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Abstract

Given α > 0 and p > 1, let μ be a bounded Radon measure on the interval (−1, 1). We are interested in the equation 
−(|x|2αu′)′ + |u|p−1u = μ on (−1, 1) with boundary condition u(−1) = u(1) = 0. We establish some existence and unique-
ness results. We examine the limiting behavior of three approximation schemes. The isolated singularity at 0 is also investigated.
© 2015 
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1. Introduction

In this paper, we consider the following semilinear singular Sturm–Liouville equation{−(|x|2αu′)′ + |u|p−1u = μ on (−1,1),

u(−1) = u(1) = 0.
(1.1)

Here we assume that α > 0, p > 1, and μ ∈M(−1, 1), where M(−1, 1) is the space of bounded Radon measures on 
the interval (−1, 1). We denote

C0[−1,1] = {ζ ∈ C[−1,1]; ζ(−1) = ζ(1) = 0}.
Then μ can be viewed as a bounded linear functional on C0[−1, 1]. That is,

M(−1,1) = (C0[−1,1])∗ .

In the previous work [23], we studied the corresponding linear equation (i.e., p = 1 in (1.1)). For the linear case, 
we defined a notion of solution for all α > 0 and a notion of good solution for 0 < α < 1. We proved the existence and 
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uniqueness of the good solution for every measure μ when 0 < α < 1 and we proved the uniqueness of the solution 
when α ≥ 1. We also presented a necessary and sufficient condition on μ for the existence of the solution when α ≥ 1.

For the semilinear equation (1.1), we can adapt from [23] the notion of solution and the notion of good solution. 
Rewrite (1.1) as −(|x|2αu′)′ + u = u − |u|p−1u + μ. Then according to [23], a function u is a solution of (1.1) if

u ∈ Lp(−1,1) ∩ W
1,1
loc ([−1,1]\ {0}), |x|2αu′ ∈ BV (−1,1), (1.2)

and u satisfies (1.1) in the usual sense (i.e., in the sense of measures). When 0 < α < 1, a solution u of (1.1) is called 
a good solution if it satisfies in addition⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

lim
x→0+ u(x) = lim

x→0− u(x), when 0 < α < 1
2 ,

lim
x→0+

(
1 + ln 1

|x|
)−1

u(x) = lim
x→0−

(
1 + ln 1

|x|
)−1

u(x), when α = 1
2 ,

lim
x→0+ |x|2α−1u(x) = lim

x→0− |x|2α−1u(x), when 1
2 < α < 1.

(1.3)

In this work, we are interested in the question of existence and uniqueness, the limiting behavior of three different 
approximation schemes, and the classification of the isolated singularity at 0.

It turns out that we need to investigate the following four cases separately:

0 < α ≤ 1

2
, p > 1, (1.4)

1

2
< α < 1, 1 < p <

1

2α − 1
, (1.5)

1

2
< α < 1, p ≥ 1

2α − 1
, (1.6)

α ≥ 1, p > 1. (1.7)

As we are going to see, the notion of good solution is only necessary for cases (1.4) and (1.5). In fact, for the case 
(1.6), if the solution exists, it must be the good solution.

Our first result concerns the question of uniqueness.

Theorem 1.1. If α and p satisfy (1.4) or (1.5), then for every μ ∈M(−1, 1) there exists at most one good solution of 
(1.1). If α and p satisfy (1.6) or (1.7), then for every μ ∈M(−1, 1) there exists at most one solution of (1.1).

Remark 1.1. In fact, for α and p satisfying (1.4) or (1.5), there exist infinitely many solutions of (1.1); all of them 
will be identified in Section 7.

The next two theorems answer the question of existence.

Theorem 1.2. Assume that α and p satisfy (1.4) or (1.5). For every μ ∈ M(−1, 1), there exists a (unique) good 
solution of (1.1). Moreover, the good solution satisfies

(i) lim
x→0

(
1 + ln 1

|x|
)−1

u(x) = − lim
x→0+ |x|u′(x) = lim

x→0− |x|u′(x) = μ({0})
2 when α = 1

2 and p > 1,

(ii) lim
x→0

|x|2α−1u(x) = − lim
x→0+

|x|2αu′(x)
2α−1 = lim

x→0−
|x|2αu′(x)

2α−1 = μ({0})
4α−2 when 1

2 < α < 1 and 1 < p < 1
2α−1 ,

(iii)
∥∥|u|p−1u − |û|p−1û

∥∥
L1 ≤ ∥∥μ − μ̂

∥∥
M and 

∥∥∥(|u|p−1u − |û|p−1û
)+∥∥∥

L1
≤

∥∥∥(μ − μ̂
)+∥∥∥

M
, for μ, μ̂ ∈ M(−1, 1)

and their corresponding good solutions u, û.

Theorem 1.3. Assume that α and p satisfy (1.6) or (1.7). For each μ ∈ M(−1, 1), there exists a (unique) solution of 
(1.1) if and only if μ ({0}) = 0. Moreover, if the solution exists, it satisfies
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(i) lim
x→0

|x|2α−1u(x) = lim
x→0

|x|2αu′(x) = 0,

(ii)
∥∥|u|p−1u − |û|p−1û

∥∥
L1 ≤ ∥∥μ − μ̂

∥∥
M and 

∥∥∥(|u|p−1u − |û|p−1û
)+∥∥∥

L1
≤

∥∥∥(μ − μ̂
)+∥∥∥

M
, for μ, μ̂ ∈ M(−1, 1)

and their corresponding solutions u, û.

We now study (1.1) by three different approximation schemes. The first one is the elliptic regularization. Take 
0 < ε < 1 and consider the following regularized equation{−((|x| + ε)2αu′

ε)
′ + |uε |p−1uε = μ on (−1,1),

uε(−1) = uε(1) = 0.
(1.8)

Given α > 0, p > 1 and μ ∈M(−1, 1), note that the existence of uε ∈ H 1
0 (−1, 1) with u′

ε ∈ BV (−1, 1) is guaranteed 
by minimizing the corresponding functional, and the uniqueness of uε is also standard. Our main results are the 
following two theorems.

Theorem 1.4. Assume that α and p satisfy (1.4) or (1.5). Then as ε → 0, uε → u uniformly on every compact subset 
of [−1, 1]\ {0}, where u is the unique good solution of (1.1).

Theorem 1.5. Assume that α and p satisfy (1.6) or (1.7). Denote by δ0 the Dirac mass at 0. Then as ε → 0, uε → u

uniformly on every compact subset of [−1, 1]\ {0}, where u is the unique solution of{−(|x|2αu′)′ + |u|p−1u = μ − μ({0}) δ0 on (−1,1),

u(−1) = u(1) = 0.
(1.9)

Remark 1.2. In Section 4 we will present further results about the mode of convergence in Theorems 1.4 and 1.5.

The second approximation scheme consists of truncating the nonlinear term. Fix p > 1 and n ∈ N. Define 
gp,n :R→ R as

gp,n(t) = (sign t)min
{
|t |p,n

1− 1
p |t |

}
. (1.10)

It is clear that

0 ≤ gp,1(t) ≤ gp,2(t) ≤ · · · ≤ |t |p−1t, ∀t > 0,

|t |p−1t ≤ · · ·gp,2(t) ≤ gp,1(t) ≤ 0, ∀t < 0,

gp,n(t) → |t |p−1t, as n → ∞.

Consider the equation{−(|x|2αu′
n)

′ + gp,n(un) = μ on (−1,1),

un(−1) = un(1) = 0.
(1.11)

Rewrite (1.11) as −(|x|2αu′
n)

′ +un = un − gp,n(un) +μ. Then according to [23], a function un is a solution of (1.11)
if

un ∈ L1(−1,1) ∩ W
1,1
loc ([−1,1]\ {0}), |x|2αu′

n ∈ BV (−1,1),

and u satisfies (1.11) in the usual sense. When 0 < α < 1, a solution un of (1.11) is called a good solution if it satisfies 
in addition (1.3).

We will see in Section 5 that when 0 < α < 1, for all p > 1 and n ∈ N, there exists a unique good solution un of 
(1.11). When α ≥ 1, for all p > 1 and n ∈N, there exists a unique solution un of (1.11) if and only if μ ({0}) = 0.

We have the following results concerning the sequence {un}∞n=1.

Theorem 1.6. Assume that α and p satisfy (1.4) or (1.5). Then as n → ∞, un → u uniformly on every compact subset 
of [−1, 1]\ {0}, where u is the unique good solution of (1.1).



968 H. Wang / Ann. I. H. Poincaré – AN 33 (2016) 965–1007
Theorem 1.7. Assume that α and p satisfy (1.6). Then as n → ∞, un → u uniformly on every compact subset of 
[−1, 1]\ {0}, where u is the unique solution of (1.9).

Theorem 1.8. Assume that α and p satisfy (1.7) and μ ({0}) = 0. Then as n → ∞, un → u uniformly on every 
compact subset of [−1, 1]\ {0}, where u is the unique solution of (1.9).

Remark 1.3. The more precise mode of convergence in Theorems 1.6, 1.7 and 1.8 will be presented in Section 5.

Remark 1.4. The third approximation scheme consists of approximating the measure μ by a sequence of L1-functions 
under the weak-star topology. This is a delicate subject. For example, for 1

2 ≤ α < 1 and 1 < p < 1
2α−1 , let μ = δ0

and fn = Cnρ(nx − 1), where ρ(x) = χ[|x|<1]e
1

|x|2−1 and C−1 = ∫
ρ, so that fn

∗
⇀ δ0 in (C0[−1,1])∗. Let un be the 

good solution corresponding to fn. Then un → u but u is not the good solution corresponding to δ0. This subject will 
be discussed in Section 6.

Finally, we study the isolated singularity at 0. The next result asserts that for α and p satisfying (1.6) or (1.7), the 
isolated singularity at 0 is removable.

Theorem 1.9. Assume that α and p satisfy (1.6) or (1.7). Given f ∈ L1(−1, 1), assume that u ∈ L
p

loc((−1, 1)\{0})
satisfying

−
1∫

−1

u(|x|2αζ ′)′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

f ζdx, ∀ζ ∈ C∞
c ((−1,1)\{0}).

Then u ∈ L
p

loc(−1, 1) and

−
1∫

−1

u(|x|2αζ ′)′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

f ζdx, ∀ζ ∈ C∞
c (−1,1). (1.12)

Remark 1.5. An easy consequence of Theorem 1.9 is that (1.1) does not have a solution if α and p satisfy (1.6) or 
(1.7) and μ = δ0, which is a special case of Theorem 1.3.

On the other hand, for α and p satisfying (1.4) or (1.5), the isolated singularity at 0 is not removable. In this case, 
we give a complete classification of the asymptotic behavior of the solutions.

Theorem 1.10. Assume that α and p satisfy (1.4) or (1.5). Let u ∈ C2(0, 1] be such that{−(x2αu′)′ + |u|p−1u = 0 on (0,1),

u(1) = 0.
(1.13)

Then one of the following assertions holds.

(i) u ≡ 0.
(ii) u ≡ uc for some constant c ∈ (−∞, 0) ∪ (0, +∞), where uc is the unique solution of (1.13) such that

lim
x→0+

uc(x)

Eα(x)
= c, (1.14)

and

Eα(x) =

⎧⎪⎨⎪⎩
1, if 0 < α < 1

2 ,

ln 1
x
, if α = 1

2 ,

1
x2α−1 , if 1

2 < α < 1.

(1.15)
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(iii) u ≡ u+∞, where u+∞ is the unique solution of (1.13) such that

lim
x→0+ x

2(1−α)
p−1 u+∞(x) = lp,α, (1.16)

and

lp,α =
[
(1 − α)2

(
2

p − 1

)(
2p

p − 1
− 1

1 − α

)] 1
p−1

. (1.17)

(iv) u ≡ u−∞ where u−∞ = −u+∞.

Moreover, u−c = −uc. If c > 0 or c = +∞, uc ≥ 0. For c > 0, uc ↓ 0 and uc ↑ u+∞.

Remark 1.6. The solutions u+∞ and u−∞ are called the very singular solutions, which is a terminology introduced 
by Brezis, Peletier and Terman [8].

Remark 1.7. Given μ ∈M(0, 1), we can also study the following equation,{−(x2αu′)′ + |u|p−1u = μ on (0,1),

u(1) = 0.
(1.18)

In Section 10, we discuss (1.18) under appropriate boundary conditions at 0, and we will also compare the results 
about (1.18) with some well-known results about the semilinear elliptic equation.

Our study of (1.1) is motivated by various results about the semilinear elliptic equation{−	u + |u|p−1u = μ on 
,

u = 0 on ∂
,
(1.19)

where 1 < p < ∞, 
 is a bounded smooth domain in RN and μ is a bounded Radon measure on 
.
The existence and uniqueness of an Lp-solution of (1.19) for all 1 < p < ∞ and μ ∈ L1(
) is proved by Brezis 

and Strauss [9]. When μ is just a bounded Radon measure, the following two cases were studied separately:

(i) 1 < p < N
N−2 if N ≥ 3 and no restriction on p if N = 1, 2,

(ii) p ≥ N
N−2 if N ≥ 3.

Bénilan and Brezis proved the existence and uniqueness for case (i) and the nonexistence for case (ii) if μ = δa

for some a ∈ 
 (see, e.g., [2] and the references therein). For case (ii), a necessary and sufficient condition on μ
for the existence of a solution was given by Baras and Pierre [1] (see an equivalent characterization by Gallouët and 
Morel [17]).

About the isolated (interior) singularity, Brezis and Véron [10] proved that the isolated singularity is removable 
for case (ii). For case (i), Véron [20] classified the asymptotic behavior of the solutions near the isolated singularity 
(a different proof was given by Brezis and Oswald [7]).

Brezis [5] observed that, for case (ii) with μ = δa where a ∈ 
, a sequence of approximate solutions may converge 
to 0, which is obviously not the solution corresponding to μ = δa . This phenomenon was then studied by Brezis, 
Marcus and Ponce [6] in a more general setting.

We refer to Appendix A of Bénilan and Brezis [2] for a comprehensive review on this subject, and to the mono-
graphs of Véron [21,22] for a variety of results about the singularities of solutions for more general classes of PDEs.

The rest of this paper is organized as follows. We present in Section 2 some preliminary results which in particular 
imply Theorem 1.1. The question of existence is studied in Section 3 where Theorems 1.2 and 1.3 are proved. The 
three approximation schemes mentioned in the introduction will be investigated respectively in Sections 4, 5 and 6. In 
Section 7, we describe all the solutions of (1.1) when α and p satisfy (1.4) or (1.5). The removability of the singularity 
is studied in Section 8 and the classification of the singularity is studied in Section 9. Finally, Section 10 is devoted 
to (1.18).
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2. Preliminary results and the uniqueness

We start with a few results from [23] about the linear operator. The investigation of the linear operator can also be 
found in [11,12]. We consider the unbounded linear operator Aα : D(Aα) ⊂ L1(−1, 1) → L1(−1, 1) where

Aαu = −(|x|2αu′)′, (2.1)

D̃ =
{
u ∈ L1(−1,1) ∩ W

2,1
loc ([−1,1]\ {0}); u(−1) = u(1) = 0, |x|2αu′ ∈ W 1,1(−1,1)

}
, (2.2)

and

D(Aα) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

D̃ ∩ C[−1,1], when 0 < α < 1
2 ,

D̃ ∩
{
u;

(
1 + ln 1

|x|
)−1

u ∈ C[−1,1]
}

, when α = 1
2 ,

D̃ ∩ {
u; |x|2α−1u ∈ C[−1,1]} , when 1

2 < α < 1,

D̃, when α ≥ 1.

(2.3)

We have the following properties of the linear operator Aα.

Proposition 2.1. (See Lemma 2.2 in [23].) Assume 0 < α < 1
2 . For all u ∈ D(Aα) we have

lim
x→0

|x|2αu′(x) = 1

2

1∫
0

(Aαu)
(

1 − s1−2α
)

ds − 1

2

0∫
−1

(Aαu)
(

1 − |s|1−2α
)

ds, (2.4)

u(0) = 1

2(1 − 2α)

1∫
−1

(Aαu)
(

1 − |s|1−2α
)

ds, (2.5)

∥∥∥|x|2αu′
∥∥∥

L∞ ≤ 3

2
‖Aαu‖L1 , (2.6)

‖u‖W 1,1 ≤ 6

1 − 2α
‖Aαu‖L1 . (2.7)

Proposition 2.2. (See Lemma 2.3 in [23].) Assume α ≥ 1
2 . Then

D(Aα) =
{
u ∈ D̃; lim

x→0
|x|2αu′(x) = 0

}
, (2.8)

where D̃ is defined by (2.2). For u ∈ D(Aα) we have∥∥∥|x|2αu′
∥∥∥

L∞ ≤ ‖Aαu‖L1 , when α ≥ 1

2
, (2.9)

lim
x→0

(
1 + ln

1

|x|
)−1

u(x) = 0, when α = 1

2
, (2.10)∥∥∥∥∥

(
1 + ln

1

|x|
)−1

u

∥∥∥∥∥
W 1,1

≤ 4
∥∥∥A 1

2
u

∥∥∥
L1

, when α = 1

2
, (2.11)

lim
x→0

|x|2α−1u(x) = 0, when α >
1

2
, (2.12)∥∥∥|x|2α−1u

∥∥∥
W 1,1

≤ 4

2α − 1
‖Aαu‖L1 , when α >

1

2
. (2.13)
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Proposition 2.3. (See Proposition 2.1 in [23].) The operator Aα satisfies the following properties.

