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Abstract

In this paper we show that the incompressible Hall-MHD system without resistivity is not globally in time well-posed in any 
Sobolev space Hm(R3) for any m > 7

2 . Namely, either the system is locally ill-posed in Hm(R3), or it is locally well-posed, but 
there exists an initial data in Hm(R3), for which the Hm(R3) norm of solution blows-up in finite time if m > 7

2 . In the latter case 
we choose an axisymmetric initial data u0(x) = u0r (r, z)er + b0z(r, z)ez and B0(x) = b0θ (r, z)eθ , and reduce the system to the 
axisymmetric setting. If the convection term survives sufficiently long time, then the Hall term generates the singularity on the axis 
of symmetry and we have lim supt→t∗ supz∈R |∂z∂rbθ (r = 0, z)| = ∞ for some t∗ > 0, which will also induce a singularity in the 
velocity field.
© 2015 
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1. Introduction and main results

In this paper, we are concentrated on the singularity formation for the incompressible Hall-MHD equations without 
resistivity. The incompressible Hall-MHD equations without resistivity take the following form:{

∂tu + u · ∇u + ∇p = (∇ × B) × B + ν�u,

divu = 0,

∂tB − ∇ × (u × B) + ∇ × ((∇ × B) × B) = 0,

(1.1)

where u(t, x) = (u1(t, x), u2(t, x), u3(t, x)) and B(t, x) = (b1(t, x), b2(t, x), b3(t, x)), (x, t) ∈ [0, ∞) × R
3, are the 

fluid velocity and magnetic field. ν ≥ 0 is the viscosity, ν = 0 and ν > 0 correspond to the inviscid and viscous flow 
respectively. We will consider the Cauchy problem for (1.1), so we prescribe the initial data
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u(t = 0, x) = u0(x), B(t = 0, x) = B0(x).

The initial data u0 and B0 satisfy the divergence free condition,

div u0(x) = div B0(x) = 0.

From the equations for the magnetic field B , it is easy to see that if one prescribes the divergence condition div B0 = 0
on the initial data B0, then div B = 0 for later time.

Comparing with the well-known MHD system, the Hall term ∇ × ((∇ × B) × B) is included due to the Ohm’s 
law, which is believed to be a key issue for understanding magnetic reconnection. Note that the Hall term is quadratic 
in the magnetic field and involves the second order derivatives. Magnetic reconnection corresponds to a physical 
process in highly conducting plasmas in which the magnetic topology is rearranged and magnetic energy is converted 
to kinetic energy, thermal energy, and particle acceleration. During this process, the magnetic shear is large, the Hall 
term becomes dominant. Lighthill [15] started the systematic study of the application of Hall-MHD on plasma, which 
is followed by [2]. One may refer to [19] for a physical review of the background for Hall-MHD.

There are many mathematical results on MHD system, for the existence of global weak solutions [9,20], regularity 
criterion [12,13] and global smooth small solutions [18,24]. The Hall-MHD has received little attention from math-
ematicians. The paper [1] provided a derivation of Hall-MHD system from a two-fluids Euler–Maxwell system for 
electrons and ions, through a set of scaling limits. They also provided a kinetic formulation for the Hall-MHD, and 
proved the existence of global weak solutions for the incompressible viscous resistive Hall-MHD system. The authors 
in [6] obtained the local existence of smooth solutions for large data and global smooth solutions for small data to 
incompressible resistive, viscous or inviscid Hall-MHD model. Chae and Lee [4] also established the blow-up crite-
rion for classical solutions to the incompressible resistive Hall-MHD system. Contrary to the usual MHD, the global 

regularity for solutions to the 3-D Hall-MHD which depends only on two variables (i.e. 2
1

2
dimensional Hall-MHD) 

is still open. Note that 2
1

2
dimensional Hall-MHD solution has been used in [14] to investigate the influence of the 

Hall term on the width of the magnetic islands of the tearing-mode. The temporal decay estimates for weak solutions 
to Hall-MHD system was established by Chae and Schonbek [5]. They also obtained algebraic decay rates for higher 
order Sobolev norms of strong solutions to (1.1) with small initial data. It turned out that the Hall term does not affect 
the time asymptotic behavior, and the time decay rates behaved like those of the corresponding heat equation.

