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Abstract

The subject matter of this paper concerns the equilibria of the Fokker–Planck–Landau equation under the action of strong 
magnetic fields. Averaging with respect to the fast cyclotronic motion when the Larmor radius is supposed to be finite leads to 
an integro-differential version of the Fokker–Planck–Landau collision kernel, combining perpendicular space coordinates (with 
respect to the magnetic lines) and velocity. We determine the equilibria of this gyroaveraged Fokker–Planck–Landau kernel and 
derive the macroscopic equations describing the evolution around these equilibria, in the parallel direction.
© 2015 
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1. Introduction

We investigate the transport of charged particles under the action of strong magnetic fields, which is motivated by 
the magnetic confinement for tokamak plasmas. We neglect the self-consistent electro-magnetic field, but we take into 
account the interactions between particles. The external electric field E = −∇xΦ is fixed, and the external magnetic 
field writes

Bε = B(x)

ε
d(x), |d| = 1

where ε > 0 is a small parameter, destinated to converge to 0, in order to describe strong magnetic fields. The scalar 
function φ stands for the electric potential, B(x) > 0 is the rescaled magnitude of the magnetic field and d(x) denotes 
its direction.
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The presence density f ε = f ε(t, x, v) ≥ 0 of a population of charged particles with mass m and charge q satisfies

∂tf
ε + v · ∇xf

ε + q

m

(
E + v ∧ Bε

) · ∇vf
ε = Q

(
f ε, f ε

)
, (t, x, v) ∈R+ ×R

3 ×R
3, (1)

f ε(0, x, v) = f in(x, v), (x, v) ∈R
3 ×R

3. (2)

Here Q denotes the Fokker–Planck–Landau collision kernel cf. [21,13,14]

Q(f,f )(v) = divv

{∫
R3

σ
(∣∣v − v′∣∣)S(

v − v′)[f (
v′)∇vf (v) − f (v)∇v′f

(
v′)]dv′

}

where σ > 0 stands for the scattering cross section and S(w) = I − w⊗w

|w|2 is the orthogonal projection on the plane of 
normal w �= 0. The interpretation of the density f ε is straightforward: the number of charged particles contained at 
time t inside the infinitesimal volume dxdv around the point (x, v) of the position-velocity phase space is given by 
f ε(t, x, v)dxdv. Eq. (1) describes the evolution of the density f ε due to the transport and to the particle interactions.

The behavior of (1), (2) without collisions, when ε ↘ 0, is now well understood [20,24,15,3–6]. It reduces to 
homogenization analysis and can be solved using the concept of two-scale convergence [17,18,16].

Gyroaveraged collision operators have been proposed in [25,11,12,19]. The main difficulty lies on the relaxation of 
the distribution function towards an equilibrium. Many of these gyroaveraged collision operators fail to relax to equi-
libria, in particular those obtained by linearization around Maxwellians (which are not gyrokinetic equilibria, at least 
in the finite Larmor radius regime). Very recently, the averaging techniques developed in [3–5] have been extended to 
the collisional framework. Gyroaveraged collision kernels have been proposed for the relaxation Boltzmann operator, 
the Fokker–Planck and Fokker–Planck–Landau operators [7–10].

There are mainly two asymptotic regimes describing the transport of charged particles under strong magnetic fields: 
the guiding center and the finite Larmor radius approximations. In the guiding center approximation, the ratio between 
the perpendicular and parallel spatial lengths is much smaller (and thus neglected) with respect to the ratio between 
the cyclotronic period and the observation time unit. In this case, any Larmor circle reduces to its center. Therefore, 
the particle positions are left invariant at the cyclotronic time scale, the magnetic field becomes locally uniform, and 
the gyroaverage plays only in the perpendicular velocity space. For these reasons, the derivation of the guiding center 
approximation is relatively simple, and explicit models are available for general tridimensional magnetic geometry [5,
6,10]. The situation is quite different for the finite Larmor radius approximation. In this case, we assume that the ratio 
between the perpendicular and parallel spatial lengths is small, remaining of the same order as the ratio between the 
cyclotronic period and the observation time unit

L⊥
L‖

= Tc

Tobs
= ε � 1.

The particles move on small Larmor circles, the position is not anymore left invariant at the cyclotronic scale, the 
magnetic field is no more locally uniform, and the gyroaverage combines now position and velocity. Think that the 
average of a particle position, which is the Larmor center, depends not only on the initial position, but also on the 
initial perpendicular velocity. This fact will impact a lot the structure of the Fokker–Planck–Landau kernel. Indeed, 
after average, the collision kernel will be not anymore local in space and the equilibria will be given by profile in 
velocity and perpendicular position. The computations require much effort, and most of the times, the limit models 
are not completely explicit. Generally we start analyzing the case of uniform magnetic fields, eventually we generalize 
these results by linearization around the Larmor center (since the magnetic field does not change a lot along a Larmor 
radius). The finite Larmor radius regime provides a more realistic description for the tokamak plasmas.

In this paper we concentrate on the finite Larmor radius approximation. Assuming that the magnetic field is homo-
geneous and stationary

Bε =
(

0,0,
B

ε

)
for some constant B > 0, Eq. (1) becomes

∂tf
ε + 1 (

v1∂x1f
ε + v2∂x2f

ε
) + v3∂x3f

ε + q
E · ∇vf

ε + ωc (
v2∂v1f

ε − v1∂v2f
ε
) = Q

(
f ε, f ε

)
(3)
ε m ε
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where ωc = qB/m stands for the rescaled cyclotronic frequency. When ε is small, the density f ε writes as a combi-
nation between a dominant density f and corrections of orders ε, ε2, . . .

f ε = f + εf 1 + ε2f 2 + · · · . (4)

Plugging (4) into (3) and using the notations x = (x1, x2), v = (v1, v2), ⊥v = (v2, −v1) yield

T f := v · ∇xf + ωc
⊥v · ∇vf = 0, (5)

∂tf + v3∂x3f + q

m
E · ∇vf + T f 1 = Q(f,f ), (6)

...

where T is the linear operator defined in L2(R3 ×R
3) by

T u = divx,v(ub), b = (v,0,ωc
⊥v,0), ωc = qB

m

for any function u in the domain

D(T ) = {
u(x, v) ∈ L2(

R
3 ×R

3): divx,v(ub) ∈ L2(
R

3 ×R
3)}.

At any time t the density f (t, ·, ·) remains constant along the flow (X, V )(s; x, v) associated to the transport operator 
v · ∇x + ωc

⊥v · ∇v

dX

ds
= V (s),

dX3

ds
= 0,

dV

ds
= ωc

⊥V (s),
dV3

ds
= 0, (X,V )(0;x, v) = (x, v) (7)

and therefore, at any time t , the density f (t, ·, ·) depends only on the invariants of (7)

f (t, x, v) = g

(
t, x1 + v2

ωc

, x2 − v1

ωc

, x3, r = |v|, v3

)
.

The time evolution for f comes by (6), after eliminating f 1. The antisymmetry of T ensures that the range of T is 
orthogonal to its kernel, which allows us to get rid of f 1 in (6) by taking the orthogonal projection onto kerT

ProjkerT

{
∂tf + v3∂x3f + q

m
E · ∇vf

}
= ProjkerT

{
Q(f,f )

}
, (t, x, v) ∈ R+ ×R

3 ×R
3. (8)

Actually taking the orthogonal projection on kerT reduces to averaging along the characteristic flow of T in (7)
cf. [3–5]. This flow is Tc = 2π

ωc
periodic and writes

V (s) = R(−ωcs)v, X(s) = x +
⊥v

ωc

−
⊥V (s)

ωc

, X3(s) = x3, V3(s) = v3

where R(α) stands for the rotation of angle α

R(α) =
(

cosα − sinα

sinα cosα

)
.

For any function u ∈ L2(R3 ×R
3), the average operator is defined by

〈u〉(x, v) = 1

Tc

Tc∫
0

u
(
X(s;x, v),V (s;x, v)

)
ds

= 1

2π

2π∫
0

u

(
x +

⊥v

ωc

−
⊥{R(α)v}

ωc

, x3,R(α)v, v3

)
dα. (9)

We introduce the notation eiϕ for the R2 vector (cosϕ, sinϕ). If the vector v writes v = |v|eiϕ , then R(α)v =
|v|ei(α+ϕ) and the expression for 〈u〉 becomes
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〈u〉(x, v) = 1

2π

2π∫
0

u

(
x +

⊥v

ωc

−
⊥{|v|ei(α+ϕ)}

ωc

, x3, |v|ei(α+ϕ), v3

)
dα

= 1

2π

2π∫
0

u

(
x +

⊥v

ωc

−
⊥{|v|eiα}

ωc

, x3, |v|eiα, v3

)
dα.

The properties of the average operator (9) are summarized below (see Propositions 2.1, 2.2 in [5] for proof details). 
We denote by ‖ · ‖ the standard norm of L2(R3 ×R

3).

Proposition 1.1. The average operator is linear and continuous. Moreover it coincides with the orthogonal projection 
on the kernel of T i.e.,

〈u〉 ∈ kerT and
∫
R3

∫
R3

(
u − 〈u〉)ϕ dvdx = 0, ∀ϕ ∈ kerT . (10)

Remark 1.1. Notice that (X, V ) depends only on s and (x, v) and thus the variational characterization in (10) holds 
true at any fixed (x3, v3) ∈ R

2. Indeed, for any ϕ ∈ kerT , (x3, v3) ∈ R
2 we have

∫
R2

∫
R2

(uϕ)(x, v)dvdx = 1

Tc

Tc∫
0

∫
R2

∫
R2

u(x, v)ϕ
(
X(−s;x, v), x3,V (−s;x, v), v3

)
dvdxds

= 1

Tc

Tc∫
0

∫
R2

∫
R2

u
(
X(s;x, v), x3,V (s;x, v), v3

)
ϕ(x, v)dvdxds

=
∫
R2

∫
R2

〈u〉(x, v)ϕ(x, v)dvdx.

We have the orthogonal decomposition of L2(R3 × R
3) into invariant functions along the characteristics (7) and 

zero average functions

u = 〈u〉 + (
u − 〈u〉), ∫

R3

∫
R3

(
u − 〈u〉)〈u〉dvdx = 0.

Notice that T � = −T and thus the equality 〈·〉 = ProjkerT implies

ker〈·〉 = (kerT )⊥ = (
kerT �

)⊥ = RangeT .

In particular RangeT ⊂ ker〈·〉. Actually we show that RangeT is closed, which will give a solvability condition for 
T u = w (cf. [5, Propositions 2.2]).

Proposition 1.2. The restriction of T to ker〈·〉 is one-to-one map onto ker〈·〉. Its inverse belongs to L(ker〈·〉, ker〈·〉)
and we have the Poincaré inequality

‖u‖ ≤ 2π

|ωc| ‖T u‖, ωc = qB

m
�= 0

for any u ∈ D(T ) ∩ ker〈·〉.

A very useful result when averaging transport operators is given by the following commutation formula between 
divergence and average (cf. Proposition 3.3 in [8]).
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Proposition 1.3. For any smooth field ξ = (ξx, ξv) ∈ R
6 we have the equality

〈divx,v ξ 〉 = divx

{〈
ξx +

⊥ξv

ωc

〉
+

〈
ξv ·

⊥v

|v|
〉

v

ωc|v| −
〈
ξv · v

|v|
〉 ⊥v

ωc|v|
}

+ ∂x3〈ξx3〉

+ divv

{〈
ξv ·

⊥v

|v|
〉⊥v

|v| +
〈
ξv · v

|v|
〉

v

|v|
}

+ ∂v3〈ξv3〉.

In particular we have for any smooth field ξx ∈ R
3

〈divx ξx〉 = divx〈ξx〉
and for any smooth field ξv ∈R

3

〈divv ξv〉 = divx

{〈⊥ξv

ωc

〉
+

〈
ξv ·

⊥v

|v|
〉

v

ωc|v| −
〈
ξv · v

|v|
〉 ⊥v

ωc|v|
}

+ divv

{〈
ξv ·

⊥v

|v|
〉⊥v

|v| +
〈
ξv · v

|v|
〉

v

|v|
}

+ ∂v3〈ξv3〉.

