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The Wigner–Poisson–Fokker–Planck system:
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Abstract

This paper is concerned with the Wigner–Poisson–Fokker–Planck system, a kinetic evolution equation for an open quantum
system with a non-linear Hartree potential. Existence, uniqueness and regularity of global solutions to the Cauchy problem in
3 dimensions are established. The analysis is carried out in a weighted L2-space, such that the linear quantum Fokker–Planck
operator generates a dissipative semigroup. The non-linear potential can be controlled by using the parabolic regularization of the
system.

The main technical difficulty for establishing global-in-time solutions is to derive a-priori estimates on the electric field: Inspired
by a strategy for the classical Vlasov–Fokker–Planck equation, we exploit dispersive effects of the free transport operator. As a
“by-product” we also derive a new a-priori estimate on the field in the Wigner–Poisson equation.

Résumé

On considère le système de Wigner–Poisson–Fokker–Planck, une équation évolutive cinétique pour un système quantique ouvert
sujet à un potentiel non-linéaire du type Hartree. On démontre l’existence, l’unicité et la régularité pour les solutions du problème
de Cauchy en dimension 3. On travaille dans un espace L2 avec poids, où l’opérateur de Fokker–Planck engendre un semi group
dissipatif. La régularisation parabolique du dernier operateur contrôle le potentiel non-linéaire.

D’un côté technique, la difficulté principale pour établir l’existence globale en temps des solutions réside démontrer des bornes
a-priori pour le champ électrique : on étend une stratégie issue de l’équation classique de Vlasov–Fokker–Planck qu’utilise les
effets dispersifs d’équation du transport libre. En conséquence, on obtient aussi une nouvelle borne pour le champ dans le cas de
Wigner–Poisson.
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1. Introduction

The goal of this paper is to prove the existence and uniqueness of global-in-time solutions to the coupled Wigner–
Poisson–Fokker–Planck (WPFP) system in three dimensions. This kinetic equation is the quantum mechanical ana-
logue of the classical Vlasov–Poisson–Fokker–Planck (VPFP) system, which models the diffusive transport of charged
particles (in plasmas e.g.).

Wigner functions provide a kinetic description of quantum mechanics (cf. [34]) and have recently become a valu-
able modeling and simulation tool in fields like semiconductor device modeling (cf. [25] and references therein),
quantum Brownian motion, and quantum optics [9,17]. The real-valued Wigner function w(x, v, t) is a probabilistic
quasi-distribution function in the position–velocity (x, v) phase space for the considered quantum system at time t .

Its temporal evolution is governed by the Wigner–Fokker–Planck (WFP) equation:

wt + v · ∇xw − Θ[V ]w = β divv(vw) + σ�vw + 2γ divv(∇xw) + α�xw, t > 0, (1.1)

on the phase space x ∈ R3, v ∈ R3, with the initial condition

w(x, v, t = 0) = w0(x, v).

With a vanishing right-hand side, Eq. (1.1) would be the (diffusion-free) Wigner equation. It describes the reversible
evolution of a quantum system under the action of a (possibly time-dependent) electrostatic potential V = V (x, t).
The potential effect enters in the equation via the pseudo-differential operator Θ[V ]:(

Θ[V ]w)
(x, v, t) = i

[
V

(
t, x + 1

2i
∇v

)
− V

(
t, x − 1

2i
∇v

)]
w(x, v, t)

= i

(2π)3/2

∫
R3

δV (x, η, t)Fv→ηw(x,η, t)eiv·η dη

= i

(2π)3

∫
R3

∫
R3

δV (x, η, t)w(x, v′, t)ei(v−v′)·η dv′ dη, (1.2)

where δV (x, η, t) = V (x + η
2 , t) − V (x − η

2 , t) and Fv→ηw denotes the Fourier transform of w with respect to v:

Fv→ηw(t, x, η) = 1

(2π)3/2

∫
R3

w(t, x, v′)e−iv′·η dv′.

For simplicity of the notation we have set here the Planck constant, particle mass and charge equal to unity.
The right-hand side of (1.1) is a Fokker–Planck type model for the non-reversible interaction of this quantum sys-

tem with an environment, e.g. the interaction of electrons with a phonon bath (cf. [9,15] for derivations from reversible
quantum systems, and [18,33] for applications in quantum transport). In (1.1), β � 0 is the friction parameter and the
parameters α, γ � 0, σ > 0 constitute the phase-space diffusion matrix of the system. In the kinetic Fokker–Planck
equation of classical mechanics (cf. [29,12]) one would have α = γ = 0. For the WFP equation (1.1) we have to
assume(

α γ + i
4β

γ − i
4β σ

)
� 0,

which guarantees that the system is quantum mechanically correct. More precisely, it guarantees that the correspond-
ing von Neumann equation is in Lindblad form and that the density matrix of the quantum system stays a positive
operator under temporal evolution (see [3] for details). In the sequel we shall therefore assume

ασ � γ 2 + β2

and ασ > γ 2. (1.3)
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Hence, the principle part of the Fokker–Planck term is uniformly elliptic. This makes the present work complementary
to [3], where the friction-free, hypoelliptic case (with α = β = γ = 0) was analyzed.

The WFP equation (1.1) is self-consistently coupled with the Poisson equation for the (real-valued) potential
V = V [w](x, t):

−�V = n[w], x ∈ R3, t > 0, (1.4)

with the particle density

n[w](x, t) :=
∫
R3

w(x, v, t)dv. (1.5)

This potential models the repulsive Coulomb interaction within the considered particle system in a mean-field de-
scription.

The main analytical challenge for tackling Wigner–Poisson systems is the proper definition of n[w] in appropriate
Lp spaces. Due to the definition of the operator Θ in Fourier space, w ∈ L2(R3

x × R3
v) is the natural set-up. Without

further assumptions, of course, this does not justify to define n[w]. We shall now summarize the existing literature of
this field and the typical strategies to overcome the above problem:

(a) The standard approach for the Wigner–Poisson equation is to reformulate it as a Schrödinger–Poisson system,
where the particle density then appears in L1 (cf. [8,13] for the 3D-whole space case).

(b) In one spatial dimension with periodic boundary conditions in x the Wigner–Poisson system (and WPFP) can be
dealt with directly on the kinetic level. For w in a weighted L2-space, the non-linear term Θ[V ]w is then bounded
and locally Lipschitz [2,4]. The same strategy was also used in [22] for the Wigner–Poisson system on a bounded
(spatial) domain in three dimensions (local-in-time solution).

(c) By adapting L1-techniques from the classical Vlasov–Fokker–Planck equation, the 3D Wigner–Poisson–Fokker–
Planck system was analyzed in [3] (local-in-time solution for the friction-free problem) and [10] (global-in-time
solution). The latter paper, however, is not a purely kinetic analysis as it requires to assume the positivity of the
underlying density matrix. In both cases the dissipative structure of the system allows to control n[w].

(d) In [1,5] the 3D Wigner–Poisson and WPFP systems were reformulated as von-Neumann equations for the quan-
tum mechanical density matrix. This implies n ∈ L1(R3). While this approach is the most natural, both physically
and in its mathematical structure, it is restricted to whole space cases. Extensions to initial-boundary value prob-
lems (as needed for practical applications and numerical analysis) seem unfeasible.

(e) For the classical Vlasov-Poisson-Fokker–Planck equation there exists a vast body of mathematical literature from
the 1990’s (cf. [6,7,12,11,14]), and many of those tools will be closely related to the present work.

In spite of the various existing well-posedness results for the WPFP problem, there is a need for a purely kinetic
analysis, and this is our goal here. Such an approach could possibly allow for an extension to boundary-value problems
in the Wigner framework (where the positivity of the related density matrix is a touchy question).

Mathematically we shall develop the following new tools and estimates that could be important also for other
quantum kinetic applications: In all of the existing literature on Wigner–Poisson problems (except [32]) the potential
V is bounded, which makes it easy to estimate the operator Θ[V ] in L2. Our framework for the local in time analysis
does not yield a bounded potential. However, the operator Θ only involves δV , a potential difference, which has better
decay properties at infinity. This observation gives rise to new estimates that are crucial for our local-in-time analysis.

In order to establish global-in-time solutions we shall extend dispersive tools of Lions, Perthame and Castella (cf.
[21,27,16] for applications to classical kinetic equation) to the WP and WPFP systems. The fact that the Wigner
function w also takes negative values gives rise to an important difference between classical and quantum kinetic
problems: In the latter case, the conservation of mass and energy or pseudo-conformal laws do not provide useful
a-priori estimates on w. We shall hence assume that the initial state lies in a weighted L2-space, but we shall not
require that our system has finite mass or finite kinetic energy. Since the energy balance will not be used, this also
implies that the sign of the interaction potential does not play a role in our analysis.

This paper is organized as follows: In Section 2 we introduce a weighted L2-space for the Wigner function w that
allows to define n[w] and the non-linear term Θ[V ]w. In Section 3 we obtain a local-in-time, mild solution for WPFP
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using a fixed point argument and the parabolic regularization of the Fokker–Planck term. In Section 4 we establish
a-priori estimates to obtain global-in-time solutions. The key point is to derive first Lp-bounds for the electric field
∇V by exploiting dispersive effects of the free kinetic transport. “Bootstraping” then yields estimates on the Wigner
function in a weighted L2-space. Finally, we give regularity results on the solution. The technical proofs of several
lemmata are deferred to Appendix A.

2. The functional setting

In this section we shall discuss the functional analytic preliminaries for studying the non-linear problem (1.1)–
(1.5). First we shall introduce an appropriate “state space” for the Wigner function w which allows to “control” the
particle density n[w] and the self-consistent potential V [w]. Next, we shall discuss the linear Wigner–Fokker–Planck
equation and the dissipativity of its (evolution) generator A.

2.1. State space and self-consistent potential

Let us introduce the following weighted (real valued) L2-space

X := L2(R6; (1 + |v|2)2 dx dv
)
, (2.1)

endowed with the scalar product

〈u,w〉X =
∫
R3

∫
R3

uw
(
1 + |v|2)2 dx dv. (2.2)

The following proposition motivates the choice of X as the state space for our analysis.

Proposition 2.1. For all w ∈ X, the function n[w] defined by n[w](x) := ∫
w(x, v)dv, x ∈ R3, belongs to L2(R3)

and satisfies∥∥n[w]∥∥
L2(R3)

� C‖w‖X, (2.3)

with a constant C independent of w.

Here and in the sequel C shall denote generic, but not necessarily equal, constants.

Proof. By using Hölder inequality in the v-integral, we get∥∥n[w]∥∥2
L2(R3)

�
∫ (∫ ∣∣w(x, v)

∣∣2(1 + |v|2)2 dv

)(∫
dv

(1 + |v|2)2

)
dx = C‖w‖2

X. �
Remark 2.2. The choice of the |v|2 weight was already seen to be convenient to control the L2-norm of the density
on a bounded domain of R3

x (cf. [22]).
The subsequent analysis would hold also by including a symmetric weight in the x-variable (i.e. for w ∈

L2(R6; (1 + |x|2 + |v|2)2 dx dv)), which would yield a Lp-bound with p ∈ (3/2,2] for the density.

In this framework the following estimates for the self-consistent potential hold.

Proposition 2.3. For all w ∈ X, the (Newton potential) solution V = V [w] of the equation −�xV [w] = n[w], x ∈ R3,
satisfies∥∥∇V [w]∥∥

L6(R3)
� C

∥∥n[w]∥∥
L2(R3)

. (2.4)

Proof. Since V = 1
4π |x| ∗ n, we have ∇V = − x

4π |x|3 ∗ n, and the estimate follows from the generalized Young in-
equality. �
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Remark 2.4. Note that n ∈ L2(R3) does not yield (via the generalized Young inequality) a control of V in any
Lr -space (even n ∈ Lp(R3) with p ∈ (3/2,2] would not “help”). However, the operator Θ[V ] involves only the
function δV , which is slightly “better behaved”.

We anticipate that we will later recover some information on the potential V via new a-priori estimates on the
electric field ∇V [w] (see Corollary 4.17).

Omitting the time-dependence we have

δV (x, η) = V

(
x + η

2

)
− V

(
x − η

2

)
= 1

4π

∫
R3

n[w](x + η/2 − ξ) − n[w](x − η/2 − ξ)

|ξ | dξ

= 1

4π

∫
R3

f (y;η)n[w](x − y)dy,

with the “dipole-kernel” f (y;η) := ( 1
|y+η/2| − 1

|y−η/2| ).

Proposition 2.5. For all w ∈ X and fixed η ∈ R3, we have δV [w](·, η) ∈ Lq(R3
x), 6 < q � ∞. Moreover∥∥δV [w](·, η)

∥∥
L∞(R3

x)
� C|η|1/2

∥∥n[w]∥∥
L2(R3)

. (2.5)

Proof. By using the triangle inequality,∣∣f (y;η)
∣∣ � |η|

|y − η/2||y + η/2| ,
and the transformation y = |η|x, we estimate for 3/2 < p < 3∥∥f (·;η)

∥∥p

Lp(R3)
= |η|3−p

∫
R3

dx

(|x − e/2||x + e/2|)p < ∞,

where e ∈ R3 is some unit vector (due to the rotational symmetry of ‖f (·;η)‖p

Lp(R3)
with respect to η). Young in-

equality then gives δV (·, η) ∈ Lq(R3), 6 < q � ∞, and the assertion holds. �
In most of the literature the Wigner operator Θ is defined on L2(Rd

v ) for bounded potentials V , cf. [24,23,2]. For
our non-linear problem (1.1)–(1.5), however, V ∈ L∞(R3) does not hold. As a compensation we shall hence exploit
the additional regularity of the Wigner function to define the quadratic term Θ[V [w]]w (cf. Proposition 2.8 in [22]
for a similar strategy).