In this paper we investigate the singularity formation for (1.1). Dreher, Ruban and Grauer [8] have discussed 
the possible spontaneous development of shock-type singularities in axisymmetric solutions of the ideal Hall-MHD 
system and performed numerical simulation to support their claim. In the following we rigorously prove that for 
the incompressible Hall-MHD system (1.1) without resistivity the solution cannot preserve initial data regularity 

in Hm(R3), m >
7

2
. Either the solution breakdown the initial data regularity or uniqueness at the initial instant of 

moment, or if the solution survives uniquely for a positive time, and if the convection term survives sufficiently 
long time, then a shock-type singularity in the magnetic field will develop in finite time, and this will also induce a 
singularity formation in the velocity field. As is well known, the global regularity problem for the 3-D incompressible 
Navier–Stokes equations is still widely open [11]. Unlike the compressible fluid case where one can show that the 
singularity will generate in finite time for both compressible Euler [22] and compressible Navier–Stokes [23], it is 
very difficult to exhibit any singularity formation in incompressible fluids. To our best knowledge, our blowup results 
on the incompressible Hall-MHD without resistivity seems to be the first physically interesting example, showing that 
there exists “singularity formation” in an incompressible system (i.e. satisfying the divergence free condition). Here 
by “singularity formation” we mean either the solution loses the regularity immediately or the solution blows up in 
finite time. From this point of view, we believe that the Hall-MHD system has its own interest and deserves more 
attention from mathematician.

Now we start the mathematical setup of our problem. We will choose a special class of smooth axisymmetric initial 
data with the form u0(x) = u0r (r, z)er + u0z(r, z)ez ∈ (C∞

c (R3))3 and B0(x) = b0θ (r, z)eθ ∈ (C∞
c (R3))3, such that 

the corresponding solution (u, B)(t, x) to (1.1) will develop a singularity for the magnetic field in finite time, which 
will also induce a singularity in the velocity field. Let us introduce the cylindrical coordinate

r =
√

x2
1 + x2

2 , θ = arctan
x2

, z = x3

x1
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and then investigate the axisymmetric solution to (1.1). In this case the velocity and magnetic field can be described 
as follows

u(t, x) = ur(t, r, z)er + uθ (t, r, z)eθ + uz(t, r, z)ez,

B(t, x) = br(t, r, z)er + bθ (t, r, z)eθ + bz(t, r, z)ez,

p(t, x) = p(t, r, z),

where

er = (cos θ, sin θ,0), eθ = (− sin θ, cos θ,0), ez = (0,0,1).

The Hall-MHD equation (1.1) can be written as the following equations in cylindrical coordinate

∂tur +
(

(ur∂r + uz∂z)ur − u2
θ

r

)
+ ∂r

(
p + 1

2
(b2

r + b2
θ + b2

z )

)

=
(

(br∂r + bz∂z)br − b2
θ

r

)
+ ν(∂2

r + 1

r
∂r + ∂2

z − 1

r2
)ur ,

∂tuθ +
(

(ur∂r + uz∂z)uθ + uruθ

r

)

=
(

(br∂r + bz∂z)bθ + brbθ

r

)
+ ν(∂2

r + 1

r
∂r + ∂2

z − 1

r2
)uθ ,

∂tuz + (ur∂r + uz∂z)uz + ∂z

(
p + 1

2
(b2

r + b2
θ + b2

z )

)

= (br∂r + bz∂z)bz + ν(∂2
r + 1

r
∂r + ∂2

z )uz,

∂rur + 1

r
ur + ∂zuz = 0,

∂tbr + (ur∂r + uz∂z)br − (br∂r + bz∂z)ur − ∂

∂z
(jzbr − jrbz) = 0,

∂tbθ +
(

(ur∂r + uz∂z)bθ + bruθ

r

)
−

(
(br∂r + bz∂z)uθ + urbθ

r

)

+
(

∂

∂z
(jθbz − jzbθ ) − ∂

∂r
(jrbθ − jθbr)

)
= 0,

∂tbz + (ur∂r + uz∂z)bz − (br∂r + bz∂z)uz + 1

r

∂

∂r

(
r(jzbr − jrbz)

)
= 0,

∂rbr + 1

r
br + ∂zbz = 0.

Here j (t, x) = ∇ × B = jr (t, r, z)er + jθ (t, r, z)eθ + jz(t, r, z)ez and

jr = −∂zbθ , jθ = ∂zbr − ∂rbz, jz = 1

r
∂r (rbθ ).

