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Abstract

In this paper we give the first example of a non-dynamically coherent partially hyperbolic diffeomorphism with one-dimensional 
center bundle. The existence of such an example had been an open question since 1975 [2].
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1. Introduction

A diffeomorphism f of a closed manifold M is partially hyperbolic if the tangent bundle T M of M splits into 
three invariant sub-bundles: T M = Es ⊕Ec ⊕Eu such that all unit vectors vσ ∈ Eσ

x (σ = s, c, u) with x ∈ M satisfy:

‖Txf vs‖ < ‖Txf vc‖ < ‖Txf vu‖ (1.1)

for some suitable Riemannian metric. The stable bundle Es must also satisfy ‖Tf |Es ‖ < 1 and the unstable bundle, 
‖Tf −1|Eu‖ < 1. The bundle Ec is called center bundle.

It is a well-known fact that the strong bundles, Es and Eu, are uniquely integrable [2,5]. That is, there are invariant 
foliations Ws and Wu tangent, respectively to the invariant bundles Es and Eu.

However, the integrability of Ec is a more delicate matter. There are examples of partially hyperbolic diffeomor-
phisms with non-integrable center bundle. A. Wilkinson observed in [12] that there is an Anosov diffeomorphism in a 
six-nilmanifold, which, when seen as a partially hyperbolic one, has a non-integrable center bundle. One can choose 
Ec to consist of the weakest part of the Anosov-stable bundle, and the weakest part of the Anosov unstable bundle. 
These bundles are non-jointly integrable, hence Ec is not integrable. This example can be found in S. Smale’s survey 
[11], and it is attributed to A. Borel. Further discussion on these examples can be found, for instance, in [3].
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The diffeomorphism f is cs-dynamically coherent if there exists an f -invariant foliation tangent to Es ⊕ Ec. The 
cu-dynamical coherence is defined analogously. The diffeomorphism f is dynamically coherent if it is both cs- and 
cu-dynamically coherent.

As seen above, one obstruction to dynamical coherence is a Frobenius bracket type of obstruction, that is that the 
sub-bundles of Ec be the non-jointly integrable. Is this the only obstruction to dynamical coherence? What happens, 
for instance, if the center bundle dimension is one? Would dynamical coherence be then automatic? This question 
has been open since the 70’s. Here we show the first example of a non-dynamical coherent partially hyperbolic 
diffeomorphism with a one-dimensional center bundle.

Theorem 1.1. There exists a non-void C1-open set of partially hyperbolic diffeomorphisms f : T3 → T
3 such that

(1) f is non-dynamically coherent;
(2) f admits an invariant 2-torus tangent to Ec ⊕ Eu.

The existence of such examples strongly contrasts with the following result obtained by M. Brin, D. Burago and 
S. Ivanov:

Theorem 1.2 (Brin, Burago, Ivanov). (See [1].) All absolutely partially hyperbolic diffeomorphisms on T3 are dy-
namically coherent.

Absolute partial hyperbolicity is a more restrictive notion of partial hyperbolicity, the bounds in its definition are 
global, contrasting with the usually used pointwise bounds. Namely, f is absolutely partially hyperbolic if T M admits 
an invariant splitting into three sub-bundles T M = Es ⊕ Ec ⊕ Eu and there are constants λ < 1 < μ such that all unit 
vectors vσ ∈ Eσ

x , with σ = s, c, u and x in M satisfy:

‖Txf vs‖ < λ < ‖Txf vc‖ < μ < ‖Txf vu‖ (1.2)

Another important issue is the unique integrability. The following question is still open, both for absolutely and 
pointwise partially hyperbolic diffeomorphisms:

Question 1.3. Assuming f is dynamically coherent, is there a unique invariant foliation tangent to Ec?

This question is open for all manifolds, even for T3. However, we are able to provide an answer at the local level. 
If E is a distribution, W is a foliation tangent to E and W(x) is a leaf of W through the point x, E is locally uniquely 
integrable at x if any embedded arc through x and tangent to E is contained in W(x). Local unique integrability 
implies unique integrability.

