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Abstract

We prove the existence and uniqueness of solutions to a class of stochastic scalar conservation laws with joint space—time
transport noise and affine-linear noise driven by a geometric p-rough path. In particular, stability of the solutions with respect to
the driving rough path is obtained, leading to a robust approach to stochastic scalar conservation laws. As immediate corollaries
we obtain support theorems, large deviation results and the generation of a random dynamical system.
© 2015 L'Association Publications de 1'Institut Henri Poincaré. Published by Elsevier B.V. All rights reserved.
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1. Introduction

We develop a rough path approach to a class of stochastic scalar conservation laws of the type

N
du+Div f(t, x,u)dt = F(t,x,u) + Y A*(x,u, Vu) o dBf,
k=1
u(0) = uo, (1.1)

on [0, T] x R?, where f, F are continuous, Ak = AK (x, r, p) is affine-linear in r, p, that is
A, r p)y=p- H )+ vk + ¢,

with div H¥ = 0 and g¥ are real-valued Brownian motions. More generally, we will give meaning to (1.1) when
B is replaced by a general geometric p-rough path z. The Stratonovich type solution to (1.1) is then obtained by
applying this to Brownian motion enhanced to a rough path. Further justification for the Stratonovich notation in (1.1)
is provided by a Wong—Zakai type limit theorem which becomes an immediate consequence of our main Theorem 4.2
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(part iii) together with well-known rough paths convergence of piecewise linear (and many other) approximations to
(enhanced) Brownian motion. For background on rough paths we refer to [18,19,33-35]. Roughly speaking the main
results reads

Theorem 1.1. Given sufficient regularity of uo, f, F, AX there exists a unique solution to

N
du+Div f(t,x,u)dt = F(t,x,u) + ZAk(x, u, Vu) o dzf,
k=1
u(0) = uo, (1.2)

for every geometric rough path z, in the following sense: There exists a unique u = u® € L*®([0, T] x RY) such that
for every sequence 7 € C'([0, T1) with 7" — z in rough path metric the (unique) weak entropy solutions to

N
"+ Div f(t.x, u") = F(t,x.u") + Y AF(x,u", Vu")zk (1.3)
k=1

converge to u in L*°([0, T]; L (Rd)). The solution map (z, ug) — u® is continuous in appropriate norms.

loc
As immediate benefits of taking a rough paths approach to stochastic scalar conservation laws and the resulting
continuity of the solution map (z, ug) — u” one obtains support results, large deviation results and the generation of
a random dynamical system as simple consequences (cf. [7,17] for details). Moreover, we should note that the range
of driving signals covered by Theorem 1.1 goes far beyond Brownian motion. In particular, this includes fractional
Brownian motion with Hurst parameter H € (%, %). It should also be pointed out that we do not give an ‘intrinsic’
notion of a solution to (1.2), but solutions are defined as limits of approximating solutions to (1.3). In principle,
other limiting procedures can lead to different solutions of (1.2). Indeed, this is already seen in classical SDE theory
where discrete approximations to Brownian motions lead to an It6-formulation, while most (but not all) uniform
approximations lead to a Stratonovich formulation. The justification of our notion of solution thus comes from the
fact that, viewed as function of the driving signal, it is the unique continuous extension from smooth to rough paths.
In particular, this convergence takes place whenever Brownian approximations converge as rough paths to Brownian
motion and Lévy area (a.k.a. Brownian rough path, Enhanced Brownian motion) and this is the case for many (but not
all) approximation schemes; cf. [19, Ch. 13], [18, Ch. 3]. We leave the question of an ‘intrinsic’ notion of a solution
to (1.2) and its well-posedness as an open problem, however, see [3,14] for recent progress in this direction.

In the construction of solutions we combine stability results from the theory of rough paths with stability of weak
entropy solutions to space—time inhomogeneous scalar conservation laws. Due to the irregularity of the driving rough
path z, the coefficients of the corresponding inhomogeneous scalar conservation laws only satisfy little regularity
(especially in the time variable) and related stability results have only recently been developed in [25] in an L!
framework. In order to combine such stability estimates with the L°-stability estimates from rough paths theory we
prove localized versions of the estimates derived in [25], thus leading to an Ll1 o Stability theory applicable to the
situation at hand.

In the case of pure transport noise, i.e.

N
du + Div f (u)dt = Z A (x, Vu) o dzF,
k=1
u(0) = ug (1.4)
with AK(x, p) = p - H*(x) we derive a rate on the convergence u" — u proven in Theorem 1.1. Roughly speaking,
as a second main result we obtain

Theorem 1.2. For two rough paths z, z let u, u be the corresponding solutions to (1.4) with initial data ug, ug respec-
tively. Then

sup lu(@) — u(®) |l 1wy < lluo — Uoll 11 (rey + KTV (u0)p(2, 2),
tel0,T]

where K can be chosen locally uniformly with respect to z, Z in rough path metric p.



PK. Friz, B. Gess / Ann. I. H. Poincaré — AN 33 (2016) 933-963 935

As it is well-known, scalar conservation laws of the general type (1.1) do not belong to the class of (fully-)nonlinear
PDE that may be treated by the theory of viscosity solutions. In particular, (1.1) is out of reach of the results developed
in [6,7,17,29-32]. Notably, our results are based on the notion of weak entropy solutions to (1.1) rather than viscosity
solutions. We should also point out that (1.1) is of quasilinear type, so that the methods developed in [9,13] and
applicable to semilinear SPDE do not apply.

Many works have been devoted to the study of stochastic and random scalar conservation laws. Noise entering
scalar conservation laws via randomness in the initial condition has been studied for example in [2,5,38,40]. For
stochastic scalar conservation laws driven by additive noise, also including boundary value problems, we refer to [15,
22,37,39,41] and the references therein. The case of multiplicative noise, i.e. SPDE of the form

du + 0y f(w)dt = g(x, u)dWy,

has attracted considerable interest in recent years (cf. e.g. [4,8,11,12,16,20,21]). All of the above mentioned works
consider semilinear stochastic scalar conservation laws in the sense that the diffusion coefficients do not depend on
the derivative(s) of the solution. In contrast, in the recent works [27,28] stochastic perturbations of the flux f are
considered, which in general leads to SPDE of the type

N
du = Z O fi(u) o dBF
k=1
and well-posedness to such SPDE is proven by a kinetic approach. This corresponds to (1.1) with nonlinear, spatially
homogeneous Af(x,r, p) = f(r) px. We emphasize that for the results obtained in [27] it is crucial that the random
flux A = (Ak),]:’:1 is spatially homogeneous (i.e. does not depend on x), which would correspond to H = (Hk)fcv=1
being a constant matrix in our framework (1.1). Very recently, in the case of one driving Brownian motion, i.e.

N
du=Y "0 fi(x,u)odp, (1.5)
k=1
where f is a real-valued Brownian motion, a generalization of the results from [27] to the spatially dependent case
has been obtained in [26]. Due to the restriction to one-dimensional noise no rough paths techniques are required to
handle (1.5).
Finally, large deviation principles for simultaneously vanishing diffusion and noise (¢ — 0) for stochastic (viscous)
scalar conservation laws of the type

du +div f(u)dt = % div(D ) Vu)dt + e¥ div(v/a2u)da®) (1.6)

have been established in [36], where y > 0, D > 0 is a strictly positive diffusion coefficient, a? are fluctuation co-
efficients and do® is noise white in time, colored in space and approximating space—time white noise for ¢ — 0. In
contrast, in the present paper we consider the purely hyperbolic case (i.e. D =0 in (1.6)) and finite noise (i.e. N € N
in (1.1)). Large deviation results for (1.1) with g replaced by &8, i.e. for vanishing noise, follow immediately from the
continuity of the solution map z — u* and the contraction principle for large deviation theory.

1.1. Notation

We will now very briefly recall the elements of rough paths theory used in this paper. For more details we re-
ferto [19]. Let TMRM) =RORY @ RY 9 RV) @ ... ® (RY)®M be the truncated step-M tensor algebra. For
paths in 7™ (RV) starting at the fixed point e := 140+ ... + 0, one may define B-Holder and p-variation metrics,
extending the usual metrics for paths in RY starting at zero: The homogeneous B-Holder and p-variation metrics
will be denoted by dg.ns1 1€SP. dpvar, the inhomogeneous ones by pgns T€SP. Pp.var respectively. Note that both
B-Holder and p-variation metrics induce the same topology on the path spaces. Corresponding norms are defined by
I - ll g-151 = d-mesi (-, 0) and || - || p—var = dp-var (-, 0) where O denotes the constant e-valued path.

