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Abstract

We prove the existence and uniqueness of solutions to a class of stochastic scalar conservation laws with joint space–time 
transport noise and affine-linear noise driven by a geometric p-rough path. In particular, stability of the solutions with respect to 
the driving rough path is obtained, leading to a robust approach to stochastic scalar conservation laws. As immediate corollaries 
we obtain support theorems, large deviation results and the generation of a random dynamical system.
© 2015 
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1. Introduction

We develop a rough path approach to a class of stochastic scalar conservation laws of the type

du + Divf (t, x,u)dt = F(t, x,u) +
N∑

k=1

�k(x,u,∇u) ◦ dβk
t ,

u(0) = u0, (1.1)

on [0, T ] ×R
d , where f, F are continuous, �k = �k(x, r, p) is affine-linear in r, p, that is

�k(x, r,p) = p · Hk(x) + rνk + gk(x),

with divHk = 0 and βk are real-valued Brownian motions. More generally, we will give meaning to (1.1) when 
β is replaced by a general geometric p-rough path z. The Stratonovich type solution to (1.1) is then obtained by 
applying this to Brownian motion enhanced to a rough path. Further justification for the Stratonovich notation in (1.1)
is provided by a Wong–Zakai type limit theorem which becomes an immediate consequence of our main Theorem 4.2
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(part iii) together with well-known rough paths convergence of piecewise linear (and many other) approximations to 
(enhanced) Brownian motion. For background on rough paths we refer to [18,19,33–35]. Roughly speaking the main 
results reads

Theorem 1.1. Given sufficient regularity of u0, f , F , �k there exists a unique solution to

du + Divf (t, x,u)dt = F(t, x,u) +
N∑

k=1

�k(x,u,∇u) ◦ dzk
t ,

u(0) = u0, (1.2)

for every geometric rough path z, in the following sense: There exists a unique u = uz ∈ L∞([0, T ] × R
d) such that 

for every sequence zn ∈ C1([0, T ]) with zn → z in rough path metric the (unique) weak entropy solutions to

∂tu
n + Divf (t, x,un) = F(t, x,un) +

N∑
k=1

�k(x,un,∇un)ż
n,k
t (1.3)

converge to u in L∞([0, T ]; L1
loc(R

d)). The solution map (z, u0) �→ uz is continuous in appropriate norms.

As immediate benefits of taking a rough paths approach to stochastic scalar conservation laws and the resulting 
continuity of the solution map (z, u0) �→ uz one obtains support results, large deviation results and the generation of 
a random dynamical system as simple consequences (cf. [7,17] for details). Moreover, we should note that the range 
of driving signals covered by Theorem 1.1 goes far beyond Brownian motion. In particular, this includes fractional 
Brownian motion with Hurst parameter H ∈ (1

4 , 12 ). It should also be pointed out that we do not give an ‘intrinsic’ 
notion of a solution to (1.2), but solutions are defined as limits of approximating solutions to (1.3). In principle, 
other limiting procedures can lead to different solutions of (1.2). Indeed, this is already seen in classical SDE theory 
where discrete approximations to Brownian motions lead to an Itô-formulation, while most (but not all) uniform 
approximations lead to a Stratonovich formulation. The justification of our notion of solution thus comes from the 
fact that, viewed as function of the driving signal, it is the unique continuous extension from smooth to rough paths. 
In particular, this convergence takes place whenever Brownian approximations converge as rough paths to Brownian 
motion and Lévy area (a.k.a. Brownian rough path, Enhanced Brownian motion) and this is the case for many (but not 
all) approximation schemes; cf. [19, Ch. 13], [18, Ch. 3]. We leave the question of an ‘intrinsic’ notion of a solution 
to (1.2) and its well-posedness as an open problem, however, see [3,14] for recent progress in this direction.

In the construction of solutions we combine stability results from the theory of rough paths with stability of weak 
entropy solutions to space–time inhomogeneous scalar conservation laws. Due to the irregularity of the driving rough 
path z, the coefficients of the corresponding inhomogeneous scalar conservation laws only satisfy little regularity 
(especially in the time variable) and related stability results have only recently been developed in [25] in an L1

framework. In order to combine such stability estimates with the L∞-stability estimates from rough paths theory we 
prove localized versions of the estimates derived in [25], thus leading to an L1

loc stability theory applicable to the 
situation at hand.

In the case of pure transport noise, i.e.

du + Divf (u)dt =
N∑

k=1

�k(x,∇u) ◦ dzk
t ,

u(0) = u0 (1.4)

with �k(x, p) = p · Hk(x) we derive a rate on the convergence un → u proven in Theorem 1.1. Roughly speaking, 
as a second main result we obtain

Theorem 1.2. For two rough paths z, ̄z let u, ū be the corresponding solutions to (1.4) with initial data u0, ū0 respec-
tively. Then

sup
t∈[0,T ]

‖u(t) − ū(t)‖L1(Rd ) ≤ ‖u0 − ū0‖L1(Rd ) + KTV(u0)ρ(z, z̄),

where K can be chosen locally uniformly with respect to z, ̄z in rough path metric ρ.
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As it is well-known, scalar conservation laws of the general type (1.1) do not belong to the class of (fully-)nonlinear 
PDE that may be treated by the theory of viscosity solutions. In particular, (1.1) is out of reach of the results developed 
in [6,7,17,29–32]. Notably, our results are based on the notion of weak entropy solutions to (1.1) rather than viscosity 
solutions. We should also point out that (1.1) is of quasilinear type, so that the methods developed in [9,13] and 
applicable to semilinear SPDE do not apply.

Many works have been devoted to the study of stochastic and random scalar conservation laws. Noise entering 
scalar conservation laws via randomness in the initial condition has been studied for example in [2,5,38,40]. For 
stochastic scalar conservation laws driven by additive noise, also including boundary value problems, we refer to [15,
22,37,39,41] and the references therein. The case of multiplicative noise, i.e. SPDE of the form

du + ∂xf (u)dt = g(x,u)dWt ,

has attracted considerable interest in recent years (cf. e.g. [4,8,11,12,16,20,21]). All of the above mentioned works 
consider semilinear stochastic scalar conservation laws in the sense that the diffusion coefficients do not depend on 
the derivative(s) of the solution. In contrast, in the recent works [27,28] stochastic perturbations of the flux f are 
considered, which in general leads to SPDE of the type

du =
N∑

k=1

∂kfk(u) ◦ dβk
t

and well-posedness to such SPDE is proven by a kinetic approach. This corresponds to (1.1) with nonlinear, spatially 
homogeneous �k(x, r, p) = f ′

k(r)pk . We emphasize that for the results obtained in [27] it is crucial that the random 
flux � = (�k)Nk=1 is spatially homogeneous (i.e. does not depend on x), which would correspond to H = (Hk)

N
k=1

being a constant matrix in our framework (1.1). Very recently, in the case of one driving Brownian motion, i.e.

du =
N∑

k=1

∂kfk(x,u) ◦ dβt , (1.5)

where β is a real-valued Brownian motion, a generalization of the results from [27] to the spatially dependent case 
has been obtained in [26]. Due to the restriction to one-dimensional noise no rough paths techniques are required to 
handle (1.5).

Finally, large deviation principles for simultaneously vanishing diffusion and noise (ε → 0) for stochastic (viscous) 
scalar conservation laws of the type

du + divf (u)dt = ε

2
div(D(u)∇u)dt + εγ div(

√
a2(u)dαε) (1.6)

have been established in [36], where γ > 0, D > 0 is a strictly positive diffusion coefficient, a2 are fluctuation co-
efficients and dαε is noise white in time, colored in space and approximating space–time white noise for ε → 0. In 
contrast, in the present paper we consider the purely hyperbolic case (i.e. D = 0 in (1.6)) and finite noise (i.e. N ∈ N

in (1.1)). Large deviation results for (1.1) with β replaced by εβ , i.e. for vanishing noise, follow immediately from the 
continuity of the solution map z �→ uz and the contraction principle for large deviation theory.

1.1. Notation

We will now very briefly recall the elements of rough paths theory used in this paper. For more details we re-
fer to [19]. Let T M(RN) = R ⊕ R

N ⊕ (RN ⊗ R
N) ⊕ . . . ⊕ (RN)⊗M be the truncated step-M tensor algebra. For 

paths in T M(RN) starting at the fixed point e := 1 + 0 + . . . + 0, one may define β-Hölder and p-variation metrics, 
extending the usual metrics for paths in RN starting at zero: The homogeneous β-Hölder and p-variation metrics 
will be denoted by dβ-Höl resp. dp-var, the inhomogeneous ones by ρβ-Höl resp. ρp-var respectively. Note that both 
β-Hölder and p-variation metrics induce the same topology on the path spaces. Corresponding norms are defined by 
‖ · ‖β-Höl = dβ-Höl(·, 0) and ‖ · ‖p-var = dp-var(·, 0) where 0 denotes the constant e-valued path.

A geometric β-Hölder rough path x is a path in T �1/β�(RN) which can be approximated by lifts of smooth paths 
in the dβ-Höl metric; geometric p-rough paths are defined similarly. Given a rough path x, the projection on the first 
level is an RN -valued path and will be denoted by π1(x). It can be seen that rough paths actually take values in the 
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smaller set GM(RN) ⊂ T M(RN), where GM(RN) denotes the free step-M nilpotent Lie group with N generators. 
The Carnot–Caratheodory metric turns (GM(RN), d) into a metric space. Consequently, we denote by

C
0,β-Höl
0 (I,G�1/β�(RN)) and C

0,p-var
0 (I,G�p�(RN))

the rough paths spaces where β ∈ (0, 1] and p ∈ [1, ∞). Note that both spaces are Polish spaces.

2. Definitions and notation

For a matrix A = (ai,j )i,j=1,...,d we write Aj
i = ai,j , Aj = (ai,j )i=1,...,d and Ai = (ai,j )

t
j=1,...,d . Let H =

(H 1, . . . , HN) be a collection of C1(Rd; Rd) vector fields. We define

divH := (divH 1, . . . ,divHN)

and assume divH = 0 (cf. Remark 3.1 below for a discussion of this assumption). In the following we let Div denote 
the total divergence, i.e. for a vector-valued function f = f (x, u) ∈ C1(Rd ×R) and for u ∈ C1(Rd) we set

Divf (x,u) = (divf )(x,u) + (∂uf )(x,u) · ∇u,

while divf (x, u) = ∑d
k=1(∂xk

f k)(x, u). Moreover, we let ∇f denote the partial gradient, that is ∇f (x, u) =(
(∂xi

f j )(x,u)
)
i,j=1,...,d

. For all R, M > 0, t ∈ [0, T ], x0 ∈R
d we define time-space cones by

KR,M(t, x0) := {(r, x) | x ∈ BR+M(t−r)(x0)}.
We let Ck(Rd) be the usual spaces of k-times continuously differentiable functions on Rd and let Ck

b(Rd) denote the 
subset of bounded functions. Analogously, we define Lipγ

b to be the bounded γ -Lipschitz continuous functions.