We prove the following:

Theorem 1.4. There exists a non-void C1 open set of (pointwise) partially hyperbolic diffeomorphisms f : T3 → T
3

satisfying that Ec is non-locally uniquely integrable.

1.1. Idea of the construction

The idea of the example in Theorem 1.1 occurred to us while proving that invariant foliations tangent to Ec ⊕ Eu

do not have compact leaves [9]. We wanted to prove in fact that there were no compact leaves tangent to Ec ⊕ Eu at 
all. However, we found that, by perturbing an Anosov map times a Morse–Smale diffeomorphism on the circle, we 
could obtain a partially hyperbolic diffeomorphim in T3 with a center-unstable torus T cu.

It is easy to see that T cu is an attractor. The example was built so that Ec, and hence Ec ⊕ Eu were uniquely 
integrable in T3 \ T cu. This implies that any invariant foliation tangent to Ec ⊕ Eu, should contain a compact leaf, 
which is precluded by [9].

As a matter of fact, we claim that all non-dynamically coherent examples on 3-manifolds have this pattern. That 
is, they have (at least) an attracting or repelling periodic torus, and trivial dynamics on the rest of the manifold.
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In fact, we claim that in “most” 3-manifolds, all partially hyperbolic diffeomorphisms are indeed dynamically 
coherent. More precisely,

Conjecture 1.5 (Hertz–Hertz–Ures, 2009). If f : M3 → M3 is a non-dynamically coherent partially hyperbolic dif-
feomorphism then it admits a periodic torus tangent to either Ec ⊕ Eu or Es ⊕ Ec.

Remarkably, a 2-torus like in Conjecture 1.5 can occur only in very few 3-manifolds. Indeed, we have the following 
result:

Theorem 1.6. (See [7].) A partially hyperbolic diffeomorphism on a 3-manifold, admitting a 2-torus tangent to either 
Es ⊕ Eu, Es ⊕ Ec or Ec ⊕ Eu can only occur on the following 3-manifold:

• the 3-torus T3;
• the mapping torus of −id : T2 → T

2;
• the mapping tori of hyperbolic automorphisms on T2.

With respect to Conjecture 1.5, notice that the existence of a torus tangent to Ecs implies the existence of a periodic 
torus tangent to Ecs , which must be repelling, since they are transverse to the unstable foliation (see [9] for a proof 
of this fact). An analogous statement holds for tori tangent to Ecu. Therefore, if Conjecture 1.5 was true, any partially 
hyperbolic diffeomorphisms for which �(f ) = M would be dynamically coherent.

Conjecture 1.5 has been proven true in the case of the 3-torus by R. Potrie [6], and in the case of 3-solvmanifolds 
by A. Hammerlindl and Potrie [4]. But the general case of Conjecture 1.5 remains open. What remains to be proven, 
whether this conjecture true, is that all partially hyperbolic diffeomorphisms in 3-manifolds that are not covered by 
manifolds with solvable fundamental group, are dynamically coherent.

It is interesting to note that there is a “twin conjecture” to Conjecture 1.5, which refers to ergodicity for volume 
preserving partially hyperbolic diffeomorphisms, namely

Conjecture 1.7 (Hertz–Hertz–Ures, 2009). If a volume preserving partially hyperbolic diffeomorphism of a 
3-manifold is not ergodic, then there is a 2-torus tangent to Es ⊕ Eu.

This conjecture has been proven true only in 3-nilmanifolds other than the 3-torus [8]. It is open for all the other 
3-manifolds.

We thank the referee for her/his valuable suggestions.