From these equations, one can easily find that for any smooth solution (ur, uθ , uz) and (br , bθ , bz), if initially one 
has

uθ (0, r, z) = br(0, r, z) = bz(0, r, z) = 0, (1.2)

then uθ (t, r, z) = br(t, r, z) = bz(t, r, z) ≡ 0 for t > 0. Hence jθ ≡ 0 and(
∂

∂z
(jθbz − jzbθ ) − ∂

∂r
(jrbθ − jθbr)

)
= −∂z(jzbθ ) − ∂r(jrbθ )

= −(∂rjr + ∂zjz)bθ − (jr∂r + jz∂z)bθ = −2bθ
∂zbθ ,
r
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where we have used the fact that div(∇ × B) = 0, so ∂rjr + 1

r
jr + ∂zjz = 0. Finally under the initial condition (1.2)

the above equations reduce to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tur + (ur∂r + uz∂z)ur + ∂r (p + 1

2
b2
θ ) = −b2

θ

r
+ ν(∂2

r + 1

r
∂r + ∂2

z − 1

r2
)ur ,

∂tuz + (ur∂r + uz∂z)uz + ∂z(p + 1

2
b2
θ ) = ν(∂2

r + 1

r
∂r + ∂2

z )uz,

∂rur + 1

r
ur + ∂zuz = 0,

∂tbθ + (ur∂r + uz∂z)bθ − urbθ

r
− 2bθ

r
∂zbθ = 0,

(ur , uz)(t = 0, r, z) = (u0r , u0z)(r, z), bθ (t = 0, r, z) = b0θ (r, z).

(1.3)

In this case, the vorticity ω(t, x) = curlu(t, x) = ωθ(t, r, z)eθ = (∂zur − ∂ruz)(t, r, z)eθ satisfies the following 
equation

∂ωθ

∂t
+ (ur∂r + uz∂z)ωθ + 2

bθ

r
∂zbθ − ur

r
ωθ = ν(∂2

r + 1

r
∂r + ∂2

z − 1

r2
)ωθ ,

ωθ (t = 0, r, z) = ω0θ (r, z) = (∂zu0r − ∂ru0z)(r, z).

Define the new unknowns � = ωθ

r
and � = bθ

r
, then one can check easily that � and � satisfy the following 

equations

∂�

∂t
+ (ur∂r + uz∂z)� + 2�∂z� = ν(∂2

r + 3

r
∂r + ∂2

z )�, (1.4)

∂�

∂t
+ (ur∂r + uz∂z)� − 2�∂z� = 0, (1.5)

�(t = 0, r, z) = �0(r, z) := ω0θ (r, z)

r
, (1.6)

�(t = 0, r, z) = �0(r, z) := b0θ (r, z)

r
. (1.7)

We refer two closely related results on the axisymmetric solution to the usual MHD or Hall-MHD system. Lei [17]
has showed that the existence of global in time smooth solution to the incompressible viscous MHD without resistivity 
for some special axisymmetric data u0 = u0r er + u0zez and B0 = b0θ eθ . The result in [10] established the existence 
of global smooth solution to the incompressible viscous, resistive Hall-MHD system with same initial data as in [17]. 
Our first main result is the formation singularity for the incompressible viscous Hall-MHD without resistivity.

Theorem 1.1 (Viscous case ν = 1). The incompressible viscous Hall-MHD system without resistivity (1.1) is not 

globally well-posed in any Sobolev space Hm(R3) for m >
7

2
. There exists smooth initial data u0(x) = u0r (r, z)er +

u0z(r, z)ez ∈ C∞
c (R3), B0(x) = b0θ (r, z)eθ ∈ C∞

c (R3) with �0(r, z) ∈ L∞(R3) such that if there is a local in time 
smooth solution (u, B)(t, x) to (1.1) with initial data (u0, B0), then (u, B) must blow up in finite time. Indeed, one 

can choose (u0, B0) such that y0 := ∂z�0(0, 0) = ∂2
rzb0θ (0, 0) ≥ 104C2∗, t0 = 2

y0
and J0 := �0(0, 0) > 0, where C∗

depends only on ‖u0‖H 2(R3), ‖B0‖H 1(R3) and ‖�0‖L∞(R3), then

lim sup
t→t0

sup
z∈R

|∂z�(t,0, z)| = ∞.

Moreover, the velocity field also blows up

lim sup
t→t0

sup
z∈R

∣∣∣∣
(

∂t� + (ur∂r + uz∂z)� − (∂2
r + 3

r
∂r + ∂2

z )�

)
(t,0, z)

∣∣∣∣ = ∞.

Remark 1.1. As will be shown in the proof below, the singularity occurs on the axis if the local well-posed is done. 
The blow-up happens on the second order derivative of bθ and the third derivative of the velocity field. Whether the 
solution can blow-up off the axis is not clear yet.
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Remark 1.2. Due to the Hall term it seems difficult to show that the local in time existence of smooth solution to 
(1.1). We could not rule out the possibility at this moment that (1.1) is locally ill-posed (see Remark 3.1 of [6]).