Proposition 2.6. Let u ∈ X and ∇vu ∈ X be given. Then, the linear operator

z �−→ Θ
[
V [z]]u,

with the function V [z] = 1
4π |x| ∗ n[z], is bounded from the space X into itself and satisfies∥∥Θ

[
V [z]]u∥∥

X
� C

{‖u‖X + ‖∇vu‖X

}‖z‖X, ∀z ∈ X. (2.6)

Proof. To estimate ‖Θ[V [z]]u‖X we shall consider separately the two terms of the equivalent norm

‖u‖2
X̃

:= ‖u‖2
2 +

3∑
i=1

∥∥v2
i u

∥∥2
2. (2.7)

First, by denoting û := Fv→ηu, we get∥∥Θ
[
V [z]]u∥∥2

2 =
∫∫ ∣∣δ(V [z])(x, η)û(x, η)

∣∣2 dx dη �
∫∫ ∥∥δ

(
V [z])(·, η)

∥∥2
∞

∣∣û(x, η)
∣∣2 dη dx

� C‖z‖2
X

∫∫ (|η|1/2
∣∣û(x, η)

∣∣)2 dη dx � C‖z‖2
X

(‖u‖2
2 + ‖∇vu‖2

2

)
, (2.8)
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by applying first the Plancherel Theorem, then Hölder’s inequality in the x variable, the estimates (2.3), (2.5) for the
function δV [z], and finally, Young inequality and the Plancherel Theorem to the last integral.

For the second term of ‖Θ[V [z]]u‖
X̃

we shall use

v2
i Θ[V ]w(x, v) = 1

4
Θ

[
∂2
i V

]
w(x, v) + Ω[∂iV ](viw)(x, v) + Θ[V ]v2

i w(x, v), (2.9)

with the pseudo-differential operator

Ω[V ] := i(δ+V )

(
x,

∇v

i

)
, (δ+V )(x, η) := V

(
x + η

2

)
+ V

(
x − η

2

)
. (2.10)

Here and in the sequel we use the abbreviation ∂i := ∂xi
. (2.9) is now estimated:∥∥v2

i Θ
[
V [z]]u∥∥

2 � 1

4

∥∥δ
(
∂2
i V [z])û∥∥

2 + ∥∥δ+
(
∂iV [z])∂ηi

û
∥∥

2 + ∥∥δV [z]∂2
ηi

û
∥∥

2. (2.11)

The first two terms of (2.11) can be estimated as follows:∥∥δ
(
∂2
i V [z])û∥∥

L2(R6)
� 2

∥∥∂2
i V [z]∥∥

L2(R3
x)

‖û‖L2(R3
x ;L∞(R3

η))

� C‖z‖X

∥∥(
1 + |v|2)u∥∥

L2(R6)
,

by applying Hölder’s inequality, (2.3) and the Sobolev embedding û(x, ·) ∈ H 2(R3
η) ↪→ L∞(R3

η).∥∥δ+
(
∂iV [z])∂ηi

û
∥∥

L2(R6)
� C

∥∥∂iV [z]∥∥
L4(R3

x)
‖∂ηi

û‖L2(R3
x ;L4(R3

η))

� C‖z‖X

∥∥(
1 + v2

i

)
u
∥∥

2, (2.12)

by the Sobolev embedding and ∇ηû(x, ·) ∈ H 1(R3
η) ↪→ L4(R3

η), and by estimate (2.4) for ∇V [z] and (2.3). For the
last term of (2.11) we estimate as in (2.8):∥∥δV [z]∂2

ηi
û
∥∥2

2 �
∫∫ ∥∥δV [z](·, η)

∥∥2
∞

∣∣∂2
ηi

û(x, η)
∣∣2 dη dx

� C‖z‖2
X

∫∫ (|η|1/2∂2
ηi

û(x, η)
)2 dη dx

� C‖z‖2
X

(∥∥∂2
ηi

û
∥∥2

2 + ∥∥η∂2
ηi

û
∥∥2

2

)
� C‖z‖2

X

(∥∥∂2
ηi

û
∥∥2

2 + ∥∥∂2
ηi

(ηû)
∥∥2

2 + ‖∂ηi
û‖2

2

)
� C‖z‖2

X

(∥∥(
1 + v2

i

)
u
∥∥2

2 + ∥∥v2
i ∇vu

∥∥2
2

)
by interpolation and integration by parts.

This concludes the proof of estimate (2.6). �
Remark 2.7. The previous proposition shows that the bilinear map

(z, u) �−→ Θ
[
V [z]]u

is well-defined for all z,u ∈ X, subject to ∇vu ∈ X. The unusual feature of the above proposition is the boundedness
of this map with respect to the function z appearing in the self-consistent potential V [z]. This is in contrast to most of
the existing literature [2,23,24], where the boundedness of the pseudo-differential operator Θ[V [z]] (with z fixed) is
used. However, this can only hold for bounded potentials V .

2.2. Dissipativity of the linear equation

In our subsequent analysis we shall first consider the linear Wigner–Fokker–Planck equation, i.e. Eq. (1.1) with
V ≡ 0. The generator of this evolution problem is the unbounded linear operator A :D(A) → X,

Au := −v · ∇xu + β divv(vu) + σ�vu + 2γ divv(∇xu) + α�xu, (2.13)
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defined on

D(A) = {u ∈ X | v · ∇xu, v · ∇vu,�vu,divv ∇xu,�xu ∈ X}. (2.14)

Clearly, C∞
0 (R6) ⊂ D(A). Hence, D(A) is dense in X. Next we study whether the operator A is dissipative on the

(real) Hilbert space X̃, i.e. whether

〈Au,u〉
X̃

� 0, ∀u ∈ D(A) (2.15)

holds. Here, X̃ is the completion of C∞
0 (R6) with respect to the norm defined by Eq. (2.7), which is equivalent

to ‖ · ‖X .

Lemma 2.8. Let the coefficients of the operator A satisfy ασ � γ 2. Then A − κI with

κ := 3

2
β + 9σ (2.16)

is dissipative in X̃.

The proof is lengthy but straightforward and deferred to Appendix A.
By Theorem 1.4.5b of [26] its closure, A − κI = Ā − κI is also dissipative.
In order to prove that Ā − κI generates a C0 semigroup of contractions we shall use a well-known corollary to

the Lumer–Phillips theorem (Corollary 1.4.4 of [26]). To this end we have to analyze the dissipativity of its adjoint
A∗ − κI . A straightforward calculation using integration by parts yields

〈Au,w〉
X̃

= 〈u,A∗
1w〉

X̃
+ 〈u,A∗

2w〉
X̃
, ∀u,w ∈ D(A),

with

A∗
1w = v · ∇xw − βv · ∇vw + σ�vw + 2γ divv(∇xw) + α�xw,

〈u,A∗
2w〉

X̃
=

3∑
i=1

(
−4

3
β

∫∫
v4
i wu + 8

3
σ

∫∫
v3
i wvi

u + 12

3
σ

∫∫
v2
i wu + 8

3
γ

∫∫
v3
i wxi

u

)
.

Hence, A∗|D(A)—the restriction of the adjoint of the operator A to D(A)—is given by A∗ = A∗
1 + A∗

2. A∗ is
densely defined on D(A∗) ⊇ D(A), and hence A is a closable operator (cf. [28, Theorem VIII.1.b]). Its closure Ā

satisfies (Ā)∗ = A∗ (cf. [28], Theorem VIII.1.c).
Since 〈A∗u,u〉 = 〈Au,u〉 the following lemma on the dissipativity of the operator A∗ restricted to D(A) holds.

Lemma 2.9. Let the coefficients of the operator A satisfy ασ � γ 2. Then A∗ |D(A) −κI is dissipative (with κ as
in (2.16)).

Next we consider the dissipativity of this operator on its proper domain D(A∗), which, however, is not known
explicitly. To this end we shall use the following technical lemma. Its proof is deferred to the appendix and the
arguments employed there are inspired by [2,5], but there are also similar results for FP-type operators in [19,20], e.g.

Lemma 2.10. Let P = p(x, v,∇x,∇v) where p is a quadratic polynomial and

D(P ) := C∞
0

(
R6) ⊂ X̃.

Then P̄ is the maximum extension of P in the sense that

D(P̄ ) := {u ∈ X̃ | the distribution Pu ∈ X̃}.

We now apply Lemma 2.10 to P = A∗ − κI , which is dissipative on D(P ) ⊂ D(A). Since A∗ is closed, we have
D(A∗) = D(P̄ ) = {u ∈ X | A∗u ∈ X} and A∗ − κI is dissipative on all of D(A∗).

Applying Corollary 1.4.4 of [26] to Ā − κI (with (Ā)∗ = A∗), then implies that Ā − κI generates a C0 semigroup
of contractions on X, and the C0 semigroup generated by Ā satisfies∥∥etĀu

∥∥ ˜ � eκt‖u‖ ˜ , u ∈ X, t � 0.

X X
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Since ‖ · ‖X and ‖ · ‖
X̃

are equivalent norms in X with

‖u‖
X̃

� ‖u‖X � 4‖u‖
X̃
,

we have∥∥etĀu
∥∥

X
� 4eκt‖u‖X, u ∈ X, t � 0. (2.17)

3. Existence of the local-in-time solution

In this section we shall use a contractive fixed point map to establish a local solution of the WPFP system. To this
end the parabolic regularization of the linear WFP equation will be crucial to define the self-consistent potential term.

3.1. The linear equation

First let us consider the linear equation

wt = Āw(t), t > 0, w(t = 0) = w0 ∈ X. (3.1)

By the discussion in Subsection 2.2, its unique solution w(t) = etĀw0 satisfies∥∥w(t)
∥∥

X
� 4eκt‖w0‖X, ∀t � 0. (3.2)

Actually, the solution of the equation can be expressed as

w(x, v, t) =
∫∫

w0(x0, v0)G(t, x, v, x0, v0)dx0 dv0, ∀(x, v) ∈ R6, (3.3)

where the Green’s function G satisfies (in a weak sense) Eq. (3.1) and the initial condition

lim
t→0

G(t, x, v, x0, v0) = δ(x − x0, v − v0),

for any fixed (x0, v0) ∈ R6 (cf. Definition 2.1 and Proposition 3.1 in [30]).
The Green’s function reads

G(t, x, v, x0, v0) = e3βtF
(
t,X−t (x, v) − x0, Ẋ−t (x, v) − v0

)
, (3.4)

with

F(t, x, v) = 1

(2π)3(4λ(t)ν(t) − μ2(t))3/2
· exp

{
−ν(t)|x|2 + λ(t)|v|2 + μ(t)(x · v)

4λ(t)ν(t) − μ2(t)

}
.

The characteristic flow Φt(x, v) = [Xt(x, v), Ẋt (x, v)] of the first order part of (2.13), is given for β > 0 by

Xt(x, v) = x + v

(
1 − e−βt

β

)
,

Ẋt (x, v) = ve−βt ,

and Φt(x, v) = [x +vt, v], for β = 0. The asymptotic behavior of the functions λ(t), ν(t), μ(t) for small t is described
(also for β = 0) by

λ(t) = αt + σ

[
e2βt − 4eβt + 3

2β3
+ 1

β2
t

]
+ γ

[
2

β
t − 2

β2

(
eβt − 1

)] ∼ αt, t → 0,

ν(t) = σ
e2βt − 1

2β
∼ σ t, t → 0,

μ(t) = σ

(
1 − eβt

β

)2

+ γ
2(1 − eβt )

β
∼ −2γ t, t → 0.

And hence:

f (t) := 4λ(t)ν(t) − μ2(t) ∼ 4
(
ασ − γ 2)t2 > 0.

With these preliminaries, the following parabolic regularization result can be deduced.
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Proposition 3.1. For each parameter set {α,β, γ,σ }, there exist two constants B = B(α,β, γ,σ ) and T0 =
T0(α,β, γ,σ ), such that the solution of the linear equation (3.1) satisfies∥∥∇vw(t)

∥∥
X

� Bt−1/2eκt‖w0‖X, ∀0 < t � T0, (3.5)∥∥∇xw(t)
∥∥

X
� Bt−1/2eκt‖w0‖X, ∀0 < t � T0, (3.6)

for all w0 ∈ X.

The proof is similar to [11] and it will be deferred to Appendix A.

Remark 3.2. (a) Observe that the functions ∇xw,∇vw ∈ C((0,∞);X). The local boundedness of ∇xw,∇vw on any
interval (τ, τ + T0] follows from (3.2) and Proposition 3.1.

(b) Note that the strategy of the next section will not work in the degenerated parabolic case ασ − γ 2 = 0, since
the decay rates of Proposition 3.1 would then be t−3/2, which is not integrable at t = 0. Alternative strategies for this
degenerate case were studied in [3]. In a forthcoming paper the authors shall propose a different strategy to deal with
the hypoelliptic case.