2. Two examples

The non-dynamically coherent example is a perturbation of a product of a linear Anosov map on T2 and a Morse–
Smale map on the circle. The unperturbed map is Axiom A, but not partially hyperbolic. We will perturb it to obtain 
partial hyperbolicity, the final diffeomorphism will also be Axiom A. We will only perturb in the stable direction of 
the linear map. One can make more complicated examples by allowing perturbations on the u-direction also. Still, 
our examples leave a cu-invariant torus. As long as we make an isotopy beginning in this example and remaining 
in the partially hyperbolic world, it will have an invariant cu-torus and hence an attractor (see Section 3). Hence the 
Shub type of construction [10] of robustly transitive systems does not apply for these examples. As we stated in the 
introduction we believe that in dimension 3 there are no transitive examples of non-dynamically coherent diffeomor-
phisms.

We start by considering the unperturbed diffeomorphism f0, which is the product of an Anosov automorphism of 
the 2-torus by a Morse–Smale map on the circle, that is, f0 : T2 × S1 → T

2 × S1 is such that

f0(x, θ) = (Ax,ψ(θ))

Here A is a hyperbolic matrix in SL(2, Z) with eigenvalues 0 < λ < 1 and 1/λ. And ψ : S1 → S1 is a North Pole–
South Pole map such that
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ψ(0) = 0,ψ( 1
2 ) = 1

2 , (2.1)

1 < ψ ′(0) = μ, ψ ′( 1
2 ) = σ < 1, (2.2)

σ < λ < 1 < μ < 1
λ
. (2.3)

That is, if θ = 0 is the North Pole and θ = 1
2 is the South-Pole, then ψ is chosen so that ψ contracts more than 

the hyperbolic toral automorphism A in the South-Pole, and ψ expands less than A in the North-Pole (see the figure 
below).

Now let Es
A be the contracting eigenspace of A, and consider a unit vector es in Es

A. We shall consider a perturbation 
f : T2 × S1 → T

2 × S1 of f0 of the form

f (x, θ) = (Ax + v(θ)es,ψ(θ))

We will carefully chose the map v : S1 →R, so that the perturbation f be partially hyperbolic and non-dynamically 
coherent. Our strategy will be to obtain f in the isotopy class of f0. Such an f will be semi-conjugate to A : T2 → T

2, 
via a semi-conjugacy h : T3 → T

2. The center-stable foliation will be preserved. Since we perturb only in the es

direction, we can always assume h has the form:

h(x, θ) = x − u(θ)es

Then, h ◦ f = A ◦ h yields

h(Ax + v(θ)es,ψ(θ)) = Ah(x, θ)

Ax + v(θ)es − u(ψ(θ))es = Ax − λu(θ)eσ

v(θ) − u(ψ(θ)) = −λu(θ)

This yields the twisted cohomological equation:

u(ψ(θ)) − λu(θ) = v(θ) (2.4)

We will consider v(0) = v( 1
2 ) = 0. A standard procedure gives that

γ (θ) = 1

λ

∞∑
k=1

λkv(ψ−k(θ)) (2.5)

is a solution to (2.4). Since 0 < λ < 1, γ is well defined and continuous, in fact, it can be seen (see Lemma 2.1) that 
γ is C1 for θ 	= 1/2. We also have that
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β(θ) = −1

λ

∞∑
k=0

λ−kv(ψk(θ)) (2.6)

is a solution to (2.4). The map β is well defined, continuous and C1 for θ 	= 0 (see Lemma 2.2).
If we consider

α(θ) = γ (θ) − β(θ) = 1

λ

∑
k∈Z

λkv(ψ−k(θ))

then α is a solution to the equation

u(ψ(θ)) − λu(θ) = 0 (2.7)

that is C1 for θ 	= 0, 1/2. Observe that if α 	= 0 then it cannot be bounded.

Lemma 2.1. The map γ : S1 → R is well defined and continuous. Also γ is C1 for θ 	= 1/2.

Lemma 2.2. The map β : S1 \ {0} →R is well defined and continuous. Also β is C1 for θ 	= 0.

Lemmas 2.1 and 2.2 are standard exercises and we leave their proofs to the reader.