A geometric B-Holder rough path x is a path in 71/ (R¥) which can be approximated by lifts of smooth paths
in the dg s metric; geometric p-rough paths are defined similarly. Given a rough path x, the projection on the first
level is an RY -valued path and will be denoted by 71 (x). It can be seen that rough paths actually take values in the
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smaller set GM(RN) c TM(RV), where GM (R") denotes the free step-M nilpotent Lie group with N generators.
The Carnot—Caratheodory metric turns (GM (RV), d) into a metric space. Consequently, we denote by

o, GUPI®RN)) and €1, GV (RYY)
the rough paths spaces where B € (0, 1] and p € [1, 00). Note that both spaces are Polish spaces.

2. Definitions and notation

For a matrix A = (a; ;)i j=1,..a we write A! =a;j, A = (a; j)i=1,..q and A; = (ai,j)§'=1 g Let H=

,,,,,,,,,

(HY, ..., HY) be a collection of C1(R?; R9) vector fields. We define
divH :=(divH", ..., divH")

and assume div H = 0 (cf. Remark 3.1 below for a discussion of this assumption). In the following we let Div denote
the total divergence, i.e. for a vector-valued function f = f(x,u) € C I(R? x R) and for u € C'(R?) we set

Div f(x, u) = (div f)(x, u) + (0, f)(x, u) - Vu,
while div f(x,u) = Z‘,le (0x, f ky(x, u). Moreover, we let V f denote the partial gradient, that is V f(x,u) =
Kgrm(t, x0) :={(r,x) | x € BRym@—r)(x0)}-
We let C¥ (Rd) be the usual spaces of k-times continuously differentiable functions on R? and let C Ib‘ (Rd) denote the
subset of bounded functions. Analogously, we define LipZ to be the bounded y-Lipschitz continuous functions.

2.1. Definition of a weak entropy solution

The replacement of Brownian motion in (1.1) by a continuously differentiable path z leads us to the study of the
following evolution equation

oru+Div f(t,x,u) = F(t,x,u)+ (Vu - H(x) +uv(t,x)+ g, x)) zs
u(0) = ug € L°(RY) 2.1)
on [0, T] x R? with f, F continuous, d, N € N,
ze Cl([0, TI; RY),
H € (C} NLip)(RY; RPN,
v e %[0, T (C; NLip R RY)),
g € C°([0, TT; (Cj NLip) R RTM)) (2.2)
and assuming div(H) = 0. Since (informally)
Vu-Hz, =Div(uHZz,),

we may rewrite (2.1) as

du +Div f(t,x,u) = F(t, x,u) (2.3)
with

ft,x,u) = f(t,x,u) —uHx)z

F(t,x,u) = F(t,x,u) +uv(t, x)z + g(t, x)Z;. (2.4)

Thus, (2.1) may be rewritten in terms of an inhomogeneous scalar conservation law

oru +Div f(t,x,u) = F(t,x,u)
u(0) = ug € L*(RY) (2.5)
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for which the well-developed deterministic theory of entropy solutions and their stability may be applied, provided
z € CL([0, T]; RY). The removal of this regularity assumption on the driving signal z is the main point of this paper.

Definition 2.1. We call u € L°°([0, T] x R?; R) a weak entropy solution to (2.5) if

i. ForallkeR, ¢ € C®((0,T) x R Ry)
T

f/lu—k|3z§0+5gn(u—k)(f(t,x,u)—f(t,x,k))vw
0 R4
+ sgn(u — k)(F(t, x,u) — div f(t, x, k))pdxdt > 0.

ii. There exists a zero set £ C [0, T'] such that for ¢ € [0, T'] \ € the function u(¢, x) is defined for a.e. x € R4 and for
allr >0

lim / lu(t, x) —up(x)|dx =0.
t—0,teR\E
B (0)

Moreover, a function u is said to be a weak entropy solution to (2.1) if u is a weak entropy solution to (2.3)
As concerning the well-posedness of (2.1) we will work with the following set of assumptions
Hypothesis 2.2.

(H1) f, F are continuous, d, f, 3,V f, V2 f, 3, F, VF exist continuously and
3y f € L™(0,T1 x RY x [-U, U1),
F —div f, 8,(F —div f) € L®([0, T] x R x [-U, U)),

forallU,T > 0.
(H2) ForallU,T >0: Vo, f € L*([0,T] x R x [-U, U)), 3, F € L*([0, T] x R¢ x [-U, U]) and

T

// IV(F —div f)(¢, x, -)||Loo([_U’U])dxdl‘ < 0.

0 R4

(H2*) ForallU,R,T > 0: Va, f € L®([0, T] x RY x [=U, U]), 8, F € L%([0, T] x R¢ x [-U, U1) and

T
/ / IV(E —div )t x, ) | oe_v.opddt < oo.

0 Bgr(0)

(H3) (div f — F)(-,-,0) € L*°([0, T] x RY) and oy (div f — F) e L*°([0,T] x R? x R).
We recall

Definition 2.3. Let u € L} .(R?). Define

TV(u):sup{/udiVI/fdx |y e CLRY; RY) and ||/ ]|oo < 1}
Rd
BV(RY) ={ue L}, (R')|TV(u) < oo}.

From [23,25] and Appendix B we obtain
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Proposition 2.4. Let ug € L>®(RY).

i. Suppose that f, F satisfy (H1), (H2) and ug € (L*° N LN BV)RY). Then weak entropy solutions to (2.5) are
unique.
ii. Suppose that f, F satisfy (H1), (H3). Then there exists a weak entropy solution u to (2.5). Moreover, u may be

chosen such that t — u(t) is right-continuous in L 110 C(Rd).

iti. Suppose that f, F satisfy (H1), (H2*), (H3) and ug € (L® N L' N BV)(R?). Then there exists a unique weak
entropy solution to (2.5).

Proof. (i): Follows from [25, Theorem 2.5]. (ii): Proven in [23]. (iii): Follows from Theorem B.3 in Appendix B
below. 0O

For simplicity we will assume weak entropy solutions to be right-continuous in L}OC(Rd ). Due to Proposition 2.4
(ii) this does not restrict the applicability of our results.

In Proposition 2.4, (iii) we prove well-posedness of (2.5) assuming only the weaker condition (H2*) instead of
(H2). In order to see why this is necessary in order to obtain well-posedness for (2.1) ((2.3) resp.) let us consider the
special case f(¢t,x,u)= f(u), F=0, H=0,1i.e.

Ou +Div f(u) = (uv(t,x) + g, x)) Z;.
Then (H2) reads: For all U, T > 0:

T

// luVv(t, x)z, + Vg, x)z |l Lo —v,updxdt < oo,
0 Re

which would require additional assumptions on v, g, whereas (H2*) is always satisfied for v, g as in (2.2). The
generalization of (H2) to (H2*) will also play an important role in handling the transformed equation later-on, see
Remark 3.5 below.

3. Transformation for smooth noise

In this section we consider

oru+Div f(t,x,u) = F(t,x,u) + (Vu - H(x) +uv(x) + g(x)) z,
u(0) = ug, (3.1
on [0, T] x RY withd, N € N, f, F satisfying (H1), (H2*), (H3),

zeCl([0, TI; RY),
H € (C} NLip)(RY; RI*N),
v, g € (C; NLip)(RY; R1*N),

and div(H) =0.

We emphasize that Proposition 2.4 fails when z ceases to be C'([0, T]; RY). In particular, the case of z being
Brownian motion is not covered. In the following we will show how to transform (3.1) into a scalar conservation law
in “robust” form, which will in turn allow the development of a rough pathwise theory for (3.1). The point is to find a
view on (3.1) which (to the extend possible) does not involve derivatives of the driving noise z.

In order to do so, we split the presentation into two parts, first dealing with pure transport noise Vu - HZz; then with
affine-linear noise (uv(x) + g(x))z;. Finally, in Section 3.3 below, both of these transformations will be applied to
(3.1) to yield its robust form.
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3.1. Transport noise

In this section we consider

ou +Div f(¢t,x,u)=F({t,x,u)+ Vu- H(x)Z, (3.2)
on R? withz € C'([0, T]; RN), H € (CZ ﬂLip)(Rd; RNy div(H) =0and f, F satisfying (H 1). Let ¢ be the flow
of C2-diffeomorphisms induced by

Y (x) = —H (¥ ()&

Yo(x) = x.

Note that v/, is volume preserving, since div(H) = 0. We aim to transform (3.2) into its “robust” form by setting
v(t, x) =u(t, Y+ (x)). In the context of viscosity solutions an analogous transformation has been studied for example
in [7,17,30]. An informal computation reveals

Orv(t, x) = (Bru) (1, Y (%)) + (Vu)(t, Y (x)) - 0P (x)

= (=Div f (@, x,u)(#, Y: (x)) + F (&, x, u)(t, Y1 (x))
+(Vu - H)(t, Y (x)) 2 + (V) (t, Y (x)) - 95 (x)
= (=Div f(t,x, ), Y1 (x)) + F(t, Y (x), v). (3.3)

By Proposition A.2 at least for u € C'(R?) we have

(Div £ (1, x,u)) (¢, Y (x)) = Div((DY) ™ £ (&, Y, ult, ¥1))) (2, x). (3.4)
Hence,
du(t, x) +Div f¥(t,x,v) = F¥(t,x,v), (3.5)

with
Yt x,v) = (DY, Dy, f ¥ (1), v),
FY(t,x,v) = F(t, y;(x), v).