3.2. The non-linear equation: local solution

Our aim is to solve the following non-linear initial value problem

wt(t) = Āw(t) + Θ
[
V [w(t)]]w(t), ∀t > 0, w(t = 0) = w0 ∈ X, (3.7)

where the pseudo-differential operator Θ is formally defined by (1.2) and the potential V [w(t)] is the (Newton poten-
tial) solution of the Poisson equation

−�xV (t, x) = n
[
w(t)

]
(x) =

∫
R3

w(t, x, v)dv, x ∈ R3, (3.8)

for all t > 0. Actually, if we assume w(t) ∈ X for all t � 0, then the function n[w(t)] is well-defined for all t � 0 (cf.
Proposition 2.1), and the solution V [w(t)] satisfies the estimates of Propositions 2.3, 2.5 for all t � 0.

Propositions 2.6 and 3.1 motivate the definition of the Banach space

YT := {
z ∈ C

([0, T ];X) | ∇vz ∈ C
(
w(0, T ];X)

with
∥∥∇vz(t)

∥∥
X

� Ct−1/2 for t ∈ (0, T )
}
,

endowed with the norm

‖z‖YT
:= sup

t∈[0,T ]
∥∥z(t)

∥∥
X

+ sup
t∈[0,T ]

∥∥t1/2∇vz(t)
∥∥

X
,

for every fixed 0 < T < ∞. We shall obtain the (local-in-time) well-posedness result for the problem (3.7) by intro-
ducing a non-linear iteration in the space YT , with an appropriate (small enough) T .

For a given w ∈ YT we shall now consider the linear Cauchy problem for the function z,

zt = Āz(t) + Θ
[
V

[
z(t)

]]
w(t), ∀t ∈ (0, T ], z(t = 0) = w0 ∈ X, (3.9)

with 0 < T � T0 and T0 is defined in Proposition 3.1. According to Proposition 2.6 the (time-dependent) operator
Θ[V [·]]w(t) is, for each fixed t ∈ (0, T0], a well-defined, linear and bounded map on X, which we shall consider as a
perturbation of the operator Ā.

Lemma 3.3. For all w0 ∈ X and w ∈ YT , with T � T0, the initial value problem

zt = Āz(t) + Θ
[
V

[
z(t)

]]
w(t), ∀t ∈ (0, T ], z(t = 0) = w0,

has a unique mild solution z ∈ C([0, T ];X), which satisfies

z(t) = etĀw0 +
t∫

0

e(t−s)ĀΘ
[
V

[
z(s)

]]
w(s)ds, ∀t ∈ [0, T ]. (3.10)

Moreover, the solution z belongs to the space YT .
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Proof. The first assertion follows directly by applying (a trivial extension of) Theorem 6.1.2 in [26]:
For any fixed w ∈ YT , the function g(t, ·) := Θ[V [·]]w(t) is a bounded linear operator on X for all t ∈ (0, T ),

and it satisfies g ∈ L1((0, T );B(X))∩C((0, T ];B(X)) (by Proposition 2.6). Moreover, by estimates (2.17), (2.6), the
following inequalities hold

∥∥z(t)
∥∥

X
� 4eκt‖w0‖X + 4

t∫
0

eκ(t−s)C
{∥∥w(s)

∥∥
X

+ ∥∥∇vw(s)
∥∥

X

}∥∥z(s)
∥∥

X
ds (3.11)

� 4eκt‖w0‖X + 4CeκT ‖w‖YT

t∫
0

(
1 + s−1/2)∥∥z(s)

∥∥
X

ds, (3.12)

for all t ∈ [0, T ]. Then, by Gronwall’s Lemma,∥∥z(t)
∥∥

X
� 4eκT ‖w0‖X

[
1 + 4C‖w‖YT

e(κT +4CeκT ‖w‖YT
(T +2T 1/2))

(
t + 2t1/2)], (3.13)

for all t ∈ [0, T ]. By differentiating Eq. (3.10) in the v-direction, we obtain

∇vz(t) = ∇vetĀw0 +
t∫

0

∇ve(t−s)Āg
(
s, z(s)

)
ds, ∀t ∈ [0, T ]. (3.14)

Using the estimates (3.5), (2.6), and (3.13) then yields

∥∥∇vz(t)
∥∥

X
� Bt−1/2eκt‖w0‖X + B‖w‖YT

t∫
0

(t − s)−1/2eκ(t−s)C
{
1 + s−1/2}∥∥z(s)

∥∥
X

ds

� Bt−1/2eκt‖w0‖X + 4BCe2κT ‖w0‖X‖w‖YT

×
[
π + 2t1/2 + 4C‖w‖YT

e(κT +4CeκT ‖w‖YT
(T +2T 1/2))

(
4t1/2 + 3

2
πt + 4

3
t3/2

)]
, (3.15)

for all t ∈ [0, T ]. The continuity in time of ∇vz can be derived from (3.14) by using Remark 3.2 and the fact that
g(t, z(t)) ∈ C((0, T ];X). Hence, the function z belongs to the space YT . �

We now define the (affine) linear map M on YT (for any fixed 0 < T � T0):

w �−→ Mw := z,

where z is the unique mild solution of the initial value problem (3.9). According to Lemma 3.3, z ∈ YT . Next we shall
show that M is a strict contraction on a closed subset of YT , for T sufficiently small. This will yield the local-in-time
solution of the non-linear equation (3.7).

Proposition 3.4. For any fixed w0 ∈ X, let R > max{4,B}eκ‖w0‖X , with the constant B defined in Proposition 3.1.
Then there exists a τ := τ(‖w0‖X,B) > 0 such that the map M ,

(Mw)(t) = etĀw0 +
t∫

0

e(t−s)ĀΘ
[
V

[
Mw(s)

]]
w(s)ds, ∀t ∈ [0, τ ], (3.16)

is a strict contraction from the ball of radius R of Yτ into itself.

Proof. By (the proof of) Lemma 3.3, the function z = Mw ∈ Yτ satisfies (3.13). Under the assumption ‖w‖Yτ � R,
this estimate reads∥∥Mw(t)

∥∥ � 4eκτ‖w0‖X

[
1 + 4CRe(κτ+4CReκτ (τ+2τ1/2))

(
t + 2t1/2)], ∀t ∈ [0, τ ].
X
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If we assume

4eκτ‖w0‖X

[
1 + 4CRe(κτ+4CReκτ (τ+2τ1/2))

(
τ + 2τ 1/2)] � R

3
, (3.17)

then ‖Mw(t)‖X � R
3 . Similar to (3.15) we have∥∥∇vMw(t)

∥∥
X

� Bt−1/2eκt‖w0‖X + 4BCRe2κτ‖w0‖X

×
[
π + 2t1/2 + 4CRe(κτ+4CReκτ (τ+2τ1/2))

(
4t1/2 + 3

2
πt + 4

3
t3/2

)]
.

If we assume

Beκτ‖w0‖X + 4BCRe2κτ‖w0‖X

[
πτ 1/2 + 2τ + 4CRe(κτ+4CReκτ (τ+2τ1/2))

(
4τ + 3

2
πτ 3/2 + 4

3
τ 2

)]
� R

3
,

(3.18)

then

t1/2
∥∥∇vMw(t)

∥∥
X

� R

3
, ∀t ∈ [0, τ ].

Let us now choose

τ := min

{
1,

(
R/3 − 4eκ‖w0‖X

48CR‖w0‖Xe2κ+12CReκ

)2

,

(
R/3 − Beκ‖w0‖X

4BCRe2κ‖w0‖X[π + 2 + 4CRe(κ+12CReκ )( 3
2π + 16

3 )]
)2}

,

(3.19)

which is positive since max{4,B}eκ‖w0‖X < R. Then, the estimates (3.17) and (3.18) hold, and hence the operator
M maps the ball of radius R of Yτ into itself.

To prove contractivity we shall estimate ‖Mu − Mw‖Yτ for all u,w ∈ Yτ with ‖u‖Yτ , ‖w‖Yτ � R. Since

Mu(t) − Mw(t) =
t∫

0

e(t−s)ĀΘ
[
V

[
(Mu − Mw)(s)

]]
u(s)ds

+
t∫

0

e(t−s)ĀΘ
[
V

[
Mw(s)

]]
(u − w)(s)ds, ∀t ∈ [0, τ ],

by analogous estimates,

∥∥Mu(t) − Mw(t)
∥∥

X
� 4CReκτ

{ t∫
0

(
1 + s−1/2)∥∥(Mu − Mw)(s)

∥∥
X

ds + ‖u − w‖Yτ

t∫
0

(
1 + s−1/2)ds

}
,

and, by applying Gronwall’s Lemma:∥∥Mu(t) − Mw(t)
∥∥

X

� 4CReκτ

[
t + 2t1/2 + 4CRe(κτ+4CReκτ (τ+2τ1/2))

(
2t + 2t3/2 + 1

2
t2

)]
‖u − w‖Yτ , ∀t ∈ [0, τ ].

By using 0 � t � τ � 1, we obtain∥∥Mu(t) − Mw(t)
∥∥

X
� 4CR eκ

[
3 + 18CRe(κ+12CReκ )

]
τ 1/2‖u − w‖Yτ . (3.20)

Similarly,
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∥∥∇vMu(t) − ∇vMw(t)
∥∥

X
� CBRekτ

{ t∫
0

(t − s)−1/2(1 + s−1/2)∥∥(Mu − Mw)(s)
∥∥

X
ds

+
t∫

0

(t − s)−1/2(1 + s−1/2)ds‖u − w‖Yτ

}
,

and, by using estimate (3.20),∥∥∇vMu(t) − ∇vMw(t)
∥∥

X
� CBReκτ

[
1 + 4CReκ

(
3 + 18CRe(κ+12CReκ )

)
τ 1/2]

× (
π + 2t1/2)‖u − w‖Yτ , ∀t ∈ [0, τ ].

Then, by exploiting 0 < τ � 1,

t1/2
∥∥∇vMu(t) − ∇vMw(t)

∥∥
X

� CBReκ(π + 2)
[
1 + 4CR eκ

(
3 + 18CRe(κ+12CReκ )

)]
τ 1/2‖u − w‖Yτ . (3.21)

When choosing τ > 0 small enough, estimates (3.20), (3.21) imply

‖Mu − Mw‖C([0,τ ];X) � C‖u − w‖C([0,τ ];X),

for some C < 1, and the assertion is proved. �
Corollary 3.5. There exists a tmax � ∞ such that the initial value problem (3.7) has a unique mild solution w in YT ,
∀T < tmax, which satisfies

w(t) = etĀw0 +
t∫

0

e(t−s)ĀΘ
[
V

[
w(s)

]]
w(s)ds, ∀t ∈ [0, T ]. (3.22)

Moreover, if tmax < ∞, then

lim
t↗tmax

∥∥w(t)
∥∥

X
= ∞.

Proof. The solution of the problem is the fixed point of the map M previously introduced. By Proposition 3.4 this
solution exists for a time interval of length τ (depending only on ‖w0‖X) and it belongs to the space Yτ . Since, in
particular, w(τ) ∈ X, the solution can be repeatedly continued up to the maximal time tmax. It will then belong to YT ,
∀T < tmax.

If the second assertion of the corollary would not hold, there would be a sequence of times tn ↑ tmax such that
‖w(tn)‖X � C for all n. Then, by solving a problem with the initial value w(tn), with tn sufficiently close to tmax,
we would extend the solution up to a certain time tn + τ(‖w(tn)‖X) > tmax. This construction would contradict our
definition of tmax.

The uniqueness of the mild solution follows by arguments analogous to those in the proof of Theorem 6.1.4
in [26]. �
Remark 3.6. Note that the last statement in the thesis of Corollary 3.5 differs from the standard setting (cf. Theo-
rem 6.1.4 in [26]). For tmax < ∞ we conclude the ‘explosion’ of w(t), t → tmax in X and not only in Yt . This is due
to the parabolic regularization of the problem (3.7).

4. Global-in-time solution, a-priori estimates

In this section we shall exploit dispersive effects of the free transport equation to derive an a-priori estimate on
the electric field. This is the key ingredient for proving the main result of the paper, the global solution for the WPFP
system:
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Theorem 4.1. Let w0 ∈ X satisfy for some ω ∈ [0,1)∥∥∥∥∫
w0

(
x − ϑ(t)v, v

)
dv

∥∥∥∥
L6/5(R3

x)

� CT ϑ(t)−ω, ∀t ∈ (0, T ], ∀T > 0, (A)

with ϑ(t) := (1 − e−βt )/β for β > 0, and ϑ(t) = t for β = 0. Then the WPFP equation (3.7) admits a unique global-
in-time mild solution w ∈ YT , ∀0 < T < ∞.

In order to prove that tmax = ∞ , we have to show that ‖w(t)‖X is finite for all t � 0 (cf. Corollary 3.5). To this end,
we shall derive a-priori estimates for ‖w(t)‖2 and ‖|v|2w(t)‖2. Thus, the proof of Theorem 4.1 will be a consequence
of a series of lemmata, in particular of Lemma 4.2 and Lemma 4.19. In the sequel, w(t) denotes the unique mild
solution for 0 � t � T , for an arbitrary 0 < T < tmax.