2.1. The partially hyperbolic splitting

Let us define the partially hyperbolic splitting: First of all, choose Eu = Eu
A. Since the center-stable space Es

A ×
T S1 is preserved by f , we shall search for Es

f and Ec
f inside Es

A × T S1.
Define for θ 	= 1/2,

Ec
f (x, θ) = [(γ ′(θ)es,1)] (2.8)

where [v] is the vector space spanned by v. For θ = 1
2 , define Ec

f (x, 1/2) = Es
A × {0}.

Remark 2.3. Observe that, even though γ ′ is not continuous a priori in 1
2 , ψ and v can be chosen so that Ec

f (x, θ) is 

indeed continuous on all points of T3, see Lemma 2.5.

Analogously, define

Es
f (x, θ) = [(β ′(θ)es,1)] (2.9)

if θ 	= 0 and Es(x, 0) = Es
A × {0}.

Remark 2.4. The same remark holds for Es
f , even though β ′ is not continuous a priori in θ = 0, ψ and v can be 

chosen such that the bundle Es
f (x, θ) is indeed continuous on all points of T3, see Lemma 2.5.

The derivative of f is:

D(x,θ)f (v, t) = (Av + tv′(θ)es, tψ
′(θ)).

The bundles Es
f and Ec

f only depend on the variable θ . Hence, once we have an integral curve of Ec
f then we get the 

other integral curves by translating it. In a similar way we obtain the stable leaves Ws , once we get one of them.
By differentiating Eqs. (2.5) and (2.6), it is not hard to see that the bundles Ec

f and Es
f are invariant. Moreover, 

using Lemmas 2.1 and 2.2 we can see that the bundles are continuous for θ 	= 1/2, 0.
Let us prove that Es

f and Ec
f define a splitting with bounded angle. Observe that a measure of the angle between 

Ec
f and Es

f is given by α′ = γ ′ − β ′.
To show that the angle between Es

f and Ec
f is bounded, let us analyze the behavior of α′: S1 \ {0, 1/2} consists of 

two invariant intervals which we identify with (0, 1/2) and (1/2, 1). On each interval one has a fundamental domain, 
which is also an interval. The dynamics is trivial on (0, 1) and on ( 1 , 1).
2 2
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Since α is a solution to (2.7), by differentiating α we obtain that α′ ◦ ψ · ψ ′ = λα′. Therefore, if α′ is nonzero in a 
fundamental domain of, say, (0, 12) then it is nonzero everywhere on (0, 12). Analogously for ( 1

2 , 1). Now, on θ = 0 and 
θ = 1/2 it is trivial to check that the angle between Es

f and Ec
f is nonzero. By continuity (see Remarks 2.3 and 2.4), 

in a neighborhood of θ = 1/2 (and of θ = 0) there is a complete fundamental domain where this angle is non-zero, 
and then, α′ does not vanish. By the previous argument α′ does not vanish anywhere. As a consequence we have the 
desired splitting. Finally, the splitting is partially hyperbolic due to the fact that it is partially hyperbolic on θ = 0 and 
θ = 1/2.

By choosing different functions v and ψ , there will be two cases: in one, α′ has opposite signs on (0, 12 ) and 
( 1

2 , 1); this gives the non-dynamically coherent example. The other case, where α′ has the same sign on (0, 12) and 
( 1

2 , 1) gives a dynamically coherent case, but there Ec
f is not locally uniquely integrable. This last case is treated in 

Section 2.3.
Let us find suitable v and ψ :

Lemma 2.5. There are maps v and ψ , such that, if f (x, θ) = (Ax + v(θ)es, ψ(θ)), then Ec
f and Es

f , as defined in 
Eqs. (2.8) and (2.9) are continuous.

Namely, limθ→1/2 |γ ′(θ)| = ∞ and limθ→0 |β ′(θ)| = ∞. Also, Eu ⊕ Ec ⊕ Es is a partially hyperbolic splitting.
We can further choose v and ψ so that either

(1) α′ has different signs on (0, 12) and ( 1
2 , 1) (which gives a non-dynamically coherent example),

(2) or α′ has the same sign on these intervals (which gives a dynamically coherent example that is locally non-
uniquely integrable).