Remark 3.1. In (3.4) we use the assumption div H = 0 which by Proposition A.2 implies div((Dl/ffl)W,) = 0. With-
out assuming H to be divergence free, we would gain an additional term of the form div((D V)Y F(t, ¥y, v(t, x)) in
(3.5). Correspondingly, in the proof of Proposition 3.2 below it is used that ¥, is volume preserving. To avoid further
technicalities, we restrict to the case div H = 0.

This informal calculation may be made rigorous

Proposition 3.2. A function u is a weak entropy solution to

ou+Div f(¢t,x,u)=F(t,x,u)+ Vu- H(x)z, (3.6)
iff v(t, x) =u(t, Y (x)) is a weak entropy solution to

dv(t, x) +Div f¥ (1, x,v) = F¥ (¢, x,v) (3.7)
where

Y x,v) = (DY, Dy, f ¢ ¥ (1), v),
FY(t,x,v) = F(t, y;(x), v).
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Proof. Assume that u € L°([0, T] x R9) is a weak entropy solution to (3.6) (in the sense of Definition 2.1). Hence,
T

// lu — k|3, + sgn(u — k)(f(t, x,u) — f(t,x,k)) - Vo —|u—k|Hz-Vg
0 R4
+sgn(u — k)(F(t,x,u) —div f (¢, x, k))pdxdt > 0,

forallk e R, ¢ € C°([0, T'] x RY). Substituting x — 1/ft_l(x) yields
T
// v — k[(3:9) (1, Y1 (X)) + sgn(v — k) (f (£, Y1 (x), v) — [, ¥ (x), k) - (Vo) (t, ¥ (x))
0 R4
— v —k[H W (x)z - (Vo). ¥i(x))
+sgn(v — k) (F(t, ¥ (x), v) — (div ), ¥ (x), k), ¥ (x))dxdt = 0,
where we use that ¥, is volume preserving. We note
O o, Y (x)] = @) (1, Y1 (x)) + (Vo) (1, i (x)) - 0 Y1 (x)
= @) (1, Y1 (x)) = (Vo) (1, Y1 (x)) - H (Y1 (x))zs
and
(Vo) (t, Y (1)) = Vo, Y (0)) - DY

= (DY) 1y, o) V@ P ().
By Proposition A.2 we have

(@iv £, Y1 (6), k) = div (DY) gy £ 1, Y10, 0)
Hence,
T
[ [t = koo v +sene = 0@ 910 = £ 0) - DU, V6 0)
0 R4
+sgn(v — k) (F (1, 1. v) = div((DY; iy, £ D)@, Y)dxds =0,
forallk e R, ¢ € C°([0, T'] x R?). This is equivalent to
T
[ [[1o=Kitng -+ sento = 0@U, £ ) = DU F b )T
0 R4
+sgn(v — K (F (¢, Y, v) = div((DY; Dy, £, K)gdxdi =0,

forall k e R, ¢ € C (R4 x R?). Hence, v is a weak entropy solution to (3.7). Following the above calculations in
reverse order yields that u is a weak entropy solution if vis. O

Remark 3.3.

i. Another way to rigorously justify the informal calculations leading to (3.5) would be to argue via a vanishing
viscosity approximation, i.e. first approximate (3.2) by

O;u® +Div f(t,x,u’) =eAu® + F(t,x,u®) + Vu® - H(x)Z;

then compute the transformed equation by classical calculus and take ¢ — 0. In order to guarantee that u® indeed
converges to the (unique) weak entropy solution # more restrictive assumptions on f, F would be necessary.

ii. We emphasize that Proposition 3.2 does not yield any claim on the existence and uniqueness of the concerned
weak entropy solutions. Again, more restrictive assumptions on f, F' would be necessary.
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3.2. Affine linear space—time noise

We consider
O;u+Div f(t,x,u) = F(t,x,u) + (uv(t, x) + g(t, x))Z;
u(0, x) = up(x)
on RY with N €N,
zecl((0, TI; RY),
v, g € C°([0, T1: (C; NLip)R"M)),
and f, F satisfying (H1), (H2*), (H3). It is then easy to see that also f and

F(t,x,u) = F(t,x,u) 4+ (uv(r, x) + g(t, x))Z

941

(3.8)

satisfy (H1), (H2*), (H3) and thus there is a unique weak entropy solution u to (3.8) by Proposition 2.4. For a
discussion of the need to work with assumption (H2*) instead of (H2) at this point see the end of Section 2 above.

Let ¢ be the flow of C2-diffeomorphisms corresponding to
P, x) = Pt V(1. )
#(0,x) = Idg,

t o
ie. o(t,x)r = redo v(@.0%dt For notational convenience we set

t

w(t,x):= —f v(r, x)z,dr.

0
Moreover, let o be the flow of C 2-diffeomorphisms to
ot x) =e""Vg(t, x)z,

ie. o(t,x) = fé e o (r, x)z,dr .

Proposition 3.4. Let ug € (L*° N L' N BV)(R?). A function u is the unique weak entropy solution to
ou+Div f(t,x,u)=F({,x,u)+ (wv(t,x)+ g(t,x))zs
u(0) =ug
iffv(t, x) = e "D y(t, x) — o(t, x) is the unique weak entropy solution' to
v +Divy f(t.x,v) =0 F(t,x,0),
v(0) = up
where
Pt x,v) ="V ft x, e (w4 (t, X))
SF(tx,v) = COF @ x, e (0 0(1,20)) + £ (1,2, 67D (0 + 0(1, 2))) Vel ),

(3.9)

(3.10)

' We note that ¢ f, # F do not necessarily satisfy (H2) nor (H3) anymore. Existence and uniqueness of a weak entropy solution to (3.10) is part

of the proof.
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Proof. For this so-called “outer transformation” (cf. [17]) it seems more convenient to argue via a vanishing viscosity
approximation than to work with the entropy formulation directly as it was done in Proposition 3.2. In order to
obtain the existence and uniqueness of a weak entropy solution to (3.10) we shall first consider an approximation
via localization of f, F, v, g. As a second step we consider smooth approximations of these localizations. We then
consider vanishing viscosity approximations which allow to calculate the transformation explicitly. We may then
recover the general cases by stability of solutions to scalar conservation laws.
Step 1: Smooth, compactly supported data
We start with the case of smooth, compactly supported data, i.e. assume in addition f, F, v, g, z, ug to be smooth
with
f@x,u)=F(t,x,u)=v(t,x) =g, x)=0, Vix|=m,( u)€[0,T] xR, (3.11)
for some m > 0. In particular, f, F satisty (H 1), (H2), (H3). We then consider a vanishing viscosity approximation,
i.e.
O,;u® +Div f(t,x,u’) =eAu® + F(t, x,u®) + Wfv(t,x) + g(t, x)z;
u®(0) = uy. (3.12)

The existence of a unique classical solution to (3.12) follows from standard theory (cf. e.g. [24]) and from [23,
Theorem 4] we know that

u® —u in L'([0,T]; L) (RY)) (3.13)

and dt ® d& almost everywhere (selecting subsequences if necessary). Due to (H3) and the maximum principle (cf.
also Lemma B.5 below) u° is uniformly bounded in L°°([0, T'] x Rd). Setting

v, x) = U8 (1, x)
we obtain
vl = 9,48 (¢, x) — v(t, x) 2D Ul (2, x)
= e (e Aut —Div f(1,x,u) + F(t,x,u®) +u’(t, x)v(t, x)2; 4 g(t,x)2:) — v(t, )z 0(t, x)
=g Ae™HyP — I Dy f (1, x, e TS
+ eI F (it x, e HEDYEy 4 ot 0 (1 x)z,.
We now set o(t, x) = fol e ¥ g(r, x)z,dr and
vE(t, x) = v5 (1, x) — o(t, x).
Then
3v° = 95! — P (1, 1)z,
= e Ae TN (18 4 0) — *EI Dy £ (2, x, e THED 0 4 0)) 4+ eHEV F (1, x, e N (0F + 0).
Since
e CODiv £z, x, u) = Div(er" £t x, u)) — f(t, x, u) Vel ®
we have
0;v¢ +Div"g’ [, x,v%) = SSLUE + Z,’F(t, x,v%),
where the linear, strongly elliptic operator ZL : H2(0) N Hy (0) — L?*(0) is defined by
PLv:=elAe ™ (v+0) = Av =2V Vo +v(|Vul* — Ap) + e* Ale™"0).
Due to (3.13) we have
v — vi=elu in L'([0, T1; L}, (RY))

which is easily seen to imply that v is a weak entropy solution to (3.10).
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Step 2: ug € (L° N L' N BV)(RY) and f, F, v, g having compact support in x, i.e. satisfy (3.11).