Lemma 4.2. For all w0 ∈ X, the mild solution of the WPFP equation (3.7) satisfies∥∥w(t)
∥∥2

2 � e3βt‖w0‖2
2, ∀t ∈ [0, T ]. (4.1)

Proof. Roughly speaking, this follows from the dissipativity of the operator Ā − 3β
2 in L2(R6) (cf. (A.2)) and the

skew-symmetry of the pseudo-differential operator. However, since we are dealing only with the mild solution of the
equation, the proof requires an approximation of w by classical solutions.

Since the solution satisfies w ∈ YT , ∀T < tmax, Proposition 2.6 shows that the function f (t) := Θ[V [w(t)]]w(t),
t ∈ (0, tmax) is well defined and it is in C((0, tmax);X) ∩ L1((0, T );X), ∀0 < T < tmax.

For 0 < T < tmax fixed, let us consider the following linear inhomogeneous problem:

d

dt
y(t) = Āy(t) + f (t), t ∈ [0, T ], y(t = 0) = w0 ∈ X. (4.2)

Its mild solution in [0, T ] is the function w, due to the uniqueness of the mild solution of problem (3.7). For this
linear problem, we can apply Theorem 4.2.7 of [26]: The mild solution w is the uniform limit (on [0, T ]) of classical
solutions of problem (4.2). More precisely, there is a sequence {wn

0 }n∈N ⊂ D(Ā), wn
0 → w0 in X, and a sequence

{fn(t)} ⊂ C1([0, T ];X), fn(t) → f (t) in L1((0, T );X). And the classical solutions yn ∈ C1([0, T ];X) of the corre-
sponding problems

d

dt
yn(t) = Āyn(t) + fn(t), t ∈ [0, T ], yn(t = 0) = wn

0 , (4.3)

converge in C([0, T ];X) to the solution w of problem (4.2).
We shall need these approximating classical solutions yn in order to justify the derivation of the a-priori estimate:

Multiplying both sides of (4.3) by yn(t) and integrating yields

1

2

d

dt

∥∥yn(t)
∥∥2

2 � 3β

2

∥∥yn(t)
∥∥2

2 +
∫∫

yn(t)fn(t)dx dv,

since the operator Ā − 3β
2 is dissipative in L2(R6) (cf. (A.2)). By integrating in t and letting n → ∞, we have

∥∥w(t)
∥∥2

2 � ‖w0‖2
2 + 3β

t∫
0

∥∥w(s)
∥∥2

2 ds + 2

t∫
0

∫∫
w(s)f (s)dx dv ds, ∀t ∈ [0, T ].

The second integral is equal to zero since the pseudo-differential operator Θ is skew-symmetric. Hence, applying
Gronwall’s Lemma yields∥∥w(t)

∥∥2
2 � e3βt‖w0‖2

2, ∀t ∈ [0, T ]. � (4.4)

In order to recover similar estimates for ‖|v|2w(t)‖2, we first need a-priori bounds for the self-consistent field
E = ∇V . To this end, we are going to exploit dispersive effects of the free streaming operator. We shall adapt to the
Wigner–Poisson and Wigner–Poisson–Fokker–Planck problems the strategies introduced for the (classical) Vlasov–
Poisson problem [21,27], and for the Vlasov–Poisson–Fokker–Planck problem [6,7,14].
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4.1. A-priori estimates for the electric field: the Wigner–Poisson case

To explain the strategy, we first consider the (simpler) WP problem: Let us assume that wwp is a “regular” solution
of the WP problem (e.g., let wwp(t) ∈ L2

x(H
1
v ),∇xV [wwp](t) ∈ CB(R3), uniformly on bounded t -intervals) for which

the Duhamel formula holds:

wwp(x, v, t) = w
wp
0 (x − tv, v) +

t∫
0

(
Θ

[
V

[
wwp]]wwp)(x − sv, v, t − s)ds.

We formally integrate in v:

n
[
wwp](x, t) =

∫
R3

w
wp
0 (x − tv, v)dv +

t∫
0

∫
R3

(
Θ

[
V

[
wwp]]wwp)(x − sv, v, t − s)dv ds

=: nwp
0 (x, t) + n

wp
1 (x, t),

and split the self-consistent field accordingly:

E
wp
0 (x, t) := −λ

x

|x|3 ∗x n
wp
0 (x, t) = −λ

x

|x|3 ∗x

∫
w

wp
0 (x − tv, v)dv, (4.5)

E
wp
1 (x, t) := −λ

x

|x|3 ∗x

t∫
0

∫ (
Θ

[
V

[
wwp]]wwp)(x − sv, v, t − s)dv ds, (4.6)

with λ = 1
4π

.
Then, we can estimate separately the two terms E

wp
0 (t), E

wp
1 (t) by exploting the properties of the convolution

kernel 1/|x| (cf. [21,27] for VP, [6,7,14] for VPFP, [3] for WPFP). To this end, we need an appropriate redefinition of
the pseudo-differential operator Θ[V ] in (1.2). It is inspired by the operator ∇xV · ∇vw in the VP equation that can
be recovered from Θ[V ]w in the semiclassical limit (cf. Remark 4.5).

Let us recall that Θ[V ]w(x, v) =F−1
η→v(iδV (x, η)Fv→ηw(x, η)). We can rewrite

δV (x, η) =
x+η/2∫

x−η/2

∇xV (z) · dz =
1/2∫

−1/2

η · ∇xV (x − rη)dr = η · W(x,η), (4.7)

with the vector-valued function

W(x,η) :=
1/2∫

−1/2

∇xV (x − rη)dr, ∀(x, η) ∈ R6.

Then, we define the vector-valued operator

Γ [∇xV ]u(x, v) := F−1
η→v

(
W(x,η)Fv→ηu(x, η)

)
. (4.8)

It holds:

Lemma 4.3. Let ∇xV ∈ CB(R3). Then

(1) W(x,η) ∈ CB(R6), ‖W‖∞ � ‖∇xV ‖∞;
(2) Γ [∇xV ] :L2(R6) → L2(R6) and, for all u ∈ L2(R6),∥∥Γ [∇xV ]u∥∥

L2(R6)
� ‖∇xV ‖∞‖u‖L2(R6);

(3) Γ [∇xV ] :L2
x(H

1
v ) → L2

x(H
1
v ) and, for all u ∈ L2

x(H
1
v ),∥∥Γ [∇xV ]u∥∥

L2
x(H 1

v )
� ‖∇xV ‖∞‖u‖L2

x(H 1
v ). (4.9)
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Proof. The first and the second assertion are obvious. For (4.9) we use

∂vj
Γ [∇xV ]u(x, v) = iF−1

η→v

(
ηjW(x,η)Fv→ηu(x, η)

) = Γ [∇xV ]∂vj
u; j = 1,2,3. � (4.10)

Lemma 4.4. Let ∇xV ∈ CB(R3) and u ∈ L2
x(H

1
v ). Then

Θ[V ]u(x, v) = divv

(
Γ [∇xV ]u)

(x, v). (4.11)

Proof. By the definition (4.7) and Lemma 4.3,∥∥δV (·, η)
∥∥∞ � |η|∥∥W(·, η)

∥∥∞ � |η| ‖∇xV ‖∞.

Thus, ‖Θ[V ]u‖L2(R6) � ‖∇xV ‖∞‖u‖L2
x(H 1

v ); the right-hand side of Eq. (4.11) is also well-defined in L2(R6) by

estimate (4.9). Equality then follows by Eq. (4.7) and

iF−1
η→v

(
η · W(x,η)Fv→ηu(x, η)

) =
3∑

j=1

∂vj
Γj [∇xV ]u(x, v) = divv

(
Γ [∇xV ]u)

(x, v). �

Remark 4.5 (The semiclassical limit). The correctly scaled version of the pseudo-differential operator with the re-
duced Planck constant h̄ = h

2π
reads

Θh̄[V ]w(x, v) = i

(2π)3/2

∫
R3

V (x + h̄
2 η) − V (x − h̄

2 η)

h̄
Fv→ηw(x,η)eiv·η dη.

Under the assumptions of Lemma 4.4, we thus have

Fv→η

(
Θh̄[V ]w(x, v)

) = i

h̄
δV (x, h̄η)Fv→ηw(x,η)

= iW(x, h̄η) · ηFv→ηw(x,η).

The limit h̄ → 0 then yields:

iW(x, h̄η) · ηFv→ηw(x,η) −→ i∇xV (x) · ηFv→ηw(x,η) =F−1
η→v

(∇xV (x) · ∇vw(x, v)
);

and hence

Θh̄[V ]w(x, v) −→ ∇xV (x) · ∇vw(x, v) in L2(R6),
which is the non-linear term in the VP equation.

Using the redefinition (4.11) of the pseudo-differential operator, and under the additional assumptions wwp ∈
H 1

x (L2
v), �V [wwp] ∈ CB(R3), we have for s ∈ R(
Θ

[
V

[
wwp]]wwp)(x − sv, v) = divv

(
Γ

[∇xV
[
wwp]]wwp(x − sv, v)

)
+ s divx

(
Γ

[∇xV
[
wwp]]wwp)(x − sv, v). (4.12)

Thus, the field E
wp
1 in (4.6) can be rewritten as (j = 1,2,3)

(
E

wp
1

)
j
(x, t) := −λ

xj

|x|3 ∗x divx

t∫
0

s

∫ (
Γ

[∇xV
[
wwp]]wwp)(x − sv, v, t − s)dv ds

= λ

3∑
k=1

3xjxk − δjk|x|2
|x|5 ∗x

t∫
0

s

∫ (
Γk

[∇xV
[
wwp]]wwp)(x − sv, v, t − s)dv ds. (4.13)

The following two lemmata are concerned with giving a meaning to the definition (4.13) of the field E1, indepen-
dently of the previous derivation.
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Lemma 4.6. For all u ∈ L2(R6) and E ∈ L2(R3) the following estimate holds∥∥∥∥∫
R3

v

(
Γ [E]u)

(x − sv, v)dv

∥∥∥∥
L2(R3

x)

� Cs−3/2‖E‖2‖u‖2, ∀s > 0. (4.14)

Proof. Since the operator Γ [·] was originally defined for E ∈ CB(R3), we shall first derive (4.14) for E ∈ C∞
0 (R3)

and conclude by a density argument.
By the definition (4.8) and by several changes of variables, the following chain of equalities holds:(

Γ [E]u)
(x, v) = (2π)3/2[F−1

η→v

(
W(x,η)

) ∗v u
]
(x, v)

=
∫∫ 1/2∫

−1/2

E(x − rη)eiη·z dr dηu(x, v − z)dz =
∫∫ 1/2∫

−1/2

1

|r|3 E(x − η̃)eiη̃· z
r dr dη̃ u(x, v − z)dz

=
∫∫

E(x − η̃) eiη̃·z̃ dη̃

1/2∫
−1/2

u(x, v − rz̃)dr dz̃ =
∫∫

E(−η̂)eiη̂·z̃ dη̂ eix·z̃
1/2∫

−1/2

u(x, v − rz̃)dr dz̃

= (2π)3/2
∫

Fη→z̃E(z̃)

1/2∫
−1/2

u(x, v − rz̃)dr eix·z̃ dz̃.

Hence

∫ (
Γ [E]u)

(x − sv, v)dv = (2π)3/2
∫

Fη→z̃E(z̃)

(∫ 1/2∫
−1/2

u(x − sv, v − rz̃)dr e−isv·z̃ dv

)
eix·z̃ dz̃

= 1

(2πs)3

∫
Fη→z̃E(z̃)Fv→z̃

( 1/2∫
−1/2

u

(
x − v,

v

s
− rz̃

)
dr

)
eix·z̃ dz̃.

Then,

∥∥∥∥∫ (
Γ [E]u)

(x − sv, v)dv

∥∥∥∥
L2(R3

x)

� ‖E‖2

(2πs)3

∥∥∥∥∥
1/2∫

−1/2

Fv→z̃

(
u

(
x − v,

v

s
− rz̃

))
dr

∥∥∥∥∥
L2(R3

z̃
×R3

x)

� ‖E‖2

(2πs)3

( 1/2∫
−1/2

∥∥∥∥Fv→z̃

(
u

(
x − v,

v

s
− rz̃

))∥∥∥∥2

L2(R3
z̃
×R3

x)

dr

)1/2

,

by applying Hölder’s inequality first in the z̃ integral and then in the r integral. Finally, it remains to prove that

1/2∫
−1/2

∥∥∥∥Fv→z

(
u

(
x − v,

v

s
− rz

))∥∥∥∥2

L2(R3
x×R3

z)

dr = s3
∥∥u(x, v)

∥∥2
L2(R3

x×R3
v)

.

This is obtained by using repeatedly Plancherel’s equality:

1/2∫ ∥∥∥∥Fv→z

(
u

(
x − v,

v

s
− rz

))∥∥∥∥2

L2
x,z

dr =
1/2∫ ∥∥∥∥Fx→ξ

[
Fv→z

(
e−ivξu

(
x,

v

s
− rz

))]∥∥∥∥2

L2
ξ,z

dr
−1/2 −1/2
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=
1/2∫

−1/2

∥∥∥∥Fx→ξ

(
s3e−is(ξ+z)rzFv→s(ξ+z)u(x, v)

)∥∥∥∥2

L2
ξ,z

dr = s6

1/2∫
−1/2

∥∥Fx→ξ

(
Fv→s(ξ+z)u(x, v)

)∥∥2
L2

ξ,z
dr

= s3
∥∥u(x, v)

∥∥2
L2

x,v
. �

Remark 4.7. Observe that the exponent of the variable s recovered in the lemma is the same as obtained for the
VP case (cf. [27], e.g.) in the L2-estimate of

∫
R3

v
Eu(x − sv, v)dv. In the classical case, analogous Lp-estimates

hold in addition. In the quantum counterpart, instead, the L2-framework is the only possible, since the estimate had
to be derived in Fourier space. Moreover, to derive a more refined version of this basic estimate (cf. [21,6]), the
non-negativity of the classical distribution is a crucial ingredient. And this non-negativity does not hold for Wigner
functions.