Fix some ε0 > 0 and 0 < c0 < 1 such that for θ with |θ − 1
2 | ≤ ε0 or |θ | ≤ ε0 and for k ≥ 0 respectively,

c0 ≤ (ψk)′(θ)

σ k
≤ 1/c0 and c0 ≤ (ψ−k)′(θ)

μ−k
≤ 1/c0 (2.10)

c0 ≤ d(ψk(θ), 1
2 )

σ kd(θ, 1
2 )

≤ 1/c0 and c0 ≤ d(ψ−k(θ),0)

μ−kd(θ,0)
≤ 1/c0 (2.11)

Observe that we can take ε0 as close to 0 as we want by choosing c0 appropriately. These inequalities follow for any 
ψ satisfying Eqs. (2.2) and (2.3).

We treat the non-dynamically coherent case and the locally non-uniquely integrable case separately.

2.2. The non-dynamically coherent example

In this subsection we prove case (1) of Lemma 2.5:

Proof of Lemma 2.5(1). The non-dynamically coherent case is simpler, just take v such that

v′(θ) < 0 on
(

0, 1
2

)
and v′(θ) > 0 on

(
1
2 ,1

)
; (2.12)

v′′(0) 	= 0 and v′′ ( 1
2

)
	= 0. (2.13)

For example v(θ) = 1 + cos 2πθ . And take any Morse–Smale map ψ as already chosen.
This example readily satisfies the desired properties: We only need to show that Ec

f and Es
f are continuous, that is 

limθ→1/2 |γ ′(θ)| = ∞ and limθ→0 |β ′(θ)| = ∞.
In our case, i.e. v′(θ) < 0 for 0 < θ < 1

2 and v′(θ) > 0 for 1
2 < θ < 1 with v′′(0) 	= 0 and v′′( 1

2 ) 	= 0, we have that 
v′(0) = 0 and v′( 1

2 ) = 0. So for θ with d(θ, 0) ≤ ε0 or d(θ, 1/2) ≤ ε0 we have respectively,

c0 ≤ |v′(θ)|
d(θ,0)

< 1/c0 and c0 ≤ |v′(θ)|
d(θ, 1 )

< 1/c0. (2.14)

2
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Fig. 1. A non-dynamically coherent example.

Let us see that γ ′(θ) → ∞ as θ → 1
2 . Given θ with d(θ, 12 ) < ε0, let N = N(θ) be the largest positive integer such 

that d(f −N(θ), 12 ) ≤ ε0. We also assume that c0 is taken so that

d(f −N(θ), 1
2 ) ≥ c0d(f −1(f −N(θ)), f −1( 1

2 ))

= c0d(f −(N+1)(θ), 1
2 ) > c0ε0.

If d(θ, 12 ) ≤ ε0 and v′(θ) > 0, then

γ ′(θ) ≥ λ(N−1)v′(f −N(θ))(f −N)′(θ) = λ(N−1) v′(f −N(θ))

(f N)′(f −N(θ))

≥ λ(N−1)c0d(f −N(θ),1/2)c0σ
−N ≥ λ(N−1)c0c0ε0c0σ

−N = c3
0ε0

λ

(
λ

σ

)N

.

Finally, if θ approaches 1
2 then N(θ) tends to +∞ and hence γ ′(θ) → +∞. Indeed N(θ) grows essentially as

logd(θ, 1
2 )

logσ
.

In case v′(θ) < 0, the computation is the same and we get that γ ′(θ) → −∞ as θ approaches 1
2 . Therefore, for some 

constants C > 0 and ρ = 1 − log λ
log σ

> 0, ρ < 1, we have

|γ ′(θ)| ≥ Cd(θ, 1
2 )−ρ.