Let u be the unique weak entropy solution to (3.9). We aim to remove the additional smoothness assumptions
on the data required in step one. Let f & Fo )9, g5, 2%, uf) be smooth approximations of f, F, v, g, z, ug respectively,
obtained by mollification. Since f, F satisfy (H1), (H2), (H3) so do f‘s, F?%. We have

e = ol 1 (gay
10 2 = Bu f | Loo g0, 71 x R x [0 U
| F® —div % — (F — div )l zoo (0. 71xRIx[U.U])

s , for6—0
v = vllcogo,71xr4)

—0

5
llg® — gllcoo, 71xrA)

||Z(S —Z||cl([0,T])

8

for all U, T > 0 and consider the sequence of unique weak entropy solutions #° corresponding to

du’ +Div 21, x,u’) = FO(t, x,u®) + v (tr, x) + g° (1, x))2
ub(0) = ud.

We note

F(t,x,u) — Fo(t,x,u) = F(t, x,u) — FO(t, x,u) + uvz — uv‘sz';s + g, x)z; — g‘s(t,x)if.
By step one we have that

Wt x) = e“a(t‘x)u‘s(t, x) —0%(t,x)
is a weak entropy solution to

v’ +Div‘§§ £, x,0%) = 22 Fo(t, x, v%).
We note that f%, F satisfy (H3) with uniform bounds. By Lemma B.5 this implies

)
V= ||u||L°°([0,T]XRd) Vv ”l/t ||L°°([0,T]><R‘1) < C < o0.

Due to Theorem B.3 we have (with M, kj, * defined as in Appendix B):

sup / lu(t, x) —ub(t, x)|dx

tel0,T]

Bg(x0)
<eT / luo(x) — u(x)|dx
Brimr (x0)
+ T TN, (f = FO) oo (K poar (Txo)x =V V)
T
X (TV(uo) + C// |V (F — div i x, -)||Loo([_y,y])dxdr)
0 R4

T
4T / / I((F = F%) — div(f — ) (s x) ooy, ppdcdr
0 Br4mt(x0)

and thus

sup [lu® (1) = u(®)l 1) — O
t€[0,T]

for all compact sets K C RY. With v := eMu — © we thus obtain
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)
sup [[v° (1) —v@)llpigy = sup lle" Du’(0) — e Du) +0° 1) — o)l 11 x) = O,
t€[0,T] tel0,T]

for all compact sets K € R?. It easily follows that v is a weak entropy solution to (3.10).

Step 3: up € (L*° N L' N BV)(RY)

We argue as in the last step, approximating f, F, v, g by localized approximations obtained by multiplication with
a smooth cut-off function in the x-variable, i.e. set

S x u) =" () f(E, X, u)
F"(t, x,u) :=n"(x)F(t,x,u) +Vn"(x)- f(t,x,u)
V™, x) =" (x)v(t, x)
g"(t, x) =n"(x)g(t, x)
where 1 is a smooth function satisfying
1,0 =n" <18,,,0)-
We note
F™ —div f™ =™ (F —div f)

and thus f, Fm satisfy (H1), (H2*), (H3). Let u™ be the corresponding weak entropy solution. Since f™, F™
satisfy (H3) with uniform bounds we have

V= ||”m||L°°([O,T]de) < C < oo,
by Lemma B.5. By Theorem B.3 we obtain:
sup / lu(t, x) —u™(t,x)|dx
t€[0,7T]
B (x0)

< Te® 0T I3, (f = ™ Lo (K gy (T,x0)xR)

T
X <TV(M0) + C/ / ||V(ﬁm —div f™)(r, x, -)”Loo([v’]j])dxdr>
0 Br4mr(x0)
T

+e T / / I(CF = F™) = div(f = f") (. x) | Loy, vy dadr,
0 Brymr(x0)

forall R > 0, xo € R%. We observe

F—F"=(—n")(F +uv:+g3).
Hence, for all R > 0, xo € R? and m large enough we obtain

u™=u, on[0,T]x Bg(xp). (3.14)
Moreover, obviously

w"=u

0" =0, onl0,T]x Bg(xo),

for m large enough. By step two,

m

oM = " ym _Qm

are weak entropy solutions to (3.10) with g f, °F replaced by
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O (2 x,v) = D e x e P00 4 9" (1, x)))
o F (1, x,v) 1= "D e x, e 00 (0 4 0" (1, 3))
+ ™t x, e M D (v 4 0™ (8, x))) Vel ), (3.15)

Eq. (3.14) then implies that v := e"u — g is a weak entropy solution to (3.10).

Step 4: Uniqueness for (3.10)

In step three we have obtained the existence of a weak entropy solution v to (3.10) as an L1 ([0, T']; L }OC (R?)) limit
of weak entropy solutions v corresponding to

8™ +Div 7 (2, x,v) =4 F™ (1, x, v),
v(0) = ug
where Z’: fm, g’: F™ are as in (3.15). Note that since u™ is uniformly bounded in L*([0, T] x R?) so0 is v™. We

observe that (gm fm, Z’” F™ have compact support in x and

O (. xv) =2 f(t.x,v) on[0,T]x Br(0) x R
for all m > 0 large enough. Hence, uniqueness of weak entropy solutions to (3.10) follows from Corollary B.4. O
Remark 3.5. In the proof of (3.10) the localization of condition (H2) in form of (H2*) is crucial. This can be seen
by considering the special case f(f,x,u) = f(u), F=0, H=g=0, i.e.

oru + Div f (u) = uv(t, x)z;.
In this case we have

OF(t,x,v) —divd f(t,x,v) = zvf'(€"¥v) - V.
Thus, while (H2*) is always satisfied for ‘g f,g F, (H2) would require stringent decay conditions for v.

3.3. Full transformation

We now subsequently apply both of the transformations considered above. As before, let d, N € N, f, F satisfying
(H1), (H2"), (H3),

zeC'([0, TI; RY),
H € (C; NLip)RY; RYM),
v, g € (C} NLip)(RY; RPN,

and assume div(H) = 0.
We define 1y to be the flow of C3-diffeomorphisms induced by

Wt = —H(%)Zz

Yo = Idpa,
and ¢ the one for

b = pv (Y (X))

¢o(x) = Idg.
Furthermore, we set o(z, x) := f(; d’g“’(r, x)z,dr, where

eV (t.x) = (g (1) = g (Y (),
with u(t, x) := —fol v(¥, (x))Z-dr. We obtain
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Proposition 3.6. Let ug € (L N L' N BV)(R?). A function u is the unique weak entropy solution to

By +Div (1, x,u) = F(t, x, 1) + (Vu - H(x) + uv(x) + g(0),

u(0) = uo,

iffv(t, x) = Pyt Y (x)) — o(t, x) is the unique weak entropy solution to

v +Dive fV(t,x,v) =4 FV (¢, x,v)

v(0) =ug

with

21V x, vy =t CIDY L F Y (0, 0 (0 0(1, X))

OFV (1, x,0) =" F (@, 9 (x), e (v +0(1, X))

+ DY o (), e (0 + o2, x))) Vet )
= " COF @, ¥ (x), e M+ 01, 0) + 5V (1, x,0) - Vi, x).

(3.16)

(3.17)

Proof. We will successively apply both of the transformations introduced in the last sections. First we will deal with
transport noise, then with affine-linear multiplicative noise. The crucial point is that along these transformations the

equation remains in the class of inhomogeneous scalar conservation laws with source.

We first note that there is a unique weak entropy solution u to (3.16) since f ¥ satisfy (H1), (H2*), (H3). Let

vl (t,x) :==u(t, ¥;(x)). Then, by Proposition 3.2, vl is the unique weak entropy solution to
drv! +Div £ (1, x,01) = @ v (¥ (1) + g (W (D)),

with
fHx 0 =Dyt FE (0, v).