(i) For any α > 0, the operator Aα is closed and its domain D(Aα) is dense in L1(−1, 1).
(ii) For any λ > 0 and α > 0, I + λAα maps D(Aα) one-to-one onto L1(−1, 1) and (I + λAα)−1 is a contraction 

in L1(−1, 1).
(iii) For any λ > 0, α > 0 and f ∈ L1(−1, 1), ess sup(I + λAα)−1f ≤ max {0, ess supf }.
(iv) Let γ be a maximal monotone graph in R × R containing the origin. For any α > 0, let u ∈ D(Aα) and g ∈

L∞(−1, 1) be such that g(x) ∈ γ (u(x)) a.e. Then 
∫ 1
−1 Aαu(x)g(x)dx ≥ 0.

We now prove the uniqueness result.

Proof of Theorem 1.1. Fix μ ∈ M(−1, 1). If α and p satisfy (1.4) or (1.5), assume that u and û are two good 
solutions of (1.1) corresponding to μ. Then u − û ∈ D(Aα) and Aα(u − û) = |û|p−1û − |u|p−1u.

If α and p satisfy (1.6) or (1.7), assume that u and û are two solutions of (1.1) corresponding to μ. Then 
−(|x|2α(u − û)′)′ = |û|p−1û − |u|p−1u. We claim that u − û ∈ D(Aα). For α ≥ 1, it is clear by the definition of 
D(Aα). For 1

2 < α < 1 and p ≥ 1
2α−1 , by (2.8), it is enough to show that lim

x→0
|x|2α(u − û)′(x) = 0. Indeed, since 

|x|2α(u − û)′ ∈ BV (−1, 1), the limits lim
x→0+ |x|2α(u − û)′(x) and lim

x→0− |x|2α(u − û)′(x) exist. They have to be zero. 

Otherwise, it contradicts the fact that u − û ∈ Lp(−1, 1) with p ≥ 1
2α−1 .

Then for all the cases, assertion (iv) of Proposition 2.3 implies that

1∫
−1

(|û|p−1û − |u|p−1u) sign(u − û)dx =
1∫

−1

Aα(u − û) sign(u − û)dx ≥ 0.

On the other hand, (|û|p−1û − |u|p−1u) sign(u − û) ≤ 0 a.e. Therefore u = û a.e. �
3. Proof of the existence results

The basic idea in the proof of Theorems 1.2 and 1.3 is to approximate the measures by L1-functions. Therefore, 
we start with the case when μ ∈ L1(−1, 1) in (1.1).

Proposition 3.1. For every α > 0, p > 1 and f ∈ L1(−1, 1), there exists a unique u ∈ D(Aα) ∩ Lp(−1, 1) such 
that Aαu + |u|p−1u = f a.e. on (−1, 1), where Aα and D(Aα) are given by (2.1) and (2.3) respectively. Moreover, 
‖|u|p‖L1 ≤ ‖f ‖L1 and ‖Aαu‖L1 ≤ 2 ‖f ‖L1 .

To prove Proposition 3.1, we need the following result by Brezis and Strauss [9].

Lemma 3.2. (See Theorem 1 in [9].) Let β be a maximal monotone graph in R ×R which contains the origin. Let 

be any measure space. Let A be an unbounded linear operator on L1(
) satisfying the following conditions.

(i) The operator A is closed with dense domain D(A) in L1(
); for any λ > 0, I +λA maps D(A) one-to-one onto 
L1(
) and (I + λA)−1 is a contraction in L1(
).

(ii) For any λ > 0 and f ∈ L1(
), ess sup



(I + λA)−1f ≤ max

{
0, ess sup




f

}
.

(iii) There exists δ > 0 such that δ ‖u‖L1 ≤ ‖Au‖L1 , ∀u ∈ D(A).

Then for every f ∈ L1(
), there exists a unique u ∈ D(A) such that Au(x) + β (u(x)) � f (x) a.e. Moreover, 
‖f − Au‖L1 ≤ ‖f ‖L1 and ‖Au‖L1 ≤ 2 ‖f ‖L1 .

We now prove Proposition 3.1. We apply a device by Gallouët and Morel [17].
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Proof of Proposition 3.1. We first assume 0 < α < 1. Applying Proposition 2.3 and the estimates (2.7) and (2.13), we 
deduce that Aα is an unbounded operator satisfying the conditions (i)–(iii) in Lemma 3.2. Consider β(u) = |u|p−1u

as a maximal monotone graph in R ×R. Then Lemma 3.2 implies the desired result.
We then assume α ≥ 1. For any n ∈N, consider the unbounded linear operator

Aα,nu = −(|x|2αu′)′ + 1

n
u.

Take its domain D(Aα,n) = D(Aα). Note that

Aα,n = Aα + 1

n
I,

λAα,n + I =
(

λ

n
+ 1

)(
λn

λ + n
Aα + I

)
,

(
λAα,n + I

)−1 =
(

λn

λ + n
Aα + I

)−1

◦ n

λ + n
I.

It is clear that Aα,n satisfies the conditions (i)–(iii) in Lemma 3.2. Therefore, for every α ≥ 1, p > 1, n ∈ N, and 
f ∈ L1(−1, 1), there exists a unique un ∈ D(Aα) ∩ Lp(−1, 1) such that

−(|x|2αu′
n)

′ + 1

n
un + |un|p−1un = f on (−1,1).

That is,

1∫
−1

|x|2αu′
nζ

′dx +
1∫

−1

1

n
unζdx +

1∫
−1

|un|p−1unζdx =
1∫

−1

f ζdx, ∀ζ ∈ C1
0 [−1,1]. (3.1)

Moreover, we have∥∥|un|p
∥∥

L1 + 1

n
‖un‖L1 +

∥∥∥|x|2αu′
n

∥∥∥
L∞ +

∥∥∥(|x|2αu′
n)

′
∥∥∥

L1
≤ C,

where C is independent of n. Therefore, passing to a subsequence if necessary, we can assume that there exists 
u ∈ W

1,1
loc ([−1, 1]\ {0}) such that un(x) → u(x), ∀x ∈ [−1, 1]\ {0}, and |x|2αu′

n → |x|2αu′ in L1(−1, 1). It implies 
that u(−1) = u(1) = 0 and 1

n
un + |un|p−1un → |u|p−1u a.e. on (−1, 1).

We now prove that the sequence 
{

1
n
un + |un|p−1un

}∞
n=1

is equi-integrable. For this purpose, take a nondecreasing 

function ϕ(x) ∈ C∞(R) such that ϕ(x) = 0 for x ≤ 0, ϕ(x) > 0 for x > 0 and ϕ(x) = 1 for x ≥ 1. For fixed k ∈N and 
t ∈R

+, define

Pk,t (x) = signx ϕ(k(|x| − t)).

It is clear that Pk,t is a maximal monotone graph containing the origin. Moreover,{
x : Pk,t (x) �= 0

} = (−∞,−t) ∪ (t,+∞),∣∣P1,t (x)
∣∣ ≤ ∣∣P2,t (x)

∣∣ ≤ · · · ∣∣Pk,t (x)
∣∣ ≤ ∣∣Pk+1,t (x)

∣∣ · · · ≤ 1,

lim
k→∞

∣∣Pk,t

∣∣ = χ[|x|>t].

Then assertion (iv) in Proposition 2.3 implies that

−
1∫

−1

(|x|2αu′
n)

′Pk,t (un) dx ≥ 0.

Therefore
1∫ ∣∣Pk,t (un)

∣∣(1

n
|un| + |un|p

)
dx ≤

1∫ ∣∣Pk,t (un)
∣∣ |f |dx.
−1 −1
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Passing to the limit as k → ∞, the Monotone Convergence Theorem implies that∫
[|un|>t]

(
1

n
|un| + |un|p

)
dx ≤

∫
[|un|>t]

|f |dx, ∀t > 0 and ∀n ∈N.

Then

|[|un| > t]| ≤ 1

tp

∫
[|un|>t]

|un|pdx ≤ C

tp
.

For any ε > 0, there exists tε > 0 such that∫
[|un|>tε ]

(
1

n
|un| + |un|p

)
dx ≤

∫
[|un|>tε ]

|f |dx ≤ ε

2
, ∀n ∈ N.

Take δ = ε

2(t
p
ε +tε )

. Then for all K ⊂R such that |K| < δ, we have∫
K

(
1

n
|un| + |un|p

)
dx ≤

∫
K∩[|un|>tε ]

(
1

n
|un| + |un|p

)
dx +

∫
K∩[|un|≤tε ]

(
1

n
|un| + |un|p

)
dx

≤
∫

[|un|>tε ]

(
1

n
|un| + |un|p

)
dx + (tpε + tε)|K|

≤ ε.

Thus, the sequence 
{

1
n
un + |un|p−1un

}∞
n=1

is equi-integrable.

A theorem of Vitali implies that 1
n
un +|un|p−1un → |u|p−1u in L1(−1, 1). Passing to the limit as n → ∞ in (3.1), 

we obtain
1∫

−1

|x|2αu′ζ ′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

f ζdx, ∀ζ ∈ C1
0 [−1,1].

Therefore, u ∈ D(Aα) ∩ Lp(−1, 1) and Aαu + |u|p−1u = f a.e. on (−1, 1). The uniqueness follows from Theo-
rem 1.1. �

We now start to prove Theorems 1.2 and 1.3. Given μ ∈ M(−1, 1), there exists a sequence {fn}∞n=1 ⊂ L1(−1, 1)

such that fn
∗
⇀ μ in (C0[−1, 1])∗. For each fn, by Proposition 3.1, there exists a unique un ∈ D(Aα) ∩ Lp(−1, 1)

such that
1∫

−1

|x|2αu′
nζ

′dx +
1∫

−1

|un|p−1unζdx =
1∫

−1

fnζdx, ∀ζ ∈ C1
0 [−1,1]. (3.2)

Lemma 3.3. Assume that 0 < α < 1
2 and p > 1. Let {un}∞n=1 be the sequence satisfying (3.2). Then un → u in 

C[−1, 1], where u is the (unique) good solution of (1.1).

Proof. Note that ‖fn‖L1 ≤ C, where C is independent of n. Then Proposition 2.1 implies that ‖un‖L∞ +∥∥|x|2αu′
n

∥∥
W 1,1 ≤ C̃, where C̃ is independent of n. Therefore the sequence un is bounded in W 1,q(−1, 1) for some 

fixed q ∈ (1, 1
2α

). By compactness, there exists a subsequence such that unk
→ u in C0[−1, 1] and |x|2αu′

nk
→ |x|2αu′

in L1(−1, 1). Passing to the limit in (3.2) as nk → ∞, we obtain that

1∫
|x|2αu′ζ ′dx +

1∫
|u|p−1uζdx =

1∫
ζdμ, ∀ζ ∈ C1

0 [−1,1].

−1 −1 −1
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We conclude that u is a good solution of (1.1). The uniqueness of the good solution and “the uniqueness of the limit” 
imply that un → u in C[−1, 1]. �
Lemma 3.4. Assume that α = 1

2 and p > 1. Let {un}∞n=1 be the sequence satisfying (3.2). Then there exists a subse-
quence {nk}∞k=1 such that(

1 + ln
1

|x|
)−1

unk
→

(
1 + ln

1

|x|
)−1

u in Lr(−1,1), ∀r < ∞, (3.3)

where u is a solution of (1.1). Moreover, 
(

1 + ln 1
|x|

)−1
u ∈ BV (−1, 1) and

lim
x→0+

(
1 + ln

1

|x|
)−1

u(x) = lim
x→0+ lim

k→∞

⎛⎝ x∫
0

fnk
(s)ds +

(
ln

1

|x|
)−1 1∫

x

fnk
(s) ln

1

|s|ds

⎞⎠ , (3.4)

lim
x→0−

(
1 + ln

1

|x|
)−1

u(x) = lim
x→0− lim

k→∞

⎛⎝ 0∫
x

fnk
(s)ds +

(
ln

1

|x|
)−1 x∫

−1

fnk
(s) ln

1

|s|ds

⎞⎠ . (3.5)

Proof. Proposition 2.2 implies that

∥∥|x|u′
n

∥∥
W 1,1 +

∥∥∥∥∥
(

1 + ln
1

|x|
)−1

un

∥∥∥∥∥
W 1,1

≤ C,

where C is independent of n. As a consequence, we obtain (3.3). Moreover, 
(

1 + ln 1
|x|

)−1
u ∈ BV(−1, 1), unk

→ u

in Lp(−1, 1) and |x|u′
nk

→ |x|u′ in L1(−1, 1). Passing to the limit in (3.2) as nk → ∞, we obtain that u is a solution 
of (1.1). The proof of (3.4) and (3.5) is the same as the one of Lemma 6.3 in [23]. �
Lemma 3.5. Assume that 1

2 < α < 1 and 1 < p < 1
2α−1 . Let {un}∞n=1 be the sequence satisfying (3.2). Then there 

exists a subsequence {nk}∞k=1 such that

|x|2α−1unk
→ |x|2α−1u in Lr(−1,1), ∀r < ∞, (3.6)

where u is a solution of (1.1). Moreover, |x|2α−1u ∈ BV (−1, 1) and

lim
x→0+ |x|2α−1u(x) = 1

2α − 1
lim

x→0+ lim
k→∞

⎛⎝ x∫
0

fnk
(s)ds + |x|2α−1

1∫
x

fnk
(s)|s|1−2αds

⎞⎠ , (3.7)

lim
x→0− |x|2α−1u(x) = 1

2α − 1
lim

x→0− lim
k→∞

⎛⎝ 0∫
x

fnk
(s)ds + |x|2α−1

x∫
−1

fnk
(s)|s|1−2αds

⎞⎠ . (3.8)

Proof. Proposition 2.2 implies that 
∥∥|x|2αu′

n

∥∥
W 1,1 + ∥∥|x|2α−1un

∥∥
W 1,1 ≤ C, where C is independent of n. As a con-

sequence, we obtain (3.6). Moreover, |x|2α−1u ∈ BV (−1, 1), unk
→ u in Lp(−1, 1) and |x|2αu′

nk
→ |x|2α−1u′ in 

L1(−1, 1). Passing to the limit in (3.2) as nk → ∞, we obtain that u is a solution of (1.1). The proof of (3.7) and (3.8)
is the same as the one of Lemma 6.4 in [23]. �
Lemma 3.6. (See Lemma 6.5 in [23].) Fix ρ ∈ C(R) such that suppρ = [−1, 1], ρ(x) = ρ(−x) and ρ ≥ 0. Let 
ρn(x) = Cnρ(nx) where C−1 = ∫

ρ. For μ ∈M(−1, 1), let fn = μ ∗ ρn. Then fn ∈ C[−1, 1], ‖fn‖L1 ≤ ‖μ‖M, and 

fn
∗
⇀ μ in (C0[−1,1])∗. For any −1 < a < b < 1 and y ∈ [−1, 1], we have
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lim
n→∞

b−y∫
a−y

ρn(s)ds =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, for y ∈ [−1, a),
1
2 , for y = a,

1, for y ∈ (a, b),
1
2 , for y = b,

0, for y ∈ (b,1].

(3.9)

Moreover,

lim
x→0+ lim

n→∞

x∫
0

fn(s)ds = lim
x→0− lim

n→∞

0∫
x

fn(s)ds = 1

2
μ({0}). (3.10)

Proof of Theorem 1.2. The existence of good solution for 0 < α < 1
2 and p > 1 has been proved by Lemma 3.3.

Assume now that fn is the sequence identified in Lemma 3.6. For α = 1
2 and p > 1, we claim that

lim
x→0+ lim

n→∞

⎛⎝ x∫
0

fn(s)ds +
(

ln
1

|x|
)−1 1∫

x

fn(s) ln
1

|s|ds

⎞⎠

= lim
x→0− lim

n→∞

⎛⎝ 0∫
x

fn(s)ds +
(

ln
1

|x|
)−1 x∫

−1

fn(s) ln
1

|s|ds

⎞⎠
= 1

2
μ({0}).

For 1
2 < α < 1 and 1 < p < 1

2α−1 , we claim that

1

2α − 1
lim

x→0+ lim
n→∞

⎛⎝ x∫
0

fn(s)ds + |x|2α−1

1∫
x

fn(s)|s|1−2αds

⎞⎠

= 1

2α − 1
lim

x→0− lim
n→∞

⎛⎝ 0∫
x

fn(s)ds + |x|2α−1

x∫
−1

fn(s)|s|1−2αds

⎞⎠
= 1

2(2α − 1)
μ({0}).

