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Abstract

We study the following system of Schrödinger–Maxwell equations

ε2�v − v − ωvφ + f (v) = 0, �φ + γ v2 = 0 in Ω,

v,φ > 0 in Ω, v,φ = 0 on ∂Ω,

where Ω is a smooth and bounded domain of R
3. We prove that for any integer k the system has a family of solutions (vε,φε) such

that the form of vε consists of k spikes concentrating at a harmonic center of Ω as ε → 0+. Furthermore we show that the spikes
approach the vertexes of a configuration which maximizes a suitable geometrical problem.

Résumé

On étudie le système d’équations de Schrödinger–Maxwell suivant :

ε2�v − v − ωvφ + f (v) = 0, �φ + γ v2 = 0 dans Ω,

v,φ > 0 dans Ω, v,φ = 0 sur ∂Ω,

où Ω est un ouvert borné régulier. On montre que pour tout entier k le système a une famille de solutions (vε,φε) telle que la forme
de vε consiste en k pointes qui se concentrent sur un centre harmonique de Ω lorsque ε → 0+. On montre, en plus, que les pointes
approchent les sommets d’une configuration qui maximise un problème géométrique.
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1. Introduction

In this paper we study the stationary waves for a system of Schrödinger–Maxwell equations in the electrostatic
case. After suitable rescalation, such system takes the form:⎧⎪⎨⎪⎩

ε2�v − v − ωφv + f (v) = 0 in Ω,

�φ + γ v2 = 0 in Ω,

v,φ > 0 in Ω, v = φ = 0 on ∂Ω.

(1.1)

where Ω ⊂ R
3 is a smooth domain, ε,ω,γ > 0, v,φ :Ω → R, f : R → R. Problem (1.1) was first proposed by Benci

and Fortunato (see [6]): it describes a charged quantum particle constrained to move in the 3-dimensional region
Ω interacting with its own electrostatic field. The unknowns v = v(x) and φ = φ(x) represent the wave function
associated to the particle and the scalar electric potential respectively.

The system (1.1) with f ≡ 0 has been studied in [6] (in the case of a bounded space region Ω) and in [10] (in the
case Ω = R

3 and under the action of an external nonzero potential). In both papers, for fixed ε > 0, the authors prove
the existence of infinitely many solutions. Furthermore existence results for (1.1) in R

3 have been established in [14]
for power-like nonlinearities f .

This paper deals with the semiclassical limit of the system (1.1), i.e. it is concerned with the problem of finding
nontrivial solutions and studying their asymptotic behavior when ε → 0+; hence such solutions are usually referred
to as semiclassical ones. The analysis of the Schrödinger–Maxwell equations in the limit ε → 0+ is not only a chal-
lenging mathematical task, but also of some relevance for the understanding of a wide class of quantum phenomena.
Indeed, according to the correspondence principle, letting ε go to zero in the Schrödinger equation formally describes
the transition from Quantum Mechanics to Classical Mechanics.

While there is a wide literature concerning semiclassical states for the single nonlinear Schrödinger equation in an
assigned potential φ (we recall, among many others, [1–4,12,17–20,23,26,27,32,33,35,37–39,41,42]), there are few
papers dealing with the case of an unknown potential. The first time the semiclassical limit for a Schrödinger–Maxwell
system has been considered seems to be in [15,16,40]. In such papers problem (1.1) is studied and it is proved that
the solutions exhibit some kind of notable concentration behavior: their form consists of very sharp peaks which
become highly concentrated when ε is small. More precisely in [15] and [40] the authors construct a family of radially
symmetric waves concentrating around a sphere when Ω = R

3. In [16] a new kind of solutions is found for the system
(1.1) in R

N (N � 3), the so-called clusters, i.e. a combination of several interacting peaks concentrating at the same
point as ε → 0+. The object of this paper is to construct clusters for (1.1) when Ω ⊂ R

3 is a bounded and smooth
domain. The problem is more complicated than in all R

3: indeed the loss of the translation invariance gives rise to the
natural question on the location of the concentration point. The analysis reveals that the configuration of the limiting
clustered peaks is determined by two crucial aspects: the interaction of the spikes and the shape of Ω .

In order to state our main result we first enumerate the assumptions on the function f that will be steadily assumed:

(f1) f ∈ C1+σ
loc (R) ∩ C2(0,+∞) with 1

2 < σ � 1; f (t) = 0 for t � 0.
(f2) The problem in the whole space{

�w − w + f (w) = 0, w > 0 in R
3,

w(0) = maxx∈R3 w(x), lim|x|→+∞ w(x) = 0,
(1.2)

has a unique solution w, which is nondegenerate, i.e., denoting by L the linearized operator

L :H 2(
R

3)→ L2(
R

3), L[u] := �u − u + f ′(w)u,

then

Kernel(L) = span

{
∂w

∂x1
,

∂w

∂x1
,

∂w

∂x3

}
. (1.3)
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By the well-known result of Gidas, Ni and Nirenberg [24] w is radially symmetric and strictly decreasing in r = |x|.
Moreover, by classical regularity results, w ∈ C4(R3) and the following asymptotic behavior holds:

w(r),w′′(r),w′′′′ = A

r
e−r

(
1 + O

(
1

r

))
, w′(r),w′′′(r) = −A

r
e−r

(
1 + O

(
1

r

))
, (1.4)

where AN > 0 is a suitable positive constant.
Typical examples of f satisfying (f1), (f2) include f (t) = t

p
+ − at

q
+ where a � 0 and 1 < p < q < 5, or f (t) =

t+(t − a)(1 − t) where 0 < a < 1
2 . Other nonlinearities can be found in [11]. The uniqueness of w is proved in [34]

for the case of power-like f ; for a general nonlinearity, see [9]. The nondegeneracy condition can be derived from the
uniqueness argument (see [36]).

Then we will prove that, roughly speaking, up to a suitable rescaling in the coordinates, the limit profile of each
peak resembles the function w, while the rescaled cluster (by making the minimum distance between two vertexes
equal to 1) approaches an optimal configuration for the following geometric problem:

(∗) Given k points P1, . . . ,Pk ∈ R
3 with |Pi − Pj | � 1 for i 
= j , find the configuration which maximizes∑

i 
=j
1

|Pi−Pj | .

A final question arises on the location in Ω of the asymptotic peaks: what we will show is that the concentration point
can be identified in terms of the Robin’s function of Ω , i.e. the diagonal of the regular part of the Green’s function. Let
us briefly introduce some notation. It is well known that for a smooth domain there exists a unique Green’s function
G of the Laplace operator with Dirichlet boundary condition and it can be decomposed as

G(x,y) = 1

4π |x − y| − H(x,y) (1.5)

(see, for example, [5]) where 1
4π |x−y| (the singular part) is the fundamental solution of the negative Laplace operator

in R
3, and H (the regular part) is harmonic in both variables. The restriction of the regular part to the diagonal H(x) :=

H(x,x) is called the Robin’s function of Ω . Finally the points where the Robin’s function attains its minimum

H0 := inf
x∈Ω

H(x)

are called harmonic centers of Ω. Then concentration of the clustered solutions of (1.1) occurs at the harmonic centers
of Ω . Now we proceed to provide the exact formulation of the main result of this paper.

Theorem 1.1. Assume that Ω ⊂ R
3 is a smooth and bounded domain and that hypotheses (f1), (f2) hold. Then, for

any given integer k � 1, there exists εk > 0 such that for every ε ∈ (0, εk) the system (1.1) has a solution (vε,φε) such
that

(1) vε , φε ∈ H 1
0 (Ω);

furthermore there exist P ε
1 , . . . ,P ε

k ∈ Ω such that, as ε → 0+,

(2) vε(x) =∑k
i=1 w(

x−P ε
i

ε
) + o(ε3/2) uniformly for x ∈ Ω ;

(3) |P ε
i − P ε

j | = O(ε log 1
ε2 ) and 1

ε| log ε2| (P
ε
1 , . . . ,P ε

k ) approaches an optimal configuration in (∗).

Finally, for every sequence εn → 0+, up to a subsequence,

(4) P
εn

1 , . . . ,P
εn

k → P0, where P0 ∈ Ω is a harmonic center (i.e. H(P0) = H0);
(5) φεn(x) = ε3

n(G(x,P0) + o(1))k
∫

R3 w2 dx uniformly for any compact subset of Ω \ {P0}.

Remark 1.2. In order to provide a more precise description of the behavior of the solutions (vε,φε), the question
of the number of the harmonic centers is crucial. In Section 2 we will show that the Robin’s function for a smooth
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bounded domain is a continuous function and tends to infinity at the boundary. Then the set of the harmonic radii is
nonempty. Furthermore in [7] the authors prove that in the case of a convex bounded domain the Robin’s function is
strictly convex and, consequently, there exists a unique harmonic center P0 (for example, the harmonic center of a
ball is its geometric center); then, if, in addition, we assume the convexity of Ω , the parts (4), (5) of Theorem 1.1 hold
for all the families vε, φε , P ε

i , without need to pass to sequences and all the waves vε concentrate at that point P0 as
ε → 0+. In general we have H(P ε

i ) → H0 as ε → 0+ for every i = 1, . . . , k.

Theorem 1.1 is proved by using an approach relied upon a finite dimensional reduction which is related to the
procedure introduced in [28] and [29], and also developed in [15,16]. This approach is based on a combination of a
Lyapunov–Schmidt reduction procedure together with a variational method. The object is to discover the solutions
around a small neighborhood of a well chosen first approximation. First we construct an approximated solution ob-
tained as the sum of suitable truncations and rescalations of w; then we find a solution of (1.1) in the normal direction
of the approximated solution surface as fixed point of a suitable map. Next we study the remaining finite dimensional
equation. After this reduction process, by using the implicit function theorem, we prove that, in a small neighborhood
of the first approximation, solving (1.1) is equivalent to solving some finite dimensional maximization problem

maxMε(Q1, . . . ,Qk), where Mε :Ωk → R,

being Q1, . . . ,Qk the centers of the approximating bumps. The solution of such reduced problem also provides the
location of the clusters.