We note, thanks to div H = 0, i being the flow associated to H and Proposition A.2

div £1(t, x, v) = (div £)(t, Y1 (x), v)
and thus f! and

FUt,x,0) 1= F(t, ¥ (x), v) + v (0)) + (W ()2

satisfy (H 1), (H2*), (H3). Now let v(z, x) = e*"yl (¢, x) — o(z, x). Then, by Proposition 3.4, v is the unique weak

entropy solution to

v +Div® fV(t,x,v) =4 FV (. x,v)
with S £V, 2FV asin 3.17). O
4. Rough driving signals

. . . o)
We now aim to give meaning to”

du+Div f(u)dt = (Vu - H(x) +uv + g(x)) odz

4.1)

for z being a geometric p-rough path, recalling that the prototype of a (random) geometric p-rough path (with p =
2 + ¢) is given by Brownian motion plus its Lévy area. We will do so by considering smooth approximations z”"

2 For simplicity of the presentation we consider the case of f being independent of (¢, x) and F = 0 in the following. The treatment of the general

case, however, proceeds completely analogous.



PK. Friz, B. Gess / Ann. I. H. Poincaré — AN 33 (2016) 933-963 947

of z in rough path metric and proving convergence of the associated approximants u” to a limit independent of the
approximating sequence. We assume that there are y > p > 1, such that

feC*®),
H ELlpZ+3(Rd1RdXN),V ERIXN,g eLlpZ—‘rz(Rd,RlXN)

Note that we now assume v to be constant, which will be needed in order to establish a uniform L bound for the
approximants u" introduced above. Due to [19] for any geometric p-rough path z € C} ™ ([0, T]; GIP/(RY)) we may
consider the flow of diffeomorphisms

dyf(x) = —H®/(x)) odz:, Y5x) =x,

dei(r) =g/ (r)vodz, ¢5(r)=r, (4.2)
ie.
PH(r) =re" B %) = re M
and
t
(1, x) = / g (Y (x)) o dy. 43)
0

In order to obtain rough path stability of these diffeomorphisms we need to consider (4.2), (4.3) “simultaneously” as
a rough differential equation (RDE). Combining [17, Lemma 13] and [10, Lemma 13] we obtain?

Lemma 4.1. Let y > p > 1. Assume

HeLip” B3R, RN, b e RN g e Lip? P2(RY, RIXV),
Then for all R > O there exist”

C=CR, [ Hpjpr+3 VI, 18l Ljpr+2)

K = KR Hlliprss. V] 18]l 042)

such that for all geometric p-rough pathsy,z € C(I;'W"([O, T1; Gl (RN)) satisfying |yl p-var;10, 71> 12|l pvarsfo, 77 < R
we have

ID" (WY — ¥ pvar(0.7] < CPporar (¥, 2)
ID" (W)™ = @S D paaro.11 < Coprar(y. 2)
foralln €{0,1,2,3} and
I D" Y ¥ |l p-varsto, 1) < K
ID" W)l pvarso.r1 < K

forall n € {1,2,3}. Analogous properties for 0¥ (and trivially for ¢¥) are satisfied.

Theorem 4.2. Let T > 0, ug € (L*NL' NBV)(RY) and z € Cg'l"v”’([o, T1; GIPYRN)Y). If g # 0 assume
|33f(u)| <Cy<oo, VuelR
3 n fact, [10, Lemma 13] is formulated in the Holder framework. It is, however, a simple exercise to see that an analogous result holds true also

in the p-variation case.
4 The constants C, K are non-decreasing in all arguments.
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for some constant Cy > 0. Further, let 7" € C([0, T1; RN) with 2" — z in p-variation rough path metric for n — oc.
Let u" be the unique weak entropy solution’ to

du" 4+ Div f(u") = (Vu" - H(x) +u"v + g(x)) 2"
Then:

i. (u") is a Cauchy sequence in L*°([0, T1; LZIOC(R‘J)) with limit u. The limit u does not depend on the particular
approximating sequence 7" and t — u; is right-continuous in L} (R%). We write

loc
du+Div f(u)dt = (Vu - H(x) +uv + g(x)) odz
u(0) = uyg. 4.4)
ii. Moreover, we have u € L*°([0, T] x Rd). Ifv, g =0 then

lull oo o0, 715crey < Nlutoll oo (ray-
The function u has the representation

u(t, x) = [e*“’“)vZ(t, )4 e MO g2, -)] (4.5)
()

where v is the unique weak entropy solution to
8t x) +Div?® £ (1.2, 0) =0
v%(0) = uo
with
P x,0) = e ODWH T fe O + %))
iti. The solution map (z,uo) — u as a mapping
CoP (10, T1; GPI®RN)) x (L= N L' N BV)(RY) — L®([0, T] x RY)

endowed with the norms

Il - ”Cg-P"”” x| - ”Ll(Rd) =d B ||L°°([0,T];Ll (R4))

loc
is continuous on balls of initial conditions with bounded total variation and bounded L norm. More precisely,
fory,z e Cg’p'w([O, T]; GIPYRNY), R >0, xo € R4, we have

sup / WY (¢, x) — v%(t, x)|dx

tE[O,T]BR(xo)
< KT / |ug(x) —ug(x)|dx
BrykT(x0)
+ TeKT||3U(¢ny%y —# f;/;z)||L°°([0,T]XBR+KT(xo)><[—V,V])

T
X [TV(M(Y)) +C /

0 Bgrikr(x0)

. y
IV div? f5 (. x, ')||L°°([V,V])dxdt:|

T
. y z z
+eKT/ / Idiv(® £ =" £2@ x) ey, dicdt, (4.6

0 Brikr(x0)

where V = |[vY | oo V V¥ ]loo < 00 and K = K (¥l p-var:10,77 V 12l p-var;10,77)-

5 Recall that we may choose u” right-continuous in Ll1 oc ®RY).
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Proof. Step 1: Stability for the transformed solutions
We start by proving a stability estimate on the level of the robust transformation. For smooth paths y,z €
C'([0, T]: RN) let u”, u be the corresponding weak entropy solutions to (4.1). By Proposition 2.4 (ii) we may

choose u”, u* to be right-continuous in L}oc(Rd). By y, z we will denote the canonical lifts of y, z into geometric

p-variation rough paths in Cg’p'var([O, T1; GIPI(RN)) and by (@7, ¥, 0Y), (9%, ¥, 0%) the corresponding flows of
diffeomorphisms introduced in the beginning of this section. Let

Ry .z := Iyl pvar;10,71 V 12| p-var; 0,71

and K be a generic constant (i.e. it may change its value from line to line) depending on y, z only via Ry ,, i.e.
K = K (Ry ) non-decreasing. The dependence on further data (such as C, |lug|| o) will be suppressed. From Propo-
sition 3.6 we know that the transforms

vt x) s = Ow (6,97 (1, %) — 07 (1, x)

vi(t, %) = e Ut (1, YR, x) — 07 (1, %) 4.7
are solutions to

dv(t, x) +Div? £ (1,x,v) =0 4.8)
with (¢, ¥, 0) = (¢, ¥, 07), (@, ¥*, 0%) respectively. From (3.17) it follows

¢’F$/’(t,x,v)50 4.9)
since Vi =0, due to v being constant. For notational convenience we set

fy . :‘pvfé;/; , fZ = (152J¢'91/£~
and we compute

div (1,2, 0) = DA |y f e O+ 071, 0)) - Vo' (1, )

and analogously for f*. Note that the L bound on u” following from Lemma B.5 (and thus the one obtained for v”
based on this) is given in terms of (cf. (2.4) with F =0)

IE G, 0l oo 0.7y = 1185 lloo

which is unstable in y in rough paths metric (similarly for u*). Instead we need to derive an estimate on the L°° norm
of v, v* based on the robust form (4.8). For this we note that 7, f* satisfy (H1), (H2*) with F = 0 and to check
(H3) we compute

div £, - O oo o, 71wy = 1D ™y Fe™ 07) - Vo lloo
<IDA) ™yl @™ @)oo VR lloo
<K <oo

and® (with e = v € R)
190 div £ | oo 0,71 R <y = e ™ D) ™ gy Fle™ (0 +07)) - Ve lloo
<le™™ Nl DA™ 1y llooll F €™ (0 + 0" N0 I VO lloo
< Crlle™ NoolDW) ™ 1y ooV oo

<K <o0o.

Hence,

Idiv £, - O)lloo + 19y div f¥]loe < K < 00

6 At this point we require the assumption \33 fI=Cy.1f g=0then oY =0 and thus div f¥ =0 so that this condition may be dropped.
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and similarly for z instead of y. From Lemma B.5 we conclude’

Vi= [ ]loo V [0 lc < K < 00 (4.10)
as required. Set

Qp:=1[0,T] x RY x [V, V].

In order to apply Theorem B.3 we first verify that the constants «*, kj appearing therein are bounded in terms of K.
We observe (with e =v € [V, V])

10y f L)
=Dy Fle™ (0 + 09 lloo
< IDWH) ™ yellooll £ €™ (0 + 0% lloo
<K<

and

Qd + D[V ]| L@y
=d+1) |V (D) fe 0 +e)]|
<K < o0.