2.1. Definition of a weak entropy solution

The replacement of Brownian motion in (1.1) by a continuously differentiable path z leads us to the study of the 
following evolution equation

∂tu + Divf (t, x,u) = F(t, x,u) + (∇u · H(x) + uν(t, x) + g(t, x)) żt

u(0) = u0 ∈ L∞(Rd) (2.1)

on [0, T ] ×R
d with f, F continuous, d, N ∈N,

z ∈ C1([0, T ];RN),

H ∈ (C2
b ∩ Lip)(Rd ;Rd×N),

ν ∈ C0([0, T ]; (C2
b ∩ Lip)(Rd ;R1×N)),

g ∈ C0([0, T ]; (C2
b ∩ Lip)(Rd ;R1×N)) (2.2)

and assuming div(H) = 0. Since (informally)

∇u · Hżt = Div(uH żt ),

we may rewrite (2.1) as

∂tu + Div f̃ (t, x, u) = F̃ (t, x,u) (2.3)

with

f̃ (t, x, u) = f (t, x,u) − uH(x)żt

F̃ (t, x, u) = F(t, x,u) + uν(t, x)żt + g(t, x)żt . (2.4)

Thus, (2.1) may be rewritten in terms of an inhomogeneous scalar conservation law

∂tu + Divf (t, x,u) = F(t, x,u)

u(0) = u0 ∈ L∞(Rd) (2.5)
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for which the well-developed deterministic theory of entropy solutions and their stability may be applied, provided 
z ∈ C1([0, T ]; RN). The removal of this regularity assumption on the driving signal z is the main point of this paper.

Definition 2.1. We call u ∈ L∞([0, T ] ×R
d ; R) a weak entropy solution to (2.5) if

i. For all k ∈ R, ϕ ∈ C∞
c ((0, T ) ×R

d; R+)

T∫
0

∫
Rd

|u − k|∂tϕ + sgn(u − k)(f (t, x,u) − f (t, x, k))∇ϕ

+ sgn(u − k)(F (t, x,u) − divf (t, x, k))ϕdxdt ≥ 0.

ii. There exists a zero set E ⊆ [0, T ] such that for t ∈ [0, T ] \ E the function u(t, x) is defined for a.e. x ∈R
d and for 

all r > 0

lim
t→0,t∈R+\E

∫
Br (0)

|u(t, x) − u0(x)|dx = 0.

Moreover, a function u is said to be a weak entropy solution to (2.1) if u is a weak entropy solution to (2.3)

As concerning the well-posedness of (2.1) we will work with the following set of assumptions

Hypothesis 2.2.

(H1) f, F are continuous, ∂uf, ∂u∇f, ∇2f, ∂uF, ∇F exist continuously and

∂uf ∈ L∞([0, T ] ×R
d × [−U,U ]),

F − divf, ∂u(F − divf ) ∈ L∞([0, T ] ×R
d × [−U,U ]),

for all U, T > 0.
(H2) For all U, T > 0: ∇∂uf ∈ L∞([0, T ] ×R

d × [−U, U ]), ∂uF ∈ L∞([0, T ] ×R
d × [−U, U ]) and

T∫
0

∫
Rd

‖∇(F − divf )(t, x, ·)‖L∞([−U,U ])dxdt < ∞.

(H2∗) For all U, R, T > 0: ∇∂uf ∈ L∞([0, T ] ×R
d × [−U, U ]), ∂uF ∈ L∞([0, T ] ×R

d × [−U, U ]) and

T∫
0

∫
BR(0)

‖∇(F − divf )(t, x, ·)‖L∞([−U,U ])dxdt < ∞.

(H3) (divf − F)(·, ·, 0) ∈ L∞([0, T ] ×R
d) and ∂u(divf − F) ∈ L∞([0, T ] ×R

d ×R).

We recall

Definition 2.3. Let u ∈ L1
loc(R

d). Define

TV(u) = sup

{∫
Rd

udivψdx | ψ ∈ C1
c (Rd ;Rd) and ‖ψ‖∞ ≤ 1

}

BV (Rd) = {u ∈ L1
loc(R

d) | TV(u) < ∞}.

From [23,25] and Appendix B we obtain
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Proposition 2.4. Let u0 ∈ L∞(Rd).

i. Suppose that f , F satisfy (H1), (H2) and u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd). Then weak entropy solutions to (2.5) are 
unique.

ii. Suppose that f , F satisfy (H1), (H3). Then there exists a weak entropy solution u to (2.5). Moreover, u may be 
chosen such that t �→ u(t) is right-continuous in L1

loc(R
d).

iii. Suppose that f , F satisfy (H1), (H2∗), (H3) and u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd). Then there exists a unique weak 
entropy solution to (2.5).

Proof. (i): Follows from [25, Theorem 2.5]. (ii): Proven in [23]. (iii): Follows from Theorem B.3 in Appendix B
below. �

For simplicity we will assume weak entropy solutions to be right-continuous in L1
loc(R

d). Due to Proposition 2.4
(ii) this does not restrict the applicability of our results.

In Proposition 2.4, (iii) we prove well-posedness of (2.5) assuming only the weaker condition (H2∗) instead of 
(H2). In order to see why this is necessary in order to obtain well-posedness for (2.1) ((2.3) resp.) let us consider the 
special case f (t, x, u) = f (u), F = 0, H = 0, i.e.

∂tu + Divf (u) = (uν(t, x) + g(t, x)) żt .

Then (H2) reads: For all U, T > 0:

T∫
0

∫
Rd

‖u∇ν(t, x)żt + ∇g(t, x)żt‖L∞([−U,U ])dxdt < ∞,

which would require additional assumptions on ν, g, whereas (H2∗) is always satisfied for ν, g as in (2.2). The 
generalization of (H2) to (H2∗) will also play an important role in handling the transformed equation later-on, see 
Remark 3.5 below.

3. Transformation for smooth noise

In this section we consider

∂tu + Divf (t, x,u) = F(t, x,u) + (∇u · H(x) + uν(x) + g(x)) żt ,

u(0) = u0, (3.1)

on [0, T ] ×R
d with d, N ∈ N, f, F satisfying (H1), (H2∗), (H3),

z ∈ C1([0, T ];RN),

H ∈ (C3
b ∩ Lip)(Rd ;Rd×N),

ν, g ∈ (C2
b ∩ Lip)(Rd ;R1×N),

and div(H) = 0.
We emphasize that Proposition 2.4 fails when z ceases to be C1([0, T ]; RN). In particular, the case of z being 

Brownian motion is not covered. In the following we will show how to transform (3.1) into a scalar conservation law 
in “robust” form, which will in turn allow the development of a rough pathwise theory for (3.1). The point is to find a 
view on (3.1) which (to the extend possible) does not involve derivatives of the driving noise z.

In order to do so, we split the presentation into two parts, first dealing with pure transport noise ∇u ·Hżt then with 
affine-linear noise (uν(x) + g(x))żt . Finally, in Section 3.3 below, both of these transformations will be applied to 
(3.1) to yield its robust form.
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3.1. Transport noise

In this section we consider

∂tu + Divf (t, x,u) = F(t, x,u) + ∇u · H(x)żt , (3.2)

on Rd with z ∈ C1([0, T ]; RN), H ∈ (C2
b ∩ Lip)(Rd ; Rd×N), div(H) = 0 and f, F satisfying (H1). Let ψ be the flow 

of C2-diffeomorphisms induced by

ψ̇t (x) = −H(ψt(x))żt

ψ0(x) = x.

Note that ψt is volume preserving, since div(H) = 0. We aim to transform (3.2) into its “robust” form by setting 
v(t, x) = u(t, ψt(x)). In the context of viscosity solutions an analogous transformation has been studied for example 
in [7,17,30]. An informal computation reveals

∂tv(t, x) = (∂tu)(t,ψt (x)) + (∇u)(t,ψt (x)) · ∂tψt (x)

= (−Divf (t, x,u))(t,ψt (x)) + F(t, x,u)(t,ψt (x))

+(∇u · H)(t,ψt (x))żt + (∇u)(t,ψt (x)) · ∂tψt (x)

= (−Divf (t, x,u))(t,ψt (x)) + F(t,ψt (x), v). (3.3)

By Proposition A.2 at least for u ∈ C1(Rd) we have

(Divf (t, x,u)) (t,ψt (x)) = Div
(
(Dψt)

−1f (t,ψt , u(t,ψt ))
)
(t, x). (3.4)

Hence,

∂tv(t, x) + Divf ψ(t, x, v) = Fψ(t, x, v), (3.5)

with

f ψ(t, x, v) = (Dψ−1
t )|ψt (x)f (t,ψt (x), v),

Fψ(t, x, v) = F(t,ψt (x), v).

Remark 3.1. In (3.4) we use the assumption divH = 0 which by Proposition A.2 implies div((Dψ−1
t )|ψt ) = 0. With-

out assuming H to be divergence free, we would gain an additional term of the form div((Dψt)
−1)f (t, ψt , v(t, x)) in 

(3.5). Correspondingly, in the proof of Proposition 3.2 below it is used that ψt is volume preserving. To avoid further 
technicalities, we restrict to the case divH = 0.