We point out that multi-peak solutions concentrating on a single point have been proved to exist for the Gierer–
Meinhardt system on the real line [8] and in a bounded interval [43]. Similar results in R

2 were obtained in [21],
where spikes are located at regular polygons or at concentric regular polygons. The existence of clusters is known for
the single Schrödinger equation in all R

N [33] or in a bounded domain with Neumann conditions [13,29]. In [44] the
authors show that interior clusters occur for the coupled FitxHugh–Nagumo system in a domain of R

2 with Dirichlet
boundary conditions. However in the case N � 3 we are unaware of clusters for coupled elliptic systems in bounded
domains. This paper seems to be the first result in this line.

Let us now briefly outline the organization of the contents of this paper. In Section 2 we recall some basic properties
of the Robin’s function and of the set of the harmonic centers. Section 3 is devoted to the study of the geometrical
problem (∗). In Section 4 we derive some key energy estimates which will play a key role in the rest of the arguments.
In Sections 5 and 6 we reduce the problem to finite dimension by the Liapunov–Schmidt reduction method. In Sec-
tion 7 we compute the reduced energy Mε and show that its critical points give rise to a solution of (1.1). Finally the
proof of Theorem 1.1 is completed in Section 8.

Notation.

– Given A ⊂ R
3 an open subset, C(A) denotes the space of the continuous function u : A → R. Lp(A) is the usual

Lebesgue space endowed with the norm

‖u‖p
p :=

∫
A

|u|p dx for 1 � p < +∞, ‖u‖∞ = sup
x∈A

∣∣u(x)
∣∣.

Furthermore H 1
0 (A) is the usual Sobolev space endowed with the norm

‖u‖2
H 1 =

∫
A

(|∇u|2 + |u|2)dx.

– We will often use the symbol C for denoting a positive constant independent on ε. The value of C is allowed to
vary from line to line (and also in the same formula).

– o(1) denotes a vanishing quantity as ε → 0+.
– Given {aε}ε>0 and {bε}ε>0 two family of numbers, we write aε = o(bε) (resp. aε = O(bε)) to mean that aε/bε → 0

(resp. |aε| � C|bε|) as ε → 0+.
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2. Robin’s function and harmonic centers

Let Ω ⊂ R
3 be a smooth and bounded domain. The Green’s function G of the operator −� in Ω with Dirichlet

boundary conditions is the solution (in the sense of the distributions) of the problem{−�yG(x, y) = δx in Ω,

G(x, y) = 0 on ∂Ω,

where δx denotes the Dirac measure at the point x. It is well known that for sufficiently smooth domains a unique
Green’s function exists and can be decomposed as in (1.5), where H(x, ·) is defined as the unique harmonic function
with the same boundary conditions as the singular part, i.e. it is the unique (classical) solution in C2(Ω) ∩ C(Ω) of
the following Dirichlet problem:{

�yH(x, y) = 0 in Ω,

H(x, y) = 1
4π |y−x| on ∂Ω.

(2.1)

H(x, ·) also coincides with the weak solution in H 1(Ω) of the system (2.1). The Green’s function and, consequently,
its regular part H are symmetric in x and y. Furthermore

G(x,y) � 0 ∀x, y ∈ Ω × Ω, x 
= y (2.2)

(see [31]). In general an explicit calculation for the Green’s function of a given domain is a difficult matter, except for
domains with simple geometry. For example, in the case of a ball B(x0, r) the Green’s function is given by

1

4π

(
1

|y − x| − |x − x0|r
||x − x0|2(y − x0) − r2(x − x0)|

)
. (2.3)

In the next two propositions we derive some basic properties of the Robin’s function.

Proposition 2.1. The function H is continuous in Ω × Ω . As a corollary, the Robin’s function x ∈ Ω �→ H(x) :=
H(x,x) is also continuous.

Proof. If (x0, y0) ∈ Ω × Ω, let U be a ball centered at x0 with closures in Ω . Since H(x, ·) is a harmonic function
in Ω , according to the maximum principle we have

0 � H(x,y) � sup
z∈∂Ω

1

4π |z − x| � sup
x∈U

sup
z∈∂Ω

1

4π |z − x| < +∞, ∀x ∈ U, y ∈ Ω.

Therefore the family {H(x, ·) | x ∈ U} is uniformly bounded on Ω , and then, according to Theorem 2.18 of [31], is
equiuniformly continuous on compact subsets of Ω . Hence we get∣∣H(x,y) − H(x0, y0)

∣∣� ∣∣H(x,y) − H(x,y0)
∣∣+ ∣∣H(x,y0) − H(x0, y0)

∣∣.
The first term can be made arbitrarily small by the equicontinuity of the family {H(x, ·) | x ∈ U} in y0 and the last by
the continuity of H(·, y0) in x0. �

Next lemma describes the boundary behavior of the Robin’s function.

Proposition 2.2. H(x) → +∞ as d(x) → 0, where d(x) = dist(x, ∂Ω).

Proof. Fix x0 ∈ Ω ; then B(x0, d(x0)) ⊂ Ω . Denote by H̃ the regular part of the Green’s function in B(x0, d(x0)),
which is given (2.3). Since H(x0, ·) � H̃ (x0, ·) on ∂B(x0, d(x0)), then, by using again the maximum principle,
H(x0, ·) � H̃ (x0, ·) in B(x0, d(x0)); in particular H(x0) � H̃ (x0) = 1

4πd(x0)
. �

We recall that a harmonic center of Ω is a minimum point for the Robin’s function. Combining Proposition 2.1
and Proposition 2.2 we deduce that a smooth bounded domain has at least one harmonic center. Since, by (2.3), the
Robin’s function of the ball B(x0, r) is r/(r2 − |x − x0|2), the unique harmonic center of a ball is its geometric center.
More generally, the Robin’s function of a convex bounded domain is strictly convex; this implies, in particular, the
existence of a unique harmonic center. This result has been established by Cardaliaguet and Rabah [7]. However the
problem of establishing the number of harmonic centers for nonconvex domains is open in general.
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3. Optimal configurations for problem (∗)

The object of this section is to study the geometrical problem (∗), which plays an important role in the location of
the clusters.

To begin with, fix k ∈ N and define the following set:

Σk := {
(P1, . . . ,Pk) ∈ R

3k
∣∣ |Pi − Pj | � 1 for i 
= j

}
.

Hence problem (∗) consists in determining the number

m(k) := sup

{∑
i 
=j

1

|Pi − Pj |
∣∣∣∣ (P1, . . . ,Pk) ∈ Σk

}
and in characterizing the configurations which achieve this optimal number. We remark that the functional
Is(P1, . . . ,Pk) := ∑

i 
=j
1

|Pi−Pj |s is called Riesz s-energy. For a study of Is and related packing problems, we re-
fer to a recent article [30].

Note that this problem has a physical meaning in R
3: consider k rigid balls of radius 1 centered at P1, . . . ,Pk .

Assume that the attractive force between different balls is proportional to 1
r
, where r is the distance between the two

centers of the balls. Then −∑
i 
=j

1
|Pi−Pj | is the total potential energy and solving problem (∗) becomes minimizing

the total energy of the system. In the next lemma we study the maximization problem (∗).

Lemma 3.1. The value m(k) is always attained by some configuration. Furthermore, if (P1, . . . ,Pk) ∈ Σk is an
optimal configuration, then mini 
=j |Pi − Pj | = 1. Moreover, if k1, . . . , kl ∈ N are such that k1 + · · · + kl = k, then

m(k) >

l∑
i=1

m(ki). (3.1)

Proof. The proof can be found in [16] in a more general framework. For sake of completeness we repeat it. First we
prove (3.1) for  = 2. Take two configurations (P1, . . . ,Pk1) ∈ Σk1 , (Pk1+1, . . . ,Pk) ∈ Σk2 . Then translate the convex
hulls of each configuration in such a way that their mutual distance is equal to 1 and there are at least two vertexes
belonging to different hulls at distance 1. Hence we obtain a configuration (Q1, . . . ,Qk) ∈ Σk such that∑

i 
=j

1

|Qi − Qj | >
∑

i,j�k1, i 
=j

1

|Pi − Pj | +
∑

i,j>k1, i 
=j

1

|Pi − Pj | + 2,

by which we get (3.1).
Let {(P n

1 , . . . ,P n
k )}n ⊂ Σk be a maximizing sequence. By the translation invariance we may assume P n

1 = 0. We
claim that the sequences {P n

i } are bounded in R
3. Otherwise, up to a subsequence, we could find I, J ⊂ {1, . . . , k},

I, J 
= ∅, such that I ∪ J = {1, . . . , k}, I ∩ J = ∅, |P n
i | � C for i ∈ I , and |P n

j | → +∞ for j ∈ J . Then

m(k) =
∑
i 
=j

1

|P n
i − P n

j | + o(1)

=
∑

i 
=j, (i,j)∈I

1

|P n
i − P n

j | +
∑

i 
=j, (i,j)∈J

1

|P n
i − P n

j | + o(1) � m(#I ) + m(#J ) + o(1),

in contradiction with (3.1). By compactness, we can obtain an optimal configuration (P1, . . . ,Pk). If it was l =
mini 
=j |Pi − Pj | > 1, then the new configuration ( 1

l
P1, . . . ,

1
l
Pk) would still belong to Σk and would contradict the

optimality of (P1, . . . ,Pk). �
In general, it is difficult to find the number m(k), except for some special cases. For example, it is obvious that

m(3) = 6 and m(4) = 12, with the optimal configurations given by a regular triangle and a regular tetrahedron with
edge 1 respectively. Note that in general m(k) � k(k − 1).



T. D’Aprile, J. Wei / Ann. I. H. Poincaré – AN 24 (2007) 605–628 611
4. Key energy estimate

For every ε > 0 set

Ωε = ε−1Ω = {
x | εx ∈ Ω

}
.