Coming back to (8), on the one hand, averaging ∂t + v3∂x3 + q
m

E · ∇v leads to another transport operator. This is a 
straightforward consequence of the commutation formula between the divergence and average in Proposition 1.3. For 
the presentation clarity, the proof of this result is sketched in Appendix A.

Proposition 1.4. Assume that the electric field derives from a smooth potential i.e., E = −∇xφ. Then for any f ∈
C1

c (R3 ×R
3) ∩ kerT we have〈

∂tf + v3∂x3f + q

m
E · ∇vf

〉
= ∂tf + 〈⊥E〉

B
· ∇xf + v3∂x3f + q

m
〈E3〉∂v3f. (11)

On the other hand, the average of the Fokker–Planck–Landau kernel i.e., 〈Q〉(f, f ) := 〈Q(f, f )〉 writes cf. Propo-
sition 4.10 in [9]

ω−2
c 〈Q〉(f,f )(x, v)

= divωcx,v

{∫
R2

∫
R3

4∑
i=1

f
(
x′, x3, v

′)ξ i
(
x, v, x′, v′) ⊗ ξ i

(
x, v, x′, v′)∇ωcx,vf (x, v)dv′dx′

}

− divωcx,v

{∫
R2

∫
R3

4∑
i=1

f (x, v)ξ i
(
x, v, x′, v′) ⊗ εiξ

i
(
x′, v′, x, v

)∇ωcx′,v′f
(
x′, x3, v

′)dv′dx′
}

. (12)

Up to our knowledge, the above averaged Fokker–Planck–Landau kernel has never been reported in the plasma physics 
literature, before [9]. Its calculation relies on gyroaveraging differential operators and velocity convolutions. Some 
results regarding the behavior of the gyroaverage with respect to velocity convolutions have been obtained in [10] (in 
the framework of the guiding center approximation).

The operator in (12) is completely explicit. We indicate below the expressions for the vector fields entering it. 
Notice that their derivation is not of all trivial. The reader may refer to [9] for details. Nevertheless, we are using these 
expressions in order to determine the equilibria of the averaged Fokker–Planck–Landau kernel.

The notation divωcx,v stands for the divergence with respect to the variables ωcx and v (like that all variables 
entering the divergence are homogeneous). Here ε1 = ε2 = −1, ε3 = ε4 = 1 and the explicit formulae of the fields 
(ξ i)1≤i≤4 are given by

ξ1(x, v, x′, v′) = {σχ}1/2 r ′ sinϕ(v3 − v′
3)

|z|
√

|z|2 + (v3 − v′
3)

2

(
(v,0)

|v| ,
(⊥v,0)

|v|
)

,
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ξ2(x, v, x′, v′) = {σχ}1/2
[

r − r ′ cosϕ

|z|
(

(v,0)

|v| ,
(⊥v,0)

|v|
)

+
(

(⊥z,0)

|z| ,0

)]
,

ξ3(x, v, x′, v′) = {σχ}1/2 r ′ sinϕ

|z|
(

(⊥v,0)

|v| ,− (v,0)

|v|
)

,

ξ4(x, v, x′, v′)
{σχ}1/2

= (r ′ cosϕ − r)(v3 − v′
3)

|z|
√

|z|2 + (v3 − v′
3)

2

(
(⊥v,0)

|v| ,− (v,0)

|v|
)

+ ((v3 − v′
3)

(z,0)
|z| ,−|z|e3)√

|z|2 + (v3 − v′
3)

2

where v3, v′
3 ∈ R, r = |v|, r ′ = |v′|, z = (ωcx + ⊥v) − (ωcx′ + ⊥v′), σ = σ

√
|z|2 + (v3 − v′

3)
2, the angle ϕ ∈ (0, π)

satisfies

|z|2 = r2 + (
r ′)2 − 2rr ′ cosϕ,

∣∣r − r ′∣∣ < |z| < r + r ′

and

χ
(
r, r ′, z

) = 1{|r−r ′|<|z|<r+r ′}
π2

√|z|2 − (r − r ′)2
√

(r + r ′)2 − |z|2 , r, r ′ ∈ R+, z ∈R
2.

For every r, r ′ ∈ R+, χ(r, r ′, z)dz is a probability measure on R2

∫
R2

χ
(
r, r ′, z

)
dz = 1, r, r ′ ∈R+.

This measure characterizes the interaction between the Larmor circles of centers x + ⊥v
ωc

, x′ + ⊥v′
ωc

and radii |v|
|ωc| , 

|v′|
|ωc| , 

and charges only the circle pairs having non-empty intersection i.e.,

||v| − |v′||
|ωc| <

∣∣∣∣x +
⊥v

ωc

−
(

x′ +
⊥v′
ωc

)∣∣∣∣ <
|v| + |v′|

|ωc| .

More exactly, the measure χ appears when averaging integrals with respect to v (see Proposition 4.2 in [8] for details)〈∫
R3

f
(
x, v′)dv′

〉
(x, v) = ω2

c

∫
R2

∫
R3

χ
(
r, r ′, z

)
f

(
x′, x3, v

′)dv′dx′

for any f = f (x, v) ∈ kerT .
Clearly, the kernel 〈Q〉 in (12) is an integro-differential operator in (x, v) (observe that there is no derivative with 

respect to x3 since ξ i
x3

= 0, 1 ≤ i ≤ 4) and therefore will satisfy the mass, momentum and kinetic energy balances 
only globally in (x, v). Indeed, the averaged kernel writes as a divergence with respect to (x, v) and therefore there 
is no reason why its integral with respect to v vanishes. Only the integral with respect to (x, v) balances, assuming 
that the integrand has nice decay at infinity. Similarly, the averaged Fokker–Planck–Landau kernel will decrease the 
entropy f lnf globally in (x, v). Finally, combining (8), (11), (12) leads to the following model for the dominant 
density f = limε↘0 f ε in (4)

∂tf + 〈⊥E〉
B

· ∇xf + v3∂x3f + q

m
〈E3〉∂v3f = 〈Q〉(f,f ) (13)

with

〈Q〉(f,f ) = ω2
c divωcx,v

{∫
R2

∫
R3

4∑
i=1

f
(
x′, x3, v

′)ξ i
(
x, v, x′, v′) ⊗ ξ i

(
x, v, x′, v′)∇ωcx,vf (x, v)dv′dx′

}

− ω2
c divωcx,v

{∫
2

∫
3

4∑
i=1

f (x, v)ξ i
(
x, v, x′, v′) ⊗ εiξ

i
(
x′, v′, x, v

)∇ωcx′,v′f
(
x′, x3, v

′)dv′dx′
}

.

R R
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We concentrate on the equilibria of 〈Q〉, which are local in x3, but global in (x, v). For doing that we establish an
H -theorem. Thanks to the H theorem satisfied by 〈Q〉 (see Theorem 2.1 for precise statements and notations), the 
positive equilibria of 〈Q〉 are determined by the constraints

ξ i · ∇ lnf − εi

(
ξ i

)′ · ∇′ lnf ′ = 0, 1 ≤ i ≤ 4.

It happens that the densities above are parametrized by six quantities ρ > 0, u = (u1, u2, u3) ∈ R
3, K > 0, K +G > 0

ρ =
∫
R2

∫
R3

f (x, v)dvdx, ρu =
∫
R2

∫
R3

(ωcx + ⊥v)f (x, v)dvdx, ρu3 =
∫
R2

∫
R3

v3f (x, v)dvdx,

ρK =
∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
f (x, v)dvdx, ρG =

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

f (x, v)dvdx

which are linear combinations of the moments of f with respect to the average collision invariants (cf. Proposition 2.1)

1, ωcx + ⊥v, v3,
|v|2

2
,

|ωcx + ⊥v|2 − |v|2
2

.

Clearly ρ represents the total number of particles in the phase space (x, v) and u3 is the mean parallel velocity in 
(x, v). The mean perpendicular velocity do not enter the numbers parametrizing these equilibria. Indeed, any density 
f satisfying the constraint T f = 0 has zero mean perpendicular velocity∫

R2

∫
R3

vf (x, v)dvdx =
∫
R2

∫
R3

〈v〉f (x, v)dvdx = (0,0).

The role of the mean perpendicular velocity is played by the displacement of the mean Larmor center over one 
cyclotronic period

u = 2π

Tc

∫
R2

∫
R3(x + ⊥v

ωc
)f (x, v)dvdx∫

R2

∫
R3 f (x, v)dvdx

.

The moment in the definition of ρu is associated to the Larmor center x + ⊥v
ωc

which is balanced by the kernel 〈Q〉
∫
R2

∫
R3

(
x +

⊥v

ωc

)
〈Q〉(f,f )dvdx = 0.

The parameter K is related to the kinetic energy |v|2/2 which remains balanced by 〈Q〉. The parameter G corresponds 
to a new collision invariant (|ωcx + ⊥v|2 − |v|2)/2 i.e.,∫

R2

∫
R3

|ωcx + ⊥v|2 − |v|2
2

〈Q〉(f,f )dvdx = 0

and characterizes the gyrokinetic framework. Indeed, in the absence of the magnetic field, that is if ωc = 0, then 
u = (0, 0) and G vanishes.

The equilibria appear as Maxwellians of the form

f = ρω2
c

(2π)5/2 μ2θ3/2

μ−θ

exp

(
−|v|2 + (v3 − u3)

2

2θ

)
exp

(
−|ωcx + ⊥v − u|2 − |v|2

2μ

)
(14)

where θ and μ are uniquely determined by imposing the moment equalities defining K and G

μθ + θ = K, μ − μθ = G, μ > θ > 0.

μ − θ 2 μ − θ
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At a first glance, these equilibria may appear very complicated. The point is that the average operator combines
position and velocity in such a way that, at equilibrium, the particle density satisfies given profiles in velocity and 
perpendicular position.

Determining the equilibria of 〈Q〉 is a crucial issue for understanding the behavior of the tokamak plasmas, in 
the gyrokinetic approximation. The complete characterization of these equilibria is far to be obvious since they are 
no more local in space and depend on a larger set of parameters, including several new moments associated to new 
collision invariants. In particular we focus on the dissipation mechanisms, the main goal being the derivation of fluid 
models, much easier to understand and to simulate numerically. Once we have determined the equilibria of 〈Q〉, 
we can search for the dynamics in (13) near local (in (t, x3)) equilibria. In other words we concentrate on strongly 
collisional regimes of (13) and we obtain an Euler type system of six equations and six unknowns in the parallel 
direction. Up to our knowledge, this result has not been reported yet and represents a first research work in this 
direction. This Euler system represents a new hyperbolic model, enjoying new features, coming from the averaging 
process with respect to the fast cyclotronic motion. Its study could be very important for a better comprehension of 
classical fluid mechanics, combined with fast rotations or, more generally, when fast oscillations play an important 
role. For simplicity we discard here all technical difficulties related to the smoothness of the solution of (13), the 
validity of the Hilbert expansion we are using, etc. We restrict ourselves to formal computations and write down the 
expected macroscopic limit model in the parallel direction.