This informal calculation may be made rigorous

Proposition 3.2. A function u is a weak entropy solution to

∂tu + Divf (t, x,u) = F(t, x,u) + ∇u · H(x)żt , (3.6)

iff v(t, x) = u(t, ψt(x)) is a weak entropy solution to

∂tv(t, x) + Divf ψ(t, x, v) = Fψ(t, x, v) (3.7)

where

f ψ(t, x, v) = (Dψ−1
t )|ψt (x)f (t,ψt (x), v),

Fψ(t, x, v) = F(t,ψt (x), v).
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Proof. Assume that u ∈ L∞([0, T ] ×R
d) is a weak entropy solution to (3.6) (in the sense of Definition 2.1). Hence,

T∫
0

∫
Rd

|u − k|∂tϕ + sgn(u − k)(f (t, x,u) − f (t, x, k)) · ∇ϕ − |u − k|Hż · ∇ϕ

+ sgn(u − k)(F (t, x,u) − divf (t, x, k))ϕdxdt ≥ 0,

for all k ∈R, ϕ ∈ C∞
c ([0, T ] ×R

d). Substituting x → ψ−1
t (x) yields

T∫
0

∫
Rd

|v − k|(∂tϕ)(t,ψt (x)) + sgn(v − k)(f (t,ψt (x), v) − f (t,ψt (x), k)) · (∇ϕ)(t,ψt (x))

− |v − k|H(ψt(x))ż · (∇ϕ)(t,ψt (x))

+ sgn(v − k)(F (t,ψt (x), v) − (divf )(t,ψt (x), k))ϕ(t,ψt (x))dxdt ≥ 0,

where we use that ψt is volume preserving. We note

∂t [ϕ(t,ψt (x))] = (∂tϕ)(t,ψt (x)) + (∇ϕ)(t,ψt (x)) · ∂tψt (x)

= (∂tϕ)(t,ψt (x)) − (∇ϕ)(t,ψt (x)) · H(ψt(x))żt

and

(∇ϕ)(t,ψt (x)) = ∇(ϕ(t,ψt (x)) · Dψ−1
t |ψt (x)

= (Dψ−1
t )t |ψt (x)∇(ϕ(t,ψt (x)).

By Proposition A.2 we have

(divf )(t,ψt (x), k) = div
(
(Dψ−1)|ψt (x)f (t,ψt (x), k)

)
.

Hence,

T∫
0

∫
Rd

|v − k|∂t (ϕ(t,ψt )) + sgn(v − k)(f (t,ψt , v) − f (t,ψt , k)) · (Dψ−1
t )|ψt

∇(ϕ(t,ψt ))

+ sgn(v − k)(F (t,ψt , v) − div((Dψ−1
t )|ψt f (t,ψt , k)))ϕ(t,ψt )dxdt ≥ 0,

for all k ∈R, ϕ ∈ C∞
c ([0, T ] ×R

d). This is equivalent to

T∫
0

∫
Rd

|v − k|∂tϕ + sgn(v − k)((Dψ−1
t )|ψt

f (t,ψt , v) − (Dψ−1
t )|ψt

f (t,ψt , k))∇ϕ

+ sgn(v − k)(F (t,ψt , v) − div((Dψ−1
t )|ψt f (t,ψt , k))ϕdxdt ≥ 0,

for all k ∈ R, ϕ ∈ C∞
c (R+ × R

d). Hence, v is a weak entropy solution to (3.7). Following the above calculations in 
reverse order yields that u is a weak entropy solution if v is. �
Remark 3.3.

i. Another way to rigorously justify the informal calculations leading to (3.5) would be to argue via a vanishing 
viscosity approximation, i.e. first approximate (3.2) by

∂tu
ε + Divf (t, x,uε) = εuε + F(t, x,uε) + ∇uε · H(x)żt

then compute the transformed equation by classical calculus and take ε → 0. In order to guarantee that uε indeed 
converges to the (unique) weak entropy solution u more restrictive assumptions on f, F would be necessary.

ii. We emphasize that Proposition 3.2 does not yield any claim on the existence and uniqueness of the concerned 
weak entropy solutions. Again, more restrictive assumptions on f, F would be necessary.
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3.2. Affine linear space–time noise

We consider

∂tu + Divf (t, x,u) = F(t, x,u) + (uν(t, x) + g(t, x))żt

u(0, x) = u0(x) (3.8)

on Rd with N ∈N,

z ∈ C1([0, T ];RN),

ν, g ∈ C0([0, T ]; (C2
b ∩ Lip)(R1×N)),

and f, F satisfying (H1), (H2∗), (H3). It is then easy to see that also f and

F̃ (t, x,u) := F(t, x,u) + (uν(t, x) + g(t, x))żt

satisfy (H1), (H2∗), (H3) and thus there is a unique weak entropy solution u to (3.8) by Proposition 2.4. For a 
discussion of the need to work with assumption (H2∗) instead of (H2) at this point see the end of Section 2 above.

Let φ be the flow of C2-diffeomorphisms corresponding to

φ̇(t, x) = φ(t, x)ν(t, x)żt

φ(0, x) = IdR,

i.e. φ(t, x)r = re
∫ t

0 ν(τ,x)żτ dτ . For notational convenience we set

μ(t, x) := −
t∫

0

ν(r, x)żrdr.

Moreover, let � be the flow of C2-diffeomorphisms to

�̇(t, x) = eμ(t,x)g(t, x)żt ,

i.e. �(t, x) = ∫ t

0 eμ(r,x)g(r, x)żrdr .

Proposition 3.4. Let u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd). A function u is the unique weak entropy solution to

∂tu + Divf (t, x,u) = F(t, x,u) + (uν(t, x) + g(t, x))żt

u(0) = u0 (3.9)

iff v(t, x) = eμ(t,x)u(t, x) − �(t, x) is the unique weak entropy solution1 to

∂tv + Divφ
� f (t, x, v) = φ

�F (t, x, v),

v(0) = u0 (3.10)

where

φ
�f (t, x, v) := eμ(t,x)f (t, x, e−μ(t,x)(v + �(t, x)))

φ
�F (t, x, v) := eμ(t,x)F (t, x, e−μ(t,x)(v + �(t, x))) + f (t, x, e−μ(t,x)(v + �(t, x)))∇eμ(t,x).

1 We note that φf , φF do not necessarily satisfy (H2) nor (H3) anymore. Existence and uniqueness of a weak entropy solution to (3.10) is part 
of the proof.
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Proof. For this so-called “outer transformation” (cf. [17]) it seems more convenient to argue via a vanishing viscosity 
approximation than to work with the entropy formulation directly as it was done in Proposition 3.2. In order to 
obtain the existence and uniqueness of a weak entropy solution to (3.10) we shall first consider an approximation 
via localization of f, F, ν, g. As a second step we consider smooth approximations of these localizations. We then 
consider vanishing viscosity approximations which allow to calculate the transformation explicitly. We may then 
recover the general cases by stability of solutions to scalar conservation laws.

Step 1: Smooth, compactly supported data
We start with the case of smooth, compactly supported data, i.e. assume in addition f, F, ν, g, z, u0 to be smooth 

with

f (t, x,u) = F(t, x,u) = ν(t, x) = g(t, x) = 0, ∀|x| ≥ m,(t, u) ∈ [0, T ] ×R, (3.11)

for some m > 0. In particular, f, F satisfy (H1), (H2), (H3). We then consider a vanishing viscosity approximation, 
i.e.

∂tu
ε + Divf (t, x,uε) = εuε + F(t, x,uε) + (uεν(t, x) + g(t, x))żt

uε(0) = u0. (3.12)

The existence of a unique classical solution to (3.12) follows from standard theory (cf. e.g. [24]) and from [23, 
Theorem 4] we know that

uε → u in L1([0, T ];L1
loc(R

d)) (3.13)

and dt ⊗ dξ almost everywhere (selecting subsequences if necessary). Due to (H3) and the maximum principle (cf. 
also Lemma B.5 below) uε is uniformly bounded in L∞([0, T ] ×R

d). Setting

vε,1(t, x) = eμ(t,x)uε(t, x)

we obtain

∂tv
ε,1 = eμ(t,x)∂tu

ε(t, x) − ν(t, x)żt e
μ(t,x)uε(t, x)

= eμ(t,x)(εuε − Divf (t, x,uε) + F(t, x,uε) + uε(t, x)ν(t, x)żt + g(t, x)żt ) − ν(t, x)żt v(t, x)

= eμ(t,x)εe−μ(t,x)vε,1 − eμ(t,x) Divf (t, x, e−μ(t,x)vε,1)

+ eμ(t,x)F (t, x, e−μ(t,x)vε,1) + eμ(t,x)g(t, x)żt .

We now set �(t, x) = ∫ t

0 eμ(r,x)g(r, x)żrdr and

vε(t, x) = vε,1(t, x) − �(t, x).

Then

∂tv
ε = ∂tv

ε,1 − eμ(t,x)g(t, x)żt

= eμ(t,x)εe−μ(t,x)(vε + �) − eμ(t,x) Divf (t, x, e−μ(t,x)(vε + �)) + eμ(t,x)F (t, x, e−μ(t,x)(vε + �)).

Since

eμ(t,x) Divf (t, x,u) = Div(eμ(t,x)f (t, x,u)) − f (t, x,u)∇eμ(t,x)

we have

∂tv
ε +Divφ

� f (t, x, vε) = εφ
�Lvε + φ

�F (t, x, vε),

where the linear, strongly elliptic operator φ�L : H 2(O) ∩ H 1
0 (O) → L2(O) is defined by

φ
�Lv := eμe−μ(v + �) = v − 2∇μ · ∇v + v(|∇μ|2 − μ) + eμ(e−μ�).

Due to (3.13) we have

vε → v := eμu in L1([0, T ];L1
loc(R

d))

which is easily seen to imply that v is a weak entropy solution to (3.10).
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Step 2: u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd) and f, F, ν, g having compact support in x, i.e. satisfy (3.11).
Let u be the unique weak entropy solution to (3.9). We aim to remove the additional smoothness assumptions 

on the data required in step one. Let f δ, Fδ, νδ, gδ, zδ, uδ
0 be smooth approximations of f, F, ν, g, z, u0 respectively, 

obtained by mollification. Since f, F satisfy (H1), (H2), (H3) so do f δ , Fδ . We have

‖uδ
0 − u0‖L1(Rd )

‖∂uf
δ − ∂uf ‖L∞([0,T ]×Rd×[−U,U ])

‖Fδ − divf δ − (F − divf )‖L∞([0,T ]×Rd×[−U,U ])
‖νδ − ν‖C0([0,T ]×Rd )

‖gδ − g‖C0([0,T ]×Rd )

‖zδ − z‖C1([0,T ])

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

→ 0, for δ → 0

for all U, T > 0 and consider the sequence of unique weak entropy solutions uδ corresponding to

∂tu
δ + Divf δ(t, x,uδ) = Fδ(t, x,uδ) + (uδνδ(t, x) + gδ(t, x))żδ

t

uδ(0) = uδ
0.

We note

F̃ (t, x,u) − F̃ δ(t, x, u) = F(t, x,u) − Fδ(t, x,u) + uνżt − uνδżδ
t + g(t, x)żt − gδ(t, x)żδ

t .

By step one we have that

vδ(t, x) := eμδ(t,x)uδ(t, x) − �δ(t, x)

is a weak entropy solution to

∂tv
δ +Divφδ

�δ f δ(t, x, vδ) = φδ

�δ F
δ(t, x, vδ).

We note that f δ , Fδ satisfy (H3) with uniform bounds. By Lemma B.5 this implies

V := ‖u‖L∞([0,T ]×Rd ) ∨ ‖uδ‖L∞([0,T ]×Rd ) ≤ C < ∞.