It is convenient to make a change of variables in the system (1.1) to obtain the version⎧⎨⎩
�u − u − δuψ + f (u) = 0 in Ωε,

�ψ + ε2u2 = 0 in Ωε,

u,ψ > 0 in Ωε, u = ψ = 0 on ∂Ωε,

(4.1)

where

δ = ωγ, u(x) = v(εx), ψ(x) = 1

γ
φ(εx). (4.2)

We begin with the following proposition.

Proposition 4.1. For every g ∈ L2(Ωε) denote by Tε[g] the unique solution in H 1
0 (Ωε) of

−�ψ = ε2g. (4.3)

Then the following representation formula holds:

Tε[g](x) = ε3
∫
Ωε

G(εx, εy)g(y)dy, (4.4)

where G is the Green’s function defined in Section 2. Furthermore

(a) Tε[g] � 0 for every g ∈ L2(Ωε) such that g � 0;
(b)

∫
Ωε

Tε[g]g dx � 0 for every g ∈ L2(Ωε);

(c) ‖Tε[g]‖∞ � Cε
√

ε‖g‖2 for every g ∈ L2(Ωε);
(d) ‖Tε[g]‖∞ � Cε2(‖g‖1 + ‖g‖∞) for every g ∈ L∞(Ωε);
(e) the functional J :u ∈ H 1

0 (Ωε) �→ ∫
Ωε

u2Tε[u2]dx is C1 and

J ′(u)[v] = 4
∫
Ωε

uvTε

[
u2]dx ∀u,v ∈ H 1

0 (Ωε).

Proof. By Lax–Milgram’s lemma we get the existence of a unique solution in H 1
0 (Ωε) of (4.3). The representation

formula (4.4) holds for u ∈ C∞
0 (Ωε) (see, for example, [22, p. 23, Theorem 1]); by density (4.4) can be extended to

any g ∈ L2(Ωε). a) follows immediately from (2.2). Furthermore

ε2
∫
Ωε

Tε[g]g dx =
∫
Ωε

∣∣∇Tε[g]∣∣2 dx � 0.

By (1.5) and (2.2), for every g ∈ L2(Ωε), by using Hölder’s inequality we have∣∣Tε[g](x)
∣∣� ε2

4π

∫
Ωε

|g(y)|
|y − x| dy � ε2

4π
‖g‖2

( ∫
|y|�C/ε

1

|y|2 dy

)1/2

� Cε
√

ε‖g‖2,

while, for g ∈ L∞(Ωε),∣∣Tε[g](x)
∣∣� ε2

4π

∫
|y−x|�1

|g(y)|
|y − x| dy + ε2

4π

∫
Ωε

∣∣g(y)
∣∣dy � Cε2(‖g‖∞ + ‖g‖1

)
and we obtain (c), (d). Part (e) is a direct computation. �
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Associated with (4.1) is the following energy functional Eε ∈ C1(H 1
0 (Ωε),R):

Eε[u] := 1

2

∫
Ωε

(|∇u|2 + |u|2)dx −
∫
Ωε

F (u)dx + δ

4

∫
Ωε

u2Tε

[
u2]dx,

where F(w) = ∫ w

0 f (s)ds. By using Proposition 4.1 the energy functional can be rewritten as

Eε[u] = 1

2

∫
Ωε

(|∇u|2 + u2)dx −
∫
Ωε

F (u)dx + δ

4
ε3
∫
Ωε

∫
Ωε

G(εx, εy)u2(x)u2(y)dx dy.

We denote by I the energy associated to (1.2):

I [w] = 1

2

∫
R3

(|∇w|2 + w2)dx −
∫
R3

F(w)dx.

Fix k ∈ N and for every Q ∈ R
3k set

wi = w(x − Qi), i = 1, . . . , k, wQ =
k∑

i=1

w(x − Qi).

According to Proposition 2.2 it makes sense to choose η ∈ (0, 2σ−1
10 ) sufficiently small such that

H(x) � 2H0 for x ∈ Ω with d(x) � η,

where H0 := minΩ H(x). Then define the configuration space:

Γε =
{

Q = (Q1, . . . ,Qk) ∈ Ωk
ε

∣∣∣∣H(εQi) < 2H0, (1 − η) log
1

ε2
< |Qi − Qj | <

(
log

1

ε2

)2

for i 
= j

}
.

For every Q = (Q1, . . . ,Qk) ∈ Γ ε , we set

wε,i(x) = w(x − Qi)χ(εx), i = 1, . . . , k, wε,Q =
k∑

i=1

wε,i,

where χ ∈ C∞
0 (Ω) is a smooth cut-off function such that χ = 1 if d(x) � η

2 and χ = 0 if d(x) � η
4 . Then we get

wε,i = wi for |x − Qi | � η
2ε

; hence, by (1.4) we deduce

|wε,i − wi |, |∇wε,i − ∇wi |, |�wε,i − �wi | = O
(
e−η/(4ε)

)
w

1/2
i = o

(
ε3)w1/2

i (4.5)

and, by assumption (f1),

F(wε,Q) − F(wQ), f (wε,Q) − f (wQ) = O(wε,Q − wQ) = o
(
ε3)w1/2

Q (4.6)

uniformly for x ∈ R
3 and Q ∈ Γ ε.

In order to provide the key result about the interaction of the wi ’s we state two useful lemmas.

Lemma 4.1. The following limits hold

1

w(Qi − Qj)

∫
Aε,i

f (wi)wj dx,
1

w(Qi − Qj)

∫
R3

f (wi)wj dx →
∫
R3

f (w)ex1 dx as ε → 0+,

uniformly for Q = (Q1, . . . ,Qk) ∈ Γ ε , where

Aε,i =
{
x ∈ R

3
∣∣∣∣ |x − Qi | � 1 − η

2
log

1

ε2

}
.
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Proof. The proof is an easy consequence of Lebesgue’s Dominated Convergence Theorem. First notice that∫
Ai,j

f (wi)wj =
∫

|x|� 1−η
2 log 1

ε2

f (w)w(x + Qi − Qj),

∫
R3

f (wi)wj =
∫
R3

f (w)w(x + Qi − Qj).

According to (1.4) for every x ∈ R
3 we have

lim|Qi−Qj |→+∞
w(x + Qi − Qj)

w(Qi − Qj)
− e

− x(Qi−Qj )

|Qi−Qj | = lim|Qi−Qj |→+∞ e−|x+Qi−Qj |+|Qi−Qj | − e
− x(Qi−Qj )

|Qi−Qj | = 0. (4.7)

Observe that, if |x| � 2
2+σ

|Qi −Qj | (with σ given by assumption (f1)), then |x +Qi −Qj | � σ
2+σ

|Qi −Qj |; hence,
by using (1.4), for |Qi − Qj | sufficiently large we get

f (w)
w(x + Qi − Qj)

w(Qi − Qj)
� 2f (w)

|Qi − Qj |
|x + Qi − Qj |e|x| � 2f (w)

2 + σ

σ
e|x|.

On the other hand, for |x| � 2
2+σ

|Qi − Qj |, by (1.4) and (f1) we obtain

f (w)
w(x + Qi − Qj)

w(Qi − Qj)
� C‖w‖∞

|Qi − Qj |
|x|1+σ

e−(1+σ)|x|+|Qi−Qj | � C‖w‖∞
2 + σ

2
e− σ

2 |x|.

Since f (w)e|x| ∈ L1(R3), the convergence (4.7) is dominated. Taking into account that w is radial, we deduce∫
R3 f (w)e

− x(Qi−Qj )

|Qi−Qj | dx = ∫
R3 f (w)ex1 dx for every Qi, Qj , then we obtain the thesis. �

Lemma 4.2. For every g : R3 → R such that (1 + |y|3)g ∈ L1(R3) ∩ L∞(R3) set

Ψ1[g](x) =
∫
R3

g(y)

|x − y| dy, Ψ2[g](x) =
∫
R3

g(y)

|x − y|2 dy.

Then there exist constants C1(g), C′
1(g), C2(g), C′

2(g) such that∣∣∣∣Ψ1[g](x) − C1(g)

|x|
∣∣∣∣� C′

1(g)

|x|2 ,

∣∣∣∣Ψ2[g](x) − C2(g)

|x|2
∣∣∣∣� C′

2(g)

|x|3 ∀x 
= 0.

Furthermore C1(g) = C2(g) = ∫
R3 g(y) and

∣∣Ψ1[g]∣∣, ∣∣Ψ2[g]∣∣� 4π‖g‖∞ + ‖g‖L1, C′
1(g),C′

2(g) � 2
3∑

p=1

(
4π

∥∥ypg
∥∥∞ + ∥∥ypg

∥∥
L1

)
. (4.8)

Proof. First observe that if h ∈ L1(R3) ∩ L∞(R3), then∫
R3

|h(y)|
|x − y| dy,

∫
R3

|h(y)|
|x − y|2 dy �

∫
B(x,1)

|h(y)|
|x − y|2 dy +

∫
R3

∣∣h(y)
∣∣dy � 4π‖h‖∞ + ‖h‖L1,

by which we deduce the first part of (4.8). Next fix p = 1,2. From the inequality∣∣|x|p − |x − y|p∣∣� 2
(|x − y|p−1|y| + |y|p) ∀x, y ∈ R

3,

we get∫
R3

g(y)

∣∣∣∣ 1

|x − y|p − 1

|x|p
∣∣∣∣dy � 2

|x|p
(∫

R3

g(y)
|y|

|x − y| dy +
∫
R3

g(y)
|y|p

|x − y|p dy

)
.

The function
∫

3 g(y)
|y|p |x|

p dy is bounded in R
3 for p = 1,2: more precisely we have
R |x−y|
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∫
R3

g(y)
|y|p|x|
|x − y|p dy �

∫
R3

g(y)
|y|p

|x − y|p−1
dy +

∫
R3

g(y)
|y|p+1

|x − y|p dy

� 4π
(∥∥ypg

∥∥∞ + ∥∥yp+1g
∥∥∞

)+ ∥∥ypg
∥∥

L1 + ∥∥yp+1g
∥∥

L1 ,

and we deduce the thesis. �
With the help of Lemmas 4.1 and 4.2 we derive the following key energy estimate.