The proof of these two claims is the same as their counterparts in the proof of (i) of Theorem 6.1 in [23]. Therefore, 
in view of Lemmas 3.4 and 3.5, we proved the existence of good solution for 1

2 ≤ α < 1 and 1 < p < 1
2α−1 , as well as 

assertions (i) and (ii). Assertion (iii) will be proved in Section 4. �
Lemma 3.7. Assume that α and p satisfy (1.6) or (1.7). Let {un}∞n=1 be the sequence satisfying (3.2). Then 
|x|2α−1un → |x|2α−1u in Lr(−1, 1), ∀r < ∞, where u is the solution of (1.9).

Proof. Proposition 2.2 implies that 
∥∥|x|2αu′

n

∥∥
W 1,1 + ∥∥|x|2α−1un

∥∥
W 1,1 ≤ C, where C is independent of n. It follows 

that |x|2αu′
nk

→ |x|2αu′ and |x|2α−1un → |x|2α−1u in Lr(−1, 1), ∀r < ∞. Note that ‖un‖Lp ≤ C. Then Fatou’s 
Lemma implies that u ∈ Lp(−1, 1). Passing to the limit in (3.2) as nk → ∞, we obtain

1∫
|x|2αu′ζ ′dx +

1∫
|u|p−1uζdx =

1∫
ζdμ, ∀ζ ∈ C1

c ((−1,1)\ {0}). (3.11)
−1 −1 −1
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Here we use the same device as in Brezis and Véron [10]. Let ϕ(x) ∈ C∞(R) be such that 0 ≤ ϕ ≤ 1, ϕ ≡ 0 on (
− 1

2 , 1
2

)
and ϕ ≡ 1 on R\(−1, 1). Let ϕn(x) = ϕ(nx). In (3.11), perform integration by parts and replace ζ by ϕnφ

where φ ∈ C2
c (−1, 1). It follows that

−
1∫

−1

u(|x|2α(ϕnφ)′)′dx +
1∫

−1

|u|p−1uϕnφdx =
1∫

−1

ϕnφdμ, ∀φ ∈ C2
c (−1,1). (3.12)

For each term on the left-hand side of (3.12), we obtain

1∫
−1

|x|2αu′(x)ϕ(nx)φ′′(x)dx →
1∫

−1

|x|2αu′(x)φ′′(x)dx,

2α

1∫
−1

u(x) signx|x|2α−1ϕ(nx)φ′(x)dx → 2α

1∫
−1

u(x) signx|x|2α−1φ′(x)dx,

1∫
−1

|u(x)|p−1u(x)ϕ(nx)φ(x)dx →
1∫

−1

|u(x)|p−1u(x)φ(x)dx,

∣∣∣∣∣∣∣∣2n

1
n∫

− 1
n

|x|2αu(x)ϕ′(nx)φ′(x)dx

∣∣∣∣∣∣∣∣ ≤ 2

n2α−1

∥∥ϕ′φ′∥∥
L∞ ‖u‖

L1(− 1
n
, 1
n
)
→ 0,

∣∣∣∣∣∣∣∣2αn

1
n∫

− 1
n

u(x) signx|x|2α−1ϕ′(nx)φ(x)dx

∣∣∣∣∣∣∣∣ ≤ 2α

n2α−2

(
2

n

) 1
p′ ∥∥ϕ′φ

∥∥
L∞ ‖u‖

Lp(− 1
n
, 1
n
)
→ 0,

∣∣∣∣∣∣∣∣n
2

1
n∫

− 1
n

u(x)|x|2αϕ′′(nx)φ(x)dx

∣∣∣∣∣∣∣∣ ≤ 1

n2α−2

(
2

n

) 1
p′ ∥∥ϕ′′φ

∥∥
L∞ ‖u‖

Lp(− 1
n
, 1
n
)
→ 0,

where p′ is the Hölder conjugate of p, which satisfies 1
p′ +2α−2 ≥ 0. For the right-hand side of (3.12), the Dominated 

Convergence Theorem implies that

lim
n→∞

1∫
−1

ϕ(nx)φ(x)dμ =
1∫

−1

φ(x)d (μ − μ({0}) δ0) .

Thus
1∫

−1

|x|2αu′φ′dx +
1∫

−1

|u|p−1uφdx =
1∫

−1

φd (μ − μ({0}) δ0) , ∀φ ∈ C1
c (−1,1).

Therefore u is the solution of (1.9). �
Proof of Theorem 1.3. Suppose μ({0}) = 0. Then Lemma 3.7 implies that (1.1) has a solution. Conversely, assume 
that u is a solution of (1.1). We claim that μ({0}) = 0. Indeed, we have

−
1∫
u(|x|2αζ ′)′dx +

1∫
|u|p−1uζdx =

1∫
ζdμ, ∀ζ ∈ C∞

c (−1,1). (3.13)
−1 −1 −1
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Take ϕ ∈ C∞
c (R) such that ϕ ≡ 1 on (−1, 1), suppϕ ⊂ (−2, 2) and 0 ≤ ϕ ≤ 1. Replace ζ(x) by ϕ(nx) in (3.13). Then 

for each term on the left-hand side of (3.13), we have∣∣∣∣∣∣∣∣n
2

2
n∫

− 2
n

u(x)|x|2αϕ′′(nx)dx

∣∣∣∣∣∣∣∣ ≤ 2
2α+ 2

p′

n
2α−2+ 1

p′

∥∥ϕ′′∥∥
L∞ ‖u‖

Lp(− 2
n
, 2
n
)
→ 0,

∣∣∣∣∣∣∣∣2αn

2
n∫

− 2
n

u(x)|x|2α−1ϕ′(nx) signxdx

∣∣∣∣∣∣∣∣ ≤ 2
2α+ 2

p′ α

n
2α−2+ 1

p′

∥∥ϕ′∥∥
L∞ ‖u‖

Lp(− 2
n
, 2
n
)
→ 0,

1∫
−1

|u(x)|p−1u(x)ϕ(nx)dx → 0.

For the right-hand side of (3.13), we have

1∫
−1

ϕ(nx)dμ = μ({0}) +
∫

(0, 2
n
]
ϕ(nx)dμ +

∫
[− 2

n
,0)

ϕ(nx)dμ.

Note that

lim
n→∞

∫
(0, 2

n
]
ϕ(nx)dμ = lim

n→∞

∫
[− 2

n
,0)

ϕ(nx)dμ = 0.

Therefore, μ ({0}) = 0.
Assume now that the solution exists. We prove assertion (i). Indeed, since |x|2α−1u ∈ BV (−1, 1), the one-side 

limits lim
x→0+ |x|2α−1u(x) and lim

x→0− |x|2α−1u(x) exist. They must be zero. Otherwise, it contradicts u ∈ Lp(−1, 1). 

The same reason guarantees that lim
x→0

|x|2αu′(x) = 0. Assertion (ii) will be proved in Section 4. �
4. The elliptic regularization

For any 0 < ε < 1, we consider the regularized equation (1.8). Since M(−1, 1) ⊂ H−1(−1, 1), the solution uε of 
(1.8) is actually the minimizer of the following functional

I (u) = 1

2

1∫
−1

(|x| + ε)2α |u′|2dx + 1

p + 1

1∫
−1

|u|p+1dx −
1∫

−1

udμ, ∀u ∈ H 1
0 (−1,1).

It implies that uε satisfies the following weak formulation

1∫
−1

(|x| + ε)2α u′
εv

′dx +
1∫

−1

|uε |p−1uεvdx =
1∫

−1

vdμ, ∀v ∈ H 1
0 (−1,1). (4.1)

Take vn = ϕ(nuε) where ϕ ∈ C∞(R) and ϕ′ ≥ 0 such that ϕ ≡ 1 on [1, ∞), ϕ ≡ −1 on (−∞, −1] and ϕ(0) = 0. 
Notice that

1∫
(|x| + ε)2α u′

εv
′
ndx = n

1∫
(|x| + ε)2α |u′

ε |2ϕ′(nuε)dx ≥ 0.
−1 −1
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Then

‖uε‖p

Lp(−1,1)
= lim

n→∞

1∫
−1

|uε |p−1uεvndx ≤ lim
n→∞

1∫
−1

vndμ ≤ ‖μ‖M(−1,1) . (4.2)

We now examine the limiting behavior of the family {uε}ε>0 and we are going to establish the following sharper form 
of Theorems 1.4 and 1.5.

Theorem 4.1. Given α > 0, as ε → 0, we have

(|x| + ε)2α u′
ε → |x|2αu′ in Lr(−1,1), ∀r < ∞. (4.3)

Moreover,

uε → u in C0[−1,1], if 0 < α <
1

2
, (4.4)(

1 + ln
1

|x| + ε

)−1

uε →
(

1 + ln
1

|x|
)−1

u in Lr(−1,1), ∀r < ∞, if α = 1

2
, (4.5)

(|x| + ε)2α−1 uε → |x|2α−1u in Lr(−1,1), ∀r < ∞, if α >
1

2
. (4.6)

Here u is the unique good solution of (1.1) if α and p satisfy (1.4) or (1.5); u is the unique solution of (1.9) if α and 
p satisfy (1.6) or (1.7).

The proof for the case 0 < α < 1
2 of Theorem 4.1 is the same as the proof for the case 0 < α < 1

2 of Theorem 5.1 
in [23], except some obvious modifications due to the nonlinear term. We omit the detail.

Proof of Theorem 4.1 for α = 1
2 . Write K+

ε = lim
x→0+ u′

ε(x) and K−
ε = lim

x→0− u′
ε(x). One can perform integration by 

parts (the same as the proof of Theorem 5.1 of [23]) and obtain, for x ∈ (0, 1),

uε(x) = ln

(
1 + ε

x + ε

)⎛⎜⎝−εK+
ε +

∫
(0,x)

dμ −
x∫

0

|uε(s)|p−1uε(s)ds

⎞⎟⎠
−

1∫
x

|uε(s)|p−1uε(s) ln

(
1 + ε

s + ε

)
ds +

∫
[x,1)

ln

(
1 + ε

s + ε

)
dμ(s),

and for x ∈ (−1, 0),

uε(x) = ln

(
1 + ε

|x| + ε

)⎛⎜⎝εK−
ε +

∫
(x,0)

dμ −
0∫

x

|uε(s)|p−1uε(s)ds

⎞⎟⎠
−

x∫
−1

|uε(s)|p−1uε(s) ln

(
1 + ε

|s| + ε

)
ds +

∫
(−1,x]

ln

(
1 + ε

|s| + ε

)
dμ(s).

Taking into account the relations uε(0+) = uε(0−) and εK+
ε − εK−

ε = −μ ({0}), we deduce that

εK+
ε = −1

2
μ({0}) + 1

2 ln
(

1+ε
ε

) ∫
(−1,0)∪(0,1)

(sign s) ln

(
1 + ε

|s| + ε

)
dμ(s)

− 1

2 ln
(

1+ε
ε

) 1∫
(sign s)|uε(s)|p−1uε(s) ln

(
1 + ε

|s| + ε

)
ds,
−1
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and

εK−
ε = 1

2
μ({0}) + 1

2 ln
(

1+ε
ε

) ∫
(−1,0)∪(0,1)

(sign s) ln

(
1 + ε

|s| + ε

)
dμ(s)

− 1

2 ln
(

1+ε
ε

) 1∫
−1

(sign s)|uε(s)|p−1uε(s) ln

(
1 + ε

|s| + ε

)
ds.

It is easy to check that 
∣∣εK+

ε

∣∣ ≤ 3
2 ‖μ‖M and 

∣∣εK−
ε

∣∣ ≤ 3
2 ‖μ‖M since ‖uε‖p

Lp ≤ ‖μ‖M. Therefore, we obtain that∥∥∥∥∥
(

1 + ln
1

|x| + ε

)−1

uε

∥∥∥∥∥
W 1,1(−1,1)

+ ∥∥(|x| + ε)u′
ε

∥∥
BV (−1,1)

≤ C,

where C is independent of ε. It follows that (4.3) and (4.5) hold for a subsequence 
{
uεn

}∞
n=1. Moreover, the sequence {|uεn |p−1uεn

}∞
n=1 is equi-integrable and |uεn |p−1uεn → |u|p−1u in L1(−1, 1). Passing to the limit as n → ∞ in (4.1), 

we obtain

1∫
−1

|x|u′v′dx +
1∫

−1

|u|p−1uvdx =
1∫

−1

vdμ, ∀v ∈ C1
0 [−1,1].

Notice that ‖uε‖Lp+1(−1,1) ≤ C. The same argument as in the proof of Theorem 5.1 in [23] implies that

− lim
ε→0

εK+
ε = lim

ε→0
εK−

ε = 1

2
μ({0}) ,

and

lim
x→0+

(
1 + ln

1

|x|
)−1

u(x) = lim
x→0−

(
1 + ln

1

|x|
)−1

u(x) = 1

2
μ({0}) .

Therefore, u is the good solution. The uniqueness of the good solution and the uniqueness of the limit imply that (4.3)
and (4.5) hold for the family {uε}ε>0. �
Proof of Theorem 4.1 for 1

2 < α < 1. We denote K+
ε = lim

x→0+ u′
ε(x) and K−

ε = lim
x→0− u′

ε(x). Integration by parts 

yields, for x ∈ (0, 1),

uε(x) =
(

(x + ε)1−2α − (1 + ε)1−2α

2α − 1

)⎛⎜⎝−ε2αK+
ε +

∫
(0,x)

dμ −
x∫

0

|uε(s)|p−1uε(s)ds

⎞⎟⎠
−

1∫
x

|uε(s)|p−1uε(s)

(
(s + ε)1−2α − (1 + ε)1−2α

2α − 1

)
ds

+
∫

[x,1)

(s + ε)1−2α − (1 + ε)1−2α

2α − 1
dμ(s),

and for x ∈ (−1, 0),
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uε(x) =
(

(|x| + ε)1−2α − (1 + ε)1−2α

2α − 1

)⎛⎜⎝ε2αK−
ε +

∫
(x,0)

dμ −
0∫

x

|uε(s)|p−1uε(s)ds

⎞⎟⎠
−

x∫
−1

|uε(s)|p−1uε(s)

(
(|s| + ε)1−2α − (1 + ε)1−2α

2α − 1

)
ds

+
∫

(−1,x]

(|s| + ε)1−2α − (1 + ε)1−2α

2α − 1
dμ(s).

By the relations uε(0+) = uε(0−) and ε2αK+
ε − ε2αK−

ε = −μ ({0}), we have

ε2αK+
ε = −1

2
μ({0}) −

∫ 1
−1(sign s)|uε(s)|p−1uε(s)

[
(|s| + ε)1−2α − (1 + ε)1−2α

]
ds

2
[
ε1−2α − (1 + ε)1−2α

]
+

∫
(−1,0)∪(0,1)

(sign s)
[
(|s| + ε)1−2α − (1 + ε)1−2α

]
dμ(s)

2
[
ε1−2α − (1 + ε)1−2α

] ,

and

ε2αK−
ε = 1

2
μ({0}) −

∫ 1
−1(sign s)|uε(s)|p−1uε(s)

[
(|s| + ε)1−2α − (1 + ε)1−2α

]
ds

2
[
ε1−2α − (1 + ε)1−2α

]
+

∫
(−1,0)∪(0,1)

(sign s)
[
(|s| + ε)1−2α − (1 + ε)1−2α

]
dμ(s)

2
[
ε1−2α − (1 + ε)1−2α

] .

It is easy to check that 
∣∣ε2αK+

ε

∣∣ ≤ 3
2 ‖μ‖M and 

∣∣ε2αK−
ε

∣∣ ≤ 3
2 ‖μ‖M since ‖uε‖p

Lp ≤ ‖μ‖M. Therefore, we obtain 
that ∥∥∥(|x| + ε)2α−1 uε

∥∥∥
W 1,1(−1,1)

+
∥∥∥(|x| + ε)2αu′

ε

∥∥∥
BV (−1,1)

≤ C, (4.7)

where C is independent of ε. It follows that (4.3) and (4.6) hold for a subsequence 
{
uεn

}∞
n=1.

If 1 < p < 1
2α−1 , there exists θ ∈

(
p, 1

2α−1

)
such that ‖uε‖Lθ (−1,1) ≤ C. Thus the sequence 

{|uεn |p−1uεn

}∞
n=1 is 

equi-integrable and |uεn |p−1uεn → |u|p−1u in L1(−1, 1). Passing to the limit as n → ∞ in (4.1), we obtain

1∫
−1

|x|2αu′v′dx +
1∫

−1

|u|p−1uvdx =
1∫

−1

vdμ, ∀v ∈ C1
0 [−1,1].

The same argument as in the proof of Theorem 5.1 in [23] implies that

− lim
ε→0

ε2αK+
ε = lim

ε→0
ε2αK−

ε = 1

2
μ({0})

and

lim
x→0+ |x|2α−1u(x) = lim

x→0− |x|2α−1u(x) = 1

2(2α − 1)
μ ({0}) .