The following lemma is an immediate consequence of Lemma 4.6. We shall need the notation

VT,ω := {
E ∈ C

(
(0, T ];L2

x

(
R3)) | ‖E‖VT,ω

< ∞}
with

‖E‖VT,ω
:= sup

0<t�T

tω
∥∥E(t)

∥∥
L2 .

Lemma 4.8. For any fixed T > 0, let w ∈ C([0, T ];L2
x,v), and let w0 satisfy for some ω ∈ [0,1):∥∥∥∥∫

w0(x − tv, v)dv

∥∥∥∥
L6/5(R3

x)

� CT t−ω, ∀t ∈ (0, T ]. (B)

Then, there exists a unique vector-field E ∈ V
T,ω− 1

2
which satisfies the linear equation

Ej(x, t) = λ

3∑
k=1

3xjxk − δjk|x|2
|x|5 ∗x

t∫
0

s

∫ (
Γk[E0 + E]w)

(x − sv, v, t − s)dv ds, j = 1,2,3, (4.16)

with E0 defined by (λ = 1
4π

):

E0(x, t) := −λ
x

|x|3 ∗x

∫
w0(x − tv, v)dv.

Proof. (4.16) has the structure of a Volterra integral equation of the second kind. Hence, we define the (affine) map
M :V

T,ω− 1
2

→ V
T,ω− 1

2
by

(ME)j (x, t) := λ

3∑
k=1

3xjxk − δjk|x|2
|x|5 ∗x

t∫
0

s

∫ (
Γk[E0 + E]w)

(x − sv, v, t − s)dv ds.

Applying the generalized Young inequality to the definition of E0 yields∥∥E0(t)
∥∥

2 � C

∥∥∥∥∫
w0(x − vt, v)dv

∥∥∥∥
L6/5(R3

x)

, ∀t ∈ (0, T ]. (4.17)

Thus, by Lemma 4.6, the second convolution factor in (4.16) is well-defined and∥∥∥∥∫
3

(
Γk[E0 + E]w)

(x − sv, v, t − s)dv

∥∥∥∥
L2(R3

x)

� Cs−3/2
∥∥(E0 + E)(t − s)

∥∥
2

∥∥w(t − s)
∥∥

2, ∀s ∈ (0, t].

Rv
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By classical properties of the convolution with 1
|x| (cf. [31]) and the Young inequality, we get

∥∥(ME)j (t)
∥∥

2 � C

t∫
0

1√
s

(∥∥E0(t − s)
∥∥

2 + ∥∥E(t − s)
∥∥

2

)∥∥w(t − s)
∥∥

2 ds, ∀t ∈ (0, T ]. (4.18)

Hence, the map M is well-defined from V
T,ω− 1

2
into itself and satisfies∥∥ME(t)

∥∥
2 � C

(
CT + sup

s∈(0,T ]
sω− 1

2
∥∥E(s)

∥∥
2

)
sup

s∈[0,T ]

∥∥w(s)
∥∥

2

(
t1−ω + t

1
2 −ω

)
, ∀t ∈ (0, T ].

Since the map is affine, we have (by induction) for all t ∈ (0, T ]
∥∥MnE(t) − MnẼ(t)

∥∥
2 � C sup

s∈[0,T ]

∥∥w(s)
∥∥

2

t∫
0

1√
t − s

∥∥Mn−1E(s) − Mn−1Ẽ(s)
∥∥

2 ds

�
(
C sup

s∈[0,T ]
∥∥w(s)

∥∥
2

)n

Cn−1

t∫
0

s
n
2 −ω

√
t − s

ds sup
s∈(0,T ]

(
sω− 1

2
∥∥E(s) − Ẽ(s)

∥∥
2

)
,

with
t∫

0

s
n
2 −ω

√
t − s

ds = t
n+1

2 −ωB

(
1

2
,
n + 2

2
− ω

)
, Cn−1 =

n−1∏
j=1

B

(
1

2
,
j

2
+ 1 − ω

)
= π

n−1
2 Γ ( 3

2 − ω)

Γ (n
2 + 1 − ω)

,

where B denotes the Beta function and Γ the Gamma function. Thus, the map Mn is contractive for n large enough
and admits a unique fixed point E ∈ V

T,ω− 1
2
. �

With E = E
wp
1 the above lemma yields the regularity of the self-consistent field in the WP equation: It satisfies

∇xV [wwp] = E
wp
1 + E

wp
0 ∈ V

T,ω− 1
2
, under the assumptions that wwp ∈ C([0, T ];L2

x,v) and w
wp
0 satisfies (B).

Proposition 4.9. For any fixed T > 0, let wwp ∈ C([0, T ];L2
x,v) be a mild solution of the WP equation with

‖wwp(t)‖2 = ‖wwp
0 ‖2, and with the initial value w

wp
0 satisfying condition (B). Then, the self-consistent field satis-

fies the following estimates for all t ∈ (0, T ]:∥∥E
wp
0 (t)

∥∥
2 � C

∥∥∥∥∫
w

wp
0 (x − vt, v)dv

∥∥∥∥
L6/5(R3

x)

� CCT t−ω, (4.19)

∥∥E
wp
1 (t)

∥∥
2 � C

(∥∥w
wp
0

∥∥
2, sup

s∈(0,T ]

{
sω

∥∥∥∥∫
w

wp
0 (x − sv, v)dv

∥∥∥∥
L6/5

}
, T

)
t

1
2 −ω. (4.20)

Here and in the sequel, the T -dependence of the constants C is continuous (on T ∈ R+).

Proof. The first estimate is (4.17) in Lemma 4.8. To derive the second one, we exploit Eq. (4.18), the conservation of
the L2-norm of the solution and (4.19):

∥∥E
wp
1 (t)

∥∥
2 � C

t∫
0

s−1/2(∥∥E
wp
0 (t − s)

∥∥
2 + ∥∥E

wp
1 (t − s)

∥∥
2

)∥∥wwp(t − s)
∥∥

2 ds

� C
∥∥w

wp
0

∥∥
2 sup

s∈(0,T ]

{
sω

∥∥∥∥∫
w

wp
0 (x − sv, v)dv

∥∥∥∥
L6/5

}
t

1
2 −ω

+ C
∥∥w

wp
0

∥∥
2

t∫
(t − s)−1/2

∥∥E
wp
1 (s)

∥∥
2 ds.
0
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The thesis follows by Gronwall’s Lemma. �
We shall now state a simple condition on w0 that implies both conditions (A), (B). For w0 ∈ L1

x(L
6/5
v ) a Strichartz

inequality for the free transport equation (cf. Theorem 2 in [16]) reads:∥∥∥∥∫
w0(x − tv, v)dv

∥∥∥∥
L6/5(R3

x)

� t−
1
2 ‖w0‖L1

x(L
6/5
v )

, t > 0, (4.21)

and hence (A) and (B) hold.

Remark 4.10. Let us again compare the a-priori bounds (4.19), (4.20) with their classical counterparts. Using (4.21)

we obtain the same t− 1
2 -singularity of ‖Ewp(t)‖2 for the Wigner–Poisson system, as it was obtained in [16] for the

VP equation. In the latter case, similar Lp-estimates hold for p in a non-trivial interval. One crucial reason for this
difference is the conservation of Lp-norm of the solution: while the WP equation only conserves the L2-norm, all
Lp-norms are constant in the VP case. A second reason is that we cannot exploit any pseudo-conformal law for the
quantum case, since the Wigner functions are not non-negative (cf. [27] for the classical case).

As a by-product we obtain the following result for the self-consistent potential V , which follows directly from the
splitting V wp = V

wp
0 + V

wp
1

V
wp
0 (x, t) := λ

3∑
i=1

xi

|x|3 ∗x

(
E

wp
0

)
i
(x, t), (4.22)

V
wp
1 (x, t) := λ

3∑
i=1

xi

|x|3 ∗x

(
E

wp
1

)
i
(x, t). (4.23)

Corollary 4.11. Under the assumptions of Proposition 4.9, the self-consistent potential V wp = V
wp
0 + V

wp
1 satisfies

the following estimates for all t ∈ (0, T ]:∥∥V
wp
0 (t)

∥∥
6 � CCT t−ω, (4.24)∥∥V

wp
1 (t)

∥∥
6 � C

(∥∥w
wp
0

∥∥
2, sup

s∈(0,T ]

{
sω

∥∥∥∥∫
w

wp
0 (x − sv, v)dv

∥∥∥∥
L6/5

}
, T

)
t

1
2 −ω. (4.25)

4.2. A-priori estimates for the electric field: the WPFP case

According to Corollary 3.5, the mild solution of the WPFP problem satisfies for all t ∈ [0, T ] (0 < T < tmax)

w(x, v, t) =
∫∫

G(t, x, v, x0, v0)w0(x0, v0)dx0 dv0

+
t∫

0

∫∫
G(s, x, v, x0, v0)

(
Θ[V ]w)

(x0, v0, t − s)dx0 dv0 ds

with the Green’s function G from (3.4). According to [30] we have∫
R3

G(t, x, v, x0, v0)dv = R(t)−3/2N
(

x − x0 − ϑ(t)v0√
R(t)

)
,

with

N (x) := (2π)−3/2 exp

(
−|x|2

2

)
, (4.26)

ϑ(t) = 1 − e−βt

=O(t), for t → 0, (4.27)

β
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R(t) := 2αt + σ

[
4e−βt − e−2βt + 2βt − 3

β3

]
+ 4γ

[
e−βt + βt − 1

β2

]
=O(t), for t → 0. (4.28)

By exploiting the redefinition (4.11) of the pseudo-differential operator, we obtain the following expression for the
density n[w]

n[w](x, t) =
∫
R3

w(x, v, t)dv

= 1

R(t)3/2

∫∫
N

(
x − x0 − ϑ(t)v0√

R(t)

)
w0(x0, v0)dx0 dv0

+
t∫

0

1

R(s)3/2

∫∫
N

(
x − x0 − ϑ(s)v0√

R(s)

)
divv0

(
Γ [∇x0V ]w)

(x0, v0, t − s)dx0 dv0 ds

= 1

R(t)3/2

∫∫
N

(
x − x0√

R(t)

)
w0

(
x0 − ϑ(t)v0, v0

)
dx0 dv0

+
t∫

0

ϑ(s)

R(s)2

∫∫
(∇xN )

(
x − x0 − ϑ(s)v0√

R(s)

)
· (Γ [∇x0V ]w)

(x0, v0, t − s)dx0 dv0 ds

= n0(x, t) + n1(x, t),

where

n0(x, t) := 1

R(t)3/2
N

(
x√
R(t)

)
∗x nϑ

0 (x, t), with nϑ
0 (x, t) :=

∫
w0

(
x − ϑ(t)v, v

)
dv,

n1(x, t) :=
t∫

0

ϑ(s)

R(s)3/2
N

(
x√
R(s)

)
∗x divx

∫ (
Γ [∇xV ]w)(

x − ϑ(s)v, v, t − s
)

dv ds.

Correspondingly, we can split the field (with λ = 1
4π

):

E0(x, t) := −λ
x

|x|3 ∗x n0(x, t) = 1

R(t)3/2
N

(
x√
R(t)

)
∗x Eϑ

0 (x, t), (4.29)

with

Eϑ
0 (x, t) := −λ

x

|x|3 ∗x nϑ
0 (x, t), E1(x, t) := −λ

x

|x|3 ∗x n1(x, t). (4.30)

Remark 4.12. Note that the splitting of the density (and of the electric field) is the same as in [6,7,14]: in the WPFP
case the two components of the decomposition (n0, n1, as well as E0,E1) are smoothed versions (in fact, convolutions
with a Gaussian) of those appearing in the WP case (namely n

wp
0 , n

wp
1 ,E

wp
0 ,E

wp
1 ). Actually, the density nϑ

0 (x, t)

(which is convoluted with the Gaussian to give n0) already differs from n
wp
0 (x, t) in the WP case because the shift

contains the function ϑ , which is due to friction (and analogously for Eϑ
0 (x, t) and E

wp
0 (x, t)).

From Lemma 4.6 we directly get∥∥∥∥∫
R3

v

(
Γ [E]u)(

x − ϑ(s)v, v, t − s
)

dv

∥∥∥∥
L2(R3

x)

� Cϑ(s)−3/2
∥∥E(t − s)

∥∥
2

∥∥u(t − s)
∥∥

2, ∀t � s > 0. (4.31)

To derive an L2-estimate on the field we shall proceed as in the WP case (Lemma 4.8, Proposition 4.9).