The same computation gives that limθ→0 |β ′(θ)| = ∞. In this case, we can see that for a = 1 − log λ
log μ

> 2

|β ′(θ)| ≥ Cd(θ,0)−a.

To see that Ec has no foliation tangent to it, let us explicitly compute the semiconjugacy. Remember that the 
semiconjugacy is h : T2 × S1 → T

2, h(x, θ) = x − γ (θ)es . h satisfies h ◦ f = A ◦ h since γ satisfies Eq. (2.4).
Now,

h−1(h(x0, θ0)) = {(x0 + γ (θ)es − γ (θ0)e
s, θ)}

so that

h−1(h(x0, θ0)) = (h(x0, θ0),0) + {(γ (θ)es, θ)}.
Recalling that Ec

f (x, θ) = [(γ ′(θ)es, 1)] (Eq. (2.8)), it follows that h−1(h(x0, θ0)) are the integral curves of Ec. 

From the fact that Ec is C1 for θ 	= 1
2 we get that Ec is uniquely integrable on this domain. On the other hand, on 

θ = 1
2 Ec = Es

A, hence the lines which are parallel to Es
A inside the torus θ = 1

2 are integral curves of Ec. See Fig. 1. 
Finally, close to θ = 1

2 we have two situations: either θ ∈ (0, 12 ), and γ ′ is negative, or else θ ∈ ( 1
2 , 1) and γ ′ is positive. 

This implies the curves are like in Fig. 1, what precludes the integrability of Ec. �
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Fig. 2. A locally non-uniquely integrable example

2.3. A locally non-uniquely integrable example

In this subsection we prove case (2) of Lemma 2.5:

Proof of Lemma 2.5(2). The construction of a dynamically coherent example which is locally non-uniquely inte-
grable is subtler than the previous case. In our construction, we need to choose v and ψ more care carefully.

Firstly, we shall take μ, appearing in Eq. (2.2), very close to 1; and σ , in the same equation, in such a way that σ
λ

is very close to 1 too. Secondly, in order to simplify the calculations, we choose ψ to be “symmetric” with respect 
to 1

2 . We also choose ψ in such a way that it is affine with slope σ in a neighborhood of 1
2 and it is affine with slope 

μ in a neighborhood of 1. Moreover, we can suppose that ψ is affine outside a fundamental domain D = (θ0, v(θ0))

that depends only on μ (recall that μ was already chosen and σ < λ).
Now we have to define v. Let us choose v with odd symmetry with respect to 1

2 (that is, such that v( 1
2 − θ) =

−v( 1
2 + θ)) and in such way v′(θ) > 0 for θ ∈ [ 1

2 , θ∗) and v′(θ) < 0 for θ ∈ (θ∗, 1] where θ∗ is a point belonging 
to D.

Now let us show that the bundles Ec and Es as defined above are continuous. As it was shown in the first part of the 
section, the fact that the angle between Es and Ec is everywhere non-zero will follow from invariance and continuity.

The steps to show that limθ→1/2 |γ ′(θ)| = ∞ and limθ→0 |β ′(θ)| = ∞, are very similar to those in the preceding 
subsection, let us make the computations for γ ′.

Suppose that θ is very close to 1
2 and let N = N(θ) be such that f ′(f −i (θ)) = σ for i = 0, . . . , N . Then

γ ′(θ) = 1

λ

N∑
k=0

λkv′(ψ−k(θ))(ψ−k)′(θ) + 1

λ

∞∑
k=N+1

λkv′(ψ−k(θ))(ψ−k)′(θ)

≥ C1

(
λ

σ

)N N∑
n=0

(σ

λ

)N−n − C2C3

(
λ

σ

)N ∞∑
n=N+1

(
λ

μ

)n−N

,

where C1 is a lower bound for v′ in its positive region, that is, v′(θ) > C1 for θ ∈ [ 1
2 , θ0], C2 is an upper bound of |v′|

in [θ0, 1] and C3 is an upper bound of f ′ in D. Observe that the constants Ci , i = 1, 2, 3, can be taken independent of 
σ (and of f ) if σ is close enough to λ.