Therefore, u is the good solution.
If p ≥ 1

2α−1 , a consequence of (4.7) is that uεn → u uniformly on any closed interval I ⊂ [−1, 1]\ {0}. Passing to 
the limit as n → ∞ in (4.1), we obtain

1∫
|x|2αu′v′dx +

1∫
|u|p−1uvdx =

1∫
vdμ, ∀v ∈ C1

c ((−1,1)\ {0}).

−1 −1 −1
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Since ‖uε‖p
Lp ≤ ‖μ‖M, Fatou’s lemma yields u ∈ Lp(−1, 1). The same argument as in the proof of Lemma 3.7

implies that u is the solution of (1.9). The uniqueness of the solution and the uniqueness of the limit imply that (4.3)
and (4.6) hold for the family {uε}ε>0. �

We omit the proof for the case α ≥ 1 of Theorem 4.1 since it is the same as the proof for the case 1
2 < α < 1 and 

p ≥ 1
2α−1 .

If we assume the data to be L1, we have a further result about the mode of convergence.

Theorem 4.2. For α ≥ 1
2 and μ ∈ L1(−1, 1), the mode of convergence in (4.5) and (4.6) can be improved as(

1 + ln
1

|x| + ε

)−1

uε →
(

1 + ln
1

|x|
)−1

u in C0[−1,1], if α = 1

2
, (4.8)

and

(|x| + ε)2α−1 uε → |x|2α−1u in C0[−1,1], if α >
1

2
. (4.9)

To prove Theorem 4.2, one can just perform the same argument as the proof of Theorem 5.2 in [23]. We omit the 
detail.

As we indicated in the previous section, the following is the

Proof of (iii) of Theorem 1.2 and proof of (ii) of Theorem 1.3. For μ, μ̂ ∈ M(−1, 1), denote by uε and ûε their 
corresponding solution of (1.8). From (4.1) we have

1∫
−1

(|x| + ε)2α(uε − ûε)
′v′dx +

1∫
−1

(|uε |p−1uε − |ûε |p−1ûε)vdx

=
1∫

−1

vd(μ − μ̂), ∀v ∈ H 1
0 (−1,1).

Take v = ϕn

(
uε − ûε

)
, where ϕn is the smooth approximation of either signx or (signx)+. We obtain∥∥∥|uε |p−1uε − |ûε |p−1ûε

∥∥∥
L1

≤ ∥∥μ − μ̂
∥∥
M ,

and ∥∥∥∥(|uε |p−1uε − |ûε |p−1ûε

)+∥∥∥∥
L1

≤
∥∥∥(μ − μ̂

)+∥∥∥
M

.

Then Fatou’s lemma yields the desired result. �
5. The approximation via truncation

In this section, we consider the approximation scheme via the truncated problem (1.11). As we mentioned in the 
introduction, the following lemma ensures the sequence {un}∞n=1 is well-defined.

Lemma 5.1. Fix p > 1 and n ∈ N. When 0 < α < 1, for each μ ∈ M(−1, 1), Eq. (1.11) has a unique good solution 
un. When α ≥ 1, for each μ ∈M(−1, 1), Eq. (1.11) has a unique solution un if and only if μ ({0}) = 0. Moreover, for 
both cases, 

∥∥gp,n(un)
∥∥

L1 ≤ ‖μ‖M and 
∥∥(|x|2αu′

n)
′∥∥
M ≤ 2 ‖μ‖M.

Proof. For μ ∈M(−1, 1), take fm = ρm ∗ μ, where ρm is specified in Lemma 3.6. Then fm
∗
⇀ μ in (C0[−1,1])∗ as 

m → ∞. For fixed m ∈N, the same argument as in the proof of Proposition 3.1 implies that there exists un,m ∈ D(Aα)

such that
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1∫
−1

|x|2αu′
n,mζ ′dx +

1∫
−1

gp,n(un,m)ζdx =
1∫

−1

fmζdx, ∀ζ ∈ C1
0 [−1,1]. (5.1)

Moreover,∥∥gp,n(un,m)
∥∥

L1 ≤ ‖fm‖L1 ≤ ‖μ‖M ,∥∥∥(|x|2αu′
n,m)′

∥∥∥
L1

≤ 2‖fm‖L1 ≤ 2‖μ‖M .

If 0 < α < 1
2 , then 

{
un,m

}∞
m=1 is a bounded sequence in W 1,q(−1, 1) for 1 < q < 1

2α
. Thus, passing to the limit as 

m → ∞ in (5.1), we obtain

1∫
−1

|x|2αu′
nζ

′dx +
1∫

−1

gp,n(un)ζdx =
1∫

−1

ζdμ, ∀ζ ∈ C1
0 [−1,1], (5.2)

where un ∈ W 1,1(−1, 1), 
∥∥gp,n(un)

∥∥
L1 ≤ ‖μ‖M and 

∥∥(|x|2αu′
n)

′∥∥
M ≤ 2 ‖μ‖M.

If 1
2 ≤ α < 1, as m → ∞, we obtain |x|2αu′

n,m → |x|2αu′
n and |x|2α−1un,m → |x|2α−1un in Lr(−1, 1), ∀r < ∞. 

Then the Dominated Convergence Theorem implies that gp,n(un,m) → gp,n(un) in L1(−1, 1). We again obtain (5.2). 
The same as the proof of Theorem 1.2, we can check that

lim
x→0+

(
1 + ln

1

|x|
)−1

un(x) = lim
x→0−

(
1 + ln

1

|x|
)−1

un(x) = 1

2
μ({0}) , if α = 1

2
,

lim
x→0+ |x|2α−1un(x) = lim

x→0− |x|2α−1un(x) = 1

2(2α − 1)
μ ({0}) , if

1

2
< α < 1.

Therefore, un is a good solution of (1.11) such that 
∥∥gp,n(un)

∥∥
L1 ≤ ‖μ‖M and 

∥∥(|x|2αu′
n)

′∥∥
M ≤ 2 ‖μ‖M.

If α ≥ 1, as m → ∞, we obtain |x|2αu′
n,m → |x|2αu′

n in Lr(−1, 1), ∀r < ∞, and un,m → un uniformly on any 
closed interval I ⊂ [−1, 1]\ {0}. Passing to the limit as m → ∞, we have 

∥∥gp,n(un)
∥∥

L1 ≤ ‖μ‖M and

1∫
−1

|x|2αu′
nζ

′dx +
1∫

−1

gp,n(un)ζdx =
1∫

−1

ζdμ, ∀ζ ∈ C1
c ((−1,1)\ {0}) .

The same as the proof of Theorem 1.4 in [23], we have that un is a solution of (1.11) if and only if μ ({0}) = 0. If un

is a solution, it clearly satisfies 
∥∥gp,n(un)

∥∥
L1 ≤ ‖μ‖M and 

∥∥(|x|2αu′
n)

′∥∥
M ≤ 2 ‖μ‖M.

We now proof the uniqueness. Assume that u(1)
n and u(2)

n are two solutions of (1.11) corresponding to μ. Then 
u

(1)
n − u

(2)
n ∈ D(Aα) and

−(|x|2α(u(1)
n − u(2)

n )′)′ + gp,n(u
(1)
n ) − gp,n(u

(2)
n ) = 0.

Assertion (iv) of Proposition 2.3 implies that

−
1∫

−1

(|x|2α(u(1)
n − u(2)

n )′)′ sign(u(1)
n − u(2)

n )dx ≥ 0.

Therefore, gp,n(u
(1)
n ) = gp,n(u

(2)
n ) and u(1)

n = u
(2)
n a.e. �

We now prove Theorems 1.6, 1.7 and 1.8. Actually, we will prove the following result with a more accurate mode 
of convergence.

Theorem 5.2. As n → ∞, we have

|x|2αu′
n → |x|2αu′ in Lr(−1,1), ∀r < ∞. (5.3)
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Moreover,

un → u in C0[−1,1], if 0 < α <
1

2
, (5.4)(

1 + ln
1

|x|
)−1

un →
(

1 + ln
1

|x|
)−1

u in Lr(−1,1), ∀r < ∞, if α = 1

2
, (5.5)

|x|2α−1un → |x|2α−1u in Lr(−1,1), ∀r < ∞, if α >
1

2
. (5.6)

Here u is the unique good solution of (1.1) if α and p satisfy (1.4) or (1.5); u is the unique solution of (1.9) if α and 
p satisfy (1.6) or (1.7).

Proof. Assume 0 < α < 1
2 . We obtain that the sequence {un}∞n=1 is bounded in W 1,q(−1, 1) for 1 < q < 1

2α
. Hence, 

there exists a subsequence such that

(i) unk
→ u in C[−1, 1],

(ii) gp,nk
(unk

) → |u|p−1u in L1(−1, 1),
(iii) |x|2αu′

nk
→ |x|2αu′ in Lr(−1, 1), ∀r < ∞.

Passing to the limit as nk → ∞, we obtain that

1∫
−1

|x|2αu′ζ ′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

ζdμ, ∀ζ ∈ C1
0 [−1,1].

Thus, u is the good solution of (1.1).
Assume α = 1

2 . Denote K+ = lim
x→0+ |x|u′

n(x) and K− = lim
x→0− |x|u′

n(x). Integration by parts yields, for x ∈ (0, 1),

un(x) =
(

ln
1

x

)⎛⎜⎝−K+ +
∫

(0,x)

dμ −
x∫

0

gp,n(un(s))ds

⎞⎟⎠
−

1∫
x

gp,n(un(s)) ln
1

s
ds +

∫
[x,1)

ln
1

s
dμ(s),

and for x ∈ (0, 1),

un(x) =
(

ln
1

|x|
)⎛⎜⎝K− +

∫
(x,0)

dμ −
0∫

x

gp,n(un(s))ds

⎞⎟⎠
−

x∫
−1

gp,n(un(s)) ln
1

|s|ds +
∫

(−1,x]
ln

1

|s|dμ(s).

One can check that

lim
x→0+

(
1 + ln

1

|x|
)−1

un(x) = −K+,

lim
x→0−

(
1 + ln

1

|x|
)−1

un(x) = K−.

Since un is a good solution, then K+ +K− = 0. On the other hand, K− −K+ = μ ({0}). Therefore, K+ = − 1
2μ ({0})

and K− = 1μ ({0}). Furthermore, a direct computation yields that
2
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∥∥∥∥∥
(

1 + ln
1

|x|
)−1

un

∥∥∥∥∥
W 1,1

+ ∥∥|x|u′
n

∥∥
BV

≤ C,

where C is independent of n. It implies that (5.3) and (5.5) hold for a subsequence 
{
unk

}∞
k=1. As a result, the sequence {

gp,nk
(unk

)
}∞
k=1 is equi-integrable and gp,nk

(unk
) → |u|p−1u in L1(−1, 1). Passing to the limit as nk → ∞, we obtain 

that
1∫

−1

|x|u′ζ ′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

ζdμ, ∀ζ ∈ C1
0 [−1,1].

Moreover, we can check that

lim
x→0+

(
1 + ln

1

|x|
)−1

u(x) = lim
x→0+ lim

k→∞

(
1 + ln

1

|x|
)−1

unk
(x) = −K+ = 1

2
μ({0}) ,

lim
x→0−

(
1 + ln

1

|x|
)−1

u(x) = lim
x→0− lim

k→∞

(
1 + ln

1

|x|
)−1

unk
(x) = K− = 1

2
μ({0}) .

Thus, u is the good solution of (1.1).
Assume α > 1

2 . Denote K+ = lim
x→0+ |x|2αu′

n(x) and K− = lim
x→0− |x|2αu′

n(x). Integration by parts yields, for 

x ∈ (0,1),

un(x) = x1−2α − 1

2α − 1

⎛⎜⎝−K+ +
∫

(0,x)

dμ −
x∫

0

gp,n(un(s))ds

⎞⎟⎠
−

1∫
x

s1−2α − 1

2α − 1
gp,n(un(s))ds +

∫
[x,1)

s1−2α − 1

2α − 1
dμ(s),

and for x ∈ (−1, 0),

un(x) = |x|1−2α − 1

2α − 1

⎛⎜⎝K− +
∫

(x,0)

dμ −
0∫

x

gp,n(un(s))ds

⎞⎟⎠
−

x∫
−1

|s|1−2α − 1

2α − 1
gp,n(un(s))ds +

∫
(−1,x]

|s|1−2α − 1

2α − 1
dμ(s).

One can check that

lim
x→0+ |x|2α−1un(x) = − K+

2α − 1
,

lim
x→0− |x|2α−1un(x) = K−

2α − 1
.

When 1
2 < α < 1, since un is the good solution, we have K+ + K− = 0. On the other hand, K− − K+ = μ ({0}). 

Thus K+ = − 1
2μ ({0}) and K− = 1

2μ ({0}). When α ≥ 1, the fact that un ∈ L1(−1, 1) implies that K+ = K− = 0. 
For either case, we have∥∥∥|x|2α−1un

∥∥∥
W 1,1

+
∥∥∥|x|2αu′

n

∥∥∥
BV

≤ C,

where C is independent of n. It implies that (5.3) and (5.6) hold for a subsequence 
{
unk

}∞
k=1.

If α and p satisfy (1.5), it implies that 
{
gp,nk

(unk
)
}∞
n=1 is equi-integrable. Therefore gp,nk

(unk
) → |u|p−1u in 

L1(−1, 1). Passing to the limit as nk → ∞, we obtain that
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1∫
−1

|x|2αu′ζ ′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

ζdμ, ∀ζ ∈ C1
0 [−1,1].

Moreover, we can check that

lim
x→0+ |x|2α−1u(x) = lim

x→0+ lim
k→∞|x|2α−1unk

(x) = − 1

2α − 1
K+ = 1

2(2α − 1)
μ ({0}) ,

lim
x→0− |x|2α−1u(x) = lim

x→0− lim
k→∞|x|2α−1unk

(x) = 1

2α − 1
K− = 1

2(2α − 1)
μ ({0}) .

Thus, u is the good solution of (1.1).
If α and p satisfy (1.6) or (1.7), we obtain that unk

→ u uniformly on any closed interval I ⊂ [−1, 1]\ {0}. There-
fore,

1∫
−1

|x|2αu′ζ ′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

ζdμ, ∀ζ ∈ C1
c ((−1,1)\ {0}).

The same argument as in the proof of Lemma 3.7 implies that u is the solution of (1.9).
For all the above cases, the uniqueness of the limit implies that (5.3)–(5.6) hold for the whole sequence 

{un}∞n=1. �
If we assume the data to be L1, we have a further result about the mode of convergence.

Theorem 5.3. For α ≥ 1
2 and μ ∈ L1(−1, 1), the mode of convergence in (5.5) and (5.6) can be improved as(

1 + ln
1

|x|
)−1

un →
(

1 + ln
1

|x|
)−1

u in C0[−1,1], if α = 1

2
,

|x|2α−1un → |x|2α−1u in C0[−1,1], if α >
1

2
.

The proof of Theorem 5.3 is just the same as the one of Theorem 5.2 in [23], except some obvious modifications 
due to the nonlinear term. We omit the detail.

Remark 5.1. The choice of gp,n can be more general than the one given by (1.10). In fact, assume that gp,n satisfies

(i) gp,n ∈ C(R), nondecreasing,
(ii) 0 ≤ gp,1(t) ≤ gp,2(t) ≤ · · · ≤ |t |p−1t , for t ∈ (0, ∞),

(iii) |t |p−1t ≤ · · ·gp,2(t) ≤ gp,1(t) ≤ 0, for t ∈ (−∞, 0),
(iv) gp,n(t) → |t |p−1t , as n → ∞,
(v) for each p > 1 and n ∈N, there exist constants C = C(p, n) > 0 and M = M(p, n) > 0 such that{ |gp,n(t)| ≤ C|t |, for |t | ∈ (M,∞), if 0 < α < 1,

|gp,n(t)| = C|t |, for |t | ∈ (M,∞), if α ≥ 1.

Then all the results in this section still hold and the proof remains the same.

6. The lack of stability of the good solution for 1
2 ≤ α < 1 and 1 < p < 1

2α−1

This section is devoted to the question of stability of the solution with respect to the perturbation of the measure 
μ under the weak-star topology. Recall that Lemma 3.3 implies that when 0 < α < 1

2 and p > 1 the unique good 
solution is stable. Lemma 3.7 implies that when α and p satisfy (1.6) or (1.7) and μ ({0}) = 0, the unique solution is 
stable. Therefore, we only investigate the stability of the good solution when 1

2 ≤ α < 1 and 1 < p < 1
2α−1 . In this 

case, as we pointed out in Remark 1.4, the stability of the good solution fails.
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Assume 1
2 ≤ α < 1 and 1 < p < 1

2α−1 . Given μ ∈ M(−1, 1), there exists a sequence {fn}∞n=1 ⊂ L1(−1, 1) such 

that fn
∗
⇀ μ in (C0[−1, 1])∗. Let un be the unique good solution of the following equation{−(|x|2αu′

n)
′ + |un|p−1un = fn on (−1,1),

un(−1) = un(1) = 0.
(6.1)

By Proposition 3.1, we know that un ∈ D(Aα) ∩ Lp(−1, 1) and

1∫
−1

|x|2αu′
nζ

′dx +
1∫

−1

|un|p−1unζdx =
1∫

−1

fnζdx, ∀ζ ∈ C1
0 [−1,1]. (6.2)

The limiting behavior of the sequence {un}∞n=1 is sensitive to the choice for the sequence {fn}∞n=1.