Lemma 4.13. Let w be the mild solution of the WPFP equation (3.7) and let w0 ∈ X satisfy (A) for some ω ∈ [0,1).
For any fixed T > 0 the electric field then satisfies ∇xV ∈ V 1 and the following estimates hold:
T ,ω− 2
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(1) for 2 � p � 6, θ = 3(p−2)
2p∥∥E0(t)

∥∥
p

� C(T )‖w0‖θ
X

∥∥nϑ
0 (t)

∥∥1−θ

L6/5 =O
(
t−ω(1−θ)

)
, ∀t ∈ (0, T ]; (4.32)

(2)
∥∥E1(t)

∥∥
2 � C

(
T ,‖w0‖2 , sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})
t

1
2 −ω, ∀t ∈ (0, T ]. (4.33)

Proof. The estimate for ‖E0(t)‖p , p ∈ [2,6], is obtained by applying first the generalized Young inequality and then
the Young inequality to the expression (4.29)

∥∥E0(t)
∥∥

p
� C

∥∥∥∥ 1

R(t)3/2
N

(
x√
R(t)

)
∗x nϑ

0 (x, t)

∥∥∥∥
q

� C

∥∥∥∥ 1

R(t)3/2
N

(
x√
R(t)

)∥∥∥∥
1

∥∥nϑ
0 (x, t)

∥∥
q

= C
∥∥nϑ

0 (t)
∥∥

q
, with q = 3p

p + 3
∈

[
6

5
,2

]
.

Next we interpolate nϑ
0 between L2 and L6/5, use (2.3) and the dissipativity of the operator −v · ∇x − 3

2 in X (cf.
Lemma 2.8):∥∥nϑ

0 (t)
∥∥

q
� C

∥∥w0
(
x − ϑ(t)v, v

)∥∥θ

X

∥∥nϑ
0 (t)

∥∥1−θ

6/5

� Ce
3
2 θϑ(t)‖w0‖θ

X

∥∥nϑ
0 (t)

∥∥1−θ

6/5 ,

with θ = 5
2 − 3

q
. Hence∥∥E0(t)

∥∥
p

� C(T )‖w0‖θ
X

∥∥nϑ
0 (t)

∥∥1−θ

L6/5 .

We rewrite the function E1(x, t) as

(E1)j (x, t) = λ

3∑
k=1

3xjxk − δjk|x|2
|x|5 ∗x

t∫
0

ϑ(s)

R(s)3/2
N

(
x√
R(s)

)
∗x Fk(x, t, s)ds, (4.34)

with

Fk(x, t, s) :=
∫ (

Γk[E0 + E1]w
)(

x − ϑ(s)v, v, t − s
)

dv.

For estimating it we exploit classical properties of the convolution with the kernel 1
|x| and apply the Young inequality:

∥∥E1(t)
∥∥

2 � C

t∫
0

ϑ(s)

∥∥∥∥ 1

R(s)3/2
N

(
x√
R(s)

)
∗x F (x, t, s)

∥∥∥∥
2

ds

� C

t∫
0

ϑ(s)

∥∥∥∥ 1

R(s)3/2
N

(
x√
R(s)

)∥∥∥∥
1

∥∥F(x, t, s)
∥∥

2 ds

� C(T )‖w0‖2

t∫
0

‖E0(t − s)‖2 + ‖E1(t − s)‖2√
ϑ(s)

ds,

where the last inequality follows from (4.31) and the L2-a-priori estimate on the solution w (cf. Lemma 4.2). By
applying the estimate (4.32) to ‖E0(t)‖2, we get
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∥∥E1(t)
∥∥

2 � C(T )‖w0‖2

(
sup

t∈(0,T ]
{
ϑ(t)ω

∥∥nϑ
0 (t)

∥∥
L6/5

} t∫
0

ϑ(s)−
1
2 ϑ(t − s)−ω ds +

t∫
0

‖E1(t − s)‖2√
ϑ(s)

ds

)
,

(4.35)

where the function ϑ(s) =O(s) as s → 0. Thus the integrals are finite.
To establish a solution of (4.34) we introduce the fixed point map

(ME)j (x, t) := λ

3∑
k=1

3xjxk − δjk|x|2
|x|5

∗x

t∫
0

ϑ(s)

R(s)3/2
N

(
x√
R(s)

)
∗x

∫ (
Γk[E0 + E]w)(

x − ϑ(s)v, v, t − s
)

dv ds.

By using 0 <
ϑ(T )

T
t � ϑ(t), ∀t ∈ (0, T ] and (4.35), a simple fixed point argument as in the proof of Lemma 4.8 with

the contractivity estimate:∥∥MnE(t) − MnẼ(t)
∥∥

2 �
(

C

√
T

ϑ(T )
‖w0‖2

)n

t
n+1

2 −ω
π

n
2 Γ ( 3

2 − ω)

Γ (n+3
2 − ω)

sup
s∈(0,T ]

(
sω− 1

2
∥∥E(s) − Ẽ(s)

∥∥
2

)
shows that the linear equation (4.34) has a unique solution E1 ∈ V

T,ω− 1
2
. Hence ∇xV = E0 + E1 ∈ V

T,ω− 1
2

and
Gronwall’s Lemma then yields estimate (4.33). �
Remark 4.14. For the derivation of the a-priori bound on ‖E‖2, we did not use any moments of w (neither in x nor
v), nor pseudo-conformal laws (cf. [6,7,27,14] for the classical analogue, i.e. VPFP). In fact, the latter are not useful
in the quantum case, since the Wigner function typically also takes negative values. Moreover, the convolution with
the Gaussian did not play a role there; the estimate (4.33) relies just on the dispersive effect of the free-streaming
operator. The parabolic regularization will be exploited in the “post-processing” Proposition 4.15.

The above lemma was the first crucial step towards proving global existence of the WPFP solution. Next we shall
extend this estimates on the field E to a range of Lp-norms:

Proposition 4.15. Let w be the mild solution of the WPFP equation (3.7) and let w0 ∈ X satisfy (A) for some
ω ∈ [0,1). Then, we have for any fixed T > 0 and for all p ∈ [2,6):∥∥E1(t)

∥∥
Lp � C

(
T ,‖w0‖2, sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})
t

3
2p

− 1
4 −ω

, ∀t ∈ (0, T ]. (4.36)

Proof. We shall estimate E1(t) (cf. (4.34)) by using classical properties of the convolution by the kernel 1
|x| and the

following∥∥∥∥N(
x√
R(s)

)∥∥∥∥
q

= CR(s)
3

2q , ∀1 � q � ∞. (4.37)

Namely,

∥∥E1[w](t)∥∥
Lp(R3

x)
� C

t∫
0

ϑ(s)

∥∥∥∥ 1

R(s)3/2
N

(
x√
R(s)

)
∗x F (x, t, s)

∥∥∥∥
Lp(R3

x)

ds

� C

t∫
0

R(s)
3

2q
− 3

2

√
ϑ(s)

(∥∥E0(t − s)
∥∥

2 + ∥∥E1[w](t − s)
∥∥

2

)∥∥w(t − s)
∥∥

2 ds,

where we used the Young inequality with 1 + 1/p = 1/q + 1/2 (thus, p � 2) and, for the L2-norm, the Lemma 4.6.
Then, by applying Lemma 4.13 we get
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∥∥E1[w](t)∥∥
Lp(R3

x)
� C

(
T , sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

}
,‖w0‖L2(R6)

)

×
t∫

0

R(s)
3

2q
− 3

2

√
ϑ(s)

(
ϑ(t − s)−ω + (t − s)

1
2 −ω

)
ds.

Since ϑ(t) = O(t), R(t) = O(t) for t → 0 (cf. (4.27), (4.28)), the last integral is finite for all t > 0 and for 3/(2q) −
2 > −1 ⇔ 3/(2p) − 5/4 > −1 ⇔ p < 6. In fact the integral is O(t

3
2p

− 1
4 −ω

). �
Remark 4.16. Proposition 4.15 provides a non-trivial interval of Lp-estimates for the electric field in the WPFP case.
This is due to the regularizing effect of the FP term. We remark that the corresponding Gaussian is “better behaved”
than the classical one, since the quantum FP operator is uniformly elliptic in both x and v variables. On the other
hand, exactly as in the WP case, the range of Lp-estimates for the WPFP equation is smaller in comparison to the
counterpart VPFP and that depends again on the non-negativity of the classical distribution function.

As a further result, we obtain an a-posteriori information on the self-consistent potential V , which follows directly
from the a-priori estimates on the field. Accordingly, we split the potential as V = V0 + V1, with

V0(x, t) := λ

3∑
i=1

xi

|x|3 ∗x (E0)i(x, t), (4.38)

V1(x, t) := λ

3∑
i=1

xi

|x|3 ∗x (E1)i(x, t). (4.39)

Corollary 4.17. Under the assumptions of Proposition 4.15, the self-consistent potential V (t) = V0(t)+V1(t) belongs
to Lp(R3

x) with 6 � p � ∞, and satisfies for all t ∈ (0, T ]:∥∥V0(t)
∥∥

p
� C(T )‖w0‖θ

X

∥∥nϑ
0 (t)

∥∥1−θ

L6/5 =O
(
t−ω(1−θ)

)
with θ = 1

2
− 3

p
, (4.40)∥∥V1(t)

∥∥
p

� C
(
T ,‖w0‖2 sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})
t

3
2p

+ 1
4 −ω

. (4.41)

4.3. A-priori estimates for the weighted L2-norms

A first consequence of the a-priori estimates for the electric field is the following

Lemma 4.18. For all w0 ∈ X such that (A) holds for some ω ∈ [0,1), the mild solution of the WPFP equation (3.7)
satisfies∥∥vw(t)

∥∥2
2 � C

(
T ,‖w0‖X, sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})
, ∀t ∈ [0, T ]. (4.42)

Proof. In order to justify the derivation of this a-priori estimate we need again the approximating classical solutions
yn introduced in the proof of Lemma 4.2. Multiplying both sides of (4.3) by v2

i yn(t) and integrating yields

1

2

d

dt

∥∥viyn(t)
∥∥2

2 =
∫∫

v2
i yn(t)Āyn(t)dx dv +

∫∫
v2
i yn(t)fn(t)dx dv.

By analogous calculations as in the proof of Lemma 2.8 (cf. also (A.3)) we get,∫∫
|v|2yn(t)Āyn(t)dx dv � 3σ

∥∥yn(t)
∥∥2

2 + β ∥∥vyn(t)
∥∥2

2,
2
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and hence

1

2

d

dt

∥∥vyn(t)
∥∥2

2 � 3σ
∥∥yn(t)

∥∥2
2 + β

2

∥∥vyn(t)
∥∥2

2 +
∫∫

|v|2yn(t)fn(t)dx dv, ∀t ∈ [0, T ].
By integrating in t , letting n → ∞, and using (4.1), we have

∥∥vw(t)
∥∥2

2 � ‖vw0‖2
2 + 2σ

β

(
e3βt − 1

)‖w0‖2
2 + β

t∫
0

∥∥vw(s)
∥∥2

2 ds + 2

t∫
0

∫∫
|v|2w(s)f (s)dx dv ds, ∀t ∈ [0, T ].

Using again the skew-symmetry of the pseudo-differential operator and the Hölder inequality yields

t∫
0

∫∫
viw(s)vif (s)dx dv ds = 1

2

t∫
0

∫∫
viw(s)Ω

[
∂iV

[
w(s)

]]
w(s)dx dv ds

� 1

2

t∫
0

∥∥viw(s)
∥∥

2

∥∥Ω
[
∂iV

[
w(s)

]]
w(s)

∥∥
2 ds,

with the operator Ω defined in (2.10). Estimating as in (2.12) and using the Sobolev inequality we obtain for t ∈ [0, T ]:∥∥Ω
[
∂iV

[
w(t)

]]
w(t)

∥∥
L2(R3

x×R3
v)

� C
∥∥∂iV

[
w(t)

]
ŵ(t)

∥∥
L2(R3

x×R3
η)

� C
∥∥∂iV

[
w(t)

]∥∥
3

∥∥ŵ(t)
∥∥

L2(R3
x ;L6(R3

η))

� C
∥∥∂iV

[
w(t)

]∥∥
3

∥∥∇ηŵ(t)
∥∥

L2(R3
x×R3

η)

� C
∥∥∂iV

[
w(t)

]∥∥
3

∥∥vw(t)
∥∥

2, (4.43)

where ŵ(x, η, t) := Fv→η(w(x, v, t)). Finally, using Proposition 4.15 (estimate (4.36) with p = 3) yields∥∥vw(t)
∥∥2

2 � C(T )
(‖vw0‖2

2 + ‖w0‖2
2

) + C
(
T ,‖w0‖X, sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})

×
t∫

0

(
s− ω

2 + s−ω+ 1
4 + β

)∥∥vw(s)
∥∥2

2 ds, t ∈ [0, T ], (4.44)

and the Gronwall Lemma gives the result. �
With this result we can proceed to derive the a-priori estimate for ‖|v|2w(t)‖2.