Theorem 1.1. Assume that the electric field is parallel and depends only on the time and the parallel space coordinate 
E = (0, 0, E3(t, x3)) and let f in ∈ kerT be a positive smooth density with rapid decay at infinity. For any τ > 0 the 
density f τ stands for the solution (assumed smooth and having nice decay at infinity) of the problem

∂tf
τ + v3∂x3f

τ + q

m
E3(t, x3)∂v3f

τ = 1

τ
〈Q〉(f τ , f τ

)
, (t, x, v) ∈R+ ×R

3 ×R
3,

f τ (t = 0, x, v) = f in(x, v) ≥ 0, (x, v) ∈ R
3 ×R

3. (15)

Therefore the leading order term in the expansion f τ = f + τf 1 + · · · (i.e., f = limτ↘0 f τ ) is a local equilibrium 
(see (14)) parametrized by the functions ρ = ρ(t, x3) > 0, u = u(t, x3), θ = θ(t, x3) > 0, μ = μ(t, x3) > θ(t, x3) > 0, 
which satisfy the system of conservation laws

∂tρ + ∂x3(ρu3) = 0, ∂t (ρu) + ∂x3

(
ρ
(
u3u + (0,0, θ)

)) − ρ
q

m
(0,0,E3) = 0, (t, x3) ∈R+ ×R,

∂t

[
ρ

(
μθ

μ − θ
+ θ

2
+ (u3)

2

2

)]
+ ∂x3

[
u3ρ

(
μθ

μ − θ
+ 3θ

2
+ (u3)

2

2

)]
− q

m
E3ρu3

= ∂t

[
ρ

(
μθ

μ − θ
+ θ

2

)]
+ ∂x3

[
ρu3

(
μθ

μ − θ
+ θ

2

)]
+ ρθ∂x3u3 = 0, (t, x3) ∈ R+ ×R,

∂t

[
ρ

(
μ − μθ

μ − θ

)]
+ ∂x3

[
ρu3

(
μ − μθ

μ − θ

)]
= 0, (t, x3) ∈R+ ×R

and the initial conditions

ρ(0, x3) =
∫
R2

∫
R3

f in(x, v)dvdx, ρ(0, x3)u(0, x3) =
∫
R2

∫
R3

(ωcx + ⊥v, v3)f
in(x, v)dvdx,

ρ(0, x3)

(
μ(0, x3)θ(0, x3)

μ(0, x3) − θ(0, x3)
+ θ(0, x3)

2

)
=

∫
R2

∫
R3

|v|2 + (v3 − u3(0, x3))
2

2
f in(x, v)dvdx,

ρ(0, x3)

(
μ(0, x3) − μ(0, x3)θ(0, x3)

μ(0, x3) − θ(0, x3)

)
=

∫
R2

∫
R3

|ωcx + ⊥v − u(0, x3)|2 − |v|2
2

f in dvdx.

The solution (ρ, u, θ, μ) also verifies

∂t

(
ρ ln

ρ(μ − θ)

μ2θ3/2

)
+ ∂x3

(
ρu3 ln

ρ(μ − θ)

μ2θ3/2

)
= 0, (t, x3) ∈ R+ ×R.
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For numerical simulations it is useful to write simplified versions of the averaged Fokker–Planck–Landau kernel 
which preserve the equilibria and the relaxation property towards these equilibria. The key point is to consider first 
order approximation near the equilibria, by neglecting all second order fluctuation terms around these equilibria. The 
averaged collision kernel 〈Q〉 being quadratic, the computation of the first order approximation L follows in a natural 
way, leading to a complete explicit formula. In particular we check that L has exactly the same equilibria as 〈Q〉.

Theorem 1.2. For any positive density f = f (x, v) we denote by Ef the equilibrium of 〈Q〉 having the same moments 
as f ∫

R2

∫
R3

(f − Ef )ϕ(x, v)dvdx = 0, ϕ ∈ {
1,ωcx + ⊥v, v3, |v|2/2,

(|ωcx + ⊥v|2 − |v|2)/2
}
.

The linearized of 〈Q〉(f, f ) around the equilibrium Ef writes

ω−2
c L(f ) =

4∑
i=1

divωcx,v

∫
R2

∫
R3

Ef E ′
f

{
ξ i · ∇

(
f

Ef

)
− εi

(
ξ i

)′ · ∇′
(

f ′

E ′
f

)}
ξ i dv′dx′.

Moreover, the following statements hold:

1. For any two functions f = f (x, v), ϕ = ϕ(x, v) we have

∫
R2

∫
R3

L(f )ϕ dvdx = −ω2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

Ef E ′
f

{
ξ i · ∇

(
f

Ef

)
− εi

(
ξ i

)′ · ∇′
(

f ′

E ′
f

)}

× {
ξ i · ∇ϕ − εi

(
ξ i

)′ · ∇′ϕ′}dv′dx′ dvdx. (16)

2. For any positive density f we have the inequality∫
R2

∫
R3

f

Ef

L(f )dvdx ≤ 0 (17)

with equality iff

ξ i · ∇
(

f

Ef

)
− εi

(
ξ i

)′ · ∇′
(

f ′

E ′
f

)
= 0, 1 ≤ i ≤ 4.

3. The positive equilibria of L are the positive equilibria of 〈Q〉
f > 0, L(f ) = 0 ⇔ f = Ef .

As usual, it is possible to further simplify the average Fokker–Planck–Landau operator, using its BGK approxima-
tion LBGK = −(f − Ef ), whose behavior regarding the equilibria is very similar to that of 〈Q〉 (see Theorem 5.1).

Our paper is organized as follows. In Section 2 we investigate the main properties of the average Fokker–Planck–
Landau collision operator. In particular we characterize its equilibria, thanks to an H type theorem. These equilibria 
are computed in Section 3. They are special Maxwellians depending on six parameters, which correspond to six mo-
ments. Section 4 is devoted to the fluid model near gyrokinetic equilibria, when the collisions dominate the transport. 
Simplified versions of the averaged Fokker–Planck–Landau collision operator are studied in the last section (the lin-
earized around equilibria and the BGK approximation). Some technical proofs and computations have been postponed 
to Appendix A.

2. The averaged Fokker–Planck–Landau collision operator

In this section we present the main properties of the operator 〈Q〉(f, f ) := 〈Q(f, f )〉, whose expression (12) has 
been obtained in [9] for any density f = f (x, v) satisfying the constraint T f = 0. The main goal is how to determine 
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the equilibria of 〈Q〉. These equilibria are local in x3 (since 〈Q〉 is local in x3) and we expect that they are special 
Maxwellians depending on the velocity v, but also on the perpendicular spatial coordinates x1, x2. We will see that 
the set of these equilibria is parametrized by six numbers

ρ(x3) =
∫
R2

∫
R3

f (x, v)dvdx, (18)

ρ(x3)u(x3) =
∫
R2

∫
R3

(ωcx + ⊥v)f (x, v)dvdx, (19)

ρ(x3)u3(x3) =
∫
R2

∫
R3

v3f (x, v)dvdx, (20)

ρ(x3)K(x3) =
∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
f (x, v)dvdx, (21)

ρ(x3)G(x3) =
∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

f (x, v)dvdx. (22)

Clearly u3 represents the mean parallel velocity, u/ωc is the mean Larmor circle center and K represents the temper-
ature. Notice that the mean perpendicular velocity vanishes for any density satisfying the constraint T f since∫

R2

∫
R3

vf (x, v)dvdx =
∫
R2

∫
R3

〈v〉f (x, v)dvdx = (0,0).

Therefore the mean perpendicular velocity will not enter the parameter family characterizing the equilibria. The 
interpretation of the quantity in (22) comes by observing that the Larmor circle power with respect to the mean 
Larmor center u/ωc is∣∣∣∣x +

⊥v

ωc

− u

ωc

∣∣∣∣
2

− |v|2
|ωc|2

and thus 2G/ω2
c is the mean Larmor circle power with respect to the mean Larmor center. The quantities in (18), (19), 

(20), (21), (22) are the moments of f with respect to the functions in the set

C =
{

1,ωcx + ⊥v, v3,
|v|2 + (v3 − u3)

2

2
,
|ωcx + ⊥v − u|2 − |v|2

2

}
.

All the functions in C are balanced by 〈Q〉. This is a consequence of the balances satisfied by Q and the definition 
of 〈Q〉, as the average of Q.

Proposition 2.1. For any function f = f (x, v) ∈ kerT we have∫
R2

∫
R3

〈Q〉(f,f )dvdx = 0,

∫
R2

∫
R3

(ωcx + ⊥v, v3)〈Q〉(f,f )dvdx = (0,0,0),

∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
〈Q〉(f,f )dvdx = 0,

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

〈Q〉(f,f )dvdx = 0.



M. Bostan / Ann. I. H. Poincaré – AN 33 (2016) 899–931 909
Proof. Observe that any function ϕ ∈ C belongs to kerT , since it depends only on the invariants of T , that is only on 
ωcx + ⊥v, x3, |v|, v3. Therefore, for any such function we can write, thanks to Remark 1.1∫

R2

∫
R3

ϕ〈Q〉(f,f )dvdx =
∫
R2

∫
R3

ϕ
〈
Q(f,f )

〉
dvdx =

∫
R2

∫
R3

ϕQ(f,f )dvdx. (23)

Notice also that any function ϕ ∈ C writes as a linear combination of 1, v, |v|2/2, with coefficients depending only 
on x. Therefore the mass, momentum and kinetic energy balances of the Fokker–Planck–Landau kernel guarantee that∫

R3

ϕ(x, v)Q(f,f )dv = 0, x ∈R
3. (24)

Our conclusion follows from (23) and (24). �
We are looking now for the equilibria of 〈Q〉. The crucial point is to establish an H type theorem for the kernel 

〈Q〉. Most of the results in the sequel are valid for all densities f , not necessarily in the kernel of T , but with respect to 
some particular extension of 〈Q〉 to the space of all densities f . It happens that the good choice is to define 〈Q〉(f, f )

by the same formula as in (12). The particular structure of the fields (ξ i)1≤i≤4 allows us to obtain the following 
characterization of the kernel 〈Q〉 in the distribution sense cf. Proposition 4.11 in [9].

Theorem 2.1. Consider two functions f = f (x, v) > 0, ϕ = ϕ(x, v) (not necessarily in the kernel of T ).

1. For any x3 ∈ R we have∫
R2

∫
R3

〈Q〉(f,f )ϕ dvdx

= −ω2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

ff ′(ξ i · ∇ lnf − εi

(
ξ i

)′∇′ lnf ′)(ξ i · ∇ϕ − εi

(
ξ i

)′∇′ϕ′)dv′dx′ dvdx (25)

where

f = f (x, v), f ′ = f ′(x′
1, x

′
2, x3, v

′),
∇ϕ = ∇ωcx,vϕ(x, v), ∇′ϕ′ = ∇ωcx′,v′ϕ

(
x′

1, x
′
2, x3, v

′),
ξ i = ξ i

(
x1, x2, v, x′

1, x
′
2, v

′), (
ξ i

)′ = ξ i
(
x′

1, x
′
2, v

′, x1, x2, v
)
.

2. For any positive density f we have the inequality∫
R2

∫
R3

lnf 〈Q〉(f,f )dvdx ≤ 0

with equality iff

ξ i · ∇ lnf − εi

(
ξ i

)′ · ∇′ lnf ′ = 0, 1 ≤ i ≤ 4. (26)

3. The positive equilibria of the averaged Fokker–Planck–Landau kernel i.e., f > 0, 〈Q〉(f, f ) = 0 are the positive 
functions verifying (26).

Proof. 1. Notice that for any 1 ≤ i ≤ 4 we have ξ i · (e3, 0) = 0 and therefore the operator divωcx,v acts only in 
(x1, x2, v). Thus, for any fixed x3 ∈ R we can perform integration by parts with respect to (x1, x2, v).∫

R2

∫
R3

〈Q〉(f,f )ϕ dvdx = −
4∑

i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

ff ′

× {(
ξ i · ∇ϕ

)(
ξ i · ∇ lnf

) − εi

(
ξ i · ∇ϕ

)((
ξ i

)′ · ∇′ lnf ′)}dv′dx′ dvdx. (27)
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Performing the change of variables (x′
1, x

′
2, v

′) ↔ (x1, x2, v) yields

∫
R2

∫
R3

〈Q〉(f,f )ϕ dvdx = −
4∑

i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

ff ′

× {((
ξ i

)′ · ∇′ϕ′)((ξ i
)′ · ∇′ lnf ′) − εi

((
ξ i

)′ · ∇′ϕ′)(ξ i · ∇ lnf
)}

dvdx dv′dx′. (28)

Combining (27), (28) one gets by Fubini’s theorem

∫
R2

∫
R3

〈Q〉(f,f )ϕ dvdx = −ω2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

ff ′T i dv′dx′ dvdx

where

T i = (
ξ i · ∇ϕ − εi

(
ξ i

)′ · ∇′ϕ′)(ξ i · ∇ lnf − εi

(
ξ i

)′ · ∇′ lnf ′), 1 ≤ i ≤ 4.

2. Applying (25) with ϕ = lnf yields

∫
R2

∫
R3

lnf 〈Q〉(f,f )dvdx = −ω2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

ff ′

× (
ξ i · ∇ lnf − εi

(
ξ i

)′ · ∇′ lnf ′)2 dv′dx′ dvdx ≤ 0, x3 ∈ R

with equality iff ξ i · ∇ lnf − εi(ξ
i)′ · ∇′ lnf ′ = 0, 1 ≤ i ≤ 4.