Theorem 6.1. Assume that 1
2 ≤ α < 1 and 1 < p < 1

2α−1 . Take ρ ∈ C(R) such that suppρ = [−1, 1], ρ(x) = ρ(−x)

and ρ ≥ 0. Let C−1 = ∫
ρ and ρn(x) = Cnρ(nx). For fixed τ ∈ R, take

fn = μ ∗ ρn + τ (Cnρ(nx − 1) − Cnρ(nx + 1)) . (6.3)

Then fn
∗
⇀ μ in (C0[−1, 1])∗. Let un be the unique good solution of (6.1). Then as n → ∞, we have(

1 + ln
1

|x|
)−1

un →
(

1 + ln
1

|x|
)−1

u in Lr(−1,1), ∀r < ∞, if α = 1

2
, (6.4)

|x|2α−1un → |x|2α−1u in Lr(−1,1), ∀r < ∞, if
1

2
< α < 1, (6.5)

where u is a solution of (1.1) such that, if α = 1
2 ,⎧⎪⎪⎨⎪⎪⎩

lim
x→0+

(
1 + ln 1

|x|
)−1

u(x) = − lim
x→0+ |x|u′(x) = 1

2μ({0}) + τ,

lim
x→0−

(
1 + ln 1

|x|
)−1

u(x) = lim
x→0− |x|u′(x) = 1

2μ({0}) − τ,

(6.6)

and if 1
2 < α < 1,⎧⎪⎨⎪⎩

lim
x→0+ |x|2α−1u(x) = − 1

2α−1 lim
x→0+ |x|2αu′(x) = μ({0})

2(2α−1)
+ τ

2α−1 ,

lim
x→0− |x|2α−1u(x) = 1

2α−1 lim
x→0− |x|2αu′(x) = μ({0})

2(2α−1)
− τ

2α−1 .
(6.7)

Remark 6.1. A straightforward consequence of Theorem 6.1 is that the limiting function u is the good solution if and 
only if τ = 0. This means that, in general, the stability of the good solution fails.

Proof of Theorem 6.1. Note that we already have (3.3)–(3.8) by Lemmas 3.4 and 3.5. Also note that since unk
is the 

good solution of (6.1), we have

|x|2αu′
nk

(x) =
x∫

0

(
|unk

(s)|p−1unk
(s) − fnk

(s)
)

ds, ∀x ∈ (−1,1).

Therefore,

lim
x→0+ |x|2αu′(x) = lim

x→0+ lim
k→∞|x|2αu′

nk
(x) = − lim

x→0+ lim
k→∞

x∫
fnk

(s)ds.
0
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Similarly,

lim
x→0− |x|2αu′(x) = lim

x→0− lim
k→∞

0∫
x

fnk
(s)ds.

Then taking into account (6.3), one can obtain (6.6) and (6.7). Finally, the uniqueness of the limit implies (6.4)
and (6.5). �

If μ ∈ L1(−1, 1) and the convergence is under the weak topology σ(L1, L∞), we can recover the stability of the 
good solution.

Theorem 6.2. Assume that 1
2 ≤ α < 1, 1 < p < 1

2α−1 and μ ∈ L1(−1, 1). Let the sequence {fn}∞n=1 ⊂ L1(−1, 1) be 
such that fn ⇀ μ weakly in σ(L1, L∞). Let un be the unique good solution of (6.1). Then as n → ∞, we have(

1 + ln
1

|x|
)−1

un →
(

1 + ln
1

|x|
)−1

u in C0[−1,1], if α = 1

2
, (6.8)

|x|2α−1un → |x|2α−1u in C0[−1,1], if
1

2
< α < 1, (6.9)

where u is the good solution of (1.1).

The proof of Theorem 6.2 is the same as the one of Theorem 6.2 in [23], except some obvious modifications due 
to the nonlinear term. We omit the detail.

7. The non-uniqueness for the cases (1.4) and (1.5)

Throughout this section, we assume that α and p satisfy (1.4) or (1.5). We present a complete description of all the 
solutions of (1.1). Note that if u is a solution of (1.1), then we have

lim
x→0+ |x|2αu′(x) − lim

x→0− |x|2αu′(x) = −μ({0}) .

On the other hand, we have

Theorem 7.1. Assume that α and p satisfy (1.4) or (1.5). For any τ ∈ R and any μ ∈M(−1, 1), there exists a unique 
solution u of (1.1) such that⎧⎨⎩

lim
x→0+ |x|2αu′(x) = τ,

lim
x→0− |x|2αu′(x) = τ + μ({0}) .

(7.1)

Proof. We first prove uniqueness. For any τ ∈R and any μ ∈M(−1, 1), assume that both u1 and u2 are solutions of 
(1.1) satisfying (7.1). Then

−(|x|2α(u1 − u2)
′)′ + |u1|p−1u1 − |u2|p−1u2 = 0,

and lim
x→0

|x|2α(u1 − u2)
′(x) = 0. When 0 < α < 1

2 , take φ ∈ C∞(R) such that φ(0) = 0, φ′ ≥ 0, φ > 0 on (0, +∞), 

φ < 0 on (−∞, 0), and φ = sign on R\(−1, 1). Since u1 − u2 ∈ W 1,1(0, 1), we have

1∫
0

(|x|2α(u1 − u2)
′)′φ(u1 − u2)dx = −

1∫
0

|x|2α((u1 − u2)
′)2φ′(u1 − u2)dx ≤ 0.

Therefore,
1∫
(|u1|p−1u1 − |u2|p−1u2)φ(u1 − u2)dx = 0.
0
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It implies that u1 = u2 a.e. on (0, 1). The same argument implies that u1 = u2 a.e. on (−1, 0). When 1
2 ≤ α < 1 and 

1 < p < 1
2α−1 , by Proposition 2.2, we have u1 − u2 ∈ D(Aα). Assertion (iv) of Proposition 2.3 implies that

1∫
−1

(|x|2α(u1 − u2)
′)′ sign(u1 − u2)dx ≤ 0.

Therefore, u1 = u2 a.e. on (−1, 1).
Next we prove the existence when 0 < α < 1

2 and p > 1. We first claim that for every ν ∈ M(0, 1) and τ ∈ R, there 
exists v ∈ W 1,1(0, 1) such that x2αv′ ∈ BV (0, 1) and{−(x2αv′)′ + |v|p−1v = ν on (0,1),

v(1) = 0, lim
x→0+ x2αv′(x) = τ.

(7.2)

Indeed, define a nonlinear operator A : C[0, 1] → C[0, 1] as

Av(x) = 1 − x1−2α

1 − 2α

x∫
0

|v(s)|p−1v(s)ds +
1∫

x

|v(s)|p−1v(s)
1 − s1−2α

1 − 2α
ds

−
1∫

x

1

t2α

∫
(0,t)

dνdt + τ
1 − x1−2α

1 − 2α
.

It is clear that A is continuous. Take

Xα =
{
v ∈ H 1

loc(0,1); v ∈ L2(0,1), xαv′ ∈ L2(0,1), v(1) = 0
}

, (7.3)

with the norm

‖v‖Xα = ‖v‖L2 + ∥∥xαv′∥∥
L2 .

It is easy to check that Xα is compact in C[0, 1] and A (Xα) ⊂ Xα (see, e.g., [11]). Therefore, the Schauder Fixed 
Point Theorem implies that there exists a fixed point v ∈ Xα such that v = Av. This fixed point v is precisely a solution 
of (7.2).

For any μ ∈ M(−1, 1), take μ1 = μ|(0,1) and μ2 = μ|(−1,0). For any τ ∈ R, we deduce from the above claim 
that there exist u1 ∈ W 1,1(0, 1) and u2 ∈ W 1,1(−1, 0) such that x2αu′

1 ∈ BV (0, 1) and |x|2αu′
2 ∈ BV (−1, 0), which 

satisfy{−(x2αu′
1)

′ + |u1|p−1u1 = μ1 on (0,1),

u1(1) = 0, lim
x→0+ x2αu′

1(x) = τ,

and {−(|x|2αu′
2)

′ + |u2|p−1u2 = μ2 on (−1,0),

u2(−1) = 0, lim
x→0− |x|2αu′

2(x) = τ + μ({0}) .

Take

u =
{

u1 on (0,1),

u2 on (−1,0).

Then u is a solution of (1.1) satisfying (7.1).
When 1

2 ≤ α < 1 and 1 < p < 1
2α−1 , the existence of the solution of (1.1) with property (7.1) is a direct consequence 

of Theorem 6.1. �
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8. Removable singularity

In this section, we prove Theorem 1.9. The idea of the proof is the same as Brezis–Véron [10] and Brezis [5].

Lemma 8.1. Assume that α > 0, p > 1 and f ∈ L1(−1, 1). Let u ∈ L
p

loc((−1, 1)\{0}) be such that

−
1∫

−1

u(|x|2αζ ′)′dx +
1∫

−1

|u|p−1uζdx =
1∫

−1

f ζdx, ∀ζ ∈ C∞
c ((−1,1)\{0}).

Then u ∈ W
2,1
loc ((−1, 1)\{0}) and

−(|x|2αu′)′ + |u|p−1u = f on (a, b), ∀(a, b) ⊂⊂ (−1,1)\{0}.

The proof of Lemma 8.1 is standard.

Lemma 8.2. Assume that α > 0, p > 1 and f ∈ L1(−1, 1). Assume that u ∈ W
2,1
loc ((−1, 1)\{0}) and

−(|x|2αu′)′ + |u|p−1u = f on (a, b), ∀(a, b) ⊂⊂ (−1,1)\{0}.
Then

−
1∫

−1

u+(|x|2αζ ′)′dx +
1∫

−1

(u+)pζdx ≤
1∫

−1

f +ζdx, ∀ζ ∈ C∞
c ((−1,1)\{0}) and ζ ≥ 0. (8.1)

Proof. Denote Lu = (|x|2αu′)′. Fix an interval (a, b) ⊂⊂ (−1, 1)\{0}. We recall the following Kato’s inequality 
(Lemma A in [19]),

L|u| ≥ (Lu) signu in D′(a, b).

By the same argument as Lemma 1 of [10], we obtain

L(u+) ≥ (Lu) sign+ u in D′(a, b), (8.2)

where

sign+ x =
⎧⎨⎩

1 when x > 0,
1
2 when x = 0,

0 when x < 0.

Since Lu = |u|p−1u − f on (a, b), it implies that

L(u+) ≥ |u|p−1u sign+ u − f + = (u+)p − f + in D′(a, b).

Therefore

−
b∫

a

u+(|x|2αζ ′)′dx +
1∫

−1

(u+)pζdx ≤
1∫

−1

f +ζdx, ∀ζ ∈ C∞
c (a, b) and ζ ≥ 0.

Since (a, b) is arbitrary in (−1, 1)\{0}, we derived (8.1). �
Lemma 8.3 (Maximum principle). Let α > 0. Assume that (a, b) ⊂⊂ (−1, 1)\{0} and u ∈ L1(a, b) satisfying u ≥ 0
a.e., suppu ⊂⊂ (a, b) and

(|x|2αu′)′ ≥ 0 in D′(a, b).

Then u = 0 a.e. on (a, b).
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Proof. Assume suppu ⊂ ( ¯̄a, ¯̄b) ⊂⊂ (ā, b̄) ⊂⊂ (a, b). Take the positive smooth mollifiers ρn(x) = Cnρ(nx) where 

ρ(x) = χ[|x|<1]e
1

|x|2−1 and C−1 = ∫
ρ. Consider un = u ∗ ρn with n large enough such that 

(
ā − 1

n
, b̄ + 1

n

)
⊂ (a, b). 

Notice that un ≥ 0 and un ∈ C∞
c (a, b). We claim that

b∫
a

(|x|2αu′
n)

′ζdx ≥ 0, ∀ζ ∈ C∞
c (a, b) with ζ ≥ 0. (8.3)

Indeed, we have

b∫
a

(|x|2αu′
n)

′ζdx =
b∫

a

un(|x|2αζ ′)′dx

=
1
n∫

− 1
n

ρn(y)

⎛⎜⎝
¯̄b∫

¯̄a
u(z)(|z + y|2αζ ′(z + y))′dz

⎞⎟⎠dy.

It is enough to show

¯̄b∫
¯̄a

u(z)(|z + y|2αζ ′(z + y))′dz ≥ 0, ∀y ∈ (−1

n
,

1

n
), ∀ζ ∈ C∞

c (a, b) with ζ ≥ 0.

We already know

b∫
a

u(z)(|z|2αϕ′(z))′dz ≥ 0, ∀ϕ ∈ C∞
c (a, b) with ϕ ≥ 0.

Given y ∈ (− 1
n
, 1

n
) and ζ ∈ C∞

c (a, b) with ζ ≥ 0, define

ϕ̄(z) =
z∫

ā

|t + y|2α

|t |2α
ζ ′(t + y)dt +

b̄∫
ā

|t + y|2α

|t |2α
|ζ ′(t + y)|dt on [ā, b̄].

Take ϕ = ϕ̄h where h is the cut-off function such that h ∈ C∞
c (a, b), h ≥ 0, h ≡ 1 on ( ¯̄a, ¯̄b) and supph ⊂ (ā, b̄). Then 

ϕ ∈ C∞
c (a, b) with ϕ ≥ 0. Therefore

¯̄b∫
¯̄a

u(z)(|z + y|2αζ ′(z + y))′dz =
b∫

a

u(z)(|z|2αϕ′(z))′dz ≥ 0.

Thus we proved (8.3). It implies that (|x|2αu′
n)

′ ≥ 0 on (a, b). The standard Maximum Principle yields that un = 0. 
Since un → u in L1(a, b), we have u = 0 a.e. on (a, b). �
Lemma 8.4 (Keller–Osserman estimate). Assume that α > 0, p > 1 and f ∈ L1(−1, 1). Let u ∈ W

2,1
loc ((−1, 1)\{0})

be such that

−(|x|2αu′)′ + |u|p−1u = f on (a, b), ∀(a, b) ⊂⊂ (−1,1)\{0}.
Then

u(x) ≤ C(α,p)|x| 2α−2
p−1 + u0(x), ∀0 < |x| ≤ 1

, (8.4)

2
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where C(α, p) is a positive constant depending only on α and p, and u0 ∈ D(Aα) ∩ Lp(−1, 1) is the unique solution 
of {−(|x|2αu′

0)
′ + u

p

0 = |f | on (−1,1),

u0(−1) = u0(1) = 0.

Proof. We fix x0 such that 0 < |x0| ≤ 1
2 . Consider the interval

Ix0 =
(

x0 − |x0|
2

, x0 + |x0|
2

)
⊂⊂ (−1,1)\{0}.

Define

v(x) = λ

( |x0|2
4

− (x − x0)
2
)− 2

p−1

on Ix0 ,

where λ > 0 is a constant to be determined so that

−(|x|2αv′)′ + vp ≥ 0 on Ix0 . (8.5)

Indeed, we have

(|x|2αv′)′ = 4λ

p − 1

( |x0|2
4

− (x − x0)
2
)− 2

p−1 −2

× J

where

J = 2

(
2

p − 1
+ 1

)
(x − x0)

2|x|2α +
( |x0|2

4
− (x − x0)

2
)(

|x|2α + 2α(x − x0)|x|2α−1 signx
)

.

Since x ∈ Ix0 , we have |J | ≤ A(α)|x0|2α+2 where A(α) is a constant only depending on α. Notice that − 2
p−1 − 2 =

− 2p
p−1 . Therefore,

−(|x|2αv′)′ + vp ≥
(

−A(α)
4λ

p − 1
|x0|2α+2 + λp

)( |x0|2
4

− (x − x0)
2
)− 2p

p−1

.

Take λ such that

−A(α)
4λ

p − 1
|x0|2α+2 + λp = 0,

i.e.

λ =
(

4A(α)

p − 1
|x0|2α+2

) 1
p−1

.

Then the inequality (8.5) holds. Now take v̄ = v + u0 which satisfies

−(|x|2αv̄′)′ + v̄p ≥ |f | on Ix0 .

Denote Lu = (|x|2αu′)′. We have

L(u − v̄) ≥ |u|p−1u − v̄p on Ix0 .

Applying the revised Kato’s inequality (8.2), we obtain

L
(
(u − v̄)+

) ≥ (|u|p−1u − v̄p) sign+(u − v̄) ≥ 0 in D′(Ix0).