Since f7, f* satisfy (H1), (H2*), (H3) we may apply Theorem B.3 (ii) to obtain
sup / v (¢, x) — v¥(t, x)|dx
t€[0,T]
BR(x0)
< KT / gy (x) — u(x)|dx
Bry k1 (x0)

+ T3y (f = FO 22010, T1x Bryxr o) x[=V. VD)
T

X |:TV(ug) + C/

0 Br+ykr(x0)

IV div ¥, x, ')||L°°([—V,V])dth:|

T
+ eKT/ / Idiv(fY — £, x) || Loy, vy dxdt, (4.11)
0 Br4kr(x0)
forall R >0, xg € R4 In order to bound the right hand side we note
07 (0. x.0) = D)™ o (@ (0407 (1, 1)),
Hence, using crucially the rough paths estimates collected in Lemma 4.1 (with e = v € [V, V])
130 (fY = FON L0, 71 Brokr (o) x[=V, V])
=IDW) 1y fle T (04 0") = DWH) ™y fle ™ (0 + 0% loo
< IDW) ™y llscl fe™ (0 +0") — fle™ (o + 09 lloo
FUIDW) ™ gy = DA™ yellooll £ (€7 (0 + 07D lloo
SKCrll(e™™ —e ) ote " 0" — e 0o + KIDW) gy = DWH) ™ yilloo
< Kppvar(y, 2).

7 Note that at this point (4.9) and thus v being constant is crucial.
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Similarly,

Ndiv(fY — FO N L0, 71 Bry k1 (xo) x[=V, V)
=D yr fle™ (0 +0") - Vor — D)™y fle T (04 09)) - Voilloo
< Kppvar(y, 2).
Due to Lemma 4.1 we further have (recall K = K(Ry ;))

||V div fy ”LOO([O,T]XRdX[fV,V]) <K < 0.
We obtain from (4.11)

sup / [v7(t, x) — v¥(t, x)|dx
tel0,T]
Br
KT y 4 KT y
<K [ )~ il + TeKT ey 2) TV + By 0] (*.12)
Br+kT
Step 2: Proof of (i)
Let z € cg”"var([o, T1; GIPI(RN)) and z* € C'([0, T]; RY) with z” — z in p-variation rough path metric for

n — o0o. Let u” be the unique weak entropy solution, right-continuous in L}OC(Rd ), to

ou" +Div f(u)=(Vu" - Hx) +u"v + g(x))"
up = Uo.

As in (4.7) we define the transforms v”, that are solutions to scalar conservation laws of the type (4.8). From (4.12)
we obtain

sup / [V ¢,2) = 0" 0, 0ldx < 5T Tpp e, 2") (TV(0) + | Bk O)]),
t€l0,T]
Br

for all n,m € N, where K is a constant independent of n, m. In particular, the sequence v" is a Cauchy sequence in
L>([0, T1; L} (R?)). Hence, there is a v € L([0, T]; L}, (R?)) such that

loc loc

sup / [v"(t) —v(t)|dx — 0, forn— oo,
rel0.71;
R

for all R > 0. Since ¢ — v} is right-continuous in L}oc(Rd) S0 is t > v;. It remains to be proven that this implies

L®([0,T]; L} (R))-convergence for u™. Let u be as in (4.5) and recall

loc

u"(t,x):[e_”Z Oy (1, )+ e Do (s, -)] o
W (1)

Since
u(t, (1, 2) = u" (6,9 (1, %))
=e W0 (v (1, x) + 0"(1,x)) — e (vzn (t,x) + 0% (t, x))
=10 (vz(t, x) =¥ (6, x) + 0" (1, x) — 0¥ (¢, x)) (KO — ) (”Zn (1) + 07 (1, x))
we have

W (1, ¥ (%)) = u(t, YA, x))

in L*°([0, T1; Llloc (R%)). Since wzn — ¥ in the sense of homeomorphisms we obtain
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up f |u" (1, x) — u(t, x)|dx = sup / " (2, 97 () — u(PF (x))|dx
Br

tel0,T tel0,T]
Br
< sup / | (1, Y7 (x)) — u(P2(x))|dx
t€[0,T]
Br
+ sup f u(t, 7 (x)) — u(t, Y2(x))|dx
te[0,T]
Br
— 0,

for n — oo for all R > 0 and the convergence is locally uniform with respect to R.

Step 3: Proof of (ii)

The claimed L°°-boundedness of u follows from (4.5), the uniform upper bound (4.10) and Lemma 4.1. If v, g =0
then div £ = 0 and it is easy to derive the claimed bound by methods similar to Lemma B.5.

Step 4: Proof of (iii)

Letnowy,z e Cg’p'w“([O, T1; GIP{RN)) and y*, 7" € C1([0, T]; RY) with y" — y, 7 — z in p-variation rough
path metric for n — oo. From (4.12) we obtain

sup f 0" (1 x) =07 (1, 2)ldx < f 1§(0) = u§(OIdx + Kpprae¥" 2 (TV ) + | Bremr (O)]).
1€[0,T]
Bpr

Brymr

Taking the limit n — oo we obtain

sup f |07 (1, x) = v" (¢, x)ldx < / () = () 1dx + K pprvr ¥ 2) (TV @) + | Brar 0)]),
0,7

el ]BR Brymr

which implies the claimed local uniform continuity, but for u¥ replaced by v¥. Arguing as in step two this finishes the

proof. Inequality (4.6) follows from (4.11). O

As immediate consequences of the continuity of the solution mapping with respect to the driving rough path
we obtain support results, large deviation results, stochastic scalar conservation laws driven by fractional Brownian
motion with Hurst parameter H, covering the rough regime H € (i, %). For more details on this we refer to [7,17].

5. Rate of convergence

In Theorem 4.2 we have obtained the convergence u” — u in L*°([0, T]; L llo . (Rd)) under the assumption of rough
paths convergence of the driving rough paths. However, no estimate on the speed of convergence, as it would be
crucial for any numerical approximation based on smoothing the noise, was derived. In this section we provide such
a quantitative stability estimate. For simplicity we restrict to pure transport noise and Holder rough paths, i.e. we

consider stochastic scalar conservation laws of the type
du +Div f(u)dt =Vu - H(x) odz,
u(0) = ug (5.1)

for z being a geometric %—Hélder rough path and f, H as before.

Theorem 5.1. For any two rough paths y,z we let u', u? be the corresponding solutions to (5.1) with initial data
u(l), u(z) e (L® N L' N BV)RY) respectively as constructed in Theorem 4.2. For each R > 0 there isa K = K(R) > 0
such that

sup [lu'(®) — @)l 1 ey < g — ugl 1wy + KTV @) P pvar (Y. 2),
t€[0,T]

whenever ||y||%7Hb.l;[0,T] \4 ”Z”%fﬁb‘l;[O,T] <R.
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Proof. Let u!, u? be the solutions to (5.1) with initial conditions u(l), u(z) driven by y, z and let

vl x) =u' @, v (x))
vt x) = u? (1, Y2 (x))

as in (4.7). As in the proof of Theorem 4.2 we let

Ry, = ”y”%—Hw;[O,T] v ”z”%—Hb'l;[O,T]

and K be a generic constant depending only (increasingly) on Ry ,. Again, dependence on further data will be sup-
pressed. Moreover, we set

flax vy = 1 x,0) = DA |y F)

and f2 analogously with y replaced by z. We note that div f/ =0, i = 1, 2. Hence, with F = 0 the assumptions (H 1),
(H3) and the estimates in (H2), (H2*) are trivially satisfied. Moreover, the other regularity assumptions contained
in Hypothesis 2.2 are also easily seen to be satisfied using Lemma 4.1. Eq. (4.6) (noting div f* = 0) yields

/ o' (¢, x) — v2(t, x)|dx < / lud(x) — ud (x)|dx
Bg(x0) Br+mt (x0)
+ TeX 19, (F 1 = P oo, r1xrd x—vvp TV @),
for all ¢ € [0, T']. Noting

190 (f" = A oo rixraxi—vvp = 1D gy f = DA™ e flloo
<1 flleqy DAy = DA™ el
< Kpp-var(y,2)

we obtain®

/ ! (t, x) — v2(t, x)|dx < f lug(x) — ud () |dx + TeXTTV ) ppvar(y, 2),
R4 R4

for all € [0, T]. Hence, by R — 0o and since ¥/¥, {* are volume preserving flows we have

sup [lul (®) — @)l 1 ey = up_ '@ )™ = v WO D ey
tel0,T

t€[0,T]
< sup o', D =@ WO Do
tel0,T]
+ sup o', @) ™H =0 0 O DL ey
tel0,T1]
1 yy—1 1 z\—1
< sup flv (@ (7)) —v (&, (Yy) )”L](]Rd)
t€[0,T]
+lug — ugll 1 ey + TeXTTV Q) ppar (. 2). (5.2)

We now aim to estimate the first term on the right hand side. To do so, we first replace v! by some smooth function
ve (L'NnBV NCY(RY). Carefully choosing an approximating sequence for v! will then yield the required estimate.
Using that ¥/¥ is volume preserving and setting &, = (Iﬂtz)_l o} we observe

8 We note that we may consider global L estimates here since there is no affine-linear noise present. In order to include affine-linear noise one
would have to rely on L]lo . estimates as in Theorem 4.2.
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()™ = v(@H Dl e = llvdd) — o@D oy D L1 e

N
=1 (@) = (@) L1 ra)

i=1
N
<D v(@4,,) = (@)1 ey (5.3)
i=1

and
||U(®ti+]) — v(q>t;)||L1(]Rd)

_ / (., () — v(®y, () |dx
d

< / / Vo, () + (1 = 2By ()]|Py, () — By (1) dxd
0 R4

<190 =yl [ [ 190 (U420, 007! =~ 1)) dnd, (5:4)
0 Rd
for any partition 0 =1y <t; <--- <ty =t. By Lemma 4.1 (cf. [10, Lemma 13] for its Holder version) we have
0] ,Z

l ” ([O 1. C](]Rd)) pp var (¥, Z),

and thus
1

1@, 0 D' = Idll o1 ey < Kppovar(y. Dt — 1] 7.