Proposition 4.2. The following estimate holds:

Eε[wε,Q] = kI [w] + α(Q) + c1ε
2 − c2ε

3H(εQ1) + o
(
ε3) as ε → 0+, (4.9)

uniformly for Q = (Q1, . . . ,Qk) ∈ Γ ε, where c1, c2 are positive constants and α : R
3k → R satisfies

α
(
Q + P k

)= α(Q) ∀Q ∈ R
3k, ∀P ∈ R

3 (4.10)

(where P k = (P, . . . ,P )). Furthermore

α(Q) = c3ε
2
∑
i 
=j

1 + o(1)

|Qi − Qj | − c4

∑
i 
=j

(
1 + o(1)

)
w(Qi − Qj) as ε → 0+

uniformly for Q = (Q1, . . . ,Qk) ∈ Γ ε, for some positive constants c3, c4.

Proof. We split the functional Eε as follows:

Eε[wε,Q] = Eε,1[wε,Q] + δε2

16π
Eε,2[wε,Q] − δε3

4
Eε,3[wε,Q],

where

Eε,1[wε,Q] = 1

2

∫
Ωε

(|∇wε,Q|2 + |wε,Q|2)dx, Eε,2[wε,Q] =
∫
Ωε

|wε,Q|2 dy

∫
Ωε

1

|y − x|w
2
ε,Q dx,

Eε,3[wε,Q] =
∫
Ωε

w2
ε,Q dy

∫
Ωε

H(εx, εy)w2
ε,Q dx.

Using (4.5) and (4.6) we compute

Eε,1[wε,Q] = kI [w] + 1

2

∑
i 
=j

∫
R3

(∇wi∇wj + wiwj )dx −
∫
R3

(
F(wQ) −

k∑
i=1

F(wi)

)
dx + o

(
ε3)

= kI [w] + 1

2

∑
i 
=j

∫
R3

f (wi)wj dx −
∫
R3

(
F(wQ) −

k∑
i=1

F(wi)

)
dx + o

(
ε3) (4.11)

uniformly for Q ∈ Γ ε . Set

α1(Q) = 1

2

∑
i 
=j

∫
R3

f (wi)wj dx −
∫
R3

(
F(wQ) −

k∑
i=1

F(wi)

)
dx, Q ∈ R

3k.

Consider the sets Aε,i defined in Lemma 4.1. For every Q ∈ Γ ε we have: |x − Qj | � |x − Qi | on Aε,i , by which,
since w is decreasing in |x|, wj � wi on Aε,i . Then, by using assumption (f1), we get∣∣∣∣F(wQ) − F(wi) − f (wi)

∑
wj

∣∣∣∣, ∣∣∣∣∑F(wj )

∣∣∣∣� Cwσ
i

∑
w2

j in Aε,i;

j 
=i j 
=i j 
=i
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on the other hand |x − Qj | � 1
2 |Qi − Qj | on Aε,i for j 
= i, consequently, by (1.4), w2

j (x) � w2
j (

1
2 (Qi − Qj)) =

o(w(Qi − Qj)) on Aε,i for j 
= i; hence we achieve∫
Aε,i

(
F(wQ) −

k∑
j=1

F(wj ) − f (wi)
∑
j 
=i

wj

)
dx =

∑
j 
=i

o
(
w(Qi − Qj)

) ∀i = 1, . . . , k. (4.12)

Notice that |F(wQ)−∑k
i=1 F(wi)| � C

∑k
i=1 |wi |2+σ on R

3. Since |x −Qi | � 1
2 |Qi −Qj | on R

3 \ (
⋃k

i=1 Aε,i), we

obtain w2
i = o(w(Qi − Qj)) on R

3 \ (
⋃k

i=1 Aε,i) for every i 
= j , by which∫
R3\(⋃k

i=1 Aε,i )

(
F(wQ) −

k∑
i=1

F(wi)

)
dx =

∑
i 
=j

o
(
w(Qi − Qj)

)
. (4.13)

Combining (4.12) and (4.13) and using Lemma 4.1 we arrive at

α1(Q) = 1

2

∑
i 
=j

∫
R3

f (wi)wj dx −
k∑

i=1

∑
j 
=i

∫
Aε,i

f (wi)wj dx +
∑
i 
=j

o
(
w(Qi − Qj)

)
= −1

2

∫
R3

f (w)ex1 dx
∑
i 
=j

(
1 + o(1)

)
w(Qi − Qj) as ε → 0+

uniformly for Q ∈ Γ ε . As regards Eε,2, by using again (4.5) we obtain

Eε,2
(
w2

ε,Q

)=
∫
R3

w2
Q dx

∫
R3

1

|y − x|w
2
Q dy + o

(
ε3)=

∫
R3

(
k∑

i=1

wi

)2

Ψ1

[(
k∑

i=1

wi

)2]
dx + o

(
ε3)

=
k∑

i=1

∫
R3

w2
i Ψ1

[
w2

i

]
dx + α2(Q) + o

(
ε3),

where

α2(Q) =
∑
i 
=j

w2
i Ψ

[
w2

j

]
dx +

∑
(i,j,l,m), i 
=j

∫
R3

(
wiwjΨ1[wlwm]dx + wlwmΨ1[wiwj ]

)
dx

and Ψ1 has been defined in Lemma 4.2. We immediately obtain∫
R3

w2
i Ψ1

[
w2

i

]
dx =

∫
R3

w2Ψ1
[
w2]dx (4.14)

and the last expression is a real constant independent on Qi .
For i 
= j Lemma 4.2 gives (setting C1 = C1(w

2))∫
R3

w2
i Ψ1

[
w2

j

]
dx =

∫
R3

w2Ψ1
[
w2](x + Qi − Qj)dx

= C1

∫
R3

w2

|x + Qi − Qj | dx + O(1)

∫
R3

w2

|x + Qi − Qj |2 dx

= C1Ψ1
[
w2](Qi − Qj) + O(1)Ψ2

[
w2](Qi − Qj)

= C2
1 + O(1)

2
= C2

1
1 + o(1)

.
|Qi − Qj | |Qi − Qj | |Qi − Qj |
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Since by (4.8) Ψ1[wlwm] � C uniformly for Q ∈ R
3, for i 
= j and l,m ∈ {1, . . . , k} we have∫

R3

wiwjΨ1[wlwm]dx � C

∫
R3

wiwj dx,

and, since for every x ∈ R
3 |x − Qi | � 1

2 |Qi − Qj | or |x − Qj | � 1
2 |Qi − Qj |, i.e. wi(x) � w( 1

2 |Qi − Qj |) or
wj(x) � w( 1

2 |Qi − Qj |), then we deduce∫
R3

wiwjΨ1[wlwm]dx = o(1)

|Qi − Qj | ,

and, consequently,∫
R3

wlwmΨ1[wiwj ]dx =
∫
R3

wiwjΨ1[wlwm]dx = o(1)

|Qi − Qj | .

Hence we have proved

α2(Q) = C2
1

∑
i 
=j

1 + o(1)

|Qi − Qj | as ε → 0+

uniformly for Q ∈ Γ ε.

It remains to estimate Eε,2(wε,Q):

Eε,2(wε,Q) =
∑
i,j

∫
R3

w2
ε,i dy

∫
R3

H(εx, εy)w2
ε,j dx

=
∑
i,j

∫
R3

∫
R3

w2(x)χ
(
ε(x + Qi)

)
H
(
ε(x + Qi), ε(y + Qj)

)
w2(y)χ

(
ε(y + Qj)

)
dx dy.

We want to apply the Lebesgue’s dominated convergence theorem. By construction for all ε it results εΓ ε ⊂ Kk
0 :=

{z ∈ Ω | d(z) � η}k . Hence, since by Proposition 2.1 H is uniformly continuous on K0 × K0, for every x, y ∈ R
3 and

(i, j) we obtain

lim
ε→0+ sup

Q∈Γε

(
H
(
ε(x + Qi), ε(y + Qj)

)− H(εQi, εQj )
)
� lim

ε→0+ sup
z,z′∈K0

(
H(z + εx, z′ + εy) − H(z, z′)

)= 0

and, since by construction χ = 1 in K0,

lim
ε→0+ sup

Q∈Γε

(
χ
(
ε(x + Qi)

)− 1
)
� lim

ε→0+ sup
z∈K0

(
χ(εx + z − 1)

)= 0.

Hence Lebesgue’s theorem applies (since χ(z) = 0 for d(z) � η
4 , the dominating function is given by

supd(z),d(z′)� η
4
H(z, z′)w2(x)w2(y) for every (i, j) we obtain∫

R3

w2
ε,i dy

∫
R3

H(εx, εy)w2
ε,j dx = (

1 + o(1)
)(∫

R3

w2
)2 ∑

i,j

H(εQi, εQj ) as ε → 0+

uniformly for Q ∈ Γ ε . On the other hand the definition of Γε implies that |H(εQi, εQj ) − H(εQ1)| → 0 as ε → 0+
uniformly for Q ∈ Γ ε , by which

Eε,2(wε,Q) = (
1 + o(1)

)(∫
R3

w2
)2

k2H(εQ1) as ε → 0+

uniformly for Q ∈ Γ ε . By setting α(Q) = α1(Q) + ε2 δ
16π

α2(Q), it is obvious that α(Q + P k) = α(Q) for every
Q ∈ R

3k and P ∈ R
3. Then the thesis follows. �

Finally we are in position to provide the following error estimates.