Due to Theorem B.3 we have (with M, κ∗
0 , κ∗ defined as in Appendix B):

sup
t∈[0,T ]

∫
BR(x0)

|u(t, x) − uδ(t, x)|dx

≤ eκ∗T
∫

BR+MT (x0)

|u0(x) − uδ
0(x)|dx

+ T e(κ∗
0 +κ∗)T ‖∂u(f − f δ)‖L∞(KR,M(T ,x0)×[−V,V])

×
(

TV(u0) + C

T∫
0

∫
Rd

‖∇(F̃ − divf )(r, x, ·)‖L∞([−V,V])dxdr

)

+ eκ∗T
T∫

0

∫
BR+MT (x0)

‖((F̃ − F̃ δ) − div(f − f δ))(r, x·)‖L∞([−V,V])dxdr

and thus

sup
t∈[0,T ]

‖uδ(t) − u(t)‖L1(K) → 0

for all compact sets K ⊆R
d . With v := eμu − � we thus obtain
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sup
t∈[0,T ]

‖vδ(t) − v(t)‖L1(K) = sup
t∈[0,T ]

‖eμδ(t)uδ(t) − eμ(t)u(t) + �δ(t) − �(t)‖L1(K) → 0,

for all compact sets K ⊆R
d . It easily follows that v is a weak entropy solution to (3.10).

Step 3: u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd)

We argue as in the last step, approximating f, F, ν, g by localized approximations obtained by multiplication with 
a smooth cut-off function in the x-variable, i.e. set

f m(t, x,u) := ηm(x)f (t, x,u)

Fm(t, x,u) := ηm(x)F (t, x,u) + ∇ηm(x) · f (t, x,u)

νm(t, x) := ηm(x)ν(t, x)

gm(t, x) := ηm(x)g(t, x)

where ηm is a smooth function satisfying

1Bm(0) ≤ ηm ≤ 1Bm+1(0).

We note

F̃ m − divf m = ηm(F̃ − divf )

and thus f m, F̃ m satisfy (H1), (H2∗), (H3). Let um be the corresponding weak entropy solution. Since f m, Fm

satisfy (H3) with uniform bounds we have

V := ‖um‖L∞([0,T ]×Rd ) ≤ C < ∞,

by Lemma B.5. By Theorem B.3 we obtain:

sup
t∈[0,T ]

∫
BR(x0)

|u(t, x) − um(t, x)|dx

≤ T e(κ∗
0 +κ∗)T ‖∂u(f − f m)‖L∞(KR,M(T ,x0)×R)

×
(

TV(u0) + C

T∫
0

∫
BR+MT (x0)

‖∇(F̃m − divf m)(r, x, ·)‖L∞([−V,V])dxdr

)

+ eκ∗T
T∫

0

∫
BR+MT (x0)

‖((F̃ − F̃ m) − div(f − f m))(r, x·)‖L∞([−V,V])dxdr,

for all R > 0, x0 ∈R
d . We observe

F̃ − F̃ m = (1 − ηm)(F + uνż + gż).

Hence, for all R > 0, x0 ∈ R
d and m large enough we obtain

um ≡ u, on [0, T ] × BR(x0). (3.14)

Moreover, obviously

μm ≡ μ

�m ≡ �, on [0, T ] × BR(x0),

for m large enough. By step two,

vm = eμm

um − �m

are weak entropy solutions to (3.10) with φ�f , φ�F replaced by
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φm

�m f m(t, x, v) := eμm(t,x)f m(t, x, e−μm(t,x)(v + �m(t, x)))

φm

�m Fm(t, x, v) := eμm(t,x)Fm(t, x, e−μm(t,x)(v + �m(t, x)))

+ f m(t, x, e−μm(t,x)(v + �m(t, x)))∇eμm(t,x). (3.15)

Eq. (3.14) then implies that v := eμu − � is a weak entropy solution to (3.10).
Step 4: Uniqueness for (3.10)
In step three we have obtained the existence of a weak entropy solution v to (3.10) as an L1([0, T ]; L1

loc(R
d)) limit 

of weak entropy solutions vm corresponding to

∂tv
m +Div φm

�m f m(t, x, v) = φm

�m Fm(t, x, v),

v(0) = u0

where φ
m

�m f m, φ
m

�m Fm are as in (3.15). Note that since um is uniformly bounded in L∞([0, T ] × R
d) so is vm. We 

observe that φ
m

�m f m, φ
m

�m Fm have compact support in x and

φm

�m f m(t, x, v) = φ
�f (t, x, v) on [0, T ] × BR(0) ×R

for all m > 0 large enough. Hence, uniqueness of weak entropy solutions to (3.10) follows from Corollary B.4. �
Remark 3.5. In the proof of (3.10) the localization of condition (H2) in form of (H2∗) is crucial. This can be seen 
by considering the special case f (t, x, u) = f (u), F = 0, H = g = 0, i.e.

∂tu + Divf (u) = uν(t, x)żt .

In this case we have

φ
�F (t, x, v) − divφ

� f (t, x, v) = ztvf
′(eνzt v) · ∇ν.

Thus, while (H2∗) is always satisfied for φ�f,
φ
� F , (H2) would require stringent decay conditions for ν.

3.3. Full transformation

We now subsequently apply both of the transformations considered above. As before, let d, N ∈ N, f, F satisfying 
(H1), (H2∗), (H3),

z ∈ C1([0, T ];RN),

H ∈ (C3
b ∩ Lip)(Rd ;Rd×N),

ν, g ∈ (C2
b ∩ Lip)(Rd ;R1×N),

and assume div(H) = 0.
We define ψ to be the flow of C3-diffeomorphisms induced by

ψ̇t = −H(ψt)żt

ψ0 = IdRd ,

and φ the one for

φ̇t = φtν(ψt (x))żt

φ0(x) = IdR.

Furthermore, we set �(t, x) := ∫ t

0
φgψ(r, x)żrdr , where

φgψ(t, x) := φ−1
t (x)g(ψt (x)) = eμ(t,x)g(ψt (x)),

with μ(t, x) := − 
∫ t

ν(ψr(x))żrdr . We obtain
0
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Proposition 3.6. Let u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd). A function u is the unique weak entropy solution to

∂tu + Divf (t, x,u) = F(t, x,u) + (∇u · H(x) + uν(x) + g(x))żt ,

u(0) = u0, (3.16)

iff v(t, x) := eμ(t,x)u(t, ψt(x)) − �(t, x) is the unique weak entropy solution to

∂tv + Div φ
�f ψ(t, x, v) = φ

�Fψ(t, x, v)

v(0) = u0

with

φ
�f ψ(t, x, v) := eμ(t,x)Dψ−1

t |ψt (x)f (t,ψt (x), e−μ(t,x)(v + �(t, x)))

φ
�Fψ(t, x, v) := eμ(t,x)F (t,ψt (x), e−μ(t,x)(v + �(t, x)))

+ Dψ−1
t |ψt (x)f (t,ψt (x), e−μ(t,x)(v + �(t, x)))∇eμ(t,x)

= eμ(t,x)F (t,ψt (x), e−μ(t,x)(v + �(t, x))) + φ
�f ψ(t, x, v) · ∇μ(t, x). (3.17)

Proof. We will successively apply both of the transformations introduced in the last sections. First we will deal with 
transport noise, then with affine-linear multiplicative noise. The crucial point is that along these transformations the 
equation remains in the class of inhomogeneous scalar conservation laws with source.

We first note that there is a unique weak entropy solution u to (3.16) since f̃ , F̃ satisfy (H1), (H2∗), (H3). Let 
v1(t, x) := u(t, ψt(x)). Then, by Proposition 3.2, v1 is the unique weak entropy solution to

∂tv
1 + Divf 1(t, x, v1) = (v1ν(ψt (x)) + g(ψt (x)))żt ,

with

f 1(t, x, v) := Dψ−1
t |ψt (x)f (t,ψt (x), v).

We note, thanks to divH = 0, ψ being the flow associated to H and Proposition A.2

divf 1(t, x, v) = (divf )(t,ψt (x), v)

and thus f 1 and

F̃ 1(t, x, v) := F(t,ψt (x), v) + (vν(ψt (x)) + g(ψt (x)))żt

satisfy (H1), (H2∗), (H3). Now let v(t, x) = eμ(t,x)v1(t, x) −�(t, x). Then, by Proposition 3.4, v is the unique weak 
entropy solution to

∂tv + Div φ
�f ψ(t, x, v) = φ

�Fψ(t, x, v)

with φ�f ψ, φ�Fψ as in (3.17). �
4. Rough driving signals

We now aim to give meaning to2

du + Divf (u)dt = (∇u · H(x) + uν + g(x)) ◦ dz (4.1)

for z being a geometric p-rough path, recalling that the prototype of a (random) geometric p-rough path (with p =
2 + ε) is given by Brownian motion plus its Lévy area. We will do so by considering smooth approximations zn

2 For simplicity of the presentation we consider the case of f being independent of (t, x) and F ≡ 0 in the following. The treatment of the general 
case, however, proceeds completely analogous.
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of z in rough path metric and proving convergence of the associated approximants un to a limit independent of the 
approximating sequence. We assume that there are γ > p ≥ 1, such that

f ∈ C2(R),

H ∈ Lipγ+3
b (Rd ;Rd×N), ν ∈R

1×N,g ∈ Lipγ+2
b (Rd;R1×N).

Note that we now assume ν to be constant, which will be needed in order to establish a uniform L∞ bound for the 
approximants un introduced above. Due to [19] for any geometric p-rough path z ∈ C

p-var
0 ([0, T ]; G[p](RN)) we may 

consider the flow of diffeomorphisms

dψz
t (x) = −H(ψz

t (x)) ◦ dzt , ψz
0(x) = x,

dφz
t (r) = φz

t (r)ν ◦ dzt , φz
0(r) = r, (4.2)

i.e.

φz
t (r) = reν(zt−z0) =: re−μz

t

and

�z(t, x) =
t∫

0

eμz
r g(ψz

r (x)) ◦ dzr . (4.3)

In order to obtain rough path stability of these diffeomorphisms we need to consider (4.2), (4.3) “simultaneously” as 
a rough differential equation (RDE). Combining [17, Lemma 13] and [10, Lemma 13] we obtain3

Lemma 4.1. Let γ > p ≥ 1. Assume

H ∈ Lip γ+3(Rd ,Rd×N), ν ∈ R
1×N, g ∈ Lip γ+2(Rd,R1×N).