3. Consider f a positive equilibrium of 〈Q〉. Therefore we have the equality∫
R2

∫
R3

lnf 〈Q〉(f,f )dvdx = 0

and by the previous assertion we deduce (26). Conversely, let f be a positive density satisfying (26). Then, for any 
function ϕ we have, thanks to (25)∫

R2

∫
R3

ϕ〈Q〉(f,f )dvdx = 0

implying that 〈Q〉(f, f ) = 0. �
Remark 2.1. It is remarkable that the extension we have considered for 〈Q〉 (to the space of all positive densities) 
still satisfies the balances stated in Proposition 2.1. This can be checked directly, thanks to (25), verifying that for any 
ϕ ∈ C

ξ i · ∇ϕ − εi

(
ξ i

)′ · ∇′ϕ′ = 0, 1 ≤ i ≤ 4.

Actually, as ξ i · ∇x3 = ξ i · (e3, 0)/ωc = 0, 1 ≤ i ≤ 4, it is enough to do it for the functions

1, ωcx + ⊥v, v3,
|v|2

2
,

|ωcx + ⊥v|2 − |v|2
2

.

For example, let us verify that

ξ i · ∇ |v|2
2

− εi

(
ξ i

)′ · ∇′ |v′|2
2

= 0, 1 ≤ i ≤ 4.

The above condition is trivially satisfied for i ∈ {1, 2}. For i = 3 we have

ξ3 · ∇ |v|2 − ε3
(
ξ3)′ · ∇′ |v′|2 = −{σχ}1/2 r ′ sinϕ

r + {σχ}1/2 r sinϕ
r ′ = 0.
2 2 |z| |z|
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Finally, when i = 4 we obtain

ξ4 · ∇ |v|2
2

− ε4
(
ξ4)′ · ∇′ |v′|2

2

= {σχ}1/2
{
− (r ′ cosϕ − r)(v3 − v′

3)r + |z|2v3

|z|
√

|z|2 + (v3 − v′
3)

2
+ (r cosϕ − r ′)(v′

3 − v3)r
′ + |z|2v′

3

|z|
√

|z|2 + (v3 − v′
3)

2

}

= {σχ}1/2 v3 − v′
3

|z|
√

|z|2 + (v3 − v′
3)

2

[
r2 + (

r ′)2 − 2rr ′ cosϕ − |z|2] = 0.

Remark 2.2. The previous balances follow also by the argument below. Any local (in x) Maxwellian f (x, v) =
exp(α(x)|v|2 + β(x) · v + γ (x)) which belongs to kerT is an equilibrium for 〈Q〉, since

〈Q〉(f,f ) = 〈
Q(f,f )

〉 = 〈0〉 = 0.

We deduce by the third statement of Theorem 2.1 that

ξ i · ∇ϕ − εi

(
ξ i

)′ · ∇′ϕ′ = 0, 1 ≤ i ≤ 4

for any function ϕ(x, v) = α(x)|v|2 + β(x) · v + γ (x) in the kernel of T , and in particular for the functions

1, ωcx + ⊥v, v3,
|v|2

2
,

|ωcx + ⊥v|2 − |v|2
2

= ω2
c |x|2 − 2ωc(

⊥x · v)

2
.

We conclude by the first statement in Theorem 2.1.

3. The equilibria of the averaged Fokker–Planck–Landau collision operator

We determine now the positive equilibria of 〈Q〉 by solving (26) for any 1 ≤ i ≤ 4. We recall that

ψ1 = x1 + v2

ωc

, ψ2 = x2 − v1

ωc

, ψ3 = x3, ψ4 = |v|, ψ5 = v3

is a family of independent invariants for T = v ·∇x +ωc
⊥v ·∇v . We start solving Eq. (26) which corresponds to i = 1. 

Then we restrict this set of solutions by imposing successively Eq. (26) with i = 2, i = 3 and i = 4. It is the only place 
where we use the explicit form of the vector fields (ξ i)1≤i≤4, entering the expression of 〈Q〉. These computations are a 
little bit tedious, but finally they will provide the product of Maxwellians realizing the equilibria of 〈Q〉, parametrized 
by the moments ρ, u, K, G. Moreover, we should pay attention to the fact that the probability measure χ enters as 
a factor any vector field (ξ i)1≤i≤4 and therefore each equality in (26) is non-trivial only on the support of χ , that is, 
only for pairs of Larmor circles having non-empty intersection. All these proofs are postponed to Appendix A. For 
another proof, which avoids the explicit computation of the vector fields (ξ i)1≤i≤4, we refer to Proposition 3.5. For 
simplicity we do not care about the regularity of the solutions. All the derivatives are understood in the classical sense 
and we are looking for smooth solutions.

Proposition 3.1. The positive densities satisfying

ξ1 · ∇ lnf + (
ξ1)′ · ∇′ lnf ′ = 0 (29)

are those in the kernel of T .

Proposition 3.2. The positive densities satisfying (29) and

ξ2 · ∇ lnf + (
ξ2)′ · ∇′ lnf ′ = 0 (30)

are those of the form

f (x, v) = exp

(
α(x3)

2

∣∣∣∣x +
⊥v

ωc

∣∣∣∣
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ λ(x3, |v|, v3)

)

for some functions α : R → R, β = (β1, β2) : R → R
2, λ : R ×R+ ×R → R.
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Solving for i = 3 in (26), we will determine the particular form of the function λ(x3, |v|, v3).

Proposition 3.3. The positive densities satisfying (29), (30) and

ξ3 · ∇ lnf − (
ξ3)′ · ∇′ lnf ′ = 0 (31)

are of the form

f (x, v) = exp

(
α(x3)

2

∣∣∣∣x +
⊥v

ωc

∣∣∣∣
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ γ (x3)

|v|2
2

+ μ(x3, v3)

)

for some functions α, γ : R → R, β : R →R
2, μ : R2 → R.

It remains to determine the function μ(x3, v3). This will be done by solving (26) with i = 4, and we deduce that μ
is a quadratic function of v3, with coefficients depending on x3.

Proposition 3.4. The positive densities satisfying (29), (30), (31) and

ξ4 · ∇ lnf − (
ξ4)′ · ∇′ lnf ′ = 0 (32)

are of the form

f (x, v) = exp

{
α(x3)

2

∣∣∣∣x +
⊥v

ωc

∣∣∣∣
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ γ (x3)

|v|2
2

+
(

γ (x3) + α(x3)

ω2
c

)
(v3)

2

2
+ δ(x3)v3 + η(x3)

}

for some functions α, γ, δ, η : R →R, β : R →R
2.

We present now an alternative proof of the results stated in Propositions 3.1, 3.2, 3.3, 3.4. This approach does 
not require neither the exact computation of the averaged Fokker–Planck–Landau collision kernel, nor the resolution 
of (26).

Proposition 3.5. The positive densities f in the kernel of T satisfying 〈Q〉(f, f ) = 0 are of the form

lnf (x, v) = α(x3)

2

∣∣∣∣x +
⊥v

ωc

∣∣∣∣
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ γ (x3)

|v|2
2

+
(

γ (x3) + α(x3)

ω2
c

)
(v3)

2

2
+ δ(x3)v3 + η(x3) (33)

for some functions α, γ, δ, η : R →R, β : R →R
2.

Proof. Clearly any positive density f in (33) is a Maxwellian satisfying the constraint T f = 0 and

〈Q〉(f,f ) = 〈
Q(f,f )

〉 = 〈0〉 = 0.

Conversely, let us consider a positive density f satisfying T f = 0, 〈Q〉(f, f ) = 0 and observe that for any x3 ∈ R we 
can write

0 =
∫
R2

∫
R3

lnf 〈Q〉(f,f )dvdx =
∫
R2

∫
R3

lnf
〈
Q(f,f )

〉
dvdx

=
∫

2

∫
3

lnf (x, v)Q
(
f (x, ·), f (x, ·))(v)dvdx ≤ 0
R R
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since for any x = (x, x3) we have the inequality∫
R3

lnf (x, v)Q
(
f (x, ·), f (x, ·))(v)dv ≤ 0. (34)

We deduce that for any x = (x, x3) we have equality in (34), which implies that f (x, ·) is a local Maxwellian i.e.,

lnf (x, v) = A(x)

ω2
c

|v|2
2

+ B(x) ·
⊥v

ωc

+ δ(x)v3 + C(x)

for some functions A, B1, B2, δ, C : R3 → R. We have to determine the structure of the previous functions, such that 
the constraint T f = 0 holds true. Observe that

0 = T lnf = v · ∇xA

ω2
c

|v|2
2

− ∂x
⊥B : v ⊗ v

ωc

− B · v + v · ∇xδv3 + v · ∇xC.

Clearly, the third (higher) order term in velocity vanishes, saying that ∇xA = 0, or equivalently A = A(x3) and

−∂x
⊥B : v ⊗ v

ωc

− B · v + v · ∇xδv3 + v · ∇xC = 0.

Similarly δ = δ(x3) and the second order term in v vanishes

∂x
⊥B : v ⊗ v = 0

implying that ∂x
⊥B is antisymmetric

∂x1B2 = ∂x2B1 = 0, ∂x1B1 = ∂x2B2, ∇xC = B.

We obtain immediately that there is a function α = α(x3) such that

∂x1B1(x1, x3) = α(x3) = ∂x2B2(x2, x3)

and thus B = β(x3) + α(x3)x for some functions β = (β1(x3), β2(x3)). The function C writes

C(x) = β(x3) · x + α(x3)
|x|2

2
+ η(x3)

and finally

lnf (x, v) = A(x3)

ω2
c

|v|2
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ α(x3)x ·

⊥v

ωc

+ δ(x3)v3 + α(x3)
|x|2

2
+ η(x3)

= α(x3)

2

∣∣∣∣x +
⊥v

ωc

∣∣∣∣
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ A(x3) − α(x3)

ω2
c

|v|2
2

+ A(x3)

ω2
c

(v3)
2

2
+ δ(x3)v3 + η(x3).

We have obtained for lnf the form in (33), taking γ (x3) = (A(x3) − α(x3))/ω
2
c . �

It is easily seen that any equilibrium of the averaged Fokker–Planck–Landau kernel can be written as

lnf (x, v) = α(x3)

ω2
c

|ωcx + ⊥v|2 − |v|2
2

+ β(x3)

ωc

· (ωcx + ⊥v) +
(

γ (x3) + α(x3)

ω2
c

) |v|2
2

+ δ(x3)v3 + η(x3)

and appears as a linear combination (with coefficients depending on x3) of functions which are balanced by 〈Q〉, 
globally in (x, v)∫

R2

∫
R3

〈Q〉dvdx = 0,

∫
R2

∫
R3

(ωcx + ⊥v, v3)〈Q〉dvdx = (0,0,0),

∫
2

∫
3

|v|2
2

〈Q〉dvdx = 0,

∫
2

∫
3

|ωcx + ⊥v|2 − |v|2
2

〈Q〉dvdx = 0.
R R R R
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Clearly, up to a factor depending on x3, the equilibrium f writes

f ∼ exp

(
−|v|2 + (v3 − u3(x3))

2

2θ(x3)

)
exp

(
−|ωcx + ⊥v − u(x3)|2 − |v|2

2μ(x3)

)

for some functions u(x3) = (u1, u2, u3)(x3), θ(x3), μ(x3), or equivalently as a product of three Maxwellians

f ∼ 1

2π
μθ

μ−θ

exp

(
− |v|2

2 μθ
μ−θ

)
1

(2πθ)1/2
exp

(
− (v3 − u3)

2

2θ

)
1

2πμ
exp

(
−|ωcx + ⊥v − u|2

2μ

)
.