Remark 1.3. Note that in Theorem 1.1, C∗ depends only on ‖u0‖H 2(R3), ‖B0‖H 1(R3) and ‖�0‖L∞(R3), hence C∗
depends only on the first order derivatives of B0 and B0 itself. So the condition y0 = ∂2

rzb0θ (0, 0) ≥ 104C2∗ can be 
guaranteed, the initial data u0(x) = u0r (r, z)er + u0z(r, z)ez, B0(x) = b0θ (r, z)eθ satisfying the conditions in Theo-
rem 1.1 indeed exist.

Remark 1.4. If one consider Eqs. (1.1) with only partial viscosity in the z-direction, i.e. replace �u by ∂2
z u, then 

Theorem 1.1 is still true. We will indicate the corresponding modification in the following section.

The second result concentrates on the singularity formation for the inviscid Hall-MHD system without resistivity.

Theorem 1.2 (Inviscid case ν = 0). The incompressible inviscid Hall-MHD system without resistivity (1.1) is not glob-

ally well-posedness in any Sobolev space Hm(R3) for m >
7

2
. There exists smooth initial data u0(x) = u0r (r, z)er +

u0z(r, z)ez ∈ C∞
c (R3), B0(x) = b0θ (r, z)eθ ∈ C∞

c (R3) with (�0, �0)(r, z) ∈ L1(R3) ∩ L∞(R3) such that if there is a 
local in time smooth solution (u, B)(t, x) to (1.1) with initial data (u0, B0), then (u, B) must blow up in finite time. 

Indeed, one can choose (u0, B0) such that y0 := ∂z�0(0, 0) = ∂2
rzb0θ (0, 0) ≥ 4C

1/2
	 , t	 = 2

y0
and J0 := �0(0, 0) > 0, 

where C	 depends only on ‖�0‖L1∩L∞ + ‖�0‖L1∩L∞ , where ‖f ‖L1∩L∞ := ‖f ‖L1(R3) + ‖f ‖L∞(R3), then

lim sup
t→t	

sup
z∈R

|∂z�(t,0, z)| = ∞.

Moreover, the velocity field also blows up

lim sup
t→t	

sup
z∈R

|(∂t� + (ur∂r + uz∂z)�) (t,0, z)| = ∞.

The paper will proceed as follows. In Section 2, we will give some a priori estimates on the smooth solutions to 
(1.3). Then we prove Theorem 1.1 and 1.2 in the last section.

2. Some a priori estimates for solutions to (1.3)

We first explain the difficulties and the key issues in our proof for Theorems 1.1 and 1.2. Since ∂t� + (ur∂r +
uz∂z)� − 2�∂z� = 0, we know that ∂z� satisfies a Riccati type equation for

∂t ∂z� + (ur∂r + uz∂z − 2�∂z)∂z� − 2(∂z�)2 + ∂zur∂r� + ∂zuz∂z� = 0. (2.1)

From (2.1), we see that the convective term (ur∂r + uz∂z)� may prevent the blowup of ∂z�. To avoid the trouble 
caused by ur , we first observe that ur(t, r = 0, z) ≡ 0, so we have ∂zur(t, r = 0, z) ≡ 0. Hence if we restrict Eq. (2.1)
to r = 0, then we obtain

∂t ∂z�(t,0, z) + (uz − 2�)∂z∂z�(t,0, z) − 2(∂z�)2(t,0, z) + (∂zuz∂z�)(t,0, z) = 0. (2.2)

The remain thing is to get some strong enough estimate for ∂zuz, so that we can show that the quadratic −2(∂z�)2 will 

control the growth of ∂z�. Our idea is to use the divergence free condition to replace ∂zuz(t, 0, z) by lim
r→0

ur(t, r, z)

r

∂zuz(t,0, z) = − lim
r→0+(∂rur + 1

r
ur)(t, r, z) = −2 lim

r→0

ur(t, r, z)

r
.

Hence we obtain

∂t ∂z�(t,0, z) + (uz − 2�)∂z∂z�(t,0, z) − 2

(
∂z�(t,0, z) + lim

ur(t, r, z)
)

∂z�(t,0, z) = 0. (2.3)

r→0 r



1014 D. Chae, S. Weng / Ann. I. H. Poincaré – AN 33 (2016) 1009–1022
It turns out that it is much easier to get a good estimate for 
ur

r
than ∂zuz, which is strong enough to show that 

the blowup of ∂z�. From these explanations, one can also understand why it is difficult to show that the singularity 

occurs outside the axis. In the following, we will do some a priori estimates to get a bound for 

t∫
0

∥∥∥∥ur

r
(s, ·)

∥∥∥∥
L∞

ds by 

distinguishing the viscous and inviscid cases. In the next section, we will use these estimates to show that ∂z� will 
blow up in finite time.