Then for all R > 0 there exist4

C = C(R,‖H‖Lipγ+3 , |ν|,‖g‖Lipγ+2)

K = K(R,‖H‖Lipγ+3 , |ν|,‖g‖Lipγ+2)

such that for all geometric p-rough paths y, z ∈ C
p-var
0 ([0, T ]; G[p](RN)) satisfying ‖y‖p-var;[0,T ], ‖z‖p-var;[0,T ] ≤ R

we have

‖Dn(ψy − ψz)‖p-var;[0,T ] ≤ Cρp-var(y, z)

‖Dn((ψy)−1 − (ψz)−1)‖p-var;[0,T ] ≤ Cρp-var(y, z)

for all n ∈ {0, 1, 2, 3} and

‖Dnψy‖p-var;[0,T ] ≤ K

‖Dn(ψy)−1‖p-var;[0,T ] ≤ K

for all n ∈ {1, 2, 3}. Analogous properties for �y (and trivially for φy) are satisfied.

Theorem 4.2. Let T ≥ 0, u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd) and z ∈ C
0,p-var
0 ([0, T ]; G[p](RN)). If g �= 0 assume

|∂2
uf (u)| ≤ Cf < ∞, ∀u ∈R

3 In fact, [10, Lemma 13] is formulated in the Hölder framework. It is, however, a simple exercise to see that an analogous result holds true also 
in the p-variation case.

4 The constants C, K are non-decreasing in all arguments.
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for some constant Cf > 0. Further, let zn ∈ C1([0, T ]; RN) with zn → z in p-variation rough path metric for n → ∞. 
Let un be the unique weak entropy solution5 to

∂tu
n + Divf (un) = (∇un · H(x) + unν + g(x)

)
żn.

Then:

i. (un) is a Cauchy sequence in L∞([0, T ]; L1
loc(R

d)) with limit u. The limit u does not depend on the particular 
approximating sequence zn and t �→ ut is right-continuous in L1

loc(R
d). We write

du + Divf (u)dt = (∇u · H(x) + uν + g(x)) ◦ dz

u(0) = u0. (4.4)

ii. Moreover, we have u ∈ L∞([0, T ] ×R
d). If ν, g ≡ 0 then

‖u‖L∞([0,T ]×Rd ) ≤ ‖u0‖L∞(Rd ).

The function u has the representation

u(t, x) :=
[
e−μz(t)vz(t, ·) + e−μz(t)�z(t, ·)

]
|ψz(t,x)

(4.5)

where vz is the unique weak entropy solution to

∂tv
z(t, x) + Div φz

f
ψz

�z (t, x, v) = 0

vz(0) = u0

with

φz
f

ψz

�z (t, x, v) = eμz(t)D(ψz
t )

−1
|ψz

t (x)f (e−μz(t)(v + �z(t, x))).

iii. The solution map (z, u0) �→ u as a mapping

C
0,p-var
0 ([0, T ];G[p](RN)) × (L∞ ∩ L1 ∩ BV )(Rd) → L∞([0, T ] ×R

d)

endowed with the norms

‖ · ‖
C

0,p-var
0

× ‖ · ‖L1(Rd ) → ‖ · ‖L∞([0,T ];L1
loc(R

d ))

is continuous on balls of initial conditions with bounded total variation and bounded L∞ norm. More precisely, 
for y, z ∈ C

0,p-var
0 ([0, T ]; G[p](RN)), R > 0, x0 ∈R

d , we have

sup
t∈[0,T ]

∫
BR(x0)

|vy(t, x) − vz(t, x)|dx

≤ eKT

∫
BR+KT (x0)

|uy
0(x) − uz

0(x)|dx

+ T eKT ‖∂v(
φy

f
ψy

�y −φz
f

ψz

�z )‖L∞([0,T ]×BR+KT (x0)×[−V,V])

×
[

TV(u
y
0) + C

T∫
0

∫
BR+KT (x0)

‖∇ divφy
f

ψy

�y (t, x, ·)‖L∞([−V,V])dxdt

]

+ eKT

T∫
0

∫
BR+KT (x0)

‖div(φ
y
f

ψy

�y −φz
f

ψz

�z )(t, x·)‖L∞([−V,V])dxdt, (4.6)

where V := ‖vy‖∞ ∨ ‖vz‖∞ < ∞ and K = K(‖y‖p-var;[0,T ] ∨ ‖z‖p-var;[0,T ]).

5 Recall that we may choose un right-continuous in L1
loc(R

d ).
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Proof. Step 1: Stability for the transformed solutions
We start by proving a stability estimate on the level of the robust transformation. For smooth paths y, z ∈

C1([0, T ]; RN) let uy, uz be the corresponding weak entropy solutions to (4.1). By Proposition 2.4 (ii) we may 
choose uy, uz to be right-continuous in L1

loc(R
d). By y, z we will denote the canonical lifts of y, z into geometric 

p-variation rough paths in C0,p-var
0 ([0, T ]; G[p](RN)) and by (φy, ψy, �y), (φz, ψz, �z) the corresponding flows of 

diffeomorphisms introduced in the beginning of this section. Let

Ry,z := ‖y‖p-var;[0,T ] ∨ ‖z‖p-var;[0,T ]
and K be a generic constant (i.e. it may change its value from line to line) depending on y, z only via Ry,z, i.e. 
K = K(Ry,z) non-decreasing. The dependence on further data (such as Cf , ‖u0‖∞) will be suppressed. From Propo-
sition 3.6 we know that the transforms

vy(t, x) : = eμy(t)uy(t,ψy(t, x)) − �y(t, x)

vz(t, x) : = eμz(t)uz(t,ψz(t, x)) − �z(t, x) (4.7)

are solutions to

∂tv(t, x) + Divφ f ψ
� (t, x, v) = 0 (4.8)

with (φ, ψ, �) = (φy, ψy, �y), (φz, ψz, �z) respectively. From (3.17) it follows

φFψ
� (t, x, v) ≡ 0 (4.9)

since ∇μ ≡ 0, due to ν being constant. For notational convenience we set

f y : = φy

f
ψy

�y , f z := φz

f
ψz

�z

and we compute

divf y(t, x, v) = D(ψ
y
t )−1

|ψy
t (x)ḟ (e−μy(t)(v + �y(t, x))) · ∇�y(t, x)

and analogously for f z. Note that the L∞ bound on uy following from Lemma B.5 (and thus the one obtained for vy

based on this) is given in terms of (cf. (2.4) with F ≡ 0)

‖F̃ (·, ·,0)‖L∞([0,T ]×Rd ) = ‖gẏ3‖∞
which is unstable in y in rough paths metric (similarly for uz). Instead we need to derive an estimate on the L∞ norm 
of vy, vz based on the robust form (4.8). For this we note that f y, f z satisfy (H1), (H2∗) with F ≡ 0 and to check 
(H3) we compute

‖divf y(·, ·,0)‖L∞([0,T ]×Rd ) = ‖D(ψy)−1|ψy ḟ (e−μy

�y) · ∇�y‖∞
≤ ‖D(ψy)−1|ψy ‖∞‖ḟ (e−μy

�y)‖∞‖∇�y‖∞
≤ K < ∞

and6 (with • = v ∈R)

‖∂v divf y‖L∞([0,T ]×Rd×R) = ‖e−μy

D(ψy)−1|ψy f̈ (e−μy

(• + �y)) · ∇�y‖∞
≤ ‖e−μy ‖∞‖D(ψy)−1|ψy ‖∞‖f̈ (e−μy

(• + �y))‖∞‖∇�y‖∞
≤ Cf ‖e−μy ‖∞‖D(ψy)−1|ψy ‖∞‖∇�y‖∞
≤ K < ∞.

Hence,

‖divf y(·, ·,0)‖∞ + ‖∂v divf y‖∞ ≤ K < ∞

6 At this point we require the assumption |∂2
uf | ≤ Cf . If g ≡ 0 then �y ≡ 0 and thus divf y ≡ 0 so that this condition may be dropped.
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and similarly for z instead of y. From Lemma B.5 we conclude7

V := ‖vy‖∞ ∨ ‖vz‖∞ ≤ K < ∞ (4.10)

as required. Set

�V := [0, T ] ×R
d × [−V,V].

In order to apply Theorem B.3 we first verify that the constants κ∗, κ∗
0 appearing therein are bounded in terms of K . 

We observe (with • = v ∈ [−V, V])
‖∂vf

z‖L∞(�V )

= ‖D(ψz)−1|ψz ḟ (e−μz

(• + �z))‖∞
≤ ‖D(ψz)−1|ψz‖∞‖ḟ (e−μz

(• + �z))‖∞
≤ K < ∞

and

(2d + 1)‖∇∂vf
y‖L∞(�V )

= (2d + 1)

∥∥∥∇
(
D(ψy)−1|ψy ḟ (e−μy

(• + �y))
)∥∥∥∞

≤ K < ∞.

Since f y, f z satisfy (H1), (H2∗), (H3) we may apply Theorem B.3 (ii) to obtain

sup
t∈[0,T ]

∫
BR(x0)

|vy(t, x) − vz(t, x)|dx

≤ eKT

∫
BR+KT (x0)

|uy

0(x) − uz
0(x)|dx

+ T eKT ‖∂v(f
y − f z)‖L∞([0,T ]×BR+KT (x0)×[−V,V])

×
[

TV(u
y

0) + C

T∫
0

∫
BR+KT (x0)

‖∇ divf y(t, x, ·)‖L∞([−V,V])dxdt

]

+ eKT

T∫
0

∫
BR+KT (x0)

‖div(f y − f z)(t, x·)‖L∞([−V,V])dxdt, (4.11)

for all R > 0, x0 ∈R
d . In order to bound the right hand side we note

∂vf
y(t, x, v) = D(ψ

y
t )−1

|ψy
t (x)ḟ (e−μ

y
t (v + �y(t, x))).

Hence, using crucially the rough paths estimates collected in Lemma 4.1 (with • = v ∈ [−V, V])
‖∂v(f

y − f z)‖L∞([0,T ]×BR+KT (x0)×[−V,V])
= ‖D(ψy)−1|ψy ḟ (e−μy

(• + �y)) − D(ψz)−1|ψz ḟ (e−μz

(• + �z))‖∞
≤ ‖D(ψy)−1|ψy ‖∞‖ḟ (e−μy

(• + �y)) − ḟ (e−μz

(• + �z))‖∞
+ ‖D(ψy)−1|ψy − D(ψz)−1|ψz‖∞‖ḟ (e−μy

(• + �y))‖∞
≤ KCf ‖(e−μy − e−μz

) • +e−μy

�y − e−μz

�z‖∞ + K‖D(ψy)−1|ψy − D(ψz)−1|ψz‖∞
≤ Kρp-var(y, z).