Motivated by the above considerations, we parametrize the equilibria of 〈Q〉 by six functions ρ, u = (u1, u2, u3), θ, μ, 
as announced by (14). It will be very useful, for the moment computations, to introduce the following representation 
for such equilibria. These decomposition will be the starting point for many development involving the moments, the 
entropy, . . .

f (x, v) = ρ(x3)ω
2
c

(2π)5/2 μ2θ3/2

μ−θ

exp

(
−|v|2 + (v3 − u3(x3))

2

2θ(x3)

)
exp

(
−|ωcx + ⊥v − u(x3)|2 − |v|2

2μ(x3)

)

= ρ(x3)

2π
μθ

μ−θ

exp

(
− |v|2

2 μθ
μ−θ

)
1

(2πθ)1/2
exp

(
− (v3 − u3(x3))

2

2θ

)
ω2

c

2πμ
exp

(
−|ωcx + ⊥v − u(x3)|2

2μ

)
. (35)

For integrability reasons we assume that μ > θ > 0. The functions ρ, u, θ, μ are uniquely determined by the moments 
of f with respect to

1, ωcx + ⊥v, v3,
|v|2

2
,

|ωcx + ⊥v|2 − |v|2
2

.

Proposition 3.6. For any (ρ, u1, u2, u3, K, G) ∈ R
6, ρ > 0, K > 0, K + G > 0 there is a unique local (in x3) equi-

librium f = f (x, v) for 〈Q〉 satisfying∫
R2

∫
R3

f dvdx = ρ,

∫
R2

∫
R3

(ωcx + ⊥v, v3)f dvdx = ρu,

∫
R2

∫
R3

|v|2
2

f dvdx = ρ
(u3)

2

2
+ ρK,

∫
R2

∫
R3

|ωcx + ⊥v|2 − |v|2
2

f dvdx = ρ
|u|2

2
+ ρG.

Proof. We are searching for a positive local equilibrium f = f (x, v) parametrized by ρ̃, ũ, θ, μ. For any dimension 
d and real number T > 0, the notation Md

T (w) stands for the Maxwellian of temperature T in Rd

Md
T (w) = 1

(2πT )d/2
exp

(
−|w|2

2T

)
, w ∈ R

d .

For simplicity we drop the index d , but the reader should keep in mind that the Maxwellian dimension is that of the 
variable taken as argument. The equilibrium f writes, cf. (35)

f (x, v) = ρ̃M μθ
μ−θ

(v)Mθ (v3 − ũ3)ω
2
cMμ(ωcx + ⊥v − ũ).

Clearly, integrating first with respect to x for any fixed v and performing the change of variable ω2
cdx = d(ωcx +

⊥v − ũ) yield∫
2

∫
3

f (x, v)dvdx = ρ̃
R R
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and thus ρ̃ = ρ. Similarly∫
R2

∫
R3

(ωcx + ⊥v)f dvdx =
∫
R2

∫
R3

(ωcx + ⊥v − ũ + ũ)f dvdx =
∫
R2

∫
R3

ũf dvdx = ρ̃ũ,

∫
R2

∫
R3

v3f dvdx =
∫
R2

∫
R3

(v3 − ũ3 + ũ3)f dvdx =
∫
R2

∫
R3

ũ3f dvdx = ρ̃ũ3.

Therefore ũ = u and the parameters (ũ1,ũ2)
ωc

, ũ3 appear as the mean Larmor center and the mean parallel velocity of 
the local equilibrium f (x, v). It remains to determine θ and μ. On the one hand notice that∫

R2

∫
R3

|v|2 + (v3 − u3)
2

2
f (x, v)dvdx =

∫
R2

∫
R3

|v|2
2

f dvdx −
∫
R2

∫
R3

(u3)
2

2
f dvdx = ρK

and ∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

f (x, v)dvdx =
∫
R2

∫
R3

|ωcx + ⊥v|2 − |v|2
2

f dvdx −
∫
R2

∫
R3

|u|2
2

f dvdx = ρG.

On the other hand, using several times the formula∫
Rd

|w|2MT (w)dw = T

∫
Rd

|w|2M1(w)dw = −T

∫
Rd

w · ∇wM1(w)dw = T d (36)

yields

1

ρ

∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
f dvdx

=
∫
R2

∫
R3

|v|2
2

M μθ
μ−θ

(v)Mθ (v3 − u3)ω
2
cMμ(ωcx + ⊥v − u)dvdx

+
∫
R2

∫
R3

M μθ
μ−θ

(v)
(v3 − u3)

2

2
Mθ (v3 − u3)ω

2
cMμ(ωcx + ⊥v − u)dvdx

= μθ

μ − θ
+ θ

2
(37)

and

1

ρ

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

f dvdx

=
∫
R2

∫
R3

M μθ
μ−θ

(v)Mθ (v3 − u3)
|ωcx + ⊥v − u|2

2
ω2

cMμ(ωcx + ⊥v − u)dvdx

−
∫
R2

∫
R3

|v|2
2

M μθ
μ−θ

(v)Mθ (v3 − u3)ω
2
cMμ(ωcx + ⊥v − u)dvdx

= μ − μθ

μ − θ
. (38)

We are done if we prove that there is a unique solution θ, μ satisfying μ > θ > 0, for the system

μθ + θ = K, μ − μθ = G.

μ − θ 2 μ − θ
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We solve with respect to ν := μ
θ

> 1 which can be expressed in terms of S := G
K

. Indeed, ν satisfies

2ν
ν − 2

3ν − 1
= μ − μθ

μ−θ

μθ
μ−θ

+ θ
2

= G

K
= S > −1

or equivalently

2(ν − 1)2 − 3S(ν − 1) − 2(S + 1) = 0.

The above equation of the unknown (ν − 1) has one positive and one negative roots, since their product is −(S + 1) =
−G+K

K
< 0. Then the ratio ν = μ

θ
> 1 is given by

ν = 4 + 3S + √
9S2 + 16(S + 1)

4
.

Combining with the equation θ2 + μ = K + G we obtain

θ = K + G

1/2 + ν
> 0, μ = νθ = ν

K + G

1/2 + ν
> θ. �

Remark 3.1. Any positive density f (x, v) satisfies∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
f dvdx +

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

f dvdx

=
∫
R2

∫
R3

|ωcx + ⊥v − u|2 + (v3 − u3)
2

2
f dvdx > 0

which justifies the hypothesis K + G > 0.

4. The fluid model near gyrokinetic equilibria

In this section we investigate the fluid approximation of the model (13) when the collision mechanism dominates 
the transport. Clearly we are interested on regimes close to gyrokinetic equilibria. For simplicity we neglect the 
perpendicular electric field and we assume that the parallel electric field depends only on (t, x3) and thus 〈E3〉 = E3. 
Eq. (13) becomes

∂tf
τ + v3∂x3f

τ + q

m
E3(t, x3)∂v3f

τ = 1

τ
〈Q〉(f τ , f τ

)
, (t, x, v) ∈R+ ×R

3 ×R
3 (39)

and we intend to analyze the asymptotic behavior for small τ . Formally we have

f τ = f + τf 1 + τ 2f 2 + · · · . (40)

Following the standard arguments which allow us to derive the Euler equations starting from the kinetic description 
when the collisions dominate the transport [1,2,22,23], we determine the leading order term in the expansion (40) by 
the conditions

〈Q〉(f,f ) = 0,

∫
R2

∫
R3

{
∂tf + v3∂x3f + q

m
E3∂v3f

}
ϕ(x, v)dvdx = 0, (t, x3) ∈R+ ×R

for any average collision invariant ϕ of the family

1, ωcx + ⊥v, v3,
|v|2

2
,

|ωcx + ⊥v|2 − |v|2
2

.

For any (t, x3) ∈ R+ ×R, the density (x, v) → f (t, x, x3, v) is a local gyrokinetic equilibrium and writes, cf. (35)

f (t, x, v) = ρ(t, x3)M μθ (v)Mθ

(
v3 − u3(t, x3)

)
ω2

cMμ

(
ωcx + ⊥v − u(t, x3)

)
(41)
μ−θ
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for some functions ρ, u = (u1, u2, u3), θ, μ depending on (t, x3). The microscopic density f is determined by its mo-
ments whose evolution comes by imposing the balances corresponding to each collision invariant. Using the collision 
invariant ϕ = 1 leads to the continuity equation

∂tρ + ∂x3(ρu3) = 0, (t, x3) ∈R+ ×R. (42)

In order to obtain the other conservation laws in Theorem 1.1 we need essentially to compute the first and second 
order moments, together with their fluxes (see Appendix A for details).

Lemma 4.1. For any local gyrokinetic equilibria cf. (35)

f (x, v) = ρ(x3)M μθ
μ−θ

(v)Mθ

(
v3 − u3(x3)

)
ω2

cMμ

(
ωcx + ⊥v − u(x3)

)
we have∫

R2

∫
R3

v3(ωcx + ⊥v, v3)f (x, v)dvdx = ρ
(
u3u, (u3)

2 + θ
)

and ∫
R2

∫
R3

(ωcx + ⊥v, v3)∂v3f dvdx = (0,0,−ρ).

Lemma 4.2. For any local gyrokinetic equilibria cf. (35)

f (x, v) = ρ(x3)M μθ
μ−θ

(v)Mθ

(
v3 − u3(x3)

)
ω2

cMμ

(
ωcx + ⊥v − u(x3)

)
we have∫

R2

∫
R3

v3
|v|2 + (v3 − u3)

2

2
f (x, v)dvdx = ρu3

(
μθ

μ − θ
+ θ

2

)
,

∫
R2

∫
R3

v3
|ωcx + ⊥v − u|2 − |v|2

2
f (x, v)dvdx = ρu3

(
μ − μθ

μ − θ

)
,

∫
R2

∫
R3

v3
|v|2 + (v3 − u3)

2

2
∂x3f (x, v)dvdx = ∂x3

[
ρu3

(
μθ

μ − θ
+ θ

2

)]
+ ρθ∂x3u3,

∫
R2

∫
R3

v3
|ωcx + ⊥v − u|2 − |v|2

2
∂x3f dvdx = ∂x3

[
ρu3

(
μ − μθ

μ − θ

)]
,

∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
∂v3f (x, v)dvdx =

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

∂v3f dvdx = 0.

We will also need to compute the macroscopic entropy 
∫
R2

∫
R3 f lnf dvdx and its parallel flux 

∫
R2

∫
R3 v3 ×

f lnf dvdx associated to any local gyrokinetic equilibrium f (see Appendix A for details).

Lemma 4.3. For any local gyrokinetic equilibrium cf. (35)

f (x, v) = ρ(x3)M μθ
μ−θ

(v)Mθ

(
v3 − u3(x3)

)
ω2

cMμ

(
ωcx + ⊥v − u(x3)

)
we have∫

2

∫
3

f lnf dvdx = ρ ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρ

R R
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and ∫
R2

∫
R3

v3f lnf dvdx = ρu3 ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρu3.

We are ready to derive the macroscopic limit model stated in Theorem 1.1 for strong collisional regimes in the 
gyrokinetic framework.

Proof of Theorem 1.1. We have already deduced the continuity equation (42), appealing to the collision invariant 
ϕ = 1. Using the collision invariants ωcx + ⊥v, v3 yields

∂t

∫
R2

∫
R3

(ωcx + ⊥v)f dvdx +
∫
R2

∫
R3

v3(ωcx + ⊥v)∂x3f dvdx + q

m
E3

∫
R2

∫
R3

(ωcx + ⊥v)∂v3f dvdx = 0,

∂t

∫
R2

∫
R3

v3f dvdx +
∫
R2

∫
R3

(v3)
2∂x3f dvdx + q

m
E3

∫
R2

∫
R3

v3∂v3f dvdx = 0.