2.1. A priori estimates: Viscous case ν = 1

First we give some a priori estimates for solutions to (1.3). The following lemma shows that the maximum principle 
for �. The proof is easy, we omit the details.

Lemma 2.1. For any smooth solution (ur, uz, bθ , p) to (1.3) with initial data u0(x) = u0r (r, z)er + u0z(r, z)ez ∈
C∞

c (R3), B0(x) = b0θ (r, z)eθ ∈ C∞
c (R3) satisfying �0(r, z) ∈ L∞(R3), then we have

‖�(t, r, z)‖L∞ ≤ ‖�0(r, z)‖L∞ .

If �0 ∈ L2(R3), then

‖�(t, ·)‖L2(R3) = ‖�0‖L2(R3).

Lemma 2.2 (L2 estimate of �). Assume that the initial data (u0, B0) satisfy u0 ∈ H 2(R3), B0 ∈ H 1(R3) and �0 ∈
L∞(R3). Then we have the following estimate for �

‖�(t, ·)‖2
L2 +

t∫
0

‖∇�(s, ·)‖2
L2ds + 2π

t∫
0

|�(s,0, z)|2dz

≤ C1(‖u0‖H 2(R3),‖B0‖H 1(R3),‖�0‖L∞(R3))(1 + t).

Proof. By (1.4), one can easily obtain the L2 estimate for �

1

2

d

dt
‖�‖2

L2 + ‖∇�‖2
L2 + 2π

∫
R

|�(t,0, z)|2dz

= −
∫

�∂z�
2dx =

∫
�2∂z�dx

≤ ‖�‖L∞‖�‖L2‖∂z�‖L2 ≤ 4‖�‖2
L∞‖�‖2

L2 + 1

2
‖∂z�‖2

L2 .

Hence we obtain

d

dt
‖�‖2

L2 + ‖∇�‖2
L2 + 2π

∫
R

|�(t,0, z)|2dz

≤ 4‖�‖2
L∞‖�‖2

L2 ≤ 4‖�0‖2
L∞‖�0‖2

L2 .

This will imply the following estimate for �

‖�(t, ·)‖2
L2 +

t∫
0

‖∇�(s, ·)‖2
L2ds + 2π

t∫
0

|�(t,0, z)|2dzds

≤ ‖�0‖2
L2 + 4‖�0‖2

L∞‖�0‖2
L2 t

≤ ‖u0‖2
H 2 + 4‖�0‖2

L∞‖B0‖2
H 1 t ≤ C1(‖u0‖H 2,‖�0‖L∞ ,‖B0‖H 1)(1 + t). �
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Remark 2.1. If one consider Eqs. (1.1) with only partial viscosity in the z-direction, i.e. replace �u by ∂2
z u, then we 

still have the following estimate

‖�(t, ·)‖2
L2 +

t∫
0

‖∂z�(s, ·)‖2
L2ds

≤ C1(‖u0‖H 2(R3),‖B0‖H 1(R3),‖�0‖L∞(R3))(1 + t). (2.4)

We also need the following estimate for 
ur

r
. A similar estimate has appeared in Lemma 3.1 in [17].

Lemma 2.3. The following estimate holds for 
ur

r
:

t∫
0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds ≤ sup
0≤s≤t

‖�(s, ·)‖L2

t∫
0

‖∂z�(s, ·)‖L2ds ≤ C∗(1 + t)t1/2, (2.5)

where C∗ depends only on ‖u0‖H 2(R3), ‖B0‖H 1(R3), ‖�0‖L∞(R3).

Proof. For the convenience of the reader we give a sketch of proof. For more details of the proof, one may refer to 
[17]. By the divergence free condition, ∂r(rur) + ∂z(ruz) = 0, one can introduce a stream function ψθ such that

ur = −∂zψθ , uz = 1

r
∂r (rψθ ).

Since ωθ = ∂zur − ∂ruz, we have

−(∂2
r + 1

r
∂r + ∂2

z − 1

r2
)ψθ = ωθ .

Setting ϕ = ψθ

r
, then it is easy to see that

−(∂2
r + 3

r
∂r + ∂2

z )ϕ = �.

As in [17], the second order operator (∂2
r + 3

r
+ ∂2

z ) can be interpreted as the Laplace operator in 5-dimensional space. 

We introduce

y = (y1, y2, y3, y4, z), r =
√

y2
1 + y2

2 + y2
3 + y2

4 , �y = (∂2
r + 3

r
∂r + ∂2

z ).