Local Lipschitz continuity of the determinant mapping then implies
1

det (Id + )\.D(q)li+l ° q)t?l - Id)) >1- K:Op-var()’a 2|ty — ti|;~

In particular, Id + A(®y,,, o CD;I — 1d) is a diffeomorphism and choosing #; = T% with

N = rT(zK)ppg-var(Ya z)]

we have
det <1d +AD(®,,, 0 by — Id)) > % (5.5)
Thus,
[v(Ps; ) = V(@) L1 (Rray <21 Pryy — Py IIOO/ |Vuldx.
1
< Kppva(y, D)|tit1 — 1i|? / [Vvldx.
Using this in (5.3) yields (note that K is a generic constant)
o (@)™ = (@) Dl gy < NKppovar(y. 2) / |Vvldx.
R4
< Kppnly.2) [ V0. (5.6)

R4
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We now aim to choose v!” to be suitable approximations of v!(¢) so that we may pass to the limit in (5.6).
Theorem B.2 allows us to estimate TV (v!(¢)) in terms of TV(u(l)). Since we will need the right hand side, i.e.
fRd Vol (s, x)|dx, to be uniformly bounded in n, the approximations v have to be chosen with some care. The
appropriate concept is given by intermediate convergence: Due to [1, Theorem 10.1.2] we may choose smooth ap-
proximations v € (L' N BV N C*)(R?) such that

v ol () in LY(RY)
/ Vvl dx — TV(' (1)) forn — oo.
Rd

Since ¥, ¥* are volume preserving, this implies v ((¥))~1) — v ¢, (¥)) ") and v (W5~ — v @, (¥H™H
in L' (R9). Passing to the limit in (5.6) we obtain

o' @H ™) =o' @ @) DI g < Kppaar(y. DTV (1)),

Employing Theorem B.2 to estimate TV (! (¢)) in terms of TV(ucl)) and inserting in (5.2) yields

sup [lu' (1) — )l 1 ey < luy — ugll 1@y + KTV @) ppar(y,2). O (5.7)
t€l0,T]
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Appendix A. A transformation formula for the divergence operator

For a C! matrix-valued function F € C! (Rd; RAxd ) we define the divergence to act column-wise, i.e.
d .
(divF)/ =divFi =) o F;.
i=1
In case of F = D for a function ¢ € C2(R¢; R?) this means that div Dy is the row-vector

d d d
(divDy) =3 "0;(DY)] = 0,9 =) 0,9y =0 divy.
i=1 i=1 i=1
Lemma A.1. Let g € C'(R?; R?) and ¢ € C2(RY; RY). Then
div(g(¥)) = div(DY),—18)(¥) — div((DY) 1) (Y) g (¥).
Proof. We compute

d d d
div(g()) =Y di(gi(W) =) (Ve W) - iy = D ((3;8) @) y—1)(¥)

i=1 i=1 ij=1
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0, (g1 ()1 (W) — Z(g,a @Yy W)

le

3j (@) y-180) () — ngwZ(a @)y ()

i=1 /l

0; (DY)~ lg),(w)—Zgz(wZ(a (DY), )W)

i=1 j=1

— div((DY) ) (W) W).

’H'M&?M&

I
M&

1

=div((DY)y-18) (V)

O

~.
I

Proposition A.2. Ler y € C2(R?; RY) be a volume-preserving diffeomorphism, i.e. det Dy = 1. Then

div((Dy)}-1) =0.
Moreover, for g € C1(R?; RY)
div(g(¥)) = div((D¥)y-18) ().

Proof. Let g € C*° (R?;RY) and ¢ € cx (R4; R). We compute

/ div(g(y)pdx = — / ¢ - Vodx

Rd
— / g- (Vo) Ndx
Rd
—fg~<w<w”<w>>><w”>dx.
Rd

Since Vo ~1(¥)) = (DY) (Vo(¥ 1)) (¥) we conclude

/ div(g(¥))pdx = — / g- (DY), 1 Vo dx
R4

:/div((Dw)ng)w(l/f“)dx
R4
:/div((Dw)W—lg)(W)<de~

R4
On the other hand div(g(y)) = div((D1ﬂ)¢_| W) — div((Dlﬁ)wq )(¥)g(¥) by Lemma A.1. Since ¢ and g can be

R4

R4

chosen arbitrarily this implies div((Dy),-1)(¥) =0. O
Appendix B. Deterministic entropy solutions for scalar conservation laws

In this section we consider (deterministic) scalar conservation laws of the type

du +Div f(t,x,u) = F(t,x,u), on[0,T]xR?
u(0,x) =uo(x), onR?. (B.1)
Recall the definition of weak entropy solutions to (B.1) from Section 2. The main purpose of this section is the proof

of a localized stability estimate for weak entropy solutions
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B.1. Localized stability of entropy solutions to hyperbolic conservation laws
In addition to the conditions put forward in Hypothesis 2.2 we will require

Hypothesis B.1. (H4) Forall U, T > 0:

T

// |(F —div f)(, x, )| Lo -v,updxdt < oo.

0 R4

We now introduce some notation. For any function u € L*°([0, T'] x Rd) such that # — u(?) is right-continuous in

L} (R?) and T > 0 we define

loc

Ur = lu(@®)l oo wra),
U = Nlull Loo (0, 77xRA) >

Srwy=|J suppu()),

t€[0,T]
L7 =10,T] x Spu) x [-U. U],
K()k = (2d + l)”vau‘f‘”Lm(E?;Rdxd) + ||8uF||Loo(E%)

In the following we will assume that weak entropy solutions are right continuous as mappings from [0, 7] into

L}o C(Rd). Due to Proposition 2.4 (ii) such weak entropy solutions exist. From [25, Theorem 2.2, Remark 2.3] we

recall

Theorem B.2. Assume (H1), (H2). Let ug € (L® N L' N BV)(Rd) and let u be a weak entropy solution of (B.1).
Then u satisfies u(t) € BV (R?) for all t € [0, T] and

t
TV(u(t)) < TV ()t + C / / TPV (F — div )0 x, ) e v,0,pdxdr,
0 R4

orall t € [0, T] and some constant C = C(d) = Zd.
Jf 2

We will now recall and extend stability results for weak entropy solutions as obtained in [25]. Let ug, vo € L>(R?)

with corresponding weak entropy solutions u, v (right-continuous in L}OC(R‘Z )). We define

Vi = lu(@®llpoogay V 0@ || oo (ra)
V= llullpooqo,r1xrd) V VIl L g0, 71xRY)

Sr,v)= | (suppu(r) Usuppu(1))
t€[0,T]

7" =1[0,T] x Sr(u,v) x [V, V]
K = 10 F oo ey + 180 AV (8 — ) o st
M = 110ugll Lo (10, T1xRE x[-V, V).
We prove a localized version of the stability estimate for scalar, inhomogeneous conservation laws obtained in [25].