Notice that lim
x→∂Ix0

v̄(x) = +∞ and u ∈ L∞(Ix0). It follows that (u − v̄)+ = 0 near ∂Ix0 . Then Lemma 8.3 implies 

that (u − v̄)+ = 0 on Ix0 . In particular,
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u(x0) ≤ v̄(x0) =
(

1

4

)− 2
p−1

(
4A(α)

p − 1

) 1
p−1 |x0|

2α−2
p−1 + u0(x0).

Let C(α, p) =
(

1
4

)− 2
p−1

(
4A(α)
p−1

) 1
p−1

. Note that x0 is arbitrary in (0, 12 ], so we obtain (8.4). �
Lemma 8.5. Under the assumption of Theorem 1.9, we have u ∈ L

p

loc(−1, 1).

Proof. We first prove that u+ ∈ L
p

loc(−1, 1). Applying Lemmas 8.1 and 8.2, we find

−
1∫

−1

u+(|x|2αζ ′)′dx +
1∫

−1

(u+)pζdx ≤
1∫

−1

f +ζdx, ∀ζ ∈ C∞
c ((−1,1)\{0}) with ζ ≥ 0.

Take ϕ(x) ∈ C∞(R) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 0 on (− 1
2 , 12 ) and ϕ ≡ 1 on R\(−1, 1). Define ϕn(x) = ϕ(nx) ∈

C∞[−1, 1]. For any ζ ∈ C∞
c (−1, 1) with ζ ≥ 0, we have

1∫
−1

(u+)pϕnζdx ≤
1∫

−1

u+(|x|2α(ϕnζ )′)′dx +
1∫

−1

f +ϕnζdx.

Notice that

1∫
−1

u+(|x|2α(ϕnζ )′)′dx = 2αn

1
n∫

− 1
n

u+ signx|x|2α−1ϕ′(nx)ζdx + 2α

1∫
−1

u+ signx|x|2α−1ϕ(nx)ζ ′dx

+
1∫

−1

u+|x|2αϕnζ
′′dx + 2n

1
n∫

− 1
n

u+|x|2αϕ′(nx)ζ ′dx + n2

1
n∫

− 1
n

u+|x|2αϕ′′(nx)ζdx.

In view of Lemma 8.4 and Proposition 3.1, we know∥∥∥u+|x|2α−1
∥∥∥

L∞(− 1
2 , 1

2 )
+

∥∥∥nu+|x|2α
∥∥∥

L∞(− 1
n
, 1
n
)
≤ C,

where C is independent of n. Also notice that

1
n∫

− 1
n

n|ϕ′(nx)|dx =
1∫

−1

|ϕ′(x)|dx

and

1
n∫

− 1
n

n|ϕ′′(nx)|dx =
1∫

−1

|ϕ′′(x)|dx.

Therefore,

1∫
u+(|x|2α(ϕnζ )′)′dx ≤ C,
−1
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where C is independent of n. It implies that

1∫
−1

(u+)pϕnζdx ≤ C.

Passing to the limit as n → ∞, we have (u+)pζ ∈ L1(−1, 1). Hence, u+ ∈ L
p

loc(−1, 1). Similarly, u− ∈
L

p

loc(−1, 1). �
Proof of Theorem 1.9. Take ϕ(x) ∈ C∞(R) such that 0 ≤ ϕ ≤ 1, ϕ ≡ 0 on (− 1

2 , 12 ) and ϕ ≡ 1 on R\(−1, 1). Define 
ϕn(x) = ϕ(nx) ∈ C∞[−1, 1]. Then we have

−
1∫

−1

u(|x|2α(ϕnζ )′)′dx +
1∫

−1

|u|p−1uϕnζdx =
1∫

−1

f ϕnζdx, ∀ζ ∈ C∞
c (−1,1). (8.6)

Note that u ∈ L
p

loc(−1, 1) by Lemma 8.5. Passing to the limit as n → ∞ in (8.6), the same argument as in the proof 
of Lemma 3.7 implies (1.12). �
9. Classification of singularity

In this section, we prove Theorem 1.10. The proof combines ideas by Véron [20,21] and Brezis and Oswald [7].

Lemma 9.1. Assume that α > 0 and p ≥ 1. Let u ∈ C2(0, 1] satisfying (1.13). Then u cannot change signs, i.e., either 
u ≥ 0, or u ≤ 0 on (0, 1].

Proof. For a fixed t ∈ (0, 1), multiply (1.13) on both sides by u(x) and integrate by parts on the interval (t, 1). We 
obtain that

−1

2
t2α d

dt
(u2(t)) =

1∫
t

x2αu′(x)u′(x)dx +
1∫

t

|u(x)|p+1dx ≥ 0.

It implies that |u| is decreasing on (0, 1] and therefore changing sign is not permitted for u. �
Lemma 9.2. Assume that α > 0 and p > 1. Let u ∈ C2(0, 1] be such that u ≥ 0 and u satisfies (1.13). Let

v(r) =
(

1

1 − α

) 2
p−1

u
(
r

1
1−α

)
∈ C2(0,1]. (9.1)

Then v solves{
−v′′(r) −

(
α

1−α

)
1
r
v′(r) + vp(r) = 0 on (0,1),

v(1) = 0.
(9.2)

Moreover r
2

p−1 v(r) ∈ L∞(0, 1).

Proof. One can directly check that v solves (9.2). From Lemma 8.4, we have x
2−2α
p−1 u(x) ∈ L∞(0, 1). Therefore 

r
2

p−1 v(r) ∈ L∞(0, 1). �
Lemma 9.3. Assume that α and p satisfy (1.4) or (1.5). Assume that v ∈ C2(0, 1], v ≥ 0 and v solves (9.2). Denote

l̄p,α =
[(

2

p − 1

)(
2p

p − 1
− 1

1 − α

)] 1
p−1

. (9.3)

Then one of the following assertions holds.
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(i) lim
r→0+ r

2
p−1 v(r) = l̄p,α .

(ii) lim
r→0+ r

2
p−1 v(r) = 0.

Moreover, if v satisfies (i), then∣∣∣v(r) − l̄p,αr
− 2

p−1

∣∣∣ ≤ l̄p,αr
2p

p−1 − 1
1−α , ∀r ∈ (0,1]. (9.4)

Proof. Write l̄−1
p,αr

2
p−1 v(r) = φ(x) where x = r

2(p+1)
p−1 − 1

1−α . It is easy to obtain that φ(x) ∈ L∞(0, 1) and it solves⎧⎨⎩x2φ′′(x) = l̄
p−1
p,α(

2(p+1)
p−1 − 1

1−α

)2 (φp(x) − φ(x)) on (0,1),

φ(1) = 0.

We claim that 0 ≤ φ(x) ≤ 1. Indeed, if φ(x0) > 1 for some x0 ∈ (0, 1), then φ is convex and increasing on (0, x0). 
Therefore φ′′(x) ≥ c

x2 on (0, x0), and thus φ(x) ≥ c̃ − c lnx, which contradicts φ ∈ L∞(0, 1). Hence 0 ≤ φ(x) ≤ 1.
As a result, φ is concave and lim

x→0+ φ(x) exists. If 0 < lim
x→0+ φ(x) < 1, then φ′′(x) ≤ − c

x2 for x near 0, and thus 

φ(x) ≤ −c̃ + c lnx, which again contradicts φ ∈ L∞(0, 1). Therefore either lim
x→0+ φ(x) = 1 or lim

x→0+ φ(x) = 0. If 

lim
x→0+ φ(x) = 1, since φ is concave, it implies that 1 ≥ φ(x) ≥ 1 − x, ∀x ∈ (0, 1], which is precisely (9.4). �

Lemma 9.4. Assume that 1
2 < α < 1 and 1 < p < 1

2α−1 . Assume that v ∈ C2(0, 1], v ≥ 0 and v solves (9.2). If 

lim
r→0+ r

2
p−1 v(r) = 0, then there exists ε0 > 0 such that r

2
p−1 −ε0v(r) ∈ L∞(0, 1).

In order to prove Lemma 9.4, we need the following lemma from [21], which is originally due to Chen, Matano 
and Véron [13].

Lemma 9.5. (See Lemma 2.1 on p. 67 of [21].) Let y(t) ∈ C[0, ∞) be such that y ≥ 0 and

(i) lim
t→∞y(t) = 0,

(ii) lim sup
t→∞

eεty(t) = +∞, ∀ε > 0.

Then there exists η ∈ C∞[0, ∞) such that

(i) η > 0, η′ < 0, lim
t→∞η(t) = 0,

(ii) lim
t→∞ eεtη(t) = +∞, ∀ε > 0,

(iii) 0 < lim sup
t→∞

y(t)
η(t)

< ∞,

(iv)
(

η′
η

)′
, 
(

η′
η

)′′ ∈ L1(0, ∞),

(v) lim
t→∞

η′(t)
η(t)

= lim
t→∞

η′′(t)
η(t)

= 0.

Proof of Lemma 9.4. Write v(r) = r
− 2

p−1 y(t) where t = ln 1
r

and t ∈ [0, ∞). Denote β = 2(p+1)
p−1 − 1

1−α
. Then 

y(t) ∈ C2[0, ∞), lim
t→∞y(t) = 0 and y(t) solves

{
y′′(t) + βy′(t) + l̄

p−1
p,α y(t) − yp(t) = 0 on (0,∞),
y(0) = 0.
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Assume lim sup
t→∞

eεty(t) = +∞, ∀ε > 0. Denote w(t) = y(t)
η(t)

where η is given by Lemma 9.5. Then w ∈ L∞(0, ∞) ∩
C2[0, ∞) and w satisfies

w′′(t) +
(

β + 2
η′(t)
η(t)

)
w′(t) = f (t) on (0,∞), (9.5)

where

f (t) = ηp−1(t)wp(t) −
(

l̄
p−1
p,α + η′′(t)

η(t)
+ β

η′(t)
η(t)

)
w(t) ∈ L∞(0,∞).

We claim that

lim
t→∞w′(t) = lim

t→∞w′′(t) = 0. (9.6)

We only show lim
t→∞w′(t) = 0 since one can show the other part of (9.6) by the same idea. To show lim

t→∞w′(t) = 0, 

it is enough to obtain that w′ is uniformly continuous and w′ ∈ L2(0, ∞). To do so, we first need w′ ∈ L∞(0, ∞). 
Indeed, from (9.5) we obtain

(η2(t)eβtw′(t))′ = η2(t)eβtf (t).

That is,

w′(t) =
∫ t

0 η2(s)eβsf (s)ds

eβtη2(t)
+ w′(0)η2(0)

eβtη2(t)
.

Note that the Mean Value Theorem yields∫ t

0 η2(s)eβsf (s)ds

eβtη2(t) − η2(0)
= η2(ξ)eβξ f (ξ)

βeβξη2(ξ) + 2eβξη′(ξ)η(ξ)
, (9.7)

where ξ ∈ (0, t) and ξ depends on t . One can check that the right hand side of (9.7) is in L∞(0, ∞). Therefore 
w′ ∈ L∞(0, ∞). As a consequence, w is uniformly continuous. To show the uniform continuity of w′, note that (9.5)
implies(

w′(t) +
(

β + 2
η′(t)
η(t)

)
w(t)

)′
= f (t) + 2

(
η′(t)
η(t)

)′
w(t). (9.8)

One can check that the right hand side of (9.8) is in L∞(0, ∞). Therefore w′(t) +
(
β + 2 η′(t)

η(t)

)
w(t) is uniformly 

continuous and so is w′. Now, multiplying (9.5) by w′(t), we obtain(
β + 2

η′(t)
η(t)

)
(w′(t))2

= −1

2

d

dt
(w′(t))2 − 1

2

d

dt

[(
l̄
p−1
p,α + η′′(t)

η(t)
+ β

η′(t)
η(t)

)
w2(t)

]
+ 1

2

(
η′′(t)
η(t)

+ β
η′(t)
η(t)

)′
w2(t) + d

dt

(
ηp−1(t)wp+1(t)

p + 1

)
− p − 1

p + 1
ηp−2(t)η′(t)wp+1(t).

Notice that ηp−2η′wp+1 ∈ L1(0, ∞) since

n∫
0

∣∣∣ηp−2(s)η′(s)wp+1(s)

∣∣∣ds ≤
∣∣∣wp+1(ξ)

∣∣∣ ∣∣∣ηp−1(0) − ηp−1(n)

∣∣∣ ≤ 2‖w‖p+1
L∞ ‖η‖p−1

L∞ ,

where n is any integer, ξ ∈ (0, n) and the choice of ξ depends on n. By Lemma 9.5, there exists tn → ∞ such that 
lim

n→∞w(tn) = θ > 0. Since w′ ∈ L∞(0, ∞), without loss of generality, one can assume that lim
n→∞w′(tn) exists. As a 

result, we obtain that lim
∫ tn

0 (w′(t))2dt exists. Therefore w′ ∈ L2(0, ∞).

n→∞
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Note that (9.5) and (9.6) imply lim
t→∞w(t) = 0, which is a contradiction with lim

n→∞w(tn) = θ > 0. Hence, there 

exists ε0 > 0 such that eε0t y(t) ∈ L∞(0, ∞), i.e., r
2

p−1 −ε0v(r) ∈ L∞(0, 1). �
Lemma 9.6. Assume that 1

2 < α < 1 and 1 < p < 1
2α−1 . Assume that v ∈ C2(0, 1], v ≥ 0 and v solves (9.2). If 

r
2α−1
1−α v(r) /∈ L∞(0, 1), then rθv(r) /∈ L∞(0, 1), ∀θ < 2

p−1 .

Proof. Fix k ∈
[

2α−1
1−α

, 2
p−1

)
. Write v(r) = Mr−kh(s) where s = rj

j
with j = 2k − 2α−1

1−α
> 0 and M is a positive 

constant such that Mp−1j
2−k(p−1)

j
−2 = 1. Then h(s) ∈ C2(0, 1/j ], h ≥ 0 and h solves{

h′′(s) = s
2−k(p−1)

j
−2

hp(s) − k
(
k − 2α−1

1−α

)
j−2s−2h(s) on (0,1/j),

h(1/j) = 0.

Integrating the above equation, we obtain, for s ∈ (0, 1/j),

h(s) + k

(
k − 2α − 1

1 − α

)
j−2

1/j∫
s

t−2h(t)(t − s)dt = −h′(1/j)(1/j − s) +
1/j∫
s

t
2−k(p−1)

j
−2

hp(t)(t − s)dt.

Therefore,

∣∣h(s) + h′(1/j)(1/j − s)
∣∣ ≤

1/j∫
s

t
2−k(p−1)

2j hp(t)t
2−k(p−1)

2j
−1

dt.

Assume rkv(r) /∈ L∞(0, 1). Then h(s) /∈ L∞(0, 1/j). The above inequality then implies that

s
2−k(p−1)

2j hp(s) /∈ L∞(0,1/j).

The definition of h implies that rk+ 2−k(p−1)
2p v(r) /∈ L∞(0, 1). By induction, we obtain a sequence kn ∈

[
2α−1
1−α

, 2
p−1

)
such that rknv(r) /∈ L∞(0, 1), ∀n ∈N, k0 = 2α−1

1−α
and

kn = kn−1 + 2 − kn−1(p − 1)

2p
.

That is,

kn = 2

p − 1
−

(
p + 1

2p

)n (
2

p − 1
− 2α − 1

1 − α

)
.

Therefore, rθv(r) /∈ L∞(0, 1), ∀θ < 2
p−1 . �

Lemma 9.7. Assume that 1
2 ≤ α < 1 and 1 < p < 1

2α−1 . Let u ∈ C2(0, 1] be such that u ≥ 0, u
Eα

/∈ L∞(0, 1) and u

solves (1.13), where Eα is defined by (1.15). Then lim
x→0+ x

2(1−α)
p−1 u(x) = lp,α .

Proof. Since u
Eα

/∈ L∞, it implies

lim sup
x→0+

u(x)

Eα(x)
= +∞.

Consider v defined by (9.1). We have that

lim sup
+

v(r)

I (r)
= +∞,
r→0 α
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where

Iα(r) =
{

ln 1
r
, if α = 1

2 ,

r− 2α−1
1−α , if 1

2 < α < 1.

It is then equivalent to show that

lim
r→0+ r

2
p−1 v(r) = l̄p,α, (9.9)

where l̄p,α is given by (9.3). If α = 1
2 , one can check that v is the radially symmetric and positive solution of the 

following equation{−	v + vp = 0 on B1\ {0} ,

v = 0 on ∂B1,

where B1 ⊂ R
2 is the unit ball centered at the origin. Then Theorem 4.1 by Véron [20] implies (9.9). If 1

2 < α < 1, 
Lemmas 9.3, 9.4 and 9.6 imply (9.9). �
Lemma 9.8. Assume that 1

2 ≤ α < 1 and 1 < p < 1
2α−1 . Let u ∈ C2(0, 1] be such that u ≥ 0, u

Eα
∈ L∞(0, 1) and 

u solves (1.13), where Eα is defined by (1.15). Then its even extension ū(x) := u(|x|) is the good solution of the 
following equation{−(|x|2αū′)′ + ūp = c0δ0 on (−1,1),

ū(−1) = ū(1) = 0,
(9.10)

where c0 is some nonnegative constant.