Thanks to Lemma 4.1 one gets

∂t (ρu) + ∂x3(ρu3u) = 0, (43)

∂t (ρu3) + ∂x3

[
ρ
(
(u3)

2 + θ
)] − q

m
E3ρ = 0. (44)

Appealing now to the collision invariant |v|2+(v3−u3)
2

2 yields∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
∂tf dvdx +

∫
R2

∫
R3

v3
|v|2 + (v3 − u3)

2

2
∂x3f dvdx

+ q

m
E3

∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
∂v3f dvdx = 0. (45)

Notice that (37) allows us to write∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
∂tf dvdx = ∂t

∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
f dvdx −

∫
R2

∫
R3

(u3 − v3)∂tu3f dvdx

= ∂t

[
ρ

(
μθ

μ − θ
+ θ

2

)]
and therefore, thanks to Lemma 4.2, (45) reduces to

∂t

[
ρ

(
μθ

μ − θ
+ θ

2

)]
+ ∂x3

[
ρu3

(
μθ

μ − θ
+ θ

2

)]
+ ρθ∂x3u3 = 0. (46)

The previous equation can be written in conservative form, replacing the collision invariant |v|2+(v3−u3)
2

2 by |v|2
2 . In 

this case we have∫
R2

∫
R3

|v|2
2

f dvdx =
∫
R2

∫
R3

|v|2 + (v3 − u3)
2

2
f dvdx +

∫
R2

∫
R3

(u3)
2

2
f dvdx = ρ

(
μθ

μ − θ
+ θ

2
+ (u3)

2

2

)
,

∫
R2

∫
R3

v3
|v|2

2
f dvdx = u3

∫
R2

∫
R3

|v|2
2

f dvdx +
∫
R2

∫
R3

u3(v3 − u3)
2f dvdx = u3ρ

(
μθ

μ − θ
+ 3θ

2
+ (u3)

2

2

)
,

∫
2

∫
3

|v|2
2

∂v3f dvdx = −
∫

2

∫
3

v3f dvdx = −ρu3.
R R R R
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We obtain

∂t

∫
R2

∫
R3

|v|2
2

f dvdx + ∂x3

∫
R2

∫
R3

v3
|v|2

2
f dvdx + q

m
E3

∫
R2

∫
R3

|v|2
2

∂v3f dvdx = 0

or equivalently

∂t

[
ρ

(
μθ

μ − θ
+ θ

2
+ (u3)

2

2

)]
+ ∂x3

[
u3ρ

(
μθ

μ − θ
+ 3θ

2
+ (u3)

2

2

)]
− q

m
E3ρu3 = 0.

Finally, the last collision invariant |ωcx+⊥v−u|2−|v|2
2 gives∫

R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

∂tf dvdx +
∫
R2

∫
R3

v3
|ωcx + ⊥v − u|2 − |v|2

2
∂x3f dvdx

+ q

m
E3

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

∂v3f dvdx = 0. (47)

Using (38) we deduce that∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

∂tf dvdx = ∂t

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

f dvdx

−
∫
R2

∫
R3

(u − ωcx − ⊥v) · ∂tuf dvdx = ∂t

[
ρ

(
μ − μθ

μ − θ

)]

and Lemma 4.2 applied to the other terms in (47) implies

∂t

[
ρ

(
μ − μθ

μ − θ

)]
+ ∂x3

[
ρu3

(
μ − μθ

μ − θ

)]
= 0. (48)

We write the balance of the microscopic entropy f lnf and we deduce a new conservation law (in other words we 
construct a macroscopic entropy). Indeed, multiplying (39) by 1 + lnf τ yields after integration with respect to (x, v)

∂t

∫
R2

∫
R3

f τ lnf τ dvdx + ∂x3

∫
R2

∫
R3

v3f
τ lnf τ dvdx = 1

τ

∫
R2

∫
R3

(
1 + lnf τ

)〈Q〉(f τ , f τ
)

dvdx

= 1

τ

∫
R2

∫
R3

lnf τ 〈Q〉(f τ , f τ
)

dvdx. (49)

But thanks to Theorem 2.1 we know that for any (t, x3) ∈ R+ ×R and τ > 0∫
R2

∫
R3

lnf τ 〈Q〉(f τ , f τ
)

dvdx ≤ 0

and therefore, passing formally to the limit when τ ↘ 0 in (49) implies

∂t

∫
R2

∫
R3

f lnf dvdx + ∂x3

∫
R2

∫
R3

v3f lnf dvdx ≤ 0. (50)

By Lemma 4.3 we know that∫
R2

∫
R3

f lnf dvdx = ρ ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρ,

∫
2

∫
3

v3f lnf dvdx = ρu3 ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρu3
R R
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and (50) reduces to

∂t

[
ρ ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρ

]
+ ∂x3

[
ρu3 ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρu3

]
≤ 0.

Combining with the continuity equation (42), we obtain the entropy inequality

∂t

[
ρ ln

(
ρ

μ2θ3/2

μ−θ

)]
+ ∂x3

[
ρu3 ln

(
ρ

μ2θ3/2

μ−θ

)]
≤ 0. (51)

When the solution (ρ, u, θ, μ) is smooth, the reader can check by standard computations, similar to those used when 
dealing with the Euler equations, that the inequality in (51) becomes equality, being a consequence of the previous 
conservation laws (42), (43), (44), (46), (48). �
5. Linearization of the averaged Fokker–Planck–Landau operator

Another important issue is the derivation of a simplified averaged Fokker–Planck–Landau operator, when the 
density is close to the equilibrium. The natural way to do it is to neglect the second order fluctuations around the 
equilibrium, which makes sense for example in the strongly collisional regime. The key point is that the resulting sim-
plified kernel still keeps the main features of the original averaged Fokker–Planck–Landau kernel. For any positive 
density f = f (x, v) we denote by Ef the equilibrium of 〈Q〉 having the same moments as f∫

R2

∫
R3

(Ef − f )dvdx = 0,

∫
R2

∫
R3

(ωcx + ⊥v, v3)(Ef − f )dvdx = 0,

∫
R2

∫
R3

|v|2
2

(Ef − f )dvdx = 0,

∫
R2

∫
R3

|ωcx + ⊥v|2 − |v|2
2

(Ef − f )dvdx = 0.

Proof of Theorem 1.2. We assume that f is close to Ef and by neglecting the terms of order (f − Ef )2 one gets the 
first order approximation, denoted by L(f )

ω−2
c 〈Q〉(f,f ) = ω−2

c 〈Q〉(f,f ) − ω−2
c 〈Q〉(Ef ,Ef )

=
4∑

i=1

divωcx,v

∫
R2

∫
R3

{
f

(
x′, v′)ξ i

(
x, v, x′, v′) ⊗ ξ i

(
x, v, x′, v′)∇ωcx,vf (x, v)

− Ef

(
x′, v′)ξ i

(
x, v, x′, v′) ⊗ ξ i

(
x, v, x′, v′)∇ωcx,vEf (x, v)

}
dv′dx′

−
4∑

i=1

divωcx,v

∫
R2

∫
R3

{
f (x, v)ξ i

(
x, v, x′, v′) ⊗ εiξ

i
(
x′, v′, x, v

)∇ωcx′,v′f
(
x′, v′)

− Ef (x, v)ξ i
(
x, v, x′, v′) ⊗ εiξ

i
(
x′, v′, x, v

)∇ωcx′,v′Ef

(
x′, v′)}dv′dx′

≈
4∑

i=1

divωcx,v

∫
R2

∫
R3

{
E ′

f ξ i ⊗ ξ i∇(f − Ef ) + (
f ′ − E ′

f

)
ξ i ⊗ ξ i∇Ef

}
dv′dx′

−
4∑

i=1

divωcx,v

∫
R2

∫
R3

{
Ef ξ i ⊗ εi

(
ξ i

)′∇′(f ′ − E ′
f

) + (f − Ef )ξ i ⊗ εi

(
ξ i

)′∇′E ′
f

}
dv′dx′

=: ω−2
c L(f ). (52)

We have used the notations

f = f (x, v), f ′ = f
(
x′, v′), Ef = Ef (x, v), E ′

f = Ef

(
x′, v′),

ξ i = ξ i
(
x, v, x′, v′), (

ξ i
)′ = ξ i

(
x′, v′, x, v

)
, ∇ = ∇ωcx,v, ∇′ = ∇ωcx′,v′ .
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Since Ef is an equilibrium, we know by Theorem 2.1 that

ξ i · ∇ lnEf − εi

(
ξ i

)′ · ∇′ lnE ′
f = 0, 1 ≤ i ≤ 4

and therefore

E ′
f ξ i ⊗ ξ i∇(f − Ef ) − (f − Ef )ξ i ⊗ εi

(
ξ i

)′∇′E ′
f

= Ef E ′
f

{
ξ i ⊗ ξ i ∇(f − Ef )

Ef

− f − Ef

Ef

ξ i ⊗ εi

(
ξ i

)′∇′ lnE ′
f

}

= Ef E ′
f

{
ξ i ⊗ ξ i ∇(f − Ef )

Ef

− f − Ef

Ef

ξ i ⊗ ξ i∇ lnEf

}

= Ef E ′
f ξ i ⊗ ξ i∇

(
f − Ef

Ef

)
= Ef E ′

f ξ i ⊗ ξ i∇
(

f

Ef

)
. (53)

Similarly one gets(
f ′ − E ′

f

)
ξ i ⊗ ξ i∇Ef − Ef ξ i ⊗ εi

(
ξ i

)′∇′(f ′ − E ′
f

)
= Ef E ′

f

{
f ′ − E ′

f

E ′
f

ξ i ⊗ ξ i∇ lnEf − ξ i ⊗ εi

(
ξ i

)′ ∇′(f ′ − E ′
f )

E ′
f

}

= Ef E ′
f

{
f ′ − E ′

f

E ′
f

ξ i ⊗ εi

(
ξ i

)′∇′ lnE ′
f − ξ i ⊗ εi

(
ξ i

)′ ∇′(f ′ − E ′
f )

E ′
f

}

= −Ef E ′
f ξ i ⊗ εi

(
ξ i

)′∇′
(

f ′ − E ′
f

E ′
f

)
= −Ef E ′

f ξ i ⊗ εi

(
ξ i

)′∇′
(

f ′

E ′
f

)
. (54)

Combining (52), (53), (54) leads to the following expression for the first order approximation of 〈Q〉 near equilibrium

ω−2
c L(f ) =

4∑
i=1

divωcx,v

∫
R2

∫
R3

Ef E ′
f

{
ξ i ⊗ ξ i∇

(
f

Ef

)
− ξ i ⊗ εi

(
ξ i

)′∇′
(

f ′

E ′
f

)}
dv′dx′

=
4∑

i=1

divωcx,v

∫
R2

∫
R3

Ef E ′
f

{
ξ i · ∇

(
f

Ef

)
− εi

(
ξ i

)′ · ∇′
(

f ′

E ′
f

)}
ξ i dv′dx′. (55)

We justify now the properties of L.
1. Integrating by parts with respect to (x, v) we obtain

∫
R2

∫
R3

L(f )ϕ dvdx = −
4∑

i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

Ef E ′
f

×
{(

ξ i · ∇ϕ
)[

ξ i · ∇
(

f

Ef

)]
− εi

(
ξ i · ∇ϕ

)[(
ξ i

)′ · ∇′
(

f ′

E ′
f

)]}
dv′dx′ dvdx.

Performing the change of variables (x′, v′) ↔ (x, v) yields

∫
R2

∫
R3

L(f )ϕ dvdx = −
4∑

i=1

ω2
c

∫
R2

∫
R3

∫
R2

∫
R3

Ef E ′
f

×
{((

ξ i
)′ · ∇′ϕ′)[(

ξ i
)′ · ∇′

(
f ′

E ′
)]

− εi

((
ξ i

)′ · ∇′ϕ′)[ξ i · ∇
(

f

Ef

)]}
dvdx dv′dx′.
f
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Combining the above equalities gives

∫
R2

∫
R3

L(f )ϕ dvdx = −ω2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

Ef E ′
f Si dv′dx′ dvdx

where

Si = (
ξ i · ∇ϕ − εi

(
ξ i

)′ · ∇′ϕ′)[ξ i · ∇
(

f

Ef

)
− εi

(
ξ i

)′ · ∇′
(

f ′

E ′
f

)]
, 1 ≤ i ≤ 4.

2. It comes immediately by taking ϕ = f/Ef in (16).
3. If f is a positive equilibrium of 〈Q〉, we have f = Ef and therefore L(f ) = 0. Conversely, assume that f is a 

positive equilibrium of L. Then we have equality in (17), saying that

ξ i · ∇
(

f

Ef

)
− εi

(
ξ i

)′ · ∇′
(

f ′

E ′
f

)
= 0, 1 ≤ i ≤ 4. (56)

We consider the Hilbert space L2
Ef

= {g(x, v): 
∫
R2

∫
R3 g2/Ef dvdx < +∞} endowed with the scalar product

(g,h)L2
Ef

=
∫
R2

∫
R3

gh

Ef

dvdx, g,h ∈ L2
Ef

and the linear operator lf given by

ω−2
c lf (g) =

4∑
i=1

divωcx,v

∫
R2

∫
R3

Ef E ′
f

{
ξ i · ∇

(
g

Ef

)
− εi

(
ξ i

)′ · ∇′
(

g′

E ′
f

)}
ξ i dv′dx′.