Theorem B.3. Let (f, F), (g, G) satisfy (H1), ug € (L N L' N BV)(RY), vy € L®(R?) and let u, v be two weak
entropy solutions with respect to the initial conditions ug, vy, the fluxes f, g and forces F, G respectively.
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i. Suppose (f, F) satisfies (H2). Then

/ lu(t, x) —v(t, x)|dx

BR(xo0)

<o f 00 (x) — vo()ldx
BRrpm:t(x0)
Kyt _ K™t

e
+110u(f — &)l Lo (5N (K g pr (1.30) xR)) [WTV(MO)
-

elc(’)‘(tfr) _ el(*(tfr) )

+C/ pr— /IIV(F—dIVf)(V,x, M= q-v,,v,ndxdr
=

0 R

t

+ / oK) / I((F = G) — div(f — §))(rs x) Iy, v, pdxdr,

0 BRim(t—r) (x0)

d

forallt €[0,T], R>0, xo € R4 and some constant C = Cd) = %d.
ii. Suppose (f, F) satisfies (H2*), (H3). Then

/ lu(t, x) —v(t, x)|dx

BR(x0)

< / o (x) — vo()|dx

Brmi(x0)
* *
Kot _ okt

e
10, (f — &)l Loe(=4n(K g a1 (1,30) xR)) [WTVWO)
0

Ky — Kk*
0 BRr+-pm(t—r)(x0)

ng(l—r) _ ek*(t—r) )
e / f IV(F = div £)(r.x, ) o, 0, pdxdr

t
+/6K*(t7r) / |((F — G) —div(f — g)(, x )|l Lo (—v,,v,pdxdr,
0 BRrim—r)(x0)

forallt €[0,T], R >0, xg € R%.

Proof. (i): We are in the setting of [25, Theorem 2.5] except for Hypothesis B.1 (H4) which we do not assume.
We essentially follow the same proof, except for the estimate on K, on page 752. We will therefore restrict to some
comments on the modifications of the proof. In particular, we will employ the notations introduced in the proof of
[25, Theorem 2.5]. We note that ¢(r, x, 5, y) := ®(r, x)W(r — s,x — y), with & = x* ()Y (r,x) and ¥(r,x) =
v1(r)u* (x). Here x°(r), ¥ (r, x) are appropriate approximations of 1jo,s], 1 g ,,(7,x) and v”, u* are standard Dirac
sequences. In particular, we have

0< we(rs x) < lKR+9,M(T,X0)
0<x°(r) < 10,1 4e]

and thus also

supp (-, - 5, y) € ([0, + &] x RY) N Kgyo. (T, x0).
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Hence,
t+e+n
K> < / /[||8u(f_g)(r)”L°°('Dﬁ(BR+M(T,r)+9(xo)xR))dr”V”ﬂ(svy)”v(r_s)ddedr
0 RIR,
t+e+n
< / / 10uCF — ) DB sanireo ooy TV (Vi)Y — )dsdr.
0 Ry

All the other terms are estimated precisely as in [25, Theorem 2.5] and we may conclude the proof as in [25, Theorem
2.5]. Moreover, we note that the assumption Hypothesis B.1 (H4) supposed in [25, Theorem 2.5] is superfluous, since
it is only required on balls B4y (r—r)(xo) in the proof. On balls, however, it follows from the regularity assumptions
on F, G, f, g supposed in (H1).

(ii): We now define a sequence of cut-off fluxes and sources: Let n° be a smooth cut-off function of Kz (¢, x0)
satisfying

IKR,M(t,xo)(n x) = 778(’% x) = IKR+8_M(I,X())(7‘7 x)

and define

fE(r,x,u): = f(r,x,u)n’(r, x)
Fé(r,x,u) :=F@r,x,u)n’(r,x) — f(r,x,u) - Vn°(r, x).

Note

F® —div f¢ = (F — div f)n® (B.2)
and thus

|F —div f°| <|F —div f[1kp e (t.x0)- (B.3)

Then f¢, F¢ satisfy all the assumptions of case (i) as well as (H3) with uniform bounds. By Proposition 2.4 (ii) there
are unique weak entropy solutions u® to
O;u’® +div (¢, x,u®) = Fo(t, x, u®)
uf(0, x) = up(x).

The point of cutting-off f, F is that now step (i) may be applied with f, F replaced by f¢, F¢. From (i) we then obtain
(for ¢ > 0 small enough)

sup / luf(t, x) —u(t,x)|dx =0.
t€[0,T]
BRr(x0)

From (i) we conclude
/ lu(t,x) —v(t, x)|dx
Br(xo)

— / [ué(t, x) —v(t, x)|dx

Bg(xo0)

< / o (x) — vo () ldx

BRr+mt(x0)
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* *
Kyt _ k¥t

e
F 100 (f° = N Lo (2K gy (1.x0) xR)) [WTVWO)
0

! el(a‘(t—r) _ eK*(t—r) .
+C - IV(F® —div f*)(r, x, ) L (-v, v, pdxdr
Ko —K*

0 R4

t
+ / ) / I((F® = G) = div(f* = @) (r. x )l L (-, v, dxdr.

0 BR+Mm(t—r)(x0)

Since f¢ = f on Kg m(t, x0) and using (B.2), (B.3) we obtain

/ lu(t, x) —v(t, x)|dx

Bg(x0)
<o / Jo(x) — vo () ldx
BRr+m1(x0)
exa‘t _ KTt
F10u(f — &)l Lo (54N (K g p (2.30) xR)) WTV(MO)
0
ng([—r) _ eK*(t—r) ]
+c f = / IV(F — div £)(r . )l e, 0 pdocdr
0 0 BR4-pm(t—r)+e (%0)

t

e [ =G = div(s = ) s
0 BRr4-pm(i—r)(x0)
Taking ¢ — O implies the claim. O
Corollary B.4 (Uniqueness of weak entropy solutions). Assume that f, F satisfy (H1), (H2*) and that there is a weak

entropy solution u to (B.1) obtained as the L'([0, T1; L 110 C(Rd )) limit of uniformly bounded weak entropy solutions
u® to

o,;u® +Div fe(t,x,u’) = F°(¢t, x, u®)
u®(0,x) = ugy(x)
where ¢, F¢ satisfy (H1), (H2) and for all R > 0 there is an & > 0 such that
ff=f, FE=F, ug=uo onl0,T]x Bg(0) xR.

Then u is the unique weak entropy solution to (B.1).

Proof. Let v be a weak entropy solution to (B.1). By Theorem B.3 (applied with f, F = f¢, F® and g, G = f, F) we
have

/ [ub(t, x) —v(t, x)|dx
Br(x0)

<o [ 15 (x) — vo (o) ldx

BRr+mi(x0)
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ngt _ KTt
——TV®U)
Ky — K* 0

+ 10u (f€ — f)||L°°(KR,M(t,xO)xR)|:

K
0 R4

1
+ / e / I((F® = F) =div(f* = /) x)llL=-v,,v,pdxdr.,

0 Brim—r)(x0)

! eka‘(t—r) _ eK*(l—}’) )
+ C/ . / IV(F® —div ) (r, x, )L -v,,u,)dxdr
Ky —

with coefficients kg, «* possibly depending on &. Note that M, however, is independent of & since
supg.o [14¥ [l oo (0. 77xr¢) < C. Choosing & > 0 small enough we obtain
T
lu(t, x) — v(t, x)|dxdt <O0. O
0 Bg(xo)
Condition (H3) in Proposition 2.4 is required in order to obtain uniform bounds on the vanishing viscosity ap-

proximants used to construct weak entropy solutions. Since we will require uniform control on the L norm of weak
entropy solutions we note

Lemma B.5. Assume that f, F satisfy (H1), (H2*), (H3), let ug € (L*° N L' N BV)(R?), u be the corresponding
weak entropy solution to (B.1) and define

M= |(div f = F)(, -, 0)ll g o, 71xre) + 10 (d1V f = F)l oo (10, 71x R xR) -
Then

el oo o, 71y < (ol oo gy + De*MT .
( ) (R4)

Proof. The weak entropy solution u is constructed in [23] by first cutting-off f, F', then mollifying the coefficients
and then applying a vanishing viscosity approximation. Since the conditions (H 1), (H2*), (H3) are preserved (with
uniform bounds) under these cut-off and mollification procedures, it is enough to prove the claimed uniform bound
on the level of the vanishing viscosity approximations

0;u® +Div f(t, x,u’) =eAu® + F(t, x, u®)
u®(0, x) = uo(x). (B.4)

Since comparison holds for (B.4) it is sufficient to construct appropriate sub- and supersolutions. For this we rewrite
(B.4) in the form

O;u® + 0y, f (¢, x,u’)Vu® = eAu® + (F — div ) (¢, x, u®).
We set My := ||ug||oo and

K(1) == (Mo + 1)e*M".
Then

o f(t,x, K)VK =¢AK =0
and

(F —div f)(t,x,K) = (F —div f)(t,x, K) — (F —div f)(t,x,0) + (F — div f)(t, x, 0)
K
= / 0, (F —div f)(t, x, u)du + (F — div f)(¢, x, 0)
0
<(K+1M.
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Since

&K =2M (Mo + 1)e*M!
=M Mo+ De*M' + MMy + 1)e*M!
> (K + 1M,

we observe that K is a supersolution to (B.4). The construction of a subsolution proceeds analogously. O
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