Proof. We first claim that there is a sequence {an}∞n=1 ⊂ (0, 1) such that lim
n→∞an = 0 and that the sequence {

a2α
n u′(an)

}∞
n=1 is bounded. Otherwise, it means that lim

x→0+ x2αu′(x) = −∞ since u is non-increasing. Then for all 

M > 0, there exists aM ∈ (0, 1) such that lim
M→+∞aM = 0 and

u′(x) ≤ − M

x2α
, ∀x ∈ (0, aM).

It follows that

u(a2
M)

Eα(a2
M)

≥ M

2
, if α = 1

2
,

and

u(aM/2)

Eα(aM/2)
≥ M

2α − 1

[
1 −

(
1

2

)2α−1
]

, if
1

2
< α < 1,

which contradicts u
Eα

∈ L∞(0, 1). Therefore, such a sequence {an}∞n=1 exists. Without loss of generality, assume 

lim
n→∞a2α

n u′(an) = − c0
2 .

The assumptions u
Eα

∈ L∞(0, 1) and 1 < p < 1
2α−1 imply that u ∈ Lp(0, 1). For any ζ ∈ C1

0 [−1, 1], from (1.13)
one obtains

1∫
an

|x|2αu′ζ ′dx +
1∫

an

upζdx = −a2α
n u′(an)ζ(an).

Passing to the limit as n → ∞, it yields that x2αu′ ∈ L1(0, 1) and

1∫
|x|2αu′ζ ′dx +

1∫
upζdx = c0

2
ζ(0).
0 0
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A similar computation for ū yields that |x|2αū′ ∈ L1(−1, 1) and

1∫
−1

|x|2αū′ζ ′dx +
1∫

−1

ūpζdx = c0ζ(0), ∀ζ ∈ C1
0 [−1,1].

Thus |x|2αū′ ∈ BV (−1, 1). Denote lim
x→0+ |x|2αū′(x) = K+. We can check that

lim
x→0+

(
1 + ln

1

|x|
)−1

ū(x) = K+, if α = 1

2
,

lim
x→0+ |x|2α−1ū(x) = K+

2α − 1
, if

1

2
< α < 1.

Since ū is an even function, we have

lim
x→0+

(
1 + ln

1

|x|
)−1

ū(x) = lim
x→0−

(
1 + ln

1

|x|
)−1

ū(x), if α = 1

2
,

lim
x→0+ |x|2α−1ū(x) = lim

x→0− |x|2α−1ū(x), if
1

2
< α < 1.

Then we can conclude that ū is the good solution of (9.10). �
Proof of Theorem 1.10 for 0 < α < 1

2 . Lemma 9.1 implies that u does not change its sign. Therefore we only need 
to consider u ≥ 0 in (1.13).

We first prove the uniqueness. For solutions of type (ii), if there are two solutions u1 and u2 solving (1.13) with 
lim

x→0+ ui(x) = c, i = 1, 2, then

1∫
0

x2α((u1 − u2)
′)2φ′(u1 − u2)dx +

1∫
0

(u
p

1 − u
p

2 )φ(u1 − u2)dx = 0,

where φ ∈ C∞(R) such that φ(0) = 0, φ′ ≥ 0, φ > 0 on (0, ∞), φ < 0 on (−∞, 0), and φ = sign on R\(−1, 1). 
It follows that u1 = u2 on [0, 1]. For solutions of type (iii), if there are two solutions u1 and u2 solving (1.13) with 

lim
x→0+ x

2(1−α)
p−1 ui(x) = lp,α , i = 1, 2, then estimate (9.4) implies

|u1(x) − u2(x)| ≤ 2lp,αxσ0, ∀x ∈ (0,1],
for some σ0 > 0. Also notice that

−(x2α(u1(x) − u2(x))′)′ + c(x)(u1(x) − u2(x)) = 0 on (0,1),

where

c(x) =
⎧⎨⎩

u
p
1 (x)−u

p
2 (x)

u1(x)−u2(x)
, if u1(x) �= u2(x),

pu
p−1
1 (x), if u1(x) = u2(x).

It is easy to check that c ∈ C(0, 1] and c ≥ 0. A maximum principle on (ε, 1) implies

max
x∈(ε,1)

|u1(x) − u2(x)| ≤ |u1(ε) − u2(ε)| ≤ 2lp,αεσ0 .

Let ε → 0+ and then u1 = u2 on (0, 1).
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We now claim that, for u ≥ 0 satisfying (1.13), one of the following assertions holds.

(i) lim
x→0+ x

2(1−α)
p−1 u(x) = lp,α .

(ii) lim
x→0+ u(x) = c, for some c ≥ 0.

Indeed, denote

v(r) =
(

1 − 2α

1 − α

) p
p−1 + 3−4α

(p−1)(1−2α)

r
1−2α
1−α h

(
1 − α

1 − 2α
r− 1−2α

1−α

)
, (9.11)

where v is defined in (9.1). Then h(s) ∈ C2
[

1−α
1−2α

,∞
)

and h satisfies

h′′(s) = s−p−2− 1
1−2α hp(s) on

(
1 − α

1 − 2α
,∞

)
.

A result of Fowler (p. 288 in [16]) implies that, as s → ∞, either

h(s) =
[
(p(1 − 2α) + 1)(2 − 2α)

(p − 1)2(1 − 2α)

] 1
p−1

s
p(1−2α)+1

(p−1)(1−2α) (1 + o(1)),

or

h(s) = As + B + Ap(1 − 2α)2

2 − 2α
s− 1

1−2α (1 + o(1)),

for some constants A and B . Therefore, the relation (9.11) implies our claim.
We then show the existence of the uc and the u+∞. Consider the Hilbert space Xα given by (7.3). Note that 

Xα ⊂ C[0, 1]. It is straightforward to check that there is a minimizer of the following constraint minimization problem,

min
u∈Xα, u(0)=c

⎧⎨⎩1

2

1∫
0

x2α(u′(x))2dx + 1

p + 1

1∫
0

|u(x)|p+1dx

⎫⎬⎭ ,

and the minimizer is indeed the uc. Moreover, a comparison principle implies that uc1 ≥ uc2 if c1 ≥ c2. On the other 

hand, Lemma 8.4 implies that uc(x) ≤ C(α, p)x
− 2(1−α)

p−1 for 0 < x ≤ 1
2 . Since uc is decreasing, uc(x) ≤ C(α, p)2

2(1−α)
p−1

for 1
2 < x ≤ 1. Therefore lim

c→∞uc(x) < ∞ for all x ∈ (0, 1]. We claim that u+∞(x) = lim
c→∞uc(x). Indeed, since

lim sup
x→0+

u+∞(x) ≥ lim
x→0+ uc(x) = c,

we have

lim sup
x→0+

u+∞(x) = +∞.

Note that u+∞ is still a solution of (1.13). The previous claim implies that u+∞ satisfies (1.16).
Finally, denote u0(x) = lim

c→0+ uc(x). Then lim
x→0+ u0(x) = 0. Therefore u0 = 0. �

Proof of Theorem 1.10 for 1
2 ≤ α < 1. The same as the case 0 < α < 1

2 , we only need to consider u ≥ 0 in (1.13).
We first prove the uniqueness. Note that the even extension of uc is the good solution of (9.10) with c0 = 2c. The 

uniqueness of the good solution of (9.10) implies the uniqueness of uc. The proof for the uniqueness of u+∞ is the 
same as the case 0 < α < 1

2 .
We now prove that, for u ≥ 0 satisfying (1.13), one of the following three assertions holds.

(i) u ≡ 0.
(ii) lim

x→0+
u(x)

Eα(x)
= c, for some c > 0.

(iii) lim+ x
2(1−α)
p−1 u(x) = lp,α .
x→0
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We consider lim sup
x→0+

u(x)
Eα(x)

. If lim sup
x→0+

u(x)
Eα(x)

= 0, Lemma 9.8 implies that ū(x) := u(|x|) is the good solution of (9.10)

with c0 = 0. Therefore the uniqueness of the good solution of (9.10) forces u ≡ 0. If 0 < lim sup
x→0+

u(x)
Eα(x)

< ∞, then ū

satisfies (9.10) with c0 > 0. Therefore by Theorem 1.2, we have lim
x→0+

u(x)
Eα(x)

= c0/2. If lim sup
x→0+

u(x)
Eα(x)

= ∞, Lemma 9.7

implies lim
x→0+ x

2(1−α)
p−1 u(x) = lp,α .

The existence of uc is already given by Theorem 1.2. Note that the limits lim
c→∞uc(x) and lim

c→0+ uc(x) are 

well-defined for x ∈ (0, 1]. The same as the case 0 < α < 1
2 , we can check that u+∞(x) = lim

c→∞uc(x) and 

0 = lim
c→0+ uc(x). �

After Theorem 1.10 was proved, the author was informed the recent work by Brandolini, Chiacchio, Cîrstea and 
Trombetti [4]. The authors in [4] studied the positive solutions of the following equation

−div (A(|x|)∇u) + up = 0 on B∗
1 := B1\ {0} ,

where B1 ⊂R
N is the unit ball centered at the origin, N ≥ 3, and A is a positive C1(0, 1]-function such that

lim
t→0+

tA′(t)
A(t)

= ϑ, for some ϑ ∈ (2 − N,2).

For the special case when A(r) = rϑ with ϑ ∈ (2 − N, 2), a consequence of the main result in [4] is

Theorem 9.9. Assume 1 < p < N
N−2+ϑ

. For a positive solution u ∈ C2(0, 1] satisfying{
u′′(r) + (N − 1 + ϑ)

u′(r)
r

= up(r)

rϑ on (0,1),

u(1) = 0,
(9.12)

one of the following cases occurs.

(i) u ≡ 0,
(ii) lim

r→0+ rN−2+ϑu(r) = λ, for some λ ∈ (0, ∞),

(iii) lim
r→0+ r

2−ϑ
p−1 u(r) =

[
(N−(N−2+ϑ)p)(2−ϑ)

(p−1)2

] 1
p−1

.

Remark 9.1. Let ũ(x) = N
− 2

p−1 u(x1/N ), where u satisfies (9.12). Then ũ satisfies{−(x2αũ′)′ + ũp = 0 on (0,1),

ũ(1) = 0,

where α = 1 − ϑ−2
N

∈
(

1
2 ,1

)
. It is now easy to check that Theorem 9.9 coincides with the case 1

2 < α < 1 of Theo-

rem 1.10. However, the proofs of these two theorems are different.

10. The equation on the interval (0, 1)

In this section, we first consider the following equation,⎧⎪⎨⎪⎩
−(x2αu′)′ + |u|p−1u = μ on (0,1),

lim
x→0+ x2αu′(x) = β,

u(1) = 0,

(10.1)

where μ ∈M(0, 1), α > 0, p > 1 and β ∈R.
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A function u is a solution of (10.1) if

u ∈ Lp(0,1) ∩ W
1,1
loc (0,1], x2αu′ ∈ BV (0,1), (10.2)

and u satisfies (10.1) in the usual sense.
The following result concerns the existence and uniqueness of the solution of (10.1).

Theorem 10.1. Let μ ∈M(0, 1).

(i) If α and p satisfy (1.4) or (1.5), then there exists a unique solution of (10.1) for all β ∈ R. Moreover, this unique 
solution satisfies

lim
x→0+

(
1 + ln

1

x

)−1

u(x) = − lim
x→0+ xu′(x) = −β when α = 1

2
and p > 1,

lim
x→0+ x2α−1u(x) = − lim

x→0+
x2αu′(x)

2α − 1
= − β

2α − 1
when

1

2
< α < 1 and 1 < p <

1

2α − 1
.

(ii) If α and p satisfy (1.6) or (1.7), then there exists a solution of (10.1) if and only if β = 0. Moreover, if the solution 
exists, then it is unique and it satisfies

lim
x→0+ x2α−1u(x) = lim

x→0+ x2αu′(x) = 0.

Proof. We first prove the existence in assertion (i). Take μ̄ ∈ M(−1, 1) as the zero extension of μ, i.e., μ̄(A) =
μ(A ∩ (0, 1)), where A ⊂ (−1, 1) is a Borel set. Then Theorem 7.1 implies that there exists a solution ū satisfying⎧⎪⎨⎪⎩

−(|x|2αū′)′ + |ū|p−1ū = μ̄ on (−1,1),

lim
x→0

|x|2αū′(x) = β,

ū(−1) = ū(1) = 0.

Therefore, u = ū|(0,1) is a solution of (10.1).
We then prove the existence in assertion (ii). We still take μ̄ as the zero extension of μ. Notice that μ̄({0}) = 0. 

Then Theorem 1.3 implies that there exists a solution ū satisfying⎧⎪⎨⎪⎩
−(|x|2αū′)′ + |ū|p−1ū = μ̄ on (−1,1),

lim
x→0

|x|2αū′(x) = 0,

ū(−1) = ū(1) = 0.

Therefore, u = ū|(0,1) is a solution of (10.1) with β = 0. On the other hand, if (10.1) has a solution with β �= 0, it 
implies that u ∼ 1

x2α−1 near x = 0. It is a contradiction with the fact that u ∈ Lp(0, 1).
We now prove the uniqueness for both cases. Assume that there are two solutions u1 and u2. Then we have⎧⎪⎨⎪⎩

−(x2α(u1 − u2)
′)′ + |u1|p−1u1 − |u2|p−1u2 = 0 on (0,1),

lim
x→0+ x2α(u1 − u2)

′(x) = 0,

u1(1) = u2(1) = 0.

Define ūi ∈ W
1,1
loc ([−1, 1]\ {0}), i = 1, 2, such that ūi = ui on (0, 1) and ūi = 0 on (−1, 0). Then the same argument 

for the uniqueness of Theorem 7.1 implies that ū1 = ū2. Thus, u1 = u2. �
Remark 10.1. When 0 < α < 1

2 , we can also consider the following equation,⎧⎪⎨⎪⎩
−(x2αu′)′ + |u|p−1u = μ on (0,1),

lim
x→0+ u(x) = β, (10.3)
u(1) = 0,
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where μ ∈ M(0, 1), p > 1 and β ∈ R. Indeed, the uniqueness of the solution of (10.3) has been proved in The-
orem 1.10. The existence of the solution of (10.3) follows from the existence of the minimizer of the following 
minimization problem,

min
u∈Xα, u(0)=β

⎧⎨⎩1

2

1∫
0

x2α(u′(x))2dx + 1

p + 1

1∫
0

|u(x)|p+1dx −
1∫

0

u(x)dμ(x)

⎫⎬⎭ ,

where Xα is given by (7.3). Moreover, a direct computation shows that this unique solution u satisfies

lim
x→0+ x2αu′(x) = −

1∫
0

|u(s)|p−1u(s)(1 − s1−2α)ds +
1∫

0

(1 − s1−2α)dμ(s) − (1 − 2α)β.

We now discuss the connections between Theorem 10.1 and the well-known existence results about the semilinear 
elliptic equation. Let B1 ⊂ R

N be the unit ball centered at the origin and μ ∈ M(B1). For p > 1, consider the 
following equation,{−	u + |u|p−1u = μ on B1,

u = 0 on ∂B1.
(10.4)

Recall that a function u is a weak solution of (10.4) if u ∈ Lp(B1) ∩ W
1,1
0 (B1) and∫

B1

∇u∇ζdx +
∫
B1

|u|p−1uζdx =
∫
B1

ζdμ, ∀ζ ∈ C∞
0 (B1).

Although the general existence theory about (10.4) is well-known, the following corollary provides a more precise 
information when μ is rotationally invariant, i.e., μ(A) = μ(OA), where A is any Borel set in B1 and O is any N ×N

orthogonal matrix.

Corollary 10.2. Assume that μ ∈ M(B1) is rotationally invariant. Let 
∣∣SN−1

∣∣ be the surface area of SN−1. Define 
μ̃ ∈M(0, 1) as

μ̃(A) = μ
({

rθ; r ∈ A, θ ∈ S
N−1

})
, ∀A ⊂ (0,1) such that A is a Borel set. (10.5)

Let f∗μ̃ be the push-forward measure of μ̃ under the map f : [0, 1] → [0, 1] with f (r) = rN , i.e., f∗μ̃(A) =
μ̃(f −1(A)), ∀A ⊂ (0, 1), Borel set.

(i) Assume that 1 < p < N
N−2 for N ≥ 3 or p > 1 for N = 2. Then u(x) = N

2
p−1 ũ

(|x|N )
is a weak solution of (10.4), 

where ũ satisfies⎧⎪⎪⎨⎪⎪⎩
−(t2(1− 1

N
)ũ′(t))′ + |ũ(t)|p−1ũ(t) = N

− 2p
p−1

∣∣SN−1
∣∣−1

f∗μ̃ on (0,1),

lim
t→0+ t2(1− 1

N
)ũ′(t) = N

− 2p
p−1

∣∣SN−1
∣∣−1

μ({0}),
ũ(1) = 0.