Lemma 4.19. For all w0 ∈ X such that (A) holds for some ω ∈ [0,1), the mild solution of the WPFP equation (3.7)
satisfies∥∥|v|2w(t)

∥∥2
2 � C

(
T ,‖w0‖X, sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})
, ∀t ∈ [0, T ]. (4.45)

Proof. In order to control the term ‖|v|2w(t)‖2, we shall use the same strategy as in Lemmata 4.2 and 4.18. Multi-
plying both sides of (4.3) by v4

i yn(t) and integrating we get by using (A.3) and repeating the same limit procedure as
in the previous lemma:

1

2

d

dt

3∑
i=1

∫∫
v4
i w(t)2 dx dv � 9σ

∥∥w(t)
∥∥2

2 +
(

3σ − 1

2
β

) 3∑
i=1

∫∫
v4
i w(t)2 dx dv

+
3∑∫∫

v4
i w(t)f (t)dx dv, ∀t ∈ [0, T ].
i=1
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By integrating in t , using C1|v|4 �
∑

v4
i � C2|v|4 and (4.1), we have

∥∥|v|2w(t)
∥∥2

2 � C

(∥∥|v|2w0
∥∥2

2 + 6σ

β

(
e3βt − 1

)‖w0‖2
2 + (6σ − β)

t∫
0

∥∥|v|2w(s)
∥∥2

2 ds

+ 2
3∑

i=1

t∫
0

∫∫
v4
i w(s)f (s)dx dv ds

)
, ∀t ∈ [0, T ]. (4.46)

Using again the skew-symmetry of the pseudo-differential operator Θ , Eq. (2.9) and the Hölder inequality, we have

t∫
0

∫∫
v2
i w(s)v2

i f (s)dx dv ds � 1

4

t∫
0

∥∥v2
i w(s)

∥∥
2

∥∥Θ
[
∂2
i V

[
w(s)

]]
w(s)

∥∥
2 ds

+
t∫

0

∥∥v2
i w(s)

∥∥
2

∥∥Ω
[
∂iV

[
w(s)

]]
viw(s)

∥∥
2 ds. (4.47)

Since ŵ(x, ·, t) ∈ H 2(R3
η), the Gagliardo–Nirenberg inequality yields for t ∈ [0, T ]∥∥ŵ(x, ·, t)∥∥

L∞(R3
η)

� C
∥∥ŵ(x, ·, t)∥∥1/2

L6(R3
η)

∥∥|̂v|2w(x, ·, t)∥∥1/2
L2(R3

η)

� C
∥∥v̂w(x, ·, t)∥∥1/2

L2(R3
η)

∥∥|̂v|2w(x, ·, t)∥∥1/2
L2(R3

η)
. (4.48)

Using∥∥�V
[
w(t)

]∥∥
2 = ∥∥n

[
w(t)

]∥∥
2 = C

∥∥ŵ(·, η = 0, t)
∥∥

L2(R3
x)

� C

(∫ ∥∥ŵ(x, ·, t)∥∥2
L∞(R3

η)
dx

)1/2

,

(4.48), the Hölder inequality, and (4.42) we can estimate:

∥∥Θ
[
∂2
i V

[
w(t)

]]
w(t)

∥∥
2 � C

∥∥�V
[
w(t)

]∥∥
2

(∫ ∥∥ŵ(x, ·, t)∥∥2
L∞(R3

η)
dx

)1/2

� C

∫ ∥∥ŵ(x, ·, t)∥∥2
∞ dx

� C

∫ ∥∥v̂w(x, ·, t)∥∥
L2(R3

η)

∥∥|̂v|2w(x, ·, t)∥∥
L2(R3

η)
dx

� C
(
T ,‖w0‖X, sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})∥∥|v|2w(t)
∥∥

2. (4.49)

For the second term of the r.h.s. of (4.47) we proceed as in (4.43) and use the estimate (4.36):∥∥Ω
[
∂iV

[
w(t)

]]
viw(t)

∥∥
2 � C

∥∥∂iV
[
w(t)

]∥∥
3

∥∥v̂iw(t)
∥∥

L2(R3
x ;L6(R3

η))

� C
(
T ,‖w0‖X, sup

s∈(0,T ]
{
ϑ(s)ω

∥∥nϑ
0 (s)

∥∥
L6/5

})(
t−

ω
2 + t−ω+ 1

4
)∥∥|v|2w(t)

∥∥
2, ∀t ∈ [0, T ].

Analogously to (4.44), combining the estimates (4.47), (4.49) and (4.50) the Gronwall Lemma gives the assertion. �
Proof of Theorem 4.1. Lemmata 4.2 and 4.19 show that∥∥w(t)

∥∥
X

� C
(
T ,‖w0‖X, sup

s∈(0,T ]
{
ϑ(s)ω‖nϑ

0 (s)‖L6/5

})
, ∀t ∈ [0, T ], ∀0 < T < tmax,

with C being continuous in T ∈ [0, tmax]. Then, Corollary 3.5 shows that the mild solution w exists on [0,∞). �
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4.4. Regularity

The following result concerns the smoothness of the solution of WPFP, the macroscopic density and the force field,
for positive times.

Corollary 4.20. Under the assumptions of Theorem 4.1, the mild solution of the WPFP equation (3.7) satisfies

w ∈ C
(
(0,∞);C∞

B
(
R6)),

n(t),E(t),V (t) ∈ C
(
(0,∞);C∞

B
(
R3)).

Proof. Obviously, w(t) ∈ C(R6) ∀t > 0, because of the Green’s function representation in (3.22), (3.3). If we differ-
entiate Eq. (3.7) with respect to xi and, resp., vi, we obtain the following linear, inhomogeneous problems for any
fixed t1 > 0.

zt (t) = Āz(t) + Θ
[
V

[
z(t)

]]
w(t) + Θ

[
V

[
w(t)

]]
z(t), ∀t > t1, z(t1) = ∂xi

w(t1) ∈ X,

yt (t) = Āy(t) + βy(t) − ∂xi
w(t) + Θ

[
V

[
w(t)

]]
y(t), ∀t > t1, y(t1) = ∂vi

w(t1) ∈ X.

By arguments analogous to Lemma 3.3, there exists a unique mild solution

z = ∂xi
w ∈ C

([t1,∞);H 1(R6; (1 + |v|2)2 dx dv
))

. (4.50)

By an induction procedure, the derivatives ∇a
x ∇b

vw, for a, b ∈ N3, |a| + |b| = m > 1 are also mild solutions of
similar problems with additional well-defined inhomogeneities and with initial times 0 < t1 < t2 < · · · < tm. This
yields ∇a

x ∇b
vw ∈ C([tm,∞);H 1(R6; (1+|v|2)2 dx dv)), and thus ∇a

x ∇b
vw ∈ C((0,∞);X). Hence, the statement about

smoothness of the density and the electric field is straightforward from Propositions 2.1 and 2.3 and Sobolev embed-
dings. �
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Appendix A

Proof of Lemma 2.8. For u ∈ D(A) we have

〈Au,u〉
X̃

= 〈Au,u〉L2(R6) +
3∑

i=1

∫∫
v4
i uAu, (A.1)

where
∫∫

f denotes the integral
∫

R3

∫
R3 f (x, v)dv dx, and the norm ‖ · ‖

X̃
is defined by (2.7). Using integrations by

parts we shall calculate the three terms on the right-hand side separately.

〈Au,u〉L2(R6) =
3∑

i=1

(
−

∫∫
viuxi

u + β

∫∫
(viu)vi

u + σ

∫∫
uvivi

u + 2γ

∫∫
uxivi

u + α

∫∫
uxixi

u

)

�
3∑

i=1

[
3β

∫∫
u2 + β

∫∫
viuvi

u − σ

∫∫
u2

vi
+ γ

(
ε

∫∫
u2

xi
+ 1

ε

∫∫
u2

vi

)
− α

∫∫
u2

xi

]

= 3
β‖u‖2

2 +
(

γ − σ

)
‖∇vu‖2

2 + (εγ − α)‖∇xu‖2
2.
2 ε



A. Arnold et al. / Ann. I. H. Poincaré – AN 24 (2007) 645–676 671
With ε = γ
σ

we obtain

〈Au,u〉L2(R6) � 3

2
β‖u‖2

2. (A.2)

Next we estimate the second term of (A.1):

3∑
i=1

∫∫
v4
i uAu =

3∑
i,j=1

(
−

∫∫
v4
i vjuxj

u + β

∫∫
v4
i (vju)vj

u

+ σ

∫∫
v4
i uvj vj

u + 2γ

∫∫
v4
i uxj vj

u + α

∫∫
v4
i uxj xj

u

)
�

3∑
i,j=1

[
β

∫∫
v4
i u

2 + β

∫∫
v4
i vjuvj

u − σ

∫∫
v4
i u

2
vj

− 4

3
σ

∫∫
v3
i uvi

u + γ

(
ε

∫∫
v4
i u

2
xj

+ 1

ε

∫∫
v4
i u

2
vj

)
− α

∫∫
v4
i u

2
xj

]
�

3∑
i=1

(
−1

2
β

∫∫
v4
i u

2 + 6σ

∫∫
v2
i u

2
)

� 9σ‖u‖2
2 +

(
−1

2
β + 3σ

) 3∑
i=1

∫∫
v4
i u

2, (A.3)

by choosing ε = γ
σ

and by an interpolation.
Collecting the two estimates yields

〈Au,u〉
X̃

�
(

3

2
β + 9σ

)
‖u‖2

2 + 3σ

3∑
i=1

∫∫
v4
i u

2 �
(

3

2
β + 9σ

)
‖u‖2

X̃
.

Thus, the operator A − κI is dissipative. �
Proof of Lemma 2.10. To prove the assertion we shall construct for each f ∈ D(P̄ ) ⊂ L2(R6) a sequence {fn} ⊂
D(P ) such that fn → f in the graph norm

‖f ‖P := ‖f ‖L2 + ∥∥|v|2f ∥∥
L2 + ‖Pf ‖L2 + ∥∥|v|2Pf

∥∥
L2 .

To shorten the proof we shall consider here only the case

P = θ + νv · ∇x + μx · ∇v + βv · ∇v + α�x + σ�v + γ divv ∇x

(cf. the definition of the operator A in (2.13)), but exactly the same strategy extends to the case, where P is a general
quadratic polynomial.

First we define the mollifying delta sequence

φn(x, v) := n6φ(nx,nv), n ∈ N, x, v ∈ R3,

where

φ ∈ C∞
0

(
R6), φ(x, v) � 0,∫∫

φ(x, v)dx dv = 1, and suppφ ⊂ {|x|2 + |v|2 � 1
}
.

By definition we have the following properties:

(I) φn → δ in D′(R6),

(II) 1
n
∂xi

φn,
1
n
∂vi

φn → 0 in D′(R6), i = 1,2,3,
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(III) (x, v)a∂b
(x,v)[(x, v)cφn(x, v)] → 0 in D′(R6), with a, b, c ∈ N6

0 multi-indexes and |c| > 0, since (x, v)cφn → 0

in D′(R6).

The cutoff sequence is

ψn(x, v) := ψ

( |(x, v)|
n

)
, n ∈ N, x, v ∈ R3,

where ψ satisfies

ψ ∈ C∞
0 (R), 0 � ψ(z) � 1, suppψ ⊂ [−1,1], ψ |[− 1

2 , 1
2 ] ≡ 1,

and ∣∣ψ(j)(z)
∣∣ � Cj , ∀z ∈ R, j = 1,2.

The sequence ψn has the following properties:

(IV) ψn → 1 pointwise,

(V) (x, v)a∂b
(x,v)ψn(x, v) = 1

n

(x, v)a(x, v)b

|(x, v)| ψ ′
( |(x, v)|

n

)
,

with a, b ∈ N6
0, |a| = |b| = 1, are supported in the annulus

supp

(
ψ ′

( |(x, v)|
n

))
=

{
(x, v)

∣∣∣∣ n

2
�

∣∣(x, v)
∣∣ � n

}
=: Un,

and they are in L∞(R6), uniformly in n ∈ N.

(VI) n∂a
(x,v)ψn(x, v) = (x, v)a

|(x, v)|ψ
′
( |(x, v)|

n

)
,

with a ∈ N6
0, |a| = 1, are uniformly bounded in L∞(R6).

(VII) ∂a
(x,v)ψn(x, v) = (x, v)a

n2|(x, v)|2 ψ ′′
( |(x, v)|

n

)
+

(
1

n2|(x, v)| − (x, v)a

n3|(x, v)|3
)

ψ ′
( |(x, v)|

n

)
,

with |a| = 2 have support on Un and converge uniformly to 0 in L∞(R6).

We now define the approximating sequence

fn(x, v) := (f ∗ φn)(x, v)ψn(x, v), n ∈ N,

where ‘∗’ denotes the convolution in x and v.
By construction we have fn ∈ C∞

0 (R6) = D(P ).
Since we can split our operator as

P =
3∑

i=1

[
θ

3
+ νvi∂xi

+ μxi∂vi
+ βvi∂vi

+ α∂2
xi

+ σ∂2
vi

+ γ ∂vi
∂xi

]

=
3∑

i=1

p̃(xi, vi, ∂xi
, ∂vi

),

we shall in the sequel only consider

P̃ = p̃(y, z, ∂y, ∂z), y, z ∈ R

acting in one spatial direction y = xj and one velocity direction z = vj .
We have to prove that fn(x, v) → f (x, v) in the graph norm

‖f ‖
P̃

= ‖f ‖L2 + ∥∥|v|2f ∥∥
L2 + ‖P̃ f ‖L2 + ∥∥|v|2P̃ f

∥∥
L2 .