Hence we have ϕ = (−�y)
−1�. To get an estimate of ‖ur

r
‖L∞ , by a simple interpolation inequality ‖f ‖2

L∞ ≤
C2‖∇f ‖L2‖∇2f ‖L2 , we have

t∫
0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds =
t∫

0

‖∂zϕ(s, ·)‖2
L∞ds

≤ C2

t∫
0

‖∇∂zϕ(s, ·)‖L2‖∇2∂zϕ(s, ·)‖L2ds.

By simple calculations, one has

|∇2
yϕ|2 � |∂2

r ϕ|2 + |1

r
∂rϕ|2 + |∂2

z ϕ|2 + |∂2
rzϕ|2

and
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∫
|∇2ϕ|2dx ≤ C3

∞∫
−∞

∞∫
0

(
|∂2

r ϕ|2 + |1

r
∂rϕ|2 + |∂2

z ϕ|2 + |∂2
rzϕ|2

)
rdrdz

= C3

∞∫
−∞

∞∫
0

(
|∂2

r ϕ|2 + |1

r
∂rϕ|2 + |∂2

z ϕ|2 + |∂2
rzϕ|2

)
w(r)r3drdz

≤ C4

∞∫
−∞

∞∫
0

|∇2
yϕ|2w(r)r3drdz = C4

∞∫
−∞

∞∫
0

|∇2
y (−�y)

−1�|2w(r)r3drdz

= C4

∫
|∇2

y (−�y)
−1�|2w(r)dy

≤ C5

∫
|�|2w(r)dy = C5

∫
|�|2dx,

where w(r) = r−2 and in the last step we have used the boundedness of Riesz operators in weighted Sobolev spaces 
(Lemma 2 in [16]). See also Corollary 2 in [3] for a similar weighted estimate for a singular integral operator.

Similarly, we also have∫
|∇2∂zϕ|2dx ≤ C6

∫
|∂z�|2dx.

Hence
t∫

0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds ≤ C2

t∫
0

‖∇∂zϕ(s, ·)‖L2‖∇2∂zϕ(s, ·)‖L2ds

≤ C7

t∫
0

‖�(s, ·)‖L2‖∂z�(s, ·)‖L2ds

≤ C7 sup
0≤s≤t

‖�(s, ·)‖L2

t∫
0

‖∂z�(s, ·)‖L2ds

≤ C7C
1
2
1 (1 + t)

1
2

( t∫
0

‖∂z�(s, ·)‖2
L2ds

) 1
2

t
1
2

≤ C∗(1 + t)t
1
2 ,

where C∗ depends only on ‖u0‖H 2(R3), ‖B0‖H 1(R3), ‖�0‖L∞(R3). �
Remark 2.2. If one consider Eqs. (1.1) with only partial viscosity in the z-direction, i.e. replace �u by ∂2

z u, then we 
still have the following estimate

t∫
0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds ≤ sup
0≤s≤t

‖�(s, ·)‖L2

t∫
0

‖∂z�(s, ·)‖L2ds ≤ C∗(1 + t)t
1
2 . (2.6)

2.2. A priori estimates: Inviscid case ν = 0

In this case, then the equations satisfied by � and � will reduce to{
∂t� + (ur∂r + uz∂z)� + 2�∂z� = 0,

∂t� + (ur∂r + uz∂z)� − 2�∂z� = 0, (2.7)

(�,�)(t = 0, r, z) = (�0,�0)(r, z).
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Putting 
 = � + �, it is easy to see that{
∂t
 + (ur∂r + uz∂z)
 = 0,


(t = 0, r, z) = �0(r, z) + �0(r, z) := 
0(r, z).
(2.8)

This simple, but important observation plays a key role in our following argument. Note that (2.8) indeed comes from 
(1.1) with ν = 0 by observing that R = curlu + B satisfies the following equation

∂tR + u · ∇R − R · ∇u = 0. (2.9)

Lemma 2.4. For any smooth solution (ur, uz, bθ , p) to (1.3) with initial data u0(x) = u0r (r, z)er + u0z(r, z)ez ∈
C∞

c (R3), B0(x) = b0θ (r, z)eθ ∈ C∞
c (R3) satisfying (�0, �0)(r, z) ∈ L1 ∩ L∞, then we have

‖�(t, r, z)‖L1∩L∞ ≤ ‖�0(r, z)‖L1∩L∞ , (2.10)

‖�(t, r, z)‖L1∩L∞ ≤ ‖�0(r, z)‖L1∩L∞ + ‖�0(r, z)‖L1∩L∞ . (2.11)

Next we need the following inequality, which comes from the Biot–Savart law (note that curl(ur(t, r, z)er +
uz(t, r, z)ez) = ωθ(t, r, z)eθ ) and has been proved in [21] long time ago. One can refer to Lemma 2 in [7] for more 
details.