T. D’Aprile, J. Wei / Ann. I. H. Poincaré – AN 24 (2007) 605–628 617
Lemma 4.3. There exists a constant C > 0 such that for every ε > 0 and Q = (Q1, . . . ,Qk) ∈ Γ ε:∣∣�wε,Q − wε,Q + f (wε,Q) − δTε

[
w2

ε,Q

]
wε,Q

∣∣� Cε(5+2σ)/4(1−η)w
(2σ−1)

4
Q .

Proof. According to (d) of Proposition 4.1∣∣Tε

[
w2

ε,Q

]
wε,Q

∣∣� Cε2wQ.

We just need to estimate the local term: by (4.5) and (4.6) we deduce

�wε,Q − wε,Q + f (wε,Q) = �wQ − wQ + f (wQ) + o
(
ε3)w1/2

Q = f (wQ) −
k∑

j=1

f (wj ) + o
(
ε3)w1/2

Q

uniformly for x ∈ R
3 and Q ∈ Γ ε . To this aim set σ ′ = 1+2σ

4 ∈ ( 1
2 , σ ) and consider the sets Aε,i defined in Lemma 4.1.

Fix i = 1, . . . , k and for x ∈ Aε,i and j 
= i we have |x −Qj | � 1−η
2 log 1

ε2 and wj(x) � wi(x); then, using assumption
(f2) and (1.4),∣∣∣∣∣f (wQ) −

k∑
j=1

f (wj )

∣∣∣∣∣� C|wi |σ
∑
j 
=i

wj � Cwσ−σ ′
i e−σ ′|x−Qi |∑

j 
=i

e−|x−Qj |

� Cwσ−σ ′
i

∑
j 
=i

e−σ ′|Qi−Qj |e−(1−σ ′)|x−Qj | � Cε(1+σ ′)(1−η)wσ−σ ′
i in Aε,i .

For x ∈ R
3 \ (

⋃k
i=1 Aε,i) we get |x − Qi | � 1−η

2 log 1
ε2 for every i = 1, . . . , k, by which∣∣∣∣∣f (wQ) −

k∑
j=1

f (wj )

∣∣∣∣∣� C

k∑
j=1

|wj |1+σ � C

k∑
j=1

e−(1+σ ′)|x−Qj |wσ−σ ′
j � Cε(1+σ ′)(1−η)

k∑
j=1

wσ−σ ′
j . �

5. The linearized equation

Let us equip H 1
0 (Ωε) and L2(Ωε) with the following scalar product respectively:

(u, v)ε =
∫
Ωε

(∇u∇v + uv)dx, 〈u,v〉ε =
∫
Ωε

uv dx.

Taken Q = (Q1, . . . ,Qk) ∈ Γ ε , we introduce the following functions:

Zε,i,j = (1 − �)
∂wε,i

∂xj

, i ∈ {1, . . . , k}, j ∈ {1,2,3}.

By using (4.5) we deduce

Zε,i,j = (1 − �)
∂wi

∂xj

+ o
(
ε3)w1/2

i = f ′(wi)
∂wi

∂xj

+ o
(
ε3)w1/2

i (5.1)

uniformly for x ∈ R
3 and Q ∈ Γ ε. After integration by parts it is immediate to prove that(

φ,
∂wε,i

∂xj

)
ε

= 〈φ,Zε,i,j 〉ε ∀φ ∈ H 1
0 (Ωε), (5.2)

then orthogonality to the functions ∂wε,i

∂xj
in H 1

0 (Ωε) is equivalent to orthogonality to Zε,i,j in L2(Ωε). It is easy

to show that (
∂wi

∂xj
,

∂wi

∂x
)H 1(R3) = 0 for j 
= ; furthermore for i 
= m, since |Qi − Qm| → +∞ as ε → 0+, we get

(
∂wi

∂xj
, ∂wm

∂x
)H 1(R3) = o(1). Hence, using again (4.5), we can write〈

Zε,i,j ,
∂wε,m

∂x

〉
=
(

∂wε,i

∂x
,
∂wε,m

∂x

)
=
(

∂wi

∂x
,
∂wm

∂x

)
1 3

+ o(1) = δimδj

∥∥∥∥ ∂w

∂x

∥∥∥∥2

1 3
+ o(1) (5.3)
 ε j  ε j  H (R ) 1 H (R )
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as ε → 0+ uniformly for Q ∈ Γ ε (δim and δjn denoting the Kroneker’s symbols).
We first consider a linear problem: taken Q ∈ Γ ε and given h ∈ C(Ωε), find a function φ and constants βi,j

satisfying⎧⎪⎨⎪⎩
LQ[φ] = h +

∑
i,j

βijZε,i,j ,

φ ∈ H 2(Ωε) ∩ H 1
0 (Ωε), 〈φ,Zε,i,j 〉ε = 0 for i = 1, . . . , k, j = 1,2,3,

(5.4)

where

LQ[φ] := �φ − φ + f ′(wε,Q)φ − δTε

[
w2

ε,Q

]
φ − 2δTε[wε,Qφ]wε,Q.

Now we prove the following a priori estimate for (5.4).

Lemma 5.1. There exists a constant C > 0 such that, provided that ε is sufficiently small, if Q ∈ Γ ε and (φ,h,βi,j )

satisfies (5.4), the following holds:

‖φ‖∞ � C
(‖h‖2 + ‖h‖∞

)
.

Proof. We argue by contradiction. Assume the existence of a sequence εn → 0+, Qn = (Qn
1, . . . ,Qn

k) ∈ Γ εn ,
(φ̃n, β̃

n
i,j ) ∈ (H 2(Ωεn) ∩ H 1

0 (Ωεn)) × R
3k , hn ∈ C(Ωεn) satisfying (5.4) such that

‖φ̃n‖∞ > n
(‖h̃n‖2 + ‖h̃n‖∞

)
.

Since H 2(Ωε) ⊂ C(Ωε), it makes sense to set φn = φ̃n/‖φ̃n‖∞, βn
i,j = β̃n

i,j /‖φ̃n‖∞, hn = h̃n/‖φ̃n‖∞. We obtain that
(φn,β

n
i,j , hn) satisfies (5.4) and

‖φn‖∞ = 1, ‖hn‖2 + ‖hn‖∞ = o(1).

Choose (m,) ∈ {1, . . . , k} × {1,2,3} such that, up to a subsequence, |βn
m,| � |βn

i,j | for every (i, j) and n. By multi-
plying the equation in (5.4) by ∂wεn,m/∂x and integrating over Ωεn , we get∑

i,j

βn
i,j

∫
Ωεn

Zεn,i,j

∂wεn,m

∂x

dx = −
∫

Ωεn

hn

∂wεn,m

∂x

dx +
∫

Ωεn

LQn
[φn]∂wεn,m

∂x

dx. (5.5)

First examine the left-hand side of (5.5). By using (5.3)∑
i,j

βn
i,j

∫
Ωεn

Zεn,i,j

∂wεn,m

∂x

dx = βn
m,

(∥∥∥∥ ∂w

∂x1

∥∥∥∥2

H 1(R3)

+ o(1)

)
. (5.6)

The first term on the right-hand side of (5.5) can be estimated as∫
Ωεn

∣∣∣∣hn

∂wεn,m

∂x

∣∣∣∣dx � ‖hn‖∞
∫
R3

|∇wεn,m|dx = o(1). (5.7)

As regards the last term in (5.5), by (d) of Proposition 4.1 we have∣∣Tεn

[
w2

εn,Qn

]∣∣, ∣∣Tεn[wεn,Qn
φn]

∣∣� Cε2
n. (5.8)

Furthermore, by (4.5) and (5.1) we deduce∫
Ωεn

∣∣∣∣Zεn,m, − f ′(wεn,Qn
)
∂wεn,m

∂x

∣∣∣∣dx =
∫

Ωεn

∣∣∣∣∣f ′(wm) −
k∑

j=1

f ′(wj )

∣∣∣∣∣
∣∣∣∣∂wm

∂x

∣∣∣∣dx + o(1)

=
∑
j 
=m

∫ ∣∣∣∣f ′(wj )
∂wm

∂x

∣∣∣∣dx + o(1) = o(1)
Ωεn
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since |Qn
j − Qn

m| → +∞ for j 
= m. Then using (5.8) we obtain∫
Ωεn

LQn
[φn]∂wεn,m

∂x

dx =
∫

Ωεn

φn

[
−Zεn,m, + f ′(wεn,Qn

)
∂wεn,m

∂x

]
dx

− δ

∫
Ωεn

∂wεn,m

∂x

[
Tεn

[
w2

εn,Qn

]
φn + 2Tεn[wεn,Qn

φn]wεn,Qn

]
dx = o(1).

Combining this with (5.5), (5.6) and (5.7), we achieve βn
i,j = o(1) for every (i, j), by which∥∥∥∥hn +

∑
i,j

βn
i,jZεn,i,j

∥∥∥∥∞
= o(1).

Hence, by (5.8), we get∥∥�φn − φn + f ′(wεn,Qn
)φn

∥∥∞ = o(1). (5.9)

Fix R > 0. We claim that

‖φn‖L∞(
⋃k

j=1 BR(Qn
j ))

= o(1). (5.10)

Otherwise, we may assume that ‖φn‖L∞(BR(Qn
1)) � c > 0. By multiplying the equation in (5.4) by φn and integrating

by parts, using (a) and (b) of Proposition 4.1, we immediately get∫
Ωεn

(|∇φn|2 + φ2
n

)
dx �

∫
Ωεn

∣∣f ′(wεn,Qn
)
∣∣dx +

∫
Ωεn

|hnφn|dx � C + ‖hn‖2‖φn‖2 = C + o
(‖φn‖2

)
,

then the sequence φn is bounded in H 1(R3), and hence, possibly passing to a subsequence, φn(x +Qn
1) → φ0 weakly

in H 1(R3) and a.e. in R
3, and φ0 satisfies

�φ0 − φ0 + f ′(w)φ0 = 0, ‖φ0‖∞ � 1.