7 Note that at this point (4.9) and thus ν being constant is crucial.
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Similarly,

‖div(f y − f z)‖L∞([0,T ]×BR+KT (x0)×[−V,V])
= ‖D(ψy)−1|ψy ḟ (e−μy

(• + �y)) · ∇�y − D(ψz)−1|ψz ḟ (e−μz

(• + �z)) · ∇�z‖∞
≤ Kρp-var(y, z).

Due to Lemma 4.1 we further have (recall K = K(Ry,z))

‖∇ divf y‖L∞([0,T ]×Rd×[−V,V]) ≤ K < ∞.

We obtain from (4.11)

sup
t∈[0,T ]

∫
BR

|vy(t, x) − vz(t, x)|dx

≤ eKT

∫
BR+KT

|uy

0(x) − uz
0(x)|dx + T eKT ρp-var(y, z)

(
TV(u

y

0) + |BR+KT (0)|
)
. (4.12)

Step 2: Proof of (i)
Let z ∈ C

0,p-var
0 ([0, T ]; G[p](RN)) and zn ∈ C1([0, T ]; RN) with zn → z in p-variation rough path metric for 

n → ∞. Let un be the unique weak entropy solution, right-continuous in L1
loc(R

d), to

∂tu
n + Divf (un) = (∇un · H(x) + unν + g(x))żn

un
0 = u0.

As in (4.7) we define the transforms vn, that are solutions to scalar conservation laws of the type (4.8). From (4.12)
we obtain

sup
t∈[0,T ]

∫
BR

|vn(t, x) − vm(t, x)|dx ≤ eKT Tρp-var(zn, zm)
(

TV(u0) + |BR+KT (0)|
)
,

for all n, m ∈ N, where K is a constant independent of n, m. In particular, the sequence vn is a Cauchy sequence in 
L∞([0, T ]; L1

loc(R
d)). Hence, there is a v ∈ L∞([0, T ]; L1

loc(R
d)) such that

sup
t∈[0,T ]

∫
BR

|vn(t) − v(t)|dx → 0, for n → ∞,

for all R > 0. Since t �→ vn
t is right-continuous in L1

loc(R
d) so is t �→ vt . It remains to be proven that this implies 

L∞([0, T ]; L1
loc(R

d))-convergence for un. Let u be as in (4.5) and recall

un(t, x) =
[
e−μzn (t)vzn

(t, ·) + e−μzn (t)�zn

(t, ·)
]
|ψzn (t,x)

.

Since

u(t,ψz(t, x)) − un(t,ψzn

(t, x))

= e−μz(t)
(
vz(t, x) + �z(t, x)

) − e−μzn (t)
(
vzn

(t, x) + �zn

(t, x)
)

= e−μz(t)
(
vz(t, x) − vzn

(t, x) + �z(t, x) − �zn

(t, x)
)

+ (e−μz(t) − e−μzn (t))
(
vzn

(t, x) + �zn

(t, x)
)

we have

un(t,ψzn

(t, x)) → u(t,ψz(t, x))

in L∞([0, T ]; L1 (Rd)). Since ψzn → ψ in the sense of homeomorphisms we obtain
loc
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sup
t∈[0,T ]

∫
BR

|un(t, x) − u(t, x)|dx = sup
t∈[0,T ]

∫
BR

|un(t,ψzn

t (x)) − u(ψzn

t (x))|dx

≤ sup
t∈[0,T ]

∫
BR

|un(t,ψzn

t (x)) − u(ψz
t (x))|dx

+ sup
t∈[0,T ]

∫
BR

|u(t,ψzn

t (x)) − u(t,ψz
t (x))|dx

→ 0,

for n → ∞ for all R > 0 and the convergence is locally uniform with respect to R.
Step 3: Proof of (ii)
The claimed L∞-boundedness of u follows from (4.5), the uniform upper bound (4.10) and Lemma 4.1. If ν, g ≡ 0

then divf zn ≡ 0 and it is easy to derive the claimed bound by methods similar to Lemma B.5.
Step 4: Proof of (iii)
Let now y, z ∈ C

0,p-var
0 ([0, T ]; G[p](RN)) and yn, zn ∈ C1([0, T ]; RN) with yn → y, zn → z in p-variation rough 

path metric for n → ∞. From (4.12) we obtain

sup
t∈[0,T ]

∫
BR

|vyn

(t, x) − vzn

(t, x)|dx ≤
∫

BR+MT

|u1
0(x) − u2

0(x)|dx + Kρp-var(yn, zn)
(

TV(u1
0) + |BR+MT (0)|

)
.

Taking the limit n → ∞ we obtain

sup
t∈[0,T ]

∫
BR

|vy(t, x) − vz(t, x)|dx ≤
∫

BR+MT

|u1
0(x) − u2

0(x)|dx + Kρp-var(y, z)
(

TV(u1
0) + |BR+MT (0)|

)
,

which implies the claimed local uniform continuity, but for uy replaced by vy. Arguing as in step two this finishes the 
proof. Inequality (4.6) follows from (4.11). �

As immediate consequences of the continuity of the solution mapping with respect to the driving rough path 
we obtain support results, large deviation results, stochastic scalar conservation laws driven by fractional Brownian 
motion with Hurst parameter H , covering the rough regime H ∈ ( 1

4 , 12 ). For more details on this we refer to [7,17].

5. Rate of convergence

In Theorem 4.2 we have obtained the convergence un → u in L∞([0, T ]; L1
loc(R

d)) under the assumption of rough 
paths convergence of the driving rough paths. However, no estimate on the speed of convergence, as it would be 
crucial for any numerical approximation based on smoothing the noise, was derived. In this section we provide such 
a quantitative stability estimate. For simplicity we restrict to pure transport noise and Hölder rough paths, i.e. we 
consider stochastic scalar conservation laws of the type

du + Divf (u)dt = ∇u · H(x) ◦ dz,

u(0) = u0 (5.1)

for z being a geometric 1
p

-Hölder rough path and f, H as before.

Theorem 5.1. For any two rough paths y, z we let u1, u2 be the corresponding solutions to (5.1) with initial data 
u1

0, u
2
0 ∈ (L∞ ∩ L1 ∩ BV )(Rd) respectively as constructed in Theorem 4.2. For each R > 0 there is a K = K(R) > 0

such that

sup
t∈[0,T ]

‖u1(t) − u2(t)‖L1(Rd ) ≤ ‖u1
0 − u2

0‖L1(Rd ) + KTV(u1
0)ρp-var(y, z),

whenever ‖y‖ 1 −Höl;[0,T ] ∨ ‖z‖ 1 −Höl;[0,T ] ≤ R.

p p
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Proof. Let u1, u2 be the solutions to (5.1) with initial conditions u1
0, u

2
0 driven by y, z and let

v1(t, x) = u1(t,ψ
y
t (x))

v2(t, x) = u2(t,ψz
t (x))

as in (4.7). As in the proof of Theorem 4.2 we let

Ry,z := ‖y‖ 1
p

−Höl;[0,T ] ∨ ‖z‖ 1
p

−Höl;[0,T ]

and K be a generic constant depending only (increasingly) on Ry,z. Again, dependence on further data will be sup-
pressed. Moreover, we set

f 1(t, x, v) = f ψy
(t, x, v) = D(ψ

y
t )−1

|ψy
t (x)f (v)

and f 2 analogously with y replaced by z. We note that divf i ≡ 0, i = 1, 2. Hence, with F ≡ 0 the assumptions (H1), 
(H3) and the estimates in (H2), (H2∗) are trivially satisfied. Moreover, the other regularity assumptions contained 
in Hypothesis 2.2 are also easily seen to be satisfied using Lemma 4.1. Eq. (4.6) (noting divf i ≡ 0) yields∫

BR(x0)

|v1(t, x) − v2(t, x)|dx ≤
∫

BR+MT (x0)

|u1
0(x) − u2

0(x)|dx

+ T eKT ‖∂v(f
1 − f 2)‖L∞([0,T ]×Rd×[−V,V])TV(u1

0),

for all t ∈ [0, T ]. Noting

‖∂v(f
1 − f 2)‖L∞([0,T ]×Rd×[−V,V]) = ‖D(ψy)−1|ψy ḟ − D(ψz)−1|ψz ḟ ‖∞

≤ ‖ḟ ‖L∞([−V,V])‖D(ψy)−1|ψy − D(ψz)−1|ψz‖∞
≤ Kρp-var(y, z)

we obtain8∫
Rd

|v1(t, x) − v2(t, x)|dx ≤
∫
Rd

|u1
0(x) − u2

0(x)|dx + T eKT TV(u1
0)ρp-var(y, z),

for all t ∈ [0, T ]. Hence, by R → ∞ and since ψy, ψz are volume preserving flows we have

sup
t∈[0,T ]

‖u1(t) − u2(t)‖L1(Rd ) = sup
t∈[0,T ]

‖v1(t, (ψ
y
t )−1) − v2(t, (ψz

t )
−1)‖L1(Rd )

≤ sup
t∈[0,T ]

‖v1(t, (ψ
y
t )−1) − v2(t, (ψz

t )
−1)‖L1(Rd )

+ sup
t∈[0,T ]

‖v1(t, (ψz
t )

−1) − v2(t, (ψz
t )

−1)‖L1(Rd )

≤ sup
t∈[0,T ]

‖v1(t, (ψ
y
t )−1) − v1(t, (ψz

t )
−1)‖L1(Rd )

+‖u1
0 − u2

0‖L1(Rd ) + T eKT TV(u1
0)ρp-var(y, z). (5.2)

We now aim to estimate the first term on the right hand side. To do so, we first replace v1 by some smooth function 
v ∈ (L1 ∩BV ∩C1)(Rd). Carefully choosing an approximating sequence for v1 will then yield the required estimate. 
Using that ψy is volume preserving and setting �t = (ψz

t )
−1 ◦ ψ

y
t we observe

8 We note that we may consider global L1 estimates here since there is no affine-linear noise present. In order to include affine-linear noise one 
would have to rely on L1

loc estimates as in Theorem 4.2.
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‖v((ψ
y
t )−1) − v((ψz

t )
−1)‖L1(Rd ) = ‖v(Id) − v((ψz

t )
−1 ◦ ψ

y
t )‖L1(Rd )

= ‖
N∑

i=1

v(�ti+1) − v(�ti )‖L1(Rd )

≤
N∑

i=1

‖v(�ti+1) − v(�ti )‖L1(Rd ) (5.3)

and

‖v(�ti+1) − v(�ti )‖L1(Rd )

=
∫
Rd

|v(�ti+1(x)) − v(�ti (x))|dx

≤
1∫

0

∫
Rd

|∇v(λ�ti+1(x) + (1 − λ)�ti (x))||�ti+1(x) − �ti (x)|dxdλ

≤ ‖�ti+1 − �ti ‖∞
1∫

0

∫
Rd

|∇v
(
(Id + λ(�ti+1 ◦ �−1

ti
− Id))(x)

)
|dxdλ, (5.4)

for any partition 0 = t0 ≤ t1 ≤ · · · ≤ tN = t . By Lemma 4.1 (cf. [10, Lemma 13] for its Hölder version) we have

‖�‖
C

1
p -Höl

([0,T ];C1(Rd ))
≤ Kρp-var(y, z),

and thus

‖�ti+1 ◦ �−1
ti

− Id‖C1(Rd ) ≤ Kρp-var(y, z)|ti+1 − ti |
1
p .