Lemma 2.5. There exists a universal constant C8 such that

|ur(t, x)| ≤ C8

∫
R3

min

(
1,

r

|x′ − x|
) |ωθ(t, x

′)|
|x − x′|2 dx′, (2.12)

which yields

|ur(t, x)|
r

≤ 2C8

∫
R3

1

|x − x′|2
|ωθ(t, x

′)|
r ′ dx′. (2.13)

Note that here we use the notation

ur(t, x) := ur(t,

√
x2

1 + x2
2 , x3), ωθ (t, x) := ωθ(t,

√
x2

1 + x2
2 , x3).

From (2.13), we have for any t > 0

∥∥∥ur

r
(t, ·)

∥∥∥
L∞(R3)

≤ 2C9

∫
R3

1

|x − x′|2 |�(t, x′)|dx′

≤ 2C9

( ∫
|x−x′|≤1

+
∫

|x−x′|>1

)
1

|x − x′|2 |�(t, x′)|dx′

≤ 2C9

(
‖�(t)‖L∞

∫
|x−x′|≤1

1

|x − x′|2 dx′ + ‖�(t)‖L1(R3)

)

≤ C10‖�(t)‖L1∩L∞

≤ C10

(
‖�0(r, z)‖L1∩L∞ + ‖�0(r, z)‖L1∩L∞

)
:= C	, (2.14)

where C10 is also a universal constant.
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3. Singularity formation

3.1. Viscous case ν = 1

Proof of Theorem 1.1. Suppose the incompressible viscous Hall-MHD system without resistivity (1.1) is globally 

well-posed in some Sobolev space Hm(R3), where m >
7

2
. That is to say, for any initial data (u0, B0) ∈ Hm(R3), there 

exists a unique smooth solution (u, B) ∈ C([0, ∞); Hm(R3)) to the Hall-MHD (1.1). We will derive a contradiction 
to this.

In the following, we will choose a special class of smooth axisymmetric initial data with the form u0(x) =
u0r (r, z)er + u0z(r, z)ez ∈ (C∞

c (R3))3 and B0(x) = b0θ (r, z)eθ ∈ (C∞
c (R3))3, such that the corresponding solution 

(u, B)(t, x) to (1.1) will develop a singularity for the magnetic field in finite time, which will also induce a singularity 
in the velocity field. Hence we can conclude that the Hall-MHD system (1.1) is not global well-posedness in any 

Sobolev space Hm(R3) for m >
7

2
.

For Hall-MHD system with initial data u0(x) = u0r (r, z)er + u0z(r, z)ez and B0(x) = b0θ (r, z)eθ , by uniqueness, 
we can show that the corresponding solution (u, B)(t, x) should be axisymmetric and has the form

u(t, x) = ur(t, r, z)er + uz(t, r, z)ez, B(t, x) = bθ (t, r, z)eθ ,

where (ur , uz, bθ )(t, r, z) should solve the system (1.3) with initial data (u0r , u0z, b0θ ). Indeed, for any α ∈ [0, 2π), 
we define the following change of coordinate(

y1
y2
y3

)
:= A

(
x1
x2
x3

)
=

( cosα sinα 0
− sinα cosα 0

0 0 1

)(
x1
x2
x3

)
.

Setting

ũ(t, y) = Au(t,A−1y), B̃(t, y) = AB(t,A−1y), p̃(t, y) = p(t,A−1y),

then it is easy to verify that (ũ(t, y), B̃(t, y), p̃(t, y)) solves (1.1) with initial data

ũ(t = 0, y) = Au0(A
−1y), B̃(t = 0, y) = AB0(A

−1y).

By the axisymmetric property of (u0(x), B0(x)), we have Au0(A
−1y) = u0(y), AB0(A

−1y) = B0(y). Hence by 
uniqueness of (1.1), we have

ũ(t, y) ≡ u(t, y), B̃(t, y) ≡ B(t, y), p̃(t, y) ≡ p(t, y).

Since α ∈ [0, 2π) is arbitrary, we find that (u, B, p)(t, x) must be axisymmetric and is of the form

u(t, x) = ur(t, r, z)er + uz(t, r, z)ez, B(t, x) = bθ (t, r, z)eθ , p(t, x) = p(t, r, z)

where (ur , uz, bθ , p)(t, r, z) solve the problem (1.3) (see lines below (1.2)).
Hence the a priori estimates established in Section 2 hold for (ur , uz, bθ )(t, r, z). In particular, we have the follow-

ing estimate

t∫
0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds ≤ sup
0≤s≤t

‖�(s, ·)‖L2

t∫
0

‖∂z�(s, ·)‖L2ds ≤ C∗(1 + t)t
1
2 ,

where C∗ depends only on ‖u0‖H 2(R3), ‖B0‖H 1(R3), ‖�0‖L∞(R3).
As we explained in the beginning of the second section, we know that ∂z�(t, 0, z) will satisfy the following 

equation

∂t ∂z�(t,0, z) + (uz − 2�)∂z∂z�(t,0, z) − 2

(
∂z�(t,0, z) + lim

ur(t, r, z)
)