According to the 4 terms of the graph norm we split the proof into 4 steps:
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Step 1: By applying (I) and (IV), we have

fn → f in L2(R6).
Step 2: For the second term of the graph norm we write

v2
i fn = (

v2
i f ∗ φn

)
ψn + 2(vif ∗ viφn)ψn + (

f ∗ v2
i φn

)
ψn.

The first summand converges to v2
i f in L2(R6) and both the second and the third terms converge to 0 by (III), since

also vif belongs to L2(R6) by interpolation.
Hence we have

fn → f in X̃.

Step 3: To prove that P̃ fn → P̃ f in L2(R6) we write:

P̃ fn = θ

3
(f ∗ φn)ψn + ν(zfy ∗ φn)ψn + μ(yfz ∗ φn)ψn + β(zfz ∗ φn)ψn

+α(fyy ∗ φn)ψn + σ(fzz ∗ φn)ψn + γ (fyz ∗ φn)ψn + r1
n(y, z)

= (P̃ f ∗ φn)ψn + r1
n(y, z).

As we shall show, all thirteen terms of the remainder

r1
n = ν

(
f ∗ ∂y(zφn)

)
ψn + ν(f ∗ φn)z∂yψn + μ(f ∗ y∂zφn)ψn

+ μ(f ∗ φn)y∂zψn + β
(
f ∗ ∂z(zφn)

)
ψn + β(f ∗ φn)z∂zψn

+ 2α

(
f ∗

(
1

n
∂yφn

))
(n∂yψn) + α(f ∗ φn)

(
∂2
yψn

) + 2σ

(
f ∗ 1

n
∂zφn

)
n∂zψn

+ σ(f ∗ φn)∂
2
z ψn + γ

(
f ∗

(
1

n
∂zφn

))
(n∂yψn) + γ

(
f ∗

(
1

n
∂yφn

))
(n∂zψn) + γ (f ∗ φn)∂y∂zψn

converge to 0 in L2(R6).
The first, the third and the fifth terms converge to 0 in L2(R6) by (III).
In the second, fourth and the sixth terms, exploiting (V) we have∥∥(f ∗ φn)(z∂yψn)

∥∥
L2(R6)

� C‖f ∗ φn − f ‖L2(Un) + ‖f ‖L2(Un) → 0, (A.4)

because ‖f ‖L2(R6) = ‖f ‖L2(B1/2(0)) + ∑∞
k=0 ‖f ‖L2(U2k ).

For what the seventh, ninth, eleventh and twelfth terms are concerned, we can exploit (VI) and then (II).
The remaining terms can be handled thanks to (VII).
Step 4: To prove that |v|2P̃ fn → |v|2P̃ f in L2(R6) we write:

v2
i P̃ fn = θ

3

(
v2
i f ∗ φn

)
ψn + ν

(
v2
i zfy ∗ φn

)
ψn + μ

(
v2
i yfz ∗ φn

)
ψn + β

(
v2
i zfz ∗ φn

)
ψn

+ α
(
v2
i fyy ∗ φn

)
ψn + σ

(
v2
i fzz ∗ φn

)
ψn + γ

(
v2
i fyz ∗ φn

)
ψn + r2

n(y, z)

= (
v2
i P̃ f ∗ φn

)
ψn + r2

n(y, z).

The remainder r2
n can be written as the sum of the following terms (remember y = xj , z = vj ):

r2
n,θ = 2

3
θ(vif ∗ viφn)ψn + θ

3

(
f ∗ v2

i φn

)
ψn,

r2
n,ν = 2ν

(
vizf ∗ ∂y(viφn)

)
ψn + ν

(
zf ∗ ∂y

(
v2
i φn

))
ψn + ν

(
v2
i f ∗ z∂yφn

)
ψn + 2ν(vif ∗ viz∂yφn)ψn

+ ν
(
f ∗ v2

i z∂yφn

)
ψn + ν

(
v2
i f ∗ φn

)
z∂yψn + 2ν(vif ∗ viφn)z∂yψn + ν

(
f ∗ v2

i φn

)
z∂yψn,

r2
n,μ = 2μ

(
yvif ∗ ∂z(viφn)

)
ψn − 2μδij (yf ∗ viφn)ψn + μ

(
yf ∗ ∂z

(
v2
i φn

))
ψn

+ μ
(
v2
i f ∗ y∂zφn

)
ψn + 2μ(vif ∗ viy∂zφn)ψn + μ

(
f ∗ v2

i y∂zφn

)
ψn

+ μ
(
v2f ∗ φn

)
y∂zψn + 2μ(vif ∗ viφn)y∂zψn + μ

(
f ∗ v2φn

)
y∂zψn,
i i
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r2
n,β = 2β

(
vizf ∗ ∂z(viφn)

)
ψn − 2β(1 + δij )(vif ∗ viφn)ψn + β

(
zf ∗ ∂z

(
v2
i φn

))
ψn

− β
(
f ∗ v2

i φn

)
ψn + β

(
v2
i f ∗ ∂z(zφn)

)
ψn + 2β

(
vif ∗ vi∂z(zφn)

)
ψn

+ β
(
f ∗ v2

i ∂z(zφn)
)
ψn + β

(
v2
i f ∗ φn

)
z∂zψn + 2β(vif ∗ viφn)z∂zψn

+ β
(
f ∗ v2

i φn

)
z∂zψn,

r2
n,α = 2α

(
vif ∗ vi∂

2
yφn

)
ψn + α

(
f ∗ v2

i ∂
2
yφn

)
ψn + 2α

(
v2
i f ∗ 1

n
∂yφn

)
n∂yψn

+ 4α

(
vif ∗ vi

n
∂yφn

)
n∂yψn + 2α

(
f ∗ v2

i

n
∂yφn

)
n∂yψn + α

(
v2
i f ∗ φn

)
∂2
yψn

+ 2α(vif ∗ viφn)∂
2
yψn + α

(
f ∗ v2

i φn

)
∂2
yψn,

r2
n,σ = 2σ

(
vif ∗ ∂2

z (viφn)
)
ψn − 2σδij

(
f ∗ ∂z(viφn)

)
ψn + σ

(
f ∗ ∂2

z

(
v2
i φn

))
ψn

+ 2σ

(
v2
i f ∗ 1

n
∂zφn

)
n∂zψn + 4σ

(
vif ∗ vi

n
∂zφn

)
n∂zψn + 2σ

(
f ∗ v2

i

n
∂zφn

)
n∂zψn

+ σ
(
v2
i f ∗ φn

)
∂2
z ψn + 2σ(vif ∗ viφn)∂

2
z ψn + σ

(
f ∗ v2

i φn

)
∂2
z ψn,

r2
n,γ = 2γ

(
vif ∗ ∂z(vi∂yφn)

)
ψn − 2γ δij (f ∗ vi∂yφn)ψn + γ

(
f ∗ ∂z∂y

(
v2
i φn

))
ψn

+ γ

(
v2
i f ∗ 1

n
∂yφn

)
n∂zψn + 2γ

(
vif ∗ vi

n
∂yφn

)
n∂zψn + γ

(
f ∗ v2

i

n
∂yφn

)
n∂zψn

+ γ

(
v2
i f ∗ 1

n
∂zφn

)
n∂yψn + 2γ

(
vif ∗ vi

n
∂zφn

)
n∂yψn + γ

(
f ∗ v2

i

n
∂zφn

)
n∂yψn

+ γ
(
v2
i f ∗ φn

)
∂z∂yψn + 2γ (vif ∗ viφn)∂z∂yψn + γ

(
f ∗ v2

i φn

)
∂z∂yψn.

By the properties (I)–(VII) and estimate like (A.4), it can be easily seen that each term converges to 0 in L2(R6). �
Proof of Proposition 3.1. First, we shall prove the following estimates on the derivatives of the Green’s function
(3.4):

∣∣∇vG(t, x, v, x0, v0)
∣∣ � b

G(t, x
2 , v

2 ,
x0
2 ,

v0
2 )√

t
, ∀t � t0, (A.5)

∣∣∇xG(t, x, v, x0, v0)
∣∣ � b′ G(t, x

2 , v
2 ,

x0
2 ,

v0
2 )√

t
, ∀t � t1 (A.6)

with b = b(α, γ,σ ), t0 = t0(α,β,σ, γ ), b′ = b′(α, γ,σ ) and t1 = t1(α,β,σ, γ ). The v-derivative of G is given by

∇vG(t, x, v, x0, v0) = G(t, x, v, x0, v0)

[
− (μ(t)eβt − 2ν(t)(eβt − 1)/β)(x − ((eβt − 1)/β)v − x0)

f (t)

− (2λ(t)eβt − μ(t)(eβt − 1)/β)(eβt v − v0)

f (t)

]
. (A.7)

For all real a, b, c > 0 such that c/
√

a � b
√

2e, one easily verifies that

c|x| � bea|x|2 , ∀x ∈ R3. (A.8)

Since α,σ > 0, we have for t > 0 small enough

ν(t) − 1
μ(t) > 0, λ(t) − 1

μ(t) > 0.

2 2
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In order to apply the estimate (A.8) to the two terms inside the squared bracket in (A.7) we shall use for t small:

c1√
a1

:= (
√

t/f (t))|μ(t)eβt − 2ν(t)(eβt − 1)/β|√
3
4 (ν(t) − 1

2μ(t))/f (t)

∼ 2γ√
3(ασ − γ 2)(σ + γ )

� b1
√

2e,

with b1 = γ /
√

3(ασ − γ 2)(σ + γ ). Similarly,

c2√
a2

:= (
√

t/f (t))|2λ(t)eβt − μ(t)(eβt − 1)/β|√
3
4 (λ(t) − 1

2μ(t))/f (t)

∼ 2α√
3(ασ − γ 2)(α + γ )

� b2
√

2e,

with b2 = α/
√

3(ασ − γ 2)(α + γ ). Then, there exists some t0 > 0 such that, for all t � t0, the two inequalities can be
combined with b = max{b1, b2} to give∣∣∣∣ (μ(t)eβt − 2ν(t)(eβt − 1)/β)(x − ((eβt − 1)/β)v − x0) + (2λ(t)eβt − μ(t)(eβt − 1)/β)(eβtv − v0)

f (t)

∣∣∣∣√t

�
√

t

f (t)

{∣∣∣∣μ(t)eβt − 2ν(t)
eβt − 1

β

∣∣∣∣∣∣∣∣x − eβt − 1

β
v − x0

∣∣∣∣ +
∣∣∣∣2λ(t)eβt − μ(t)

eβt − 1

β

∣∣∣∣∣∣eβtv − v0
∣∣}

� b exp

{
(ν(t) − 1

2μ(t))|x − ((eβt − 1)/β)v − x0|2 + (λ(t) − 1
2μ(t))|eβtv − v0|2

4
3f (t)

}
� b exp

{
ν(t)|x − ((eβt − 1)/β)v − x0|2 + λ(t)|eβtv − v0|2 + μ(t)(x − ((eβt − 1)/β)v − x0)(eβt v − v0)

4
3f (t)

}
.

Hence,∣∣∇vG(t, x, v, x0, v0)
∣∣ � b

G(t, x, v, x0, v0)√
t

× exp

{
3

4

ν(t)|x − ((eβt − 1)/β)v − x0|2 + λ(t)|eβt v − v0|2 + μ(t)(x − ((eβt − 1)/β)v − x0)(eβtv − v0)

f (t)

}
and the decay (A.5) follows by comparison with (3.4).

Next we consider the x-derivative of the Green’s function,

∇xG(t, x, v, x0, v0) = G(t, x, v, x0, v0)

[
−2ν(t)(x − ((eβt − 1)/β)v − x0) + μ(t)(eβtv − v0)

f (t)

]
.

Analogously, the decay (A.6) follows by exploiting that for t small enough

(
√

t/f (t))2ν(t)√
3
4 (ν(t) − 1

2μ(t))/f (t)

∼ 2σ√
3(ασ − γ 2)(σ + γ )

� b′
1

√
2e,

(
√

t/f (t))|μ(t)|√
3
4 (λ(t) − 1

2μ(t))/f (t)

∼ 2γ√
3(ασ − γ 2)(α + γ )

� b′
2

√
2e,

with appropriate b′
1(α, γ,σ ), b′

2(α, γ,σ ).
Since

etĀw0(x, v) =
∫∫

G(t, x, v, x0, v0)w0(x0, v0)dx0 dv0,

we have∣∣∇vetĀw0(x, v)
∣∣ �

∫∫ ∣∣∇vG(t, x, v, x0, v0)
∣∣∣∣w0(x0, v0)

∣∣dx0 dv0

� bt−1/2
∫∫

G

(
t,

x
,
v
,
x0

,
v0

)∣∣w0(x0, v0)
∣∣dx0 dv0
2 2 2 2
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= 64bt−1/2
∫∫

G(t, x̃, ṽ, x̃0, ṽ0)
∣∣w0(2x̃0,2ṽ0)

∣∣dx̃0 dṽ0

= 64b t−1/2etĀw̃0(x̃, ṽ), ∀t � t0. (A.9)

Here we used the decay (A.5), and we put x̃ = x
2 , ṽ = v

2 and w̃0(x̃, ṽ) = |w0(2x̃,2ṽ)|. The assertion (3.5) follows
directly by applying the estimate (3.2) to (A.9) and choosing T0 = min{t0, t1}.

The estimate (3.6) can be obtained analogously. �
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