Obviously f − Ef belongs to the kernel of lf . By the first statement we deduce that

(
lf (g), h

)
L2
Ef

= −ω2
c

2

4∑
i=1

∫
R2

∫
R3

∫
R2

∫
R3

Ef E ′
f

(
ξ i · ∇

(
g

Ef

)
− εi

(
ξ i

)′ · ∇′
(

g′

E ′
f

))

×
(

ξ i · ∇
(

h

Ef

)
− εi

(
ξ i

)′ · ∇′
(

h′

E ′
f

))
dv′dx′ dvdx

saying that lf is symmetric with respect to the scalar product (·, ·)L2
Ef

. Moreover, it is easily seen that g ∈ ker lf iff

ξ i · ∇ ln

(
exp

(
g

Ef

))
− εi

(
ξ i

)′ · ∇′ ln

(
exp

(
g′

E ′
f

))
= 0, 1 ≤ i ≤ 4. (57)

Thanks to Proposition 3.4, (57) implies that g ∈ ker lf iff g/Ef = ln exp(g/Ef ) is a linear combination of the collision 
invariants

1, ωcx + ⊥v, v3,
|v|2

2
,

|ωcx + ⊥v|2 − |v|2
2

.

In particular, since f and Ef have the same moments with respect to the above collision invariants, for any g ∈ ker lf
one gets

(f − Ef , g)L2
Ef

=
∫
R2

∫
R3

(f − Ef )
g

Ef

dvdx = 0

saying that f − Ef ∈ (ker lf )⊥. Finally f − Ef ∈ ker lf ∩ (ker lf )⊥ = {0} and thus f = Ef . �
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The first order approximation of 〈Q〉 near equilibria (see (55)) inherits all the properties of 〈Q〉, nevertheless its 
structure remains complex. Using L instead of 〈Q〉 requires almost the same computational effort. A classical way to 
circumvent these efforts relies on the BGK approximation of 〈Q〉, which writes

LBGK = −(f − Ef ).

The properties of the BGK operator associated to 〈Q〉 are summarized below.

Theorem 5.1.

1. For any f = f (x, v) and ϕ = ϕ(x, v) > 0 we have∫
R2

∫
R3

LBGK(f ) lnϕ dvdx = −
∫
R2

∫
R3

(f − Ef )(lnϕ − lnEϕ)dvdx.

2. For any positive density f we have the inequality∫
R2

∫
R3

LBGK(f ) lnf dvdx ≤ 0

with equality iff f = Ef .
3. The positive equilibria of LBGK are the positive equilibria of 〈Q〉

f > 0, LBGK(f ) = 0 ⇔ f = Ef .

Proof. 1. For any ϕ > 0, lnEϕ is a linear combination of the collision invariants

1, ωcx + ⊥v, v3,
|v|2

2
,

|ωcx + ⊥v|2 − |v|2
2

.

By the definition of Ef we have∫
R2

∫
R3

(f − Ef ) lnEϕ dvdx = 0

implying that∫
R2

∫
R3

LBGK(f ) lnϕ dvdx = −
∫
R2

∫
R3

(f − Ef ) lnϕ dvdx = −
∫
R2

∫
R3

(f − Ef )(lnϕ − lnEϕ)dvdx.

2. Taking ϕ = f > 0 in the previous statement, we obtain∫
R2

∫
R3

LBGK(f ) lnf dvdx = −
∫
R2

∫
R3

(f − Ef )(lnf − lnEf )dvdx ≤ 0

with equality iff f = Ef .
3. Clearly LBGK(f ) = 0 iff f − Ef = 0. �
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Appendix A. Proofs of Propositions 1.4, 3.1, 3.2, 3.3, 3.4 and Lemmas A.1, 4.1, 4.2, 4.3

Proof of Proposition 1.4. By the linearity of the average operator we obtain〈
∂tf + v3∂x3f + q

m
E · ∇vf

〉
= 〈∂tf 〉 + 〈v3∂x3f 〉 + q

m
〈E · ∇vf 〉.

It is easily seen that ∂t and ∂x3 commute with the average operator and thus, taking into account that f ∈ kerT one 
gets

〈∂tf 〉 = ∂t 〈f 〉 = ∂tf, 〈v3∂x3f 〉 = v3〈∂x3f 〉 = v3∂x3〈f 〉 = v3∂x3f.

Observe that T (f φ) = f v · ∇xφ = −f v · E and thus 〈f v · E〉 = 0. Thanks to Proposition 1.3 one gets

〈E · ∇vf 〉 = 〈
divv{f E}〉 = divx

〈
f

⊥E

ωc

〉
+ T

〈
f

⊥v · E
ωc|v|2

〉
+ ∂v3〈f E3〉 = divx

{
f

〈⊥E

ωc

〉}
+ ∂v3

{
f 〈E3〉

}
implying that

q

m
〈E · ∇vf 〉 = divx

{
f

〈⊥E〉
B

}
+ q

m
∂v3

{
f 〈E3〉

}
.

Using again Proposition 1.3 we deduce that ∂v3 and divx commute with the average operator, implying that

∂v3〈E3〉 = 〈∂v3E3〉 = 0, divx〈⊥E〉 = 〈divx
⊥E〉 = 0

and our statement follows. �
Proof of Proposition 3.1. Observe that(

(v,0)

|v| ,
(⊥v,0)

|v|
)

· ∇ωcx,v = T
ωc|v|

and (
(v′,0)

|v′| ,
(⊥v′,0)

|v′|
)

· ∇ωcx′,v′ = T ′

ωc|v′|
where T ′ = v′ · ∇

x′ + ωc
⊥v′ · ∇

v′ . Therefore (29) writes

{σχ}1/2 r ′ sinϕ(v3 − v′
3)

|z|
√

|z|2 + (v3 − v′
3)

2

T lnf

ωc|v| + {σχ}1/2 r sinϕ(v′
3 − v3)

|z|
√

|z|2 + (v3 − v′
3)

2

T ′ lnf ′

ωc|v′| = 0

which reduces to

T lnf

r2
= T ′ lnf ′

(r ′)2
, if

∣∣r − r ′∣∣ < |z| < r + r ′, v3 �= v′
3. (58)

We claim that T lnf depends only on the invariants of T i.e.,

T lnf (x, v) = T lnf (y,w)

for any (x, v), (y, w) ∈R
6 such that

ωcx + ⊥v = ωcy + ⊥w, x3 = y3, |v| = |w|, v3 = w3. (59)

Take (x, v), (y, w) verifying (59) and (x′, v′) ∈ R
6 such that

v3 �= v′
3,

∣∣∣∣ |v| − |v′| ∣∣∣∣ <

∣∣∣∣x +
⊥v −

(
x′ +

⊥v′ )∣∣∣∣ <
|v| + |v′|
|ωc| |ωc| ωc ωc |ωc| |ωc|
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meaning that the Larmor circles of centers x′ + ⊥v′/ωc, x + ⊥v/ωc and radii |v′|/|ωc|, |v|/|ωc| have non-empty
intersection. We also have

w3 �= v′
3,

∣∣∣∣ |w|
|ωc| − |v′|

|ωc|
∣∣∣∣ <

∣∣∣∣y +
⊥w

ωc

−
(

x′ +
⊥v′
ωc

)∣∣∣∣ <
|w|
|ωc| + |v′|

|ωc|
and (58) implies

T lnf (x, v)

|v|2 = T ′ lnf ′

|v′|2 = T lnf (y,w)

|w|2 .

As |v| = |w|, we deduce that T lnf (x, v) = T lnf (y, w) for any (x, v), (y, w) verifying (59), and therefore T lnf

remains constant along the characteristic flow of T . Thus

T lnf = 〈T lnf 〉 = ProjkerT T lnf = 0

and finally lnf and f belong to the kernel of T . �
In the sequel we will need the following easy lemma.

Lemma A.1. Let F = F(y, p) : R2 ×R
m →R

2 be a smooth field satisfying[
F

(
y′,p′) − F(y,p)

] · ⊥(
y′ − y

) = 0, y, y′ ∈R
2, p,p′ ∈R

m. (60)

Then there is α ∈R, β ∈R
2 such that F(y, p) = αy + β , (y, p) ∈ R

2 ×R
m.

Proof. Observe that F does not depend on p. Indeed, taking y′ = y + hz, p′ = p + hq we have

[F(y + hz,p + hq) − F(y,p)]
h

· ⊥z = 0.

Letting h → 0 we obtain[
∂yF (y,p)z + ∂pF (y,p)q

] · ⊥z = 0, y, z ∈ R
2, p, q ∈ R

m.

Replacing z by tu with t ∈R
�, u ∈ R

2, one gets(
t∂yF (y,p)u + ∂pF (y,p)q

) · ⊥u = 0.

Passing to the limit when t → 0, we deduce that

∂pF (y,p)q · ⊥u = 0, u ∈ R
2, q ∈R

m

and thus ∂pF = 0, saying that F(y, p) = F 0(y), with F 0(y) = F(y, 0).
Taking y′ = y + hz, h ∈ R

�, z ∈R
2 in (60) we obtain

[F 0(y + hz) − F 0(y)]
h

· ⊥z = 0.

Passing to the limit when h → 0 yields(
∂yF

0(y)z
) · ⊥z = 0, y, z ∈ R

2

which is equivalent to

R(π/2)∂yF
0(y) : z ⊗ z = 0, y, z ∈R

2.

Therefore R(π/2)∂yF
0(y) is antisymmetric, saying that

∂y1F
0
1 (y) = ∂y2F

0
2 (y) = α, ∂y2F

0
1 (y) = ∂y1F

0
2 (y) = 0, y ∈ R

2.

Notice that

∂y1α = ∂y1∂y2F
0
2 = ∂y2∂y1F

0
2 = 0, ∂y2α = ∂y2∂y1F

0
1 = ∂y1∂y2F

0
1 = 0
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saying that α is constant. Finally we have

∇y

{
F 0

1 − αy1
} = (0,0) = ∇y

{
F 0

2 − αy2
}

and thus there is β = (β1, β2) ∈ R
2 such that

F 0(y) = αy + β, y ∈ R
2. �

Proof of Proposition 3.2. We have

ξ2 · ∇ lnf = {σχ}1/2 r − r ′ cosϕ

ωc|z||v| T lnf + {σχ}1/2
⊥z

ωc|z| · ∇x lnf = {σχ}1/2
⊥z

ωc|z| · ∇x lnf

and

(
ξ2)′ · ∇′ lnf ′ = {σχ}1/2 r ′ − r cosϕ

ωc|z||v′| T ′ lnf ′ − {σχ}1/2
⊥z

ωc|z| · ∇
x′ lnf ′ = −{σχ}1/2

⊥z

ωc|z| · ∇
x′ lnf ′.

Thus (30) becomes

⊥z · (∇x lnf − ∇
x′ lnf ′) = 0,

∣∣|v| − ∣∣v′∣∣∣∣ <
∣∣ωcx + ⊥v − (

ωcx′ + ⊥v′)∣∣ < |v| + ∣∣v′∣∣. (61)

Since the positive density f satisfies (29), lnf belongs to kerT and thus there is a function g such that

lnf (x, v) = g

(
x +

⊥v

ωc

, x3, |v|, v3

)
, (x, v) ∈R

3 ×R
3.

Observe that

∇x lnf (x, v) = ∇ψg
(
ψ1(x, v),ψ2(x, v), x3, |v|, v3

)
, (x, v) ∈R

3 ×R
3

and therefore (61) reduces

⊥(
ψ − ψ ′) · (∇ψg(ψ,x3, r, v3) − ∇

ψ ′g
(
ψ ′, x3, r

′, v′
3

)) = 0 (62)

for any (ψ, x3, r, v3), (ψ ′, x3, r ′, v′
3) satisfying |r − r ′|/|ωc| < |ψ − ψ ′| < (r + r ′)/|ωc|. We cannot apply directly 

Lemma A.1, since (62) holds only for pairs of Larmor circles with non-empty intersection. Nevertheless we can 
proceed as in the proof of Lemma A.1, taking h ∈R

� small enough, s, u3 ∈R, u ∈ R
2 \ (0, 0)

r ′ = r + hs, v′
3 = v3 + hu3, ψ ′ = ψ + hu

such that

|h| |s|
|ωc| < |h||u| < 2r + hs

|ωc| .