According to elliptic regularity theory we may assume φn(·+Qn
1) → φ0 uniformly on compact sets (see, for example,

[25, Corollary 4.7]), then ‖φ0‖∞ � c. By assumption (f2) φ0 = ∑3
j=1 aj

∂w
∂xj

. On the other hand for  = 1,2,3,
using (5.1),

0 =
∫
R3

φn

(
x + Qn

1

)
Zεn,1,

(
x + Qn

1

)→
3∑

j=1

aj

∫
R3

∂w

∂xj

(1 − �)
∂w

∂x

= a

∥∥∥∥ ∂w

∂x1

∥∥∥∥2

H 1
,

which implies a = 0, that is φ0 = 0. The contradiction follows.
Hence we have proved (5.10), by which we immediately obtain∥∥f ′(wεn,Qn

)φn

∥∥∞ = o(1)

and, by (5.9),

‖�φn − φn‖∞ = o(1).

By standard regularity results φn ∈ C2(Ωεn) ∩ C(Ωεn). Let x̄n be the maximum point for |φn| in Ωεn . Then we get
|φn|(x̄n) = 1 and �|φn|(x̄n) � 0, by which |�φn(x̄n) − φn(x̄n)| = |�|φn|(x̄n) − |φn|(x̄n)| > 1, which is a contradic-
tion. �

Now we are in position to provide the existence of a solution for the system (5.4).

Lemma 5.2. For ε > 0 sufficiently small, for every Q ∈ Γ ε and h ∈ C(Ωε), there exists a unique pair (φ,βi,j ) ∈
(H 2(Ωε) ∩ H 1

0 (Ωε)) × R
3k solving (5.4). Furthermore

‖φ‖H 1 + ‖φ‖∞ � C
(‖h‖2 + ‖h‖∞

)
.
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Proof. The existence follows from Fredholm alternative. To this aim, for every Q ∈ Γ ε let us consider HQ the closed
subset of H 1

0 (Ωε) defined by

HQ =
{
φ ∈ H 1

0 (Ωε)

∣∣∣∣ (φ,
∂wε,i

∂xj

)
ε

= 0 ∀i = 1, . . . , k, ∀j = 1,2,3

}
.

Notice that, by (5.2), φ ∈HQ solves the equation LQ[φ] = h +∑
i,j βi,jZε,i,j if and only if

(φ,ψ)ε − 〈
f ′(wε,Q)φ,ψ

〉
ε
+ δ

〈
Tε

[
w2

ε,Q

]
φ + 2Tε[wε,Qφ]wε,Q,ψ

〉
ε
= −〈h,ψ〉ε ∀ψ ∈ HQ. (5.11)

Indeed, once we know φ, we can determine the unique βi,j from the linear system of equations

−
〈
f ′(wε,Q)φ,

∂wε,m

∂xn

〉
ε

+ δ

〈
Tε

[
w2

ε,Q

]
φ + 2Tε[wε,Qφ]wε,Q,

∂wε,m

∂xn

〉
ε

= −
〈
h,

∂wε,m

∂xn

〉
ε

−
∑
i,j

βi,j

〈
Zε,i,j ,

∂wε,m

∂xn

〉
ε

, m = 1, . . . , k, n = 1,2,3.

According to (5.3), the coefficient matrix is nonsingular since it is dominated by its diagonal, that is

det

〈
Zε,i,j ,

∂wε,m

∂xn

〉
ε

=
∥∥∥∥ ∂w

∂x1

∥∥∥∥2(3+k)

H 1
+ o(1).

By standard elliptic regularity, φ ∈ H 2(Ωε).
Thus it remains to solve (5.11). According to Riesz’s representation theorem, take KQ(φ), h̄ ∈ HQ such that(

KQ(φ),ψ
)
ε
= −〈

f ′(wε,Q)φ,ψ
〉
ε
+ δ

〈
Tε

[
w2

ε,Q

]
φ + 2Tε[wε,Qφ]wQ,ψ

〉
ε

∀ψ ∈HQ,

(h̄,ψ)ε = −〈h,ψ〉ε ∀ψ ∈ HQ.

Then problem (5.11) consists in finding φ ∈HQ such that

φ +KQ(φ) = h̄. (5.12)

It is easy to prove that KQ is a linear compact operator form HQ to HQ. Using Fredholm’s alternatives, (5.12)
has a unique solution for each h̄, if and only if (5.12) has a unique solution for h̄ = 0. Let φ ∈ HQ be a solution
of φ +KQ(φ) = 0; then φ solves the system (5.4) with h = 0 for some βi,j ∈ R. Lemma 5.1 implies φ ≡ 0.

Finally, by multiplying the equation in (5.4) by φ and integrating by parts, using (a) and (b) of Proposition 4.1, we
immediately get∫

Ωε

(|∇φ|2 + φ2)dx �
∫
Ωε

∣∣f ′(wε,Q)φ2
∣∣dx +

∫
Ωε

|hφ|dx � C
(‖φ‖∞ + ‖h‖2

)‖φ‖2 � C
(‖φ‖∞ + ‖h‖2

)‖φ‖H 1,

by which

‖φ‖H 1 � C
(‖φ‖∞ + ‖h‖2

)
and we conclude by using Lemma 5.1 �
6. Liapunov–Schmidt reduction

The object is now to solve the following nonlinear problem: given Q = (Q1, . . . ,Qk) ∈ Γ ε , find (φ,βi,j ) solving⎧⎪⎨⎪⎩
Sε[wε,Q + φ] =

∑
i,j

βi,jZε,i,j ,

φ ∈ H 2(Ωε) ∩ H 1
0 (Ωε), 〈φ,Zε,i,j 〉ε = 0, i = 1, . . . , k, j = 1,2,3,

(6.1)

where

Sε[ψ] = �ψ − ψ + f (ψ) − δψTε

[
ψ2].
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Lemma 6.1. Fix τ ∈ ( 3
2 , 5+2σ

4 (1 − η)). Provided that ε > 0 is sufficiently small, for every Q ∈ Γ ε there is a unique
pair (φQ, βi,j (Q)) ∈ (H 2(Ωε) ∩ H 1

0 (Ωε)) × R
3k satisfying (6.1) and

‖φQ‖∞ < ετ , ‖φQ‖H 1 < ετ . (6.2)

Proof. We write the equation in (6.1) in the following form:

LQ[φ] = −Sε[wε,Q] − NQ[φ] +
∑
i,j

βijZε,i,j (6.3)

and use contraction mapping theorem. Here

NQ[φ] = f (wε,Q + φ) − f (wε,Q) − f ′(wε,Q)φ − δ(wε,Q + φ)Tε

[
φ2]− 2δφTε[wε,Qφ].

Consider the metric space BQ = {φ ∈ C(Ωε) | ‖φ‖2 � ετ ,‖φ‖∞ � ετ } endowed with the norm ‖ ·‖∗ = ‖ ·‖2 +‖·‖∞.
Taken φ1, φ2 ∈ BQ we compute∥∥f (wε,Q + φ1) − f ′(wε,Q)φ1 − f (wε,Q + φ2) − f ′(wε,Q)φ2

∥∥∗
� sup

ξ∈BQ

∥∥f ′(wε,Q + ξ) − f ′(wε,Q)
∥∥∞‖φ1 − φ2‖∗ � Cεστ‖φ1 − φ2‖∗,

by assumption (f1). By (c) of Proposition 4.1 we get∥∥(wε,Q + φ1)Tε

[
φ2

1

]− (wε,Q + φ2)Tε

[
φ2

2

]∥∥∗ �
∥∥Tε

[
φ2

1 − φ2
2

]
(wε,Q + φ1)

∥∥∗ + ∥∥Tε

[
φ2

2

]
(φ1 − φ2)

∥∥∗
� Cε

√
ε‖φ1 − φ2‖∗.

In a similar way∥∥φ1Tε[wε,Qφ1] − φ2Tε[wε,Q]φ2
∥∥∗ � Cε

√
ε‖φ1 − φ2‖∗,

by which∥∥NQ[φ1] − NQ[φ2]
∥∥∗ � C

(
εστ + ε

√
ε
)‖φ1 − φ2‖∗ ∀φ1, φ2 ∈ BQ, ∀Q ∈ Γ ε. (6.4)

For every φ ∈ BQ we define AQ[φ] ∈ H 2(Ωε) ∩ H 1
0 (Ωε) to be the unique solution to the system (5.4) given by

Lemma 5.2 with h = hQ[φ] := −Sε[wε,Q] − NQ[φ]. By (6.4), Lemmas 4.3 and 5.2 and the choice of τ∥∥AQ[φ]∥∥
H 1 + ∥∥AQ[φ]∥∥∞ �

∥∥hQ[φ]∥∥∗ � C
(
ε

5+2σ
4 (1−η) + ε(σ+1)τ + ε

3
2 +τ

)
< ετ

at least for small ε, and hence AQ[φ] ∈ BQ. Moreover, since AQ[φ1] − AQ[φ2] solves the system (5.4) with h =
−NQ[φ1] + NQ[φ2], by (6.4) and Lemma 5.2 we also have that∥∥AQ[φ1] −AQ[φ2]

∥∥∗ � C
∥∥NQ[φ1] − NQ[φ2]

∥∥∗ < ‖φ1 − φ2‖∗ ∀φ1, φ2 ∈ BQ, ∀Q ∈ Γ ε,

i.e. the map AQ is a contraction map from BQ to BQ. By the contraction mapping theorem, (6.1) has a unique solution
(φQ, βi,j (Q)) ∈ BQ × R

3k . �
Lemma 6.2. For ε > 0 sufficiently small the map Q ∈ Γε → φQ ∈ H 1

0 (Ωε) constructed in Lemma 6.1 is C1.