Now, choosing σ close enough to λ and N sufficiently large (equivalently θ near enough 1
2 ) we obtain

γ ′(θ) ≥ 1

λ

(
λ

σ

)N
⎛
⎝C1

N∑
n=0

(σ

λ

)N−n − C2C3

∞∑
n=N+1

(
λ

μ

)n−N
⎞
⎠

≥ 1

λ

(
λ

σ

)N
(

C1
1 − (

σ
λ

)N+1

1 − ( σ
λ
)

− C2C3
1

1 − λ

)

We can choose σ such that for a large enough N ,

C1
1 − ( σ

λ
)N+1

1 − ( σ )
− C2C3

1

1 − λ
> 0.
λ
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This implies that γ ′ is positive for θ close to 1
2 . The symmetries of v and ψ imply that the same is true for θ smaller 

than 1
2 . The multiplying factor 1

λ
( λ
σ
)N clearly forces γ ′(θ) → +∞ as θ → 1

2 .
Finally, as in the preceding subsection, we have a semiconjugacy h and

h−1(h(x0, θ0)) = (h(x0, θ0),0) + {(γ (θ)es, θ)}.
Since the sign of γ ′ is the same on both sides of θ = 1

2 this partition is a foliation.
We leave to the reader the proof that limθ→0 |β ′(θ)| = ∞ because it is very similar to the proof for γ ′. �

3. Robustness of the examples and some conclusions

3.1. Robustness

In the first part of this section we shall show that the non-dynamical coherence of our examples is a robust property. 
This is essentially a consequence of the presence of a normally hyperbolic torus tangent to the bundle Ecu.

Theorem 3.1. There exists an open set V ⊂ Diff1(T3) such that, ∀f ∈ V , f is a non-dynamically coherent partially 
hyperbolic diffeomorphism. Moreover, f presents Reeb-like strips of the strong stable foliation inside the center stable 
leaves.

We also have an analogous result for the non-locally uniquely integrable dynamically coherent example.

Theorem 3.2. There is an open set W ⊂ Diff1(T3) such that, ∀f ∈ W , f is a dynamically coherent partially hyper-
bolic diffeomorphism but its center bundle is not locally uniquely integrable.

Let us first show Theorem 3.2, since it is easier.

Proof of Theorem 3.2. Let f be one of the examples constructed in Subsection 2.3. The torus corresponding to θ = 1
2

is a hyperbolic attractor, it is normally hyperbolic and it is tangent to the bundle Ecu. Moreover, the center foliation 
Wc is also normally hyperbolic with compact leaves and f induces an expansive homeomorphisms in the space of 
center leaves (conjugated to A). In particular, Wc is plaque expansive. Then, if g is close enough to f , g is partially 
hyperbolic, dynamically coherent (see [5]) and has a transitive hyperbolic attractor T that is (diffeomorphic to) a torus 
and tangent to Ecu

g . Clearly, no center leaf of g can be contained in T while for each point of T there is a complete 
immersed line tangent to Ec and contained in T . This implies that Ec is not locally uniquely integrable and proves 
the theorem. �

Now, we shall give the proof of Theorem 3.1. It is a bit more involved than the proof of Theorem 3.2 although the 
main idea is again that the presence of a center-unstable torus precludes dynamical coherence.