Therefore (62) holds true, implying that

⊥u · G(ψ + hu,x3, r + hs, v3 + hu3) − G(ψ,x3, r, v3)

h
= 0 (63)

where G(ψ, x3, r, v3) = ∇ψg(ψ, x3, r, v3). Letting h → 0 we deduce that G depends only on ψ and x3

∇ψg(ψ,x3, r, v3) = G(ψ,x3, r, v3) = G0(ψ,x3).

Coming back to (63) we obtain

⊥u · G0(ψ + hu,x3) − G0(ψ,x3)

h
= 0

and we deduce by Lemma A.1 that

∇ψg(ψ,x3, r, v3) = G0(ψ,x3) = α(x3)ψ + β(x3) = ∇ψ

{
α(x3)

|ψ |2 + β(x3) · ψ
}
.

2
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Finally one gets

f (x, v) = exp
(
g
(
ψ(x, v), x3, |v|, v3

))
= exp

(
α(x3)

2

∣∣∣∣x +
⊥v

ωc

∣∣∣∣
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ λ(x3, |v|, v3)

)
. �

Proof of Proposition 3.3. We introduce the field b4 · ∇x,v = − ⊥v
ωc|v| · ∇x + v

|v| · ∇v . We have

ξ3 · ∇ lnf = −{σχ}1/2 r ′ sinϕ

|z| b4 · ∇x,v lnf

and (
ξ3)′ · ∇′ lnf ′ = −{σχ}1/2 r sinϕ

|z|
(
b4)′ · ∇x′,v′ lnf ′.

Thanks to Proposition 3.1 we have

lnf (x, v) = g

(
ψ1 = x1 + v2

ωc

,ψ2 = x2 − v1

ωc

, x3, r = |v|, v3

)
and by direct computations one gets

∇x lnf (x, v) = ∇ψg(ψ,x3, |v|, v3), ∇v lnf = −
⊥∇ψg

ωc

+ v

|v|∂rg.

Therefore b4 · ∇x,v is the derivative with respect to r = |v|

b4 · ∇x,v lnf = −
⊥v

ωc|v| · ∇ψg + v

|v| ·
(

−
⊥∇ψg

ωc

+ v

|v|∂rg

)
= ∂rg

and (31) reduces to

∂rg(ψ,x3, r, v3)

r
= ∂r ′g′(ψ ′, x3, r

′, v′
3)

r ′ ,
|r − r ′|
|ωc| <

∣∣ψ − ψ ′∣∣ <
(r + r ′)

|ωc| .

Replacing (ψ ′, r ′, v′
3) by small perturbations of (ψ, r, v3) such that |r − r ′|/|ωc| < |ψ −ψ ′| < (r + r ′)/|ωc| hold true, 

we deduce immediately that ∂rg
r

depends only on x3 and thus

∂rg(ψ,x3, r, v3) = rγ (x3).

By Proposition 3.2 we know that

g = lnf = α(x3)
|ψ |2

2
+ β(x3) · ψ + λ(x3, r, v3)

implying that ∂rλ = rγ (x3). Finally λ(x3, r, v3) = γ (x3)
r2

2 + μ(x3, v3) saying that

f (x, v) = exp

(
α(x3)

2

∣∣∣∣x +
⊥v

ωc

∣∣∣∣
2

+ β(x3) ·
(

x +
⊥v

ωc

)
+ γ (x3)

|v|2
2

+ μ(x3, v3)

)
. �

Proof of Proposition 3.4. The formula of the vector field ξ4 allows us to write

ξ4 · ∇ lnf = −{σχ}1/2 (r ′ cosϕ − r)(v3 − v′
3)

|z|
√

|z|2 + (v3 − v′
3)

2
b4 · ∇x,v lnf

+ {σχ}1/2 v3 − v′
3

|z|
√

|z|2 + (v3 − v′
3)

2

z

ωc

· ∇x lnf − {σχ}1/2|z|√
|z|2 + (v3 − v′

3)
2
∂v3 lnf
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and

(
ξ4)′ · ∇′ lnf ′ = −{σχ}1/2 (r cosϕ − r ′)(v′

3 − v3)

|z|
√

|z|2 + (v3 − v′
3)

2

(
b4)′ · ∇x′,v′ lnf ′

+ {σχ}1/2 v3 − v′
3

|z|
√

|z|2 + (v3 − v′
3)

2

z

ωc

· ∇
x′ lnf ′ − {σχ}1/2|z|√

|z|2 + (v3 − v′
3)

2
∂v′

3
lnf ′.

By Proposition 3.1 we have

lnf (x, v) = g
(
ψ(x, v), x3, |v|, v3

)
and by Proposition 3.3 we know that

b4 · ∇x,v lnf

|v| = ∂rg

r
= γ (x3).

Therefore (32) reduces to

γ (x3)
(
v3 − v′

3

)[
r
(
r − r ′ cosϕ

) + r ′(r ′ − r cosϕ
)] + v3 − v′

3

ωc

z · (∇x lnf − ∇
x′ lnf ′)

− |z|2(∂v3 lnf − ∂v′
3

lnf ′) = 0

when |r − r ′| < |z| < r + r ′. Taking into account that

r
(
r − r ′ cosϕ

) + r ′(r ′ − r cosϕ
) = r2 + (

r ′)2 − 2rr ′ cosϕ = |z|2
we obtain for any |r − r ′| < |z| < r + r ′

γ (x3)
(
v3 − v′

3

) + v3 − v′
3

ωc|z|
z

|z| · (∇x lnf − ∇
x′ lnf ′) = ∂v3 lnf − ∂v′

3
lnf ′. (64)

But ∇x lnf = ∇ψg = α(x3)ψ(x, v) + β(x3), implying that

z

ωc|z|2 · (∇x lnf − ∇
x′ lnf ′) = α(x3)

ω2
c

and therefore (64) is equivalent to

∂v3g(ψ,x3, r, v3) − ∂v′
3
g
(
ψ ′, x3, r

′, v′
3

) = (
v3 − v′

3

)[
γ (x3) + α(x3)

ω2
c

]
,

|r − r ′|
|ωc| <

∣∣ψ − ψ ′∣∣ <
r + r ′

|ωc| .

We introduce the function G(ψ, x3, r, v3) = ∂v3g(ψ, x3, r, v3) and let us consider h, s ∈ R
�, u ∈R

2 \ {(0, 0)}, u3 ∈R

ψ ′ = ψ + hu, r ′ = r + hs, v′
3 = v3 + hu3

such that

|h||s|
|ωc| < |h||u| < 2r + hs

|ωc| .

We deduce that

G(ψ + hu,x3, r + hs, v3 + hu3) − G(ψ,x3, r, v3)

h
= u3

(
γ (x3) + α(x3)

ω2
c

)

which implies

∇ψG · u + ∂rGs +
(

∂v3G − γ (x3) − α(x3)

ω2

)
u3 = 0,

|s|
|ω | < |u|
c c
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saying that

∇ψG = (0,0), ∂rG = 0, ∂v3G = γ (x3) + α(x3)

ω2
c

and

∂v3g(ψ,x3, r, v3) = G(ψ,x3, r, v3) =
(

γ (x3) + α(x3)

ω2
c

)
v3 + δ(x3).

The previous equality allows us to determine the function μ = μ(x3, v3) in the expression of g = lnf

g(ψ,x3, r, v3) = α(x3)
|ψ |2

2
+ β(x3) · ψ + γ (x3)

|v|2
2

+ μ(x3, v3).

Taking the derivative with respect to v3 yields(
γ (x3) + α(x3)

ω2
c

)
v3 + δ(x3) = ∂v3g = ∂v3μ

and therefore

μ(x3, v3) =
(

γ (x3) + α(x3)

ω2
c

)
(v3)

2

2
+ δ(x3)v3 + η(x3). �

Proof of Lemma 4.1. We have

v3(ωcx + ⊥v)f = u3(ωcx + ⊥v)f + ρM μθ
μ−θ

(v)(v3 − u3)Mθ (v3 − u3)ω
2
cMμ(ωcx + ⊥v − u)

and thus∫
R2

∫
R3

v3(ωcx + ⊥v)f (x, v)dvdx = ρu3u.

It is easily seen, thanks to (36), that∫
R2

∫
R3

(v3)
2f dvdx =

∫
R2

∫
R3

(v3 − u3 + u3)
2f dvdx =

∫
R2

∫
R3

(v3 − u3)
2f dvdx + ρ(u3)

2 = ρ
(
(u3)

2 + θ
)
.

Clearly we have, integrating by parts∫
R2

∫
R3

(ωcx + ⊥v)∂v3f dvdx = (0,0),

∫
R2

∫
R3

v3∂v3f dvdx = −ρ. �

Proof of Lemma 4.2. Clearly∫
R2

∫
R3

(v3 − u3)
|v|2 + (v3 − u3)

2

2
f (x, v)dvdx = 0

and thus (37) yields∫
R2

∫
R3

v3
|v|2 + (v3 − u3)

2

2
f (x, v)dvdx =

∫
R2

∫
R3

u3
|v|2 + (v3 − u3)

2

2
f (x, v)dvdx = ρu3

(
μθ

μ − θ
+ θ

2

)
.

Similarly, thanks to (38) we obtain∫
R2

∫
R3

v3
|ωcx + ⊥v − u|2 − |v|2

2
f (x, v)dvdx =

∫
R2

∫
R3

u3
|ωcx + ⊥v − u|2 − |v|2

2
f (x, v)dvdx

= ρu3

(
μ − μθ

)
.

μ − θ
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It is easily seen that∫
R2

∫
R3

v3
|v|2 + (v3 − u3)

2

2
∂x3f (x, v)dvdx − ∂x3

∫
R2

∫
R3

v3
|v|2 + (v3 − u3)

2

2
f dvdx

= −
∫
R2

∫
R3

v3(u3 − v3)∂x3u3f dvdx =
∫
R2

∫
R3

(v3 − u3)
2f (x, v)dvdx∂x3u3 = ρθ∂x3u3

and ∫
R2

∫
R3

v3
|ωcx + ⊥v − u|2 − |v|2

2
∂x3f dvdx − ∂x3

∫
R2

∫
R3

|ωcx + ⊥v − u|2 − |v|2
2

f dvdx

= −
∫
R2

∫
R3

v3(u − ωcx − ⊥v) · ∂x3uf dvdx =
∫
R2

∫
R3

(v3 − u3)(ωcx + ⊥v − u) · ∂x3uf dvdx = 0.

Therefore we obtain∫
R2

∫
R3

v3
|v|2 + (v3 − u3)

2

2
∂x3f dvdx = ∂x3

[
ρu3

(
μθ

μ − θ
+ θ

2

)]
+ ρθ∂x3u3

and ∫
R2

∫
R3

v3
|ωcx + ⊥v − u|2 − |v|2

2
∂x3f dvdx = ∂x3

[
ρu3

(
μ − μθ

μ − θ

)]
. �

Proof of Lemma 4.3. By direct computation one gets∫
R2

∫
R3

f lnf dvdx =
∫
R2

∫
R3

[
ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− |v|2 + (v3 − u3)

2

2θ
− |ωcx + ⊥v − u|2 − |v|2

2μ

]
f dvdx

= ρ ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− ρ

θ

(
μθ

μ − θ
+ θ

2

)
− ρ

μ

(
μ − μθ

μ − θ

)

= ρ ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρ

and ∫
R2

∫
R3

v3f lnf dvdx =
∫
R2

∫
R3

(v3 − u3)f lnf dvdx +
∫
R2

∫
R3

u3f lnf dvdx = u3

∫
R2

∫
R3

f lnf dvdx

= ρu3 ln

(
ρω2

c

(2π)5/2 μ2θ3/2

μ−θ

)
− 5

2
ρu3. �
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