Proof. Consider the following map K :Γε × H 1
0 (Ωε) × R

3k → H 1
0 (Ωε) × R

3k of class C1:

K(Q, φ,βi,j ) =
(

(1 − �)−1(Sε[wε,Q + φ]) −∑
i,j βij

∂wε,i

∂xj

(φ,
∂wε,i

∂xj
)ε

)
, (6.5)

where v = (1 − �)−1(h) is defined as the unique solution in H 1
0 (Ωε) of

v − �v = h.
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It is immediate that (φ,βi,j ) solves the system (6.1) if and only if K(Q, φ,βi,j ) = 0. We are going to prove that,
provided that ε is sufficiently small, for every Q ∈ Γ ε the linear operator

∂K(Q, φ,βi,j )

∂(φ,βi,j )

∣∣∣∣
(Q,φQ,βi,j (Q))

:H 1
0 (Ωε) × R

3k → H 1
0 (Ωε) × R

3k

is invertible. But first notice how, assuming this, the thesis easily follows: indeed the uniqueness of the local solution
(φQ, βi,j (Q)) provided by Lemma 6.1 implies that the map Φε : Q ∈ Γε → φQ ∈ H 1

0 (Ωε) actually coincides with the
implicit function associated to K , hence the C1-regularity will follow from the Implicit Function Theorem.

Now we compute

∂K(Q, φ,βi,j )

∂(φ,βi,j )

∣∣∣∣
(Q,φQ,βi,j (Q))

[φ̂, β̂i,j ] =
(

(1 − �)−1(S
′
ε[wQ + φQ](φ̂)) −∑

i,j β̂ij
∂wε,i

∂xj

(φ̂,
∂wε,i

∂xj
)ε

)
.

Proceeding as in the proof of Lemma 5.2, (φ̂, β̂ij ) solves the system

∂K(Q, φ,βij )

∂(φ,βi,j )

∣∣∣∣
(Q,φQ,βi,j (Q))

[φ̂, β̂ij ] = (θ, γij )

if and only if (since ((1 − �)−1(h),ψ)ε = 〈h,ψ〉ε and since (5.2) holds) φ̂ satisfies〈
S′

ε[wε,Q + φQ](φ̂),ψ
〉
ε
= (θ,ψ)ε ∀ψ ∈HQ, (6.6)

being HQ the closed subset of H 1
0 (Ωε) defined in Lemma 5.2, and(

φ̂,
∂wε,i

∂xj

)
ε

= γij . (6.7)

Indeed, once we know φ̂, the related β̂i,j are given by the following system of equations:〈
S′

ε[wε,Q + φQ](φ̂),
∂wε,m

∂xn

〉
ε

=
∑
i,j

β̂i,j

(
∂wε,i

∂xj

,
∂wε,m

∂xn

)
ε

+
(

θ,
∂wε,m

∂xn

)
ε

for m ∈ {1, . . . , k}, n ∈ {1,2,3} (as we have already observed in Lemma 5.2, this system is uniquely solvable for
small ε).

Thus it remains to solve (6.6) and (6.7). We can decompose φ̂ = φ̄ + ∑
i,j cij

∂wε,i

∂xj
, where φ̄ ∈ HQ. According

to (6.7), the coefficients cij are immediately determined by the following system:∑
i,j

ci,j

(
∂wε,i

∂xj

,
∂wε,m

∂xn

)
ε

= γm,n, m ∈ {1, . . . , k}, n ∈ {1,2,3},

which is uniquely solvable for small ε. (6.6) may be rewritten as

(φ̄,ψ)ε − 〈
f ′(wε,Q + φQ)φ̂,ψ

〉
ε
+ δ

〈
φ̂Tε

[
(wε,Q + φQ)2],ψ 〉

ε

+ 2δ
〈
(wε,Q + φQ)Tε

[
(wε,Q + φQ)φ̂

]
,ψ

〉
ε
= −(θ,ψ)ε ∀ψ ∈HQ. (6.8)

According to Riesz’s representation theorem, for every φ̄ ∈ HQ take WQ(φ̄), θ̄ ∈ HQ such that(
WQ(φ̄),ψ

)
ε
= −〈

f ′(wε,Q + φQ)φ̄,ψ
〉
ε
+ δ

〈
φ̄Tε

[
(wε,Q + φQ)2],ψ 〉

ε

+ 2δ
〈
(wε,Q + φQ)Tε

[
(wε,Q + φQ)φ̄

]
,ψ

〉
ε

∀ψ ∈HQ,

and

(θ̄ ,ψ)ε = −
∑
i,j

ci,j

〈
f ′(wε,Q + φQ)

∂wε,i

∂xj

,ψ

〉
ε

+ δ
∑
i,j

ci,j

〈
∂wε,i

∂xj

Tε

[
(wε,Q + φQ)2],ψ〉

ε

+ 2δ
∑

ci,j

〈
(wε,Q + φQ)Tε

[
(wε,Q + φQ)

∂wε,i

∂xj

]
,ψ

〉
ε

∀ψ ∈HQ,
i,j
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Then problem (6.8) consists in finding φ̄ ∈HQ such that

φ̄ +WQ(φ̄) = −θ − θ̄ .

By (6.2) and (c), (d) of Proposition 4.1, comparing the definition of WQ and KQ (see Lemma 5.2), when ε → 0+ we
have

WQ −KQ → 0 uniformly for Q ∈ Γε.

Since we have proved that I + KQ is invertible, then the theory of the linear operators assures the invertibility of
I +WQ for small ε. This concludes the proof of the lemma. �
7. Reduced energy functional

For ε > 0 sufficiently small consider the reduced functional

Mε :Γ ε → R, Mε(Q) := Eε[wε,Q + φQ] − kI [w] − c1ε
2,

where φQ has been constructed in Lemma 6.1 and c1 is given by Proposition 4.2.
First we provide the following estimate.

Lemma 7.1. For ε > 0 sufficiently small the following holds:

Mε(Q) = α(Q) − c2ε
3H(εQ1) + o

(
ε3)

uniformly for Q ∈ Γ ε, where α : R3k → R and c2 > 0 are given by Proposition 4.2.

Proof. By using (d) of Proposition 4.1 and (6.2), for ε > 0 sufficiently small we compute

Eε[wε,Q + φQ] = 1

2

∫
Ωε

(∣∣∇(wε,Q + φQ)
∣∣2 + (wε,Q + φQ)2)dx −

∫
Ωε

F (wε,Q + φQ)dx

+ δ

4

∫
Ωε

(wε,Q + φQ)2Tε

[
(wε,Q + φQ)2]dx

= Eε(wε,Q) −
∫
Ωε

Sε(wε,Q)φQ dx + 1

2
‖φQ‖2

H 1

−
∫
Ωε

(
F(wε,Q + φQ) − F(wε,Q) − f (wε,Q)φQ

)
dx + O

(
ε2+τ

)
uniformly for Q ∈ Γ ε . By Lemma 4.3 we have |Sε[wε,Q]| � ετw

(2σ−1)/4
Q for small ε, while |F(wε,Q + φQ) −

F(wε,Q) − f (wε,Q)φQ| � C|φQ|2; hence, by using again (6.2) we get

Eε[wε,Q + φQ] = Eε(wε,Q) + O
(
ε2τ

)
uniformly for Q ∈ Γ ε . The thesis will follow from Proposition 4.2. �

Next lemma concerns the relation between the critical points of Mε and those of the energy functional Eε .

Lemma 7.2. Let Qε ∈ Γε be a critical point of Mε . Then, provided that ε > 0 is sufficiently small, the corresponding
function uε = wε,Qε

+ φQε
is a solution of (4.1).

Proof. Fix ε0 > 0 sufficiently small such that Lemmas 6.1 and 6.2 hold for ε ∈ (0, ε0). According to Lemma 6.1, for
every ε ∈ (0, ε0) and Q ∈ Γ ε φQ solves the equation

Sε(wε,Q + φQ) =
∑

βij (Q)Zε,i,j in Ωε (7.1)

i,j
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for some constants βij (Q) ∈ R
3k .

Let Qε ∈ Γε be a critical point of Mε:

∂

∂Qm,n

∣∣∣∣
Q=Qε

Mε(Q) = 0, m = 1, . . . , k, n = 1,2,3. (7.2)

Using (e) of Proposition 4.1 and the C1 regularity of the map Q ∈ Γε �→ φQ ∈ H 1
0 (Ωε), (7.2) may be rewritten as∫

Ωε

(
∇uε∇ ∂(wε,Q + φQ)

∂Qm,n

+ (
uε − f (uε) + δuεTε

[
u2

ε

])∂(wε,Q + φQ)

∂Qm,n

)
dx

∣∣∣∣
Q=Qε

= 0

for m = 1, . . . , k and n = 1,2,3, which is equivalent, by (7.1), to∑
i,j

βij (Qε)

∫
Ωε

Zε,i,j

∂(wε,Q + φQ)

∂Qm,n

dx

∣∣∣∣
Q=Qε

= 0. (7.3)

Since 〈Zε,i,j , φQ〉ε = 0, differentiating with respect to Qm,n we have that∫
Ωε

Zε,i,j

∂φQ

∂Qm,n

dx = −
∫
Ωε

φQ
∂Zε,i,j

∂Qm,n

dx = O
(
ετ
)
, (7.4)

since ∣∣∣∣∂Zε,i,j

∂Qm,n

∣∣∣∣= ∣∣∣∣δim

∂Zε,i,j

∂xn

∣∣∣∣= δim

∣∣∣∣(1 − �)
∂2wε,i

∂xj xn

∣∣∣∣� Ce−|x−Qi |

by (1.4). Notice that ∂wε,Q/∂Qm,n = −∂wε,m/∂xn; hence, combining (5.3), (7.3) and (7.4) we achieve

βm,n(Qε)

∥∥∥∥ ∂w

∂x1

∥∥∥∥2

H 1(R3)

+
∑
i,j

o(1)βi,j (Qε) = 0.

So βij (Qε) = 0 for i = 1, . . . , k, j = 1,2,3. Hence uε solves the equation

�uε − uε + f (uε) − δuεTε

[
u2

ε

]= 0. (7.5)

It remains to show that uε > 0. Indeed, multiplying (7.5) by u−
ε = max(0,−uε), and using (f1) we see that∫

Ωε

|∇u−
ε |2 dx +

∫
Ωε

|u−
ε |2 dx + δ

∫
Ωε

(u−
ε )2Tε

[
u2

ε

]
dx = 0

which implies, by (a) of Proposition 4.1, u−
ε = 0. By the strong maximum principle uε > 0 in Ωε . �

8. The reduced problem: proof of Theorem 1.1

In order to complete the proof of Theorem 1.1, we study a maximization problem.

