any λ > 1.
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Lemma 2.9. The set A = {w ∈ H 1(R) | ξ−1ŵ ∈ L2(R)} is dense in H 1(R), where ŵ is the Fourier transform of w.

Proof. See Lemma 4.4 in [18]. �
Let �φω = (φω,−ωφω), where φω is the ground state of (1.3). By Lemma 2.9, there is �wεi

= (wεi
,−ωwεi

) ∈ A such
that �wεi

→ �φω in H 1 as εi → 0. For λ > 1, let �uλ
0 = λ �wεi

. We claim that �uλ
0 ∈ Σ2. In fact, we have

Lω

(�uλ
0

) = E
(�uλ

0

) + ωV
(�uλ

0

) = E
(
λ �φω

) + ωV
(
λ �φω

) + α(εi),

where α(εi) → 0 as εi → 0. Since λ �φω ∈ Σ2, choose εi small enough such that α(εi) < dω − Lω(λφω). It is then
found that

Lω

(�uλ
0

)
< Lω

( �φω

) = dω. (2.12)

Similarly, we have

Kω

(�uλ
0

) = Kω(λφω) + α(εi) < Kω

( �φω

) = 0

and

−ωV
(�uλ

0

) = −ωV
(
λ �φω

) + α(εi) = ω2λ2‖φω‖2
2 + α(εi) > ω2‖φω‖2

2. (2.13)

This in turn implies that �uλ
0 ∈ Σ2. On the other hand, it is easy to see that

‖φω‖2
2 = 3 + p

(p − 1)(1 − ω2)
dω. (2.14)

For λ > 1, let �uλ(t) = (uλ(t), vλ(t)) be the solution of (1.5) with initial value �uλ
0 . Let Tλ be the life span of uλ. Put

Iλ(t) = 1

2

∥∥ξ−1ûλ(t)
∥∥2

2, 0 � t < Tλ.

Since �uλ
0 ∈ A, the function Iλ(t) is well-defined. The following estimate of the virial identity can be obtained in

a similar way as in Lemma 2.7.

Lemma 2.10. For any λ > 1, there is a constant aλ > 0 such that

I ′′
λ (t) � p + 3

2

∥∥vλ(t) + ωuλ(t)
∥∥2

2 + aλ, t ∈ [0, Tλ).

Proof. Since the proof of Lemma 2.10 is similar to that of Lemma 2.7, we only give an outline of the proof. A simple
computation shows that

I ′
λ(t) = Re

∫
R

ξ−1ûλ(t)v̂λ(t)dξ = Re
∫
R

ξ−1ûλ(t)
{
v̂λ(t) + ωûλ(t)

}
dξ

and

I ′′
λ (t) = p + 3

2

∥∥vλ(t)
∥∥2

2 + p − 1

2

(∥∥∂xuλ(t)
∥∥2

2 + (
1 − ω2)∥∥uλ(t)

∥∥2
2

) − (p + 1)E
(�uλ(t)

)
= p + 3

2

∥∥vλ(t) + ωuλ(t)
∥∥2

2 + (p − 1)

(
1

2

∥∥∂xuλ(t)
∥∥2

2 + αω2
∥∥uλ(t)

∥∥2
2

)
− (p + 1)Lω

(�uλ(t)
) − 2ωV

(�uλ(t)
)

= p + 3

2

∥∥vλ(t) + ωuλ(t)
∥∥2

2 + (p − 1)((p + 1)α + 1)

(p − 1)α + 2
J̃ω

(
uλ(t)

) − (p + 1)Lω

(�uλ
0

) − 2ωV
(�uλ

0

)
.

Therefore, in view of (2.12)–(2.14), Lemma 2.10 can be obtained by Lemmas 2.2 and 2.8. �
Proof of Theorem 1.6. The proof follows from Lemma 2.6 and the proof of Theorem 1.3. �
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