(10.6)

(ii) Assume that p ≥ N
N−2 for N ≥ 3. Eq. (10.4) has a weak solution if and only if μ({0}) = 0. Moreover, if μ({0}) = 0, 

then u(x) = N
2

p−1 ũ
(|x|N )

is a weak solution of (10.4), where ũ satisfies⎧⎨⎩−(t2(1− 1
N

)ũ′(t))′ + |ũ(t)|p−1ũ(t) = N
− 2p

p−1
∣∣SN−1

∣∣−1
f∗μ̃ on (0,1),

lim
t→0+ t2(1− 1

N
)ũ′(t) = ũ(1) = 0.

(10.7)

To prove Corollary 10.2, we need the following lemma.
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Lemma 10.3. Assume that μ ∈ M(B1) is rotationally invariant. Assume that u ∈ Lp(B1) ∩ W
1,1
0 (B1), u is radially 

symmetric, and∫
B1

∇u∇ζdx +
∫
B1

|u|p−1uζdx =
∫
B1

ζdμ, ∀ζ ∈ C∞
0 (B1) such that ζ is radially symmetric.

Then u is a weak solution of (10.4).

Proof. We use the same idea as the proof of Proposition 5.1 in [18]. We first take w ∈ Lp(B1) ∩ W
1,1
0 (B1) as a weak 

solution of

	w = |u|p−1u − μ on B1.

Then w is radially symmetric and∫
B1

∇w∇ζdx +
∫
B1

|u|p−1uζdx =
∫
B1

ζdμ, ∀ζ ∈ C∞
0 (B1).

For any ζ ∈ C∞
0 (B1) such that ζ is radially symmetric, we have∫

B1

w(	ζ) =
∫
B1

u(	ζ).

Moreover, for any φ ∈ C∞
c (B1) such that φ is radially symmetric, there exists ζ ∈ C∞

0 (B1) such that ζ is radially 
symmetric and 	ζ = φ on B1. It implies that∫




(w − u)φdx = 0, ∀φ ∈ C∞
c (B1) such that φ is radially symmetric.

Then
1∫

0

(w(t) − u(t))ϕ(t)tN−1dt = 0, ∀ϕ ∈ C∞
c (0,1).

Therefore w = u a.e. �
Proof of Corollary 10.2. Note that Theorem 10.1 ensures the existence of ũ in (10.6) and (10.7).

We first prove assertion (i). For any ζ ∈ C∞
0 (B1) such that ζ is radially symmetric, we denote g(|x|N) = ζ(x). 

Then g(t) ∈ C[0, 1], g(1) = 0 and g′(t) ∈ L1(0, 1). Therefore,

1∫
0

t2(1− 1
N

)ũ′(t)g′(t)dt +
1∫

0

|ũ(t)|p−1ũ(t)g(t)dt (10.8)

= N
− 2p

p−1

∣∣∣SN−1
∣∣∣−1

1∫
0

g(t)d(f∗μ̃)(t) + N
− 2p

p−1

∣∣∣SN−1
∣∣∣−1

g(0)μ({0}).

Note that 
∫ 1

0 g(t)d(f∗μ̃)(t) = ∫ 1
0 g(rN)dμ̃(r) by Theorem 3.6.1 on p. 190 of [3]. Let t = rN in (10.8). We have

1∫
0

g(rN)dμ̃(r) + g(0)μ({0}) = N
2p

p−1

∣∣∣SN−1
∣∣∣ 1∫

0

r2N−2ũ′(rN)g′(rN )NrN−1dr

+ N
2p

p−1

∣∣∣SN−1
∣∣∣ 1∫

|ũ(rN )|p−1ũ(rN )g(rN)NrN−1dr.
0
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Let u(x) = N
2

p−1 ũ(|x|N) with x ∈ B1. Then u ∈ Lp(B1) ∩ W
1,1
0 (B1). Moreover,

∫
B1

∇u∇ζdx = N
2

p−1 +2
∣∣∣SN−1

∣∣∣ 1∫
0

r2N−2ũ′(rN )g′(rN )NrN−1dr,

∫
B1

|u|p−1uζdx = N
2p

p−1

∣∣∣SN−1
∣∣∣ 1∫

0

|ũ(rN )|p−1ũ(rN )g(rN)NrN−1dr,

∫
B1

ζdμ =
∫

g(rN)dμ̃(r) + g(0)μ({0}).

Therefore,∫
B1

∇u∇ζdx +
∫
B1

|u|p−1uζdx =
∫
B1

ζdμ, ∀ζ ∈ C∞
0 (B1) such that ζ is radially symmetric.

By Lemma 10.3, u is a weak solution of (10.4).
We now prove assertion (ii). If μ({0}) = 0, then the same proof as the above shows that u is a weak solution of 

(10.4). On the other hand, if μ is rotationally invariant and (10.4) has a weak solution, then∫
B1

∇u∇ζdx +
∫
B1

|u|p−1uζdx =
∫
B1

ζdμ, ∀ζ ∈ C∞
0 (B1) such that ζ is radially symmetric.

Write g(r) = ζ(x) where r = |x|. Then g ∈ W 1,∞(0, 1) and g(1) = 0. Write u(r) = u(x) where r = |x|. Then 
|u|prN−1 ∈ L1(0, 1) and, by Theorem 2.3 in [18], u ∈ W

1,1
loc (0, 1] such that rN−1u′ ∈ L1(0, 1). Therefore

∣∣∣SN−1
∣∣∣ 1∫

0

rN−1u′(r)g′(r)dr +
∣∣∣SN−1

∣∣∣ 1∫
0

NrN−1|u(r)|p−1u(r)g(r)dr

=
1∫

0

g(r)dμ̃(r) + g(0)μ ({0}) .

That is

lim
r→0+ rN−1u′(r) =

∣∣∣SN−1
∣∣∣−1

μ({0}) .

It forces μ ({0}) = 0. Otherwise, u ∼ r−N+2 near r = 0. Therefore |u|prN−1 ∼ r−(N−2)p+N−1 near r = 0. Since 
p ≥ N

N−2 , it implies that |u|prN−1 /∈ L1(0, 1), which is a contradiction. �
The well-known result by Baras and Pierre [1] states that for μ ∈ M(B1), p ≥ N

N−2 and N ≥ 3, Eq. (10.4) has a 
weak solution if and only if

μ(E) = 0, ∀E ⊂ B1 such that Cap2,p′(E) = 0, (10.9)

where Cap2,p′ is the capacity associated with the W 2,p′
(RN)-norm and p′ is such that 1

p
+ 1

p′ = 1.

Remark 10.2. In the case when μ is rotationally invariant, the criterion (10.9) is equivalent to μ({0}) = 0. Therefore, 
the necessary and sufficient condition in assertion (ii) of Corollary 10.2 is consistent with (10.9).

The proof of this remark relies on the following lemma.
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Lemma 10.4. Let μ ∈M(B1) be rotationally invariant, μ̃ be defined by (10.5), and HN−1 be the (n −1)-dimensional 
Hausdorff measure on SN−1. Then for any μ-integrable function f , we have

∫
B1

f (x)dμ(x) = 1∣∣SN−1
∣∣

∫
(0,1)

⎛⎜⎝ ∫
SN−1

f (rθ)dHN−1(θ)

⎞⎟⎠dμ̃(r) + f (0)μ({0}), (10.10)

where r = |x| and θ = x
|x| , ∀x ∈ B1\ {0}.

Proof. By a standard linearity and approximation argument, we only need to prove (10.10) for characteristic func-
tions. Moreover, by a standard argument involving the properties of Borel algebra and Radon measure (see, e.g., the 
proof of Theorem 2.49 in [15]), we only need to show that

μ((0, a] × U) = 1

|SN−1| μ̃((0, a]) ×HN−1(U), ∀a ∈ (0,1), ∀U ⊂ S
N−1 such that U is open.

Apply once again the standard approximation argument. It is further reduced to show that∫
(0,a]×SN−1

φ

(
x

|x|
)

dμ(x) = μ̃((0, a])∣∣SN−1
∣∣

∫
SN−1

φ(θ)dHN−1(θ), ∀φ ∈ C(SN−1). (10.11)

We use some ideas by Christensen [14] to show (10.11). For fixed x ∈ S
N−1 and ε > 0, denote

C(x; ε) =
{
y ∈ S

N−1; d(x, y) < ε
}

,

the so-called spherical cap, where d(·,·) is the standard Riemannian distance on SN−1. Define

C(ε) = μ((0, a] × C(x; ε)).
Note that C(ε) is well-defined since μ is rotationally invariant and μ((0, a] × C(x; ε)) is independent of x ∈ S

N−1. 
Denote Ba = (0, a] × S

N−1. Define

Kε(x, y) : Ba × Ba →R,

as

Kε(x, y) =
{

1
C(ε)

, if d
(

x
|x| ,

y
|y|

)
< ε,

0, otherwise.

For any x ∈ Ba , write ϕ(x) = φ
(

x
|x|

)
. Define

Kεϕ(x) =
∫
Ba

Kε(x, y)ϕ(y)dμ(y), ∀x ∈ Ba.

It is clear that Kεϕ(x) → ϕ(x) as ε → 0 for all x ∈ Ba . Therefore, the Dominated Convergence Theorem implies that

lim
ε→0

∫
Ba

Kεϕ(x)d(HN−1 × μ̄)(x) =
∫
Ba

ϕ(x)d(HN−1 × μ̄)(x).

Note that∫
Ba

Kεϕ(x)d(HN−1 × μ̄)(x) =
∫
Ba

ϕ(y)

⎛⎜⎝∫
Ba

Kε(x, y)d(HN−1 × μ̄)(x)

⎞⎟⎠dμ(y)

= μ̄((0, a])HN−1(C(x; ε))
C(ε)

∫
ϕ(y)dμ(y).
Ba



1006 H. Wang / Ann. I. H. Poincaré – AN 33 (2016) 965–1007
Therefore, there exists λ ∈R such that

lim
ε→0

μ̄((0, a])HN−1(C(x; ε))
C(ε)

= λ.

Take ϕ ≡ 1. It implies that λ = ∣∣SN−1
∣∣. Hence, identity (10.11) holds and the proof is complete. �

Proof of Remark 10.2. Assume that μ satisfies (10.9). Since Cap2,p′ ({0}) = 0, it is clear that μ ({0}) = 0. On the 
other hand, assume that μ is rotationally invariant and μ ({0}) = 0. For any E ⊂ B1 such that Cap2,p′(E) = 0, it holds 
that dimH(E) ≤ N − 2, where dimH is the Hausdorff dimension. Therefore,∫

SN−1

χE(rθ)dHN−1(θ) = 0, ∀r ∈ (0,1).

Hence Lemma 10.4 implies that

μ(E) = 1∣∣SN−1
∣∣

∫
(0,1)

⎛⎜⎝ ∫
SN−1

χE(rθ)dHN−1(θ)

⎞⎟⎠dμ̃(r) + μ({0}) = 0. �

Conflict of interest statement

We wish to confirm that there are no known conflicts of interest associated with this publication and there has been 
no significant financial support for this work that could have influenced its outcome.

Acknowledgements

The author would like to thank Prof. H. Brezis for suggesting this problem, for many stimulating discussions, 
and for his long-lasting help and encouragement; some of the results presented in this paper were conjectured by 
Prof. Brezis. The author thanks Prof. L. Véron for valuable suggestions and discussions during the author’s visit to the 
Université François-Rabelais, Tours, France. The research of the author was partially supported by the ITN “FIRST” of 
the Seventh Framework Programme of the European Community (grant agreement number 238702), when the author 
was a visiting member of the Technion-Israel Institute of Technology; he thanks the math department of Technion for 
the warm hospitality.

References

[1] P. Baras, M. Pierre, Singularités éliminables pour des équations semi-linéaires, Ann. Inst. Fourier (Grenoble) 34 (1984) 185–206.
[2] Ph. Bénilan, H. Brezis, Nonlinear problems related to the Thomas–Fermi equation, J. Evol. Equ. 3 (2004) 673–770.
[3] V.I. Bogachev, Measure Theory, vol. I, Springer-Verlag, Berlin, 2007.
[4] B. Brandolini, F. Chiacchio, F.C. Cîrstea, C. Trombetti, Local behaviour of singular solutions for nonlinear elliptic equations in divergence 

form, Calc. Var. Partial Differ. Equ. 48 (2013) 367–393.
[5] H. Brezis, Nonlinear elliptic equations involving measures, in: Contributions to Nonlinear Partial Differential Equations, Madrid, 1981, in: 

Res. Notes in Math., vol. 89, Pitman, Boston, MA, 1983, pp. 82–89.
[6] H. Brezis, M. Marcus, A.C. Ponce, Nonlinear elliptic equations with measures revisited, in: Mathematical Aspects of Nonlinear Dispersive 

Equations, in: Ann. Math. Stud., vol. 163, Princeton Univ. Press, Princeton, NJ, 2007, pp. 55–109.
[7] H. Brezis, L. Oswald, Singular solutions for some semilinear elliptic equations, Arch. Ration. Mech. Anal. 99 (1987) 249–259.
[8] H. Brezis, L.A. Peletier, D. Terman, A very singular solution of the heat equation with absorption, Arch. Ration. Mech. Anal. 95 (1986) 

185–209.
[9] H. Brezis, W. Strauss, Semi-linear second-order elliptic equations in L1, J. Math. Soc. Jpn. 25 (1973) 565–590.

[10] H. Brezis, L. Véron, Removable singularities for some nonlinear elliptic equations, Arch. Ration. Mech. Anal. 75 (1980/81) 1–6.
[11] H. Castro, H. Wang, A singular Sturm–Liouville equation under homogeneous boundary conditions, J. Funct. Anal. 261 (2011) 1542–1590.
[12] H. Castro, H. Wang, A singular Sturm–Liouville equation under non-homogeneous boundary conditions, Differ. Integral Equ. 25 (2012) 

85–92.
[13] X.Y. Chen, H. Matano, L. Véron, Anisotropic singularities of nonlinear elliptic equations in R2, J. Funct. Anal. 83 (1989) 50–97.
[14] J.P.R. Christensen, On some measures analogous to Haar measure, Math. Scand. 26 (1970) 103–106.

http://refhub.elsevier.com/S0294-1449(15)00033-5/bib42503834s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib42423034s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib423037s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib424343543132s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib424343543132s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib423831s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib423831s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib424D503037s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib424D503037s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib424F3837s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib4250543836s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib4250543836s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib42533733s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib42563830s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib43573131s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib43573132s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib43573132s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib434D563839s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib4368726973743737s1


H. Wang / Ann. I. H. Poincaré – AN 33 (2016) 965–1007 1007
[15] G.B. Folland, Real Analysis. Modern Techniques and Their Applications, second edition, Pure Appl. Math., A Wiley–Interscience Publication, 
John Wiley & Sons, Inc., New York, 1999.

[16] R.H. Fowler, Further studies on Emden’s and similar differential equations, Q. J. Math. 2 (1931) 259–288.
[17] T. Gallouët, J.M. Morel, Resolution of a semilinear equation in L1, Proc. R. Soc. Edinb. A 96 (1984) 275–288.
[18] D.G. de Figueiredo, E.M. dos Santos, O.H. Miyagaki, Sobolev spaces of symmetric functions and applications, J. Funct. Anal. 261 (2011) 

3735–3770.
[19] T. Kato, Schrödinger operators with singular potentials, Isr. J. Math. 13 (1972) 135–148.
[20] L. Véron, Singular solutions of some nonlinear elliptic equations, Nonlinear Anal. 5 (1981) 225–242.
[21] L. Véron, Singularities of Solutions of Second Order Quasilinear Equations, Pitman Res. Notes Math. Ser., vol. 353, Longman, Harlow, 1996.
[22] L. Véron, Elliptic equations involving measures, in: Stationary Partial Differential Equations. Vol. I, in: Handb. Differ. Equ., North-Holland, 

Amsterdam, 2004, pp. 593–712.
[23] H. Wang, A singular Sturm–Liouville equation involving measure data, Commun. Contemp. Math. 15 (2013), 1250047, 42 pages.

http://refhub.elsevier.com/S0294-1449(15)00033-5/bib466F6C6C616E64s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib466F6C6C616E64s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib663331s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib474D3834s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib474D483131s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib474D483131s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib4B3732s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib563831s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib563936s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib563034s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib563034s1
http://refhub.elsevier.com/S0294-1449(15)00033-5/bib5731326C696E656172s1

	A semilinear singular Sturm-Liouville equation involving measure data
	1 Introduction
	2 Preliminary results and the uniqueness
	3 Proof of the existence results
	4 The elliptic regularization
	5 The approximation via truncation
	6 The lack of stability of the good solution for 1/2<=α<1 and 1<p<1/2α-1
	7 The non-uniqueness for the cases (1.4) and (1.5)
	8 Removable singularity
	9 Classiﬁcation of singularity
	10 The equation on the interval (0,1)
	Conﬂict of interest statement
	Acknowledgements
	References