Proposition 8.1. For ε > 0 sufficiently small, the following maximization problem

max
{
Mε(Q): Q ∈ Γ ε

}
has a solution Qε = (Qε

1, . . . ,Q
ε
k) ∈ Γε . Furthermore, H(εQε

i ) → H0 and, setting lε = mini 
=j |Qε
i − Qε

j |, the fol-
lowing holds:

lim
ε→0+

lε

| log ε2| = 1, lim
ε→0+

∑
i 
=j

lε

|Qε
i − Qε

j |
= m(k), (8.1)

where the number m(k) has been defined in Section 2.
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Proof. Let Qε ∈ Γ ε be the maximum point of the function Mε in the set Γ ε . First we prove that H(εQε
i ) → H0

for i = 1, . . . , k, which is equivalent, since ε|Qε
i − Qε

1| → 0, to H(εQε
1) → H0. Otherwise, there would exist a

sequence εn → 0+ such that H(εnQ
εn

1 ) > H0 + a > H0. Then let P0 ∈ Ω be a harmonic center, i.e. H(P0) = H0,
and set Q̃ε = Qε − (Qε

1)
k + (

P0
ε

)k . It is easy to prove that Q̃ε ∈ Γ ε: indeed |Q̃ε
i − Q̃ε

j | = |Qε
i − Qε

j |; furthermore

H(εQ̃ε
1) = H(P0) = H0 and then, since ε|Q̃i − Q̃1| → 0, for small ε H(εQ̃ε

i ) < 2H0. By applying Proposition 4.2
and Lemma 7.1 we get

α(Qεn) − c2ε
3
n(H0 + a) + o

(
ε3
n

)
> Mεn(Qεn) � Mεn(Q̃εn)

= α(Q̃εn) − c2ε
3
nH0 + o

(
ε3
n

)= α(Qεn) − c2ε
3
nH0 + o

(
ε3
n

)
and the contradiction follows.

To show that Qε ∈ Γε , we first obtain an upper bound for Mε(Qε). Let P = (P1, . . . ,Pk) ∈ Σk be an optimal
configuration given in Lemma 3.1. By the translation invariance of problem (∗) we can take P1 = P0/(ερε), where

ρε = log
1

ε2
+ log log

1

ε2
.

It is easy to see that ρεP belongs to Γε: indeed, for i 
= j ρε|Pi − Pj | � ρε > (1 − η) log 1
ε2 and ρε|Pi − Pj | <

(log 1
ε2 )2 for ε sufficiently small. Furthermore H(ερεP1) = H(P0) = H0 and then, since ερε|Pi − P1| → 0, for small

ε H(ερεPi) < 2H0.
By the definition of ρε and (1.4) for i 
= j we get

1

ρε|Pi − Pj | = 1 + o(1)

| log ε2|Pi − Pj || , w
(
ρε|Pi − Pj |

)
� w(ρε) � 2Aε2

| log ε2|2 . (8.2)

Then, by using Proposition 4.2, Lemma 7.1 and (8.2), we have the following estimate

Mε(Qε) � Mε(ρεP) = c3ε
2
∑
i 
=j

1 + o(1)

ρε|Pi − Pj | − c4

∑
i 
=j

(
1 + o(1)

)
w
(
ρε|Pi − Pj |

)− c2ε
3H0 + o

(
ε3)

= c3ε
2
∑
i 
=j

1 + o(1)

| log ε2|Pi − Pj || + o

(
ε2

| log ε2|
)

= c3ε
2

| log ε2|m(k) + o

(
ε2

| log ε2|
)

(8.3)

We are going to prove that lε/| log ε2| → 1 as ε → 0+. Assume the existence of a sequence εn → 0+ such that
lεn/| log ε2

n| > 1 + a > 1. Setting Q̂ε = 1
lε

Qε ∈ Σk , by using again Proposition 4.2 and Lemma 7.1,

Mεn(Qεn) � c3ε
2
n

∑
i 
=j

1 + o(1)

|Qεn

i − Q
εn

j | + o
(
ε3
n

)
� c3ε

2
n

∑
i 
=j

1 + o(1)

((1 + a)| log ε2
n||Q̂εn

i − Q̂
εn

j |) + o
(
ε3
n

)
� c3ε

2
n

(1 + a)| log ε2
n|

m(k) + o

(
ε2
n

| log ε2
n|
)

in contradiction with (8.3). Without loss of generality, we may assume that lε = |Qε
1 −Qε

2|. Now suppose the existence
of a sequence such that lεn/| log ε2

n| < 1 − a < 1. Then, by (1.4),

ε2
n

lεnw(lεn)
� 2

A
ε2
nelεn � 2

A
ε2a
n → 0

as n → +∞, by which we deduce

c3ε
2
n

|Qεn

1 − Q
εn

2 |
(
1 + o(1)

)− c4w
(
Q

εn

1 − Q
εn

2

)(
1 + o(1)

)= c3ε
2
n

lεn

(
1 + o(1)

)− c4w(lεn)
(
1 + o(1)

)
� 0

for large n. Since lε � (1 − η) log 1
ε2 , we get

Mεn(Qεn) � c3ε
2
n

∑ 1 + o(1)

|Qεn

i − Q
εn

j | + o
(
ε3
n

)

i 
=j, (i,j)
=(1,2)
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� c3ε
2
n

∑
i 
=j, (i,j)
=(1,2)

1 + o(1)

(1 − η)| log ε2
n||Q̂εn

i − Q̂
εn

j | + o
(
ε3
n

)
� c3ε

2
n

(1 − η)| log ε2
n|
∑
i 
=j

(
1 + o(1)

)( 1

|Q̂εn

i − Q̂
εn

j | − 1

)
+ o

(
ε3
n

)
� c3ε

2
n

(1 − η)| log ε2
n|
(
m(k) − 1

)+ o

(
ε2
n

| log ε2
n|
)

.

If we choose η > 0 sufficiently small such that 1
1−η

(m(k) − 1) < m(k) we achieve again a contradiction with (8.3).
Then the first limit in (8.1) holds. Furthermore we deduce

Mε(Qε) � c3ε
2
∑
i 
=j

1 + o(1)

|Qε
i − Qε

j |
+ o

(
ε3)= c3ε

2

| log ε2|
∑
i 
=j

1 + o(1)

|Q̂ε
i − Q̂ε

j |
+ o

(
ε3)� c3ε

2

| log ε2|m(k) + o

(
ε2

| log ε2|
)

.

Comparing this with (8.3) we deduce the second limit in (8.1). Finally notice that |Q̂ε
i − Q̂ε

j | � C for every i 
= j

and ε. Otherwise we could find a sequence εn → 0+ and I, J ⊂ {1, . . . , k}, I, J 
= ∅, such that I ∪ J = {1, . . . , k} and
|Qεn

i − Q
εn

j | → +∞ for i ∈ I and j ∈ J . Set k1 = #I , k2 = #J . Then, up to a subsequence,

m(k) = lim
n→∞

∑
i 
=j

1

|Q̂εn

i − Q̂
εn

j | = lim
n→∞

∑
i 
=j, i,j∈I

1

|Q̂εn

i − Q̂
εn

j | + lim
n→∞

∑
i 
=j, i,j∈J

1

|Q̂εn

i − Q̂
εn

j | � m(k1) + m(k2)

in contradiction with Lemma 3.1. Hence we obtain

lε �
∣∣Qε

i − Qε
j

∣∣� Clε.

Taking into account of (8.1) we obtain that Qε ∈ Γε for ε sufficiently small. �
Proof of Theorem 1.1. For every ε > 0 set uε = wε,Qε

+φQε
and ψε = Tε[u2

ε], where Qε is given by Proposition 8.1.
According to Lemma 7.2, (uε,ψε) solves the system (4.1). Consider εn → 0+ a generic sequence. Then, by using
again Proposition 8.1, up to a subsequence, εnQ

εn

i → P0 for every i, with H(P0) = H0. Then, fixed r > 0, by (6.2),∫
|εy−P0|�r/2

G(εx, εy)u2
ε dy = (

G(εx,P0) + o(1)
) ∫
|εy−P0|�r/2

u2
ε dy = (

G(εx,P0) + o(1)
)
k

∫
R3

w2 dy (8.4)

uniformly for |εx − P0| � r. Furthermore by (d) of Proposition 4.1, using also (1.4) and (6.2) and setting Aε =
{y ∈ Ω | |εy − P0| � r/2},

ε3
∫
Aε

G(εx, εy)u2
ε dy � Cε2(∥∥w2

Qε
+ φ2

Qε

∥∥
L1(Aε)

+ ∥∥w2
Qε

+ φ2
Qε

∥∥
L∞(Aε)

)= o
(
ε3) (8.5)

uniformly for x ∈ R
3. Combining (8.4) and (8.5), and using (4.2), we conclude the proof. �

Remark 8.2. We point out that the result of Theorem 1.1 can be improved in this sense: for every isolated minimum
point P0 for the Robin’s function H , there exists a family of solutions (vε,P0 , φε,P0) such that vε,P0 concentrates
at P0. Indeed, it is sufficient to apply a simple localization process: letting R > 0 be such that H(P ) > H0 for
0 < |P − P0| < R, we replace the configuration set Γε with

Γ̃ε = Γε ∩ {
Q = (Q1, . . . ,Qk) ∈ Ωk

ε

∣∣ |εQi − P0| < R ∀i
}

and all the proof developed above continue to work identically. If no information is known on the minima of H , then,
according to Theorem 1.1, we are able to get just one family of solutions (vε,φε) and different sequences εn → 0+
can give rise to different concentration points among the harmonic centers of Ω .
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