Local Lipschitz continuity of the determinant mapping then implies

det
(
Id + λD(�ti+1 ◦ �−1

ti
− Id)

)
≥ 1 − Kρp-var(y, z)|ti+1 − ti |

1
p .

In particular, Id + λ(�ti+1 ◦ �−1
ti

− Id) is a diffeomorphism and choosing ti = T i
N

with

N := �T (2K)pρ
p
p-var(y, z)�

we have

det
(
Id + λD(�ti+1 ◦ �−1

ti
− Id)

)
≥ 1

2
. (5.5)

Thus,

‖v(�ti+1) − v(�ti )‖L1(Rd ) ≤ 2‖�ti+1 − �ti ‖∞
∫
Rd

|∇v|dx.

≤ Kρp-var(y, z)|ti+1 − ti |
1
p

∫
Rd

|∇v|dx.

Using this in (5.3) yields (note that K is a generic constant)

‖v((ψ
y
t )−1) − v((ψz

t )
−1)‖L1(Rd ) ≤ NKρp-var(y, z)

∫
Rd

|∇v|dx.

≤ Kρp-var(y, z)
∫
d

|∇v|dx. (5.6)
R
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We now aim to choose v1,n to be suitable approximations of v1(t) so that we may pass to the limit in (5.6). 
Theorem B.2 allows us to estimate TV(v1(t)) in terms of TV(u1

0). Since we will need the right hand side, i.e. ∫
Rd |∇v1,n(t, x)|dx, to be uniformly bounded in n, the approximations v1,n have to be chosen with some care. The 

appropriate concept is given by intermediate convergence: Due to [1, Theorem 10.1.2] we may choose smooth ap-
proximations v1,n ∈ (L1 ∩ BV ∩ C∞)(Rd) such that

v1,n → v1(t) in L1(Rd)∫
Rd

|∇v1,n|dx → TV(v1(t)) for n → ∞.

Since ψy
t , ψz

t are volume preserving, this implies v1,n((ψ
y
t )−1) → v1(t, (ψy

t )−1) and v1,n((ψz
t )

−1) → v1(t, (ψz
t )

−1)

in L1(Rd). Passing to the limit in (5.6) we obtain

‖v1(t, (ψ
y
t )−1) − v1(t, (ψz

t )
−1)‖L1(Rd ) ≤ Kρp-var(y, z)TV(v1(t)).

Employing Theorem B.2 to estimate TV(v1(t)) in terms of TV(u1
0) and inserting in (5.2) yields

sup
t∈[0,T ]

‖u1(t) − u2(t)‖L1(Rd ) ≤ ‖u1
0 − u2

0‖L1(Rd ) + KTV(u1
0)ρp-var(y, z). � (5.7)
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Appendix A. A transformation formula for the divergence operator

For a C1 matrix-valued function F ∈ C1(Rd; Rd×d) we define the divergence to act column-wise, i.e.

(divF)j = divFj =
d∑

i=1

∂iF
j
i .

In case of F = Dψ for a function ψ ∈ C2(Rd; Rd) this means that divDψ is the row-vector

(divDψ)j =
d∑

i=1

∂i(Dψ)
j
i =

d∑
i=1

∂i(∂jψ
i) =

d∑
i=1

∂j ∂iψ
i = ∂j divψ.

Lemma A.1. Let g ∈ C1(Rd ; Rd) and ψ ∈ C2(Rd; Rd). Then

div(g(ψ)) = div((Dψ)ψ−1g)(ψ) − div((Dψ)ψ−1)(ψ)g(ψ).

Proof. We compute

div(g(ψ)) =
d∑

∂i(gi(ψ)) =
d∑

(∇gi)(ψ) · ∂iψ =
d∑

((∂j gi)(∂iψj )ψ−1)(ψ)
i=1 i=1 i,j=1
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=
d∑

i,j=1

∂j (gi(∂iψj )ψ−1)(ψ) −
d∑

i,j=1

(gi∂j (∂iψj )ψ−1)(ψ)

=
d∑

i,j=1

∂j ((∂iψj )ψ−1gi)(ψ) −
d∑

i=1

gi(ψ)

d∑
j=1

(∂j (∂iψj )ψ−1)(ψ)

=
d∑

j=1

∂j ((Dψ)ψ−1g)j (ψ) −
d∑

i=1

gi(ψ)

d∑
j=1

(∂j (Dψi
j )ψ−1)(ψ)

= div((Dψ)ψ−1g)(ψ) − div((Dψ)ψ−1)(ψ)g(ψ). �
Proposition A.2. Let ψ ∈ C2(Rd ; Rd) be a volume-preserving diffeomorphism, i.e. detDψ = 1. Then

div((Dψ)|ψ−1) ≡ 0.

Moreover, for g ∈ C1(Rd ; Rd)

div(g(ψ)) = div((Dψ)ψ−1g)(ψ).

Proof. Let g ∈ C∞
c (Rd; Rd) and ϕ ∈ C∞

c (Rd ; R). We compute∫
Rd

div(g(ψ))ϕdx = −
∫
Rd

g(ψ) · ∇ϕdx

= −
∫
Rd

g · (∇ϕ)(ψ−1)dx

= −
∫
Rd

g · (∇ϕ(ψ−1(ψ)))(ψ−1)dx.

Since ∇ϕ(ψ−1(ψ)) = (Dψ)t (∇ϕ(ψ−1))(ψ) we conclude∫
Rd

div(g(ψ))ϕdx = −
∫
Rd

g · (Dψ)t|ψ−1∇ϕ(ψ−1)dx

=
∫
Rd

div((Dψ)|ψ−1g)ϕ(ψ−1)dx

=
∫
Rd

div((Dψ)|ψ−1g)(ψ)ϕdx.

On the other hand div(g(ψ)) = div((Dψ)ψ−1g)(ψ) − div((Dψ)ψ−1)(ψ)g(ψ) by Lemma A.1. Since ϕ and g can be 
chosen arbitrarily this implies div((Dψ)ψ−1)(ψ) ≡ 0. �
Appendix B. Deterministic entropy solutions for scalar conservation laws

In this section we consider (deterministic) scalar conservation laws of the type

∂tu + Divf (t, x,u) = F(t, x,u), on [0, T ] ×R
d

u(0, x) = u0(x), on R
d . (B.1)

Recall the definition of weak entropy solutions to (B.1) from Section 2. The main purpose of this section is the proof 
of a localized stability estimate for weak entropy solutions.
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B.1. Localized stability of entropy solutions to hyperbolic conservation laws

In addition to the conditions put forward in Hypothesis 2.2 we will require

Hypothesis B.1. (H4) For all U, T > 0:

T∫
0

∫
Rd

‖(F − divf )(t, x, ·)‖L∞([−U,U ])dxdt < ∞.

We now introduce some notation. For any function u ∈ L∞([0, T ] ×R
d) such that t �→ u(t) is right-continuous in 

L1
loc(R

d) and T > 0 we define

Ut = ‖u(t)‖L∞(Rd ),

U = ‖u‖L∞([0,T ]×Rd ),

ST (u) =
⋃

t∈[0,T ]
supp(u(t)),

�u
T = [0, T ] × ST (u) × [−U ,U ],

κ∗
0 = (2d + 1)‖∇∂uf ‖L∞(�u

T ;Rd×d ) + ‖∂uF‖L∞(�u
T ).

In the following we will assume that weak entropy solutions are right continuous as mappings from [0, T ] into 
L1

loc(R
d). Due to Proposition 2.4 (ii) such weak entropy solutions exist. From [25, Theorem 2.2, Remark 2.3] we 

recall

Theorem B.2. Assume (H1), (H2). Let u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd) and let u be a weak entropy solution of (B.1). 
Then u satisfies u(t) ∈ BV (Rd) for all t ∈ [0, T ] and

TV(u(t)) ≤ TV(u0)e
κ∗

0 t + C

t∫
0

∫
Rd

eκ∗
0 (t−r)‖∇(F − divf )(r, x, ·)‖L∞([−Ur ,Ur ])dxdr,

for all t ∈ [0, T ] and some constant C = C(d) = π
2 d .

We will now recall and extend stability results for weak entropy solutions as obtained in [25]. Let u0, v0 ∈ L∞(Rd)

with corresponding weak entropy solutions u, v (right-continuous in L1
loc(R

d)). We define

Vt = ‖u(t)‖L∞(Rd ) ∨ ‖v(t)‖L∞(Rd )

V = ‖u‖L∞([0,T ]×Rd ) ∨ ‖v‖L∞([0,T ]×Rd )

ST (u, v) =
⋃

t∈[0,T ]
(suppu(t) ∪ suppv(t))

�
u,v
T = [0, T ] × ST (u, v) × [−V,V]
κ∗ = ‖∂uF‖L∞(�

u,v
T ) + ‖∂u div(g − f )‖L∞(�

u,v
T )

M = ‖∂ug‖L∞([0,T ]×Rd×[−V,V]).
We prove a localized version of the stability estimate for scalar, inhomogeneous conservation laws obtained in [25].