Proof of Theorem 3.1. Let f be one of the examples constructed in Subsection 2.2. Observe that f satisfies Axiom A 
and the strong transversality condition and its nonwandering set consists of the tori corresponding to θ = 0 and θ = 1

2 . 
Let T1 be the hyperbolic attractor corresponding to θ = 1

2 . T1 is a normally hyperbolic torus tangent to Ecu. Let T0
be the hyperbolic repeller corresponding to θ = 0(= 1). Observe that even though T0 is not normally hyperbolic, 
due to its hyperbolicity, it persists under perturbations. This means that a diffeomorphism g close enough to f has a 
hyperbolic repeller T g

0 homeomorphic to T0. Moreover, since T g

0 is a hyperbolic repeller, it is foliated by its stable 
manifolds that coincide with the strong stable manifolds of its points. Of course, g also has a hyperbolic attractor T g

0
that is normally hyperbolic and tangent to the bundle Ecu

g .
It is not difficult to see that outside the nonwandering set (the two tori) the center leaves coincide with the inter-

section of stable manifolds of the attractor and unstable manifolds of the repeller. The continuous variation of these 
foliations implies that, for a small enough perturbation, the center leaves of g are C1-close to the center leaves of f in 
the complement of a (small) neighborhood of the two tori. Iterating these curves for the future and the past we obtain 
the center foliation in the complement of the tori. The length of the center curves obtained in this way is bounded be-
cause they are exponentially contracted for the future and the past. The domination of the partially hyperbolic splitting 
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implies that this curves are tangent to T1 (if we add the limit point in this attracting torus) with the same orientation 
than the center leaves of f . This shows that g is nondynamically coherent.

Consider also the center-stable foliation Wcs of f . Although f is not, Wcs is dynamically coherent. Moreover, 
Wcs is a normally hyperbolic foliation by cylinders and it is plaque expansive. Plaque expansiveness is a consequence 
of the fact that Wcs projects onto the stable foliation of a hyperbolic homeomorphism under the quotient induced by 
the partition formed by the center circles (other way to obtain plaque expansiveness is to observe that Wcs is C1, even 
Cω, see [5]). Then, thanks to [5] again, we obtain that g has an invariant center-stable foliation Wcs

g whose leaves are 
cylinders. Any leaf Wcs of Wcs

g has a stable line Ws
0 = Wcs ∩ T0. Cutting Wcs along Ws

0 we obtain a strip where the 
strong stable foliation is Reeb-like. The reason of this is that the strong stable foliation of g is very close to the strong 
stable foliation of f in compact parts. Then, the strong stable foliation of g has the same shape as the strong foliation 
of f except in a very small neighborhood of Ws

0 (the size of the neighborhood depends on closeness of g to f ). See 
Fig. 2 on p. 1030. Since all strong stable manifolds that are not in T0 intersect T1, and T0 is a repeller we have that 
these strong manifolds are asymptotic to Ws

0 . This implies that the restriction of the strong stable foliation to each 
center stable is Reeb-like and finishes the proof of the theorem. �
3.2. Connected components of partially hyperbolic diffeomorphisms

In this subsection we prove that the set of partially hyperbolic diffeomorphisms homotopic to A × id in T2 × S
1 =

T
3 is not connected. To be more precise, suppose that A is hyperbolic automorphisms of T2 and call PHA ⊂ Diff1(T3)

the set of partially hyperbolic diffeomorphisms isotopic to A × id where id is the identity map of S1.

Theorem 3.3. PHA is disconnected.

Proof. As we have already shown there are diffeomorphisms in PHA having an invariant torus tangent to the center-
unstable bundle. The set PHT

A of such diffeomorphisms is obviously open. Suppose that f ∈ PHA ∩ closure(PHT
A)

and take fn ∈ PHT
A converging to f . The partial hyperbolicity of f implies that the center unstable fn-invariant tori 

Tn have basins of attraction of uniform size. Then, the tori Tn converge to an f -invariant tori T that is tangent to 
Ecu(f ) showing that f ∈ PHT

A. This implies that every diffeomorphism in the connected component of one having 
a center-unstable torus has such a torus too. In particular, the examples of Section 2 are not in the component of 
A × id. �

The same ideas can be used to prove that PHA has infinitely many components. This can be achieved by taking 
diffeomorphisms with more invariant center-unstable torus. It seems an interesting problem to determine the connected 
components in function the quantity and the rotation number of the center unstable (or stable) tori and coherence or 
incoherence along these tori.
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