Theorem B.3. Let (f, F), (g, G) satisfy (H1), u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd), v0 ∈ L∞(Rd) and let u, v be two weak 
entropy solutions with respect to the initial conditions u0, v0, the fluxes f, g and forces F, G respectively.
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i. Suppose (f, F) satisfies (H2). Then∫
BR(x0)

|u(t, x) − v(t, x)|dx

≤ eκ∗t
∫

BR+Mt (x0)

|u0(x) − v0(x)|dx

+ ‖∂u(f − g)‖L∞(�u
t ∩(KR,M(t,x0)×R))

[
eκ∗

0 t − eκ∗t

κ∗
0 − κ∗ TV(u0)

+ C

t∫
0

eκ∗
0 (t−r) − eκ∗(t−r)

κ∗
0 − κ∗

∫
Rd

‖∇(F − divf )(r, x, ·)‖L∞([−Ur ,Ur ])dxdr

]

+
t∫

0

eκ∗(t−r)

∫
BR+M(t−r)(x0)

‖((F − G) − div(f − g))(r, x·)‖L∞([−Vr ,Vr ])dxdr,

for all t ∈ [0, T ], R > 0, x0 ∈R
d and some constant C = C(d) = π

2 d .
ii. Suppose (f, F) satisfies (H2∗), (H3). Then∫

BR(x0)

|u(t, x) − v(t, x)|dx

≤ eκ∗t
∫

BR+Mt (x0)

|u0(x) − v0(x)|dx

+ ‖∂u(f − g)‖L∞(�u
t ∩(KR,M(t,x0)×R))

[
eκ∗

0 t − eκ∗t

κ∗
0 − κ∗ TV(u0)

+ C

t∫
0

eκ∗
0 (t−r) − eκ∗(t−r)

κ∗
0 − κ∗

∫
BR+M(t−r)(x0)

‖∇(F − divf )(r, x, ·)‖L∞([−Ur ,Ur ])dxdr

]

+
t∫

0

eκ∗(t−r)

∫
BR+M(t−r)(x0)

‖((F − G) − div(f − g))(r, x·)‖L∞([−Vr ,Vr ])dxdr,

for all t ∈ [0, T ], R > 0, x0 ∈R
d .

Proof. (i): We are in the setting of [25, Theorem 2.5] except for Hypothesis B.1 (H4) which we do not assume. 
We essentially follow the same proof, except for the estimate on K2 on page 752. We will therefore restrict to some 
comments on the modifications of the proof. In particular, we will employ the notations introduced in the proof of 
[25, Theorem 2.5]. We note that ϕ(r, x, s, y) := �(r, x)�(r − s, x − y), with � = χε(r)ψθ (r, x) and �(r, x) =
νη(r)μλ(x). Here χε(r), ψθ(r, x) are appropriate approximations of 1[0,t], 1KR,M(T ,x0) and νη, μλ are standard Dirac 
sequences. In particular, we have

0 ≤ ψθ(r, x) ≤ 1KR+θ,M(T ,x0)

0 ≤ χε(r) ≤ 1[0,t+ε]
and thus also

suppϕ(·, ·, s, y) ⊆ ([0, t + ε] ×R
d) ∩ KR+θ,M(T , x0).
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Hence,

K2 ≤
t+ε+η∫

0

∫
Rd

∫
R+

‖∂u(f − g)(r)‖L∞(D∩(BR+M(T −r)+θ (x0)×R))dr‖∇uβ(s, y)‖ν(r − s)dydsdr

≤
t+ε+η∫

0

∫
R+

‖∂u(f − g)(r)‖L∞(D∩(BR+M(T −r)+θ (x0)×R))TV(∇uβ(s))ν(r − s)dsdr.

All the other terms are estimated precisely as in [25, Theorem 2.5] and we may conclude the proof as in [25, Theorem 
2.5]. Moreover, we note that the assumption Hypothesis B.1 (H4) supposed in [25, Theorem 2.5] is superfluous, since 
it is only required on balls BR+M(T −r)(x0) in the proof. On balls, however, it follows from the regularity assumptions 
on F, G, f, g supposed in (H1).

(ii): We now define a sequence of cut-off fluxes and sources: Let ηε be a smooth cut-off function of KR,M(t, x0)

satisfying

1KR,M(t,x0)(r, x) ≤ ηε(r, x) ≤ 1KR+ε,M(t,x0)(r, x)

and define

f ε(r, x,u) : = f (r, x,u)ηε(r, x)

F ε(r, x,u) : = F(r, x,u)ηε(r, x) − f (r, x,u) · ∇ηε(r, x).

Note

Fε − divf ε = (F − divf )ηε (B.2)

and thus

|Fε − divf ε| ≤ |F − divf |1KR+ε,M(t,x0). (B.3)

Then f ε, Fε satisfy all the assumptions of case (i) as well as (H3) with uniform bounds. By Proposition 2.4 (ii) there 
are unique weak entropy solutions uε to

∂tu
ε + divf ε(t, x,uε) = Fε(t, x,uε)

uε(0, x) = u0(x).

The point of cutting-off f, F is that now step (i) may be applied with f, F replaced by f ε, Fε . From (i) we then obtain 
(for ε > 0 small enough)

sup
t∈[0,T ]

∫
BR(x0)

|uε(t, x) − u(t, x)|dx = 0.

From (i) we conclude∫
BR(x0)

|u(t, x) − v(t, x)|dx

=
∫

BR(x0)

|uε(t, x) − v(t, x)|dx

≤ eκ∗t
∫

BR+Mt (x0)

|u0(x) − v0(x)|dx
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+ ‖∂u(f
ε − g)‖L∞(�u

t ∩(KR,M(t,x0)×R))

[
eκ∗

0 t − eκ∗t

κ∗
0 − κ∗ TV(u0)

+ C

t∫
0

eκ∗
0 (t−r) − eκ∗(t−r)

κ∗
0 − κ∗

∫
Rd

‖∇(F ε − divf ε)(r, x, ·)‖L∞([−Ur ,Ur ])dxdr

]

+
t∫

0

eκ∗(t−r)

∫
BR+M(t−r)(x0)

‖((F ε − G) − div(f ε − g))(r, x·)‖L∞([−Vr ,Vr ])dxdr.

Since f ε = f on KR,M(t, x0) and using (B.2), (B.3) we obtain∫
BR(x0)

|u(t, x) − v(t, x)|dx

≤ eκ∗t
∫

BR+Mt (x0)

|u0(x) − v0(x)|dx

+ ‖∂u(f − g)‖L∞(�u
t ∩(KR,M(t,x0)×R))

[
eκ∗

0 t − eκ∗t

κ∗
0 − κ∗ TV(u0)

+ C

t∫
0

eκ∗
0 (t−r) − eκ∗(t−r)

κ∗
0 − κ∗

∫
BR+M(t−r)+ε(x0)

‖∇(F − divf )(r, x, ·)‖L∞([−Ur ,Ur ])dxdr

]

+
t∫

0

eκ∗(t−r)

∫
BR+M(t−r)(x0)

‖((F − G) − div(f − g))(r, x·)‖L∞([−Vr ,Vr ])dxdr.

Taking ε → 0 implies the claim. �
Corollary B.4 (Uniqueness of weak entropy solutions). Assume that f, F satisfy (H1), (H2∗) and that there is a weak 
entropy solution u to (B.1) obtained as the L1([0, T ]; L1

loc(R
d)) limit of uniformly bounded weak entropy solutions 

uε to

∂tu
ε + Divf ε(t, x,uε) = Fε(t, x,uε)

uε(0, x) = uε
0(x)

where f ε, Fε satisfy (H1), (H2) and for all R > 0 there is an ε > 0 such that

f ε = f, F ε = F, uε
0 = u0 on [0, T ] × Bc

R(0) ×R.

Then u is the unique weak entropy solution to (B.1).

Proof. Let v be a weak entropy solution to (B.1). By Theorem B.3 (applied with f, F = f ε, Fε and g, G = f, F ) we 
have ∫

BR(x0)

|uε(t, x) − v(t, x)|dx

≤ eκ∗t
∫

BR+Mt (x0)

|uε
0(x) − v0(x)|dx
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+ ‖∂u(f
ε − f )‖L∞(KR,M(t,x0)×R)

[
eκ∗

0 t − eκ∗t

κ∗
0 − κ∗ TV(uε

0)

+ C

t∫
0

eκ∗
0 (t−r) − eκ∗(t−r)

κ∗
0 − κ∗

∫
Rd

‖∇(F ε − divf ε)(r, x, ·)‖L∞([−Ur ,Ur ])dxdr

]

+
t∫

0

eκ∗(t−r)

∫
BR+M(t−r)(x0)

‖((F ε − F) − div(f ε − f ))(r, x·)‖L∞([−Vr ,Vr ])dxdr.,

with coefficients κ∗
0 , κ∗ possibly depending on ε. Note that M , however, is independent of ε since

supε>0 ‖uε‖L∞([0,T ]×Rd ) ≤ C. Choosing ε > 0 small enough we obtain

T∫
0

∫
BR(x0)

|uε(t, x) − v(t, x)|dxdt ≤ 0. �

Condition (H3) in Proposition 2.4 is required in order to obtain uniform bounds on the vanishing viscosity ap-
proximants used to construct weak entropy solutions. Since we will require uniform control on the L∞ norm of weak 
entropy solutions we note

Lemma B.5. Assume that f , F satisfy (H1), (H2∗), (H3), let u0 ∈ (L∞ ∩ L1 ∩ BV )(Rd), u be the corresponding 
weak entropy solution to (B.1) and define

M := ‖(divf − F)(·, ·,0)‖L∞([0,T ]×Rd ) + ‖∂u(divf − F)‖L∞([0,T ]×Rd×R).

Then

‖u‖L∞([0,T ]×Rd ) ≤ (‖u0‖L∞(Rd ) + 1)e2MT .

Proof. The weak entropy solution u is constructed in [23] by first cutting-off f, F , then mollifying the coefficients 
and then applying a vanishing viscosity approximation. Since the conditions (H1), (H2∗), (H3) are preserved (with 
uniform bounds) under these cut-off and mollification procedures, it is enough to prove the claimed uniform bound 
on the level of the vanishing viscosity approximations

∂tu
ε + Divf (t, x,uε) = εuε + F(t, x,uε)

uε(0, x) = u0(x). (B.4)

Since comparison holds for (B.4) it is sufficient to construct appropriate sub- and supersolutions. For this we rewrite 
(B.4) in the form

∂tu
ε + ∂uf (t, x,uε)∇uε = εuε + (F − divf )(t, x,uε).

We set M0 := ‖u0‖∞ and

K(t) := (M0 + 1)e2Mt .

Then

∂uf (t, x,K)∇K = εK = 0

and

(F − divf )(t, x,K) = (F − divf )(t, x,K) − (F − divf )(t, x,0) + (F − divf )(t, x,0)

=
K∫

0

∂u(F − divf )(t, x,u)du + (F − divf )(t, x,0)

≤ (K + 1)M.
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Since

∂tK = 2M(M0 + 1)e2Mt

= M(M0 + 1)e2Mt + M(M0 + 1)e2Mt

≥ (K + 1)M,

we observe that K is a supersolution to (B.4). The construction of a subsolution proceeds analogously. �
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