∂z�(t,0, z) = 0. (3.1)

r→0 r
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Define the particle trajectory on the axis of symmetry φ(t, z) as follows{
d

dt
φ(t, z) = (uz − 2�)(t,0, φ(t, z)),

φ(0, z) = z.

Then by setting f (t, z) = ∂z�(t, 0, φ(t, z)) and g(t, z) = ∂rur(t, 0, φ(t, z)) = lim
r→0

ur

r
(t, 0, φ(t, z)), we know that

d

dt
f (t, z) = 2f 2(t, z) − 2g(t, z)f (t, z)

≥ f 2(t, z) − g2(t, z).

Integrating over [0, t], we have

f (t, z) − f (0, z) ≥
t∫

0

f 2(s, z)ds −
t∫

0

g2(s, z)ds

≥
t∫

0

f 2(s, z)ds −
t∫

0

∥∥∥∥ur

r
(s, ·)

∥∥∥∥
2

L∞
ds. (3.2)

Fix z = 0 and set y0 = f (0, 0) = ∂z�0(0, 0), then by employing the estimate (2.5) in Lemma 2.3, we obtain

f (t,0) ≥
t∫

0

f 2(s,0)ds + y0 −
t∫

0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds (3.3)

≥
t∫

0

f 2(s,0)ds + y0 − C∗(1 + t)t
1
2 . (3.4)

Now take y0 ≥ 104C2∗ and T∗ = 4

y0
, for t ∈ [0, T∗], we have

f (t,0) ≥
t∫

0

f 2(s,0)ds + y0 − 4C∗ × 1

100C∗

≥
t∫

0

f 2(s,0)ds + 1

2
y0.

Define a new function F(t) =
t∫

0

f 2(s, 0)ds + 1

2
y0, then F(t) satisfies the following inequality

F ′(t) ≥ F 2(t), t ∈ [0, T∗],
F (0) = 1

2
y0.

Hence we have

F(t) ≥ y0

2 − ty0
.

This simply implies that

lim sup
t→t0

F(t) = ∞, lim sup
t→t0

f (t,0) = lim sup
t→t0

∂z�(t,0, φ(t,0)) = ∞,

where t0 = 2
< T∗.
y0
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Note that on the axis r = 0, the equation for � can be reduced to

∂t�(t,0, z) + (uz − 2�)(t,0, z)∂z�(t,0, z) = 0.

By the definition of φ(t, z), we have 
d

dt
�(t, 0, φ(t, z)) ≡ 0. This enables us to get

�(t,0, φ(t,0)) = �(0,0, φ(0,0)) = �0(0,0).

Hence, if we choose �0(0, 0) = J0 > 0, then

lim sup
t→t0

(�∂z�)(t,0, φ(t,0)) = ∞.

From Eq. (1.4) for �, we get

2�∂z� = −∂t� − (ur∂r + uz∂z)� + (∂2
r + 3

r
∂r + ∂2

z )�. (3.5)

Therefore we see that at least one of the terms on the right side in (3.5) blows up

lim sup
t→t0

(
∂t� + (ur∂r + uz∂z)� − (∂2

r + 3

r
∂r + ∂2

z )�

)
(t,0, φ(t,0)) = ∞.

This contradicts to our assumption that (1.1) is globally well-posedness in some Sobolev space Hm(R3) for m >
7

2
. 

Hence the incompressible viscous Hall-MHD system without resistivity is not globally well-posedness in any Sobolev 

space Hm(R3) for m >
7

2
. This yields two possibility: either the system is locally ill-posed in Hm(R3), or it is locally 

well-posed, but there exists an initial data in Hm(R3), for which the Hm(R3) norm of solution blows-up in finite time 

if m >
7

2
. �

3.2. Inviscid case ν = 0

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we will argue by contradiction. Same argument as before 
shows that (3.2) also holds in the inviscid case, so

f (t, z) − f (0, z) ≥
t∫

0

f 2(s, z)ds −
t∫

0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds. (3.6)

Fix z = 0 and set y0 = f (0, 0) = ∂z�0(0, 0), then by employing the estimate (2.14), we obtain

f (t,0) ≥
t∫

0

f 2(s,0)ds + y0 −
t∫

0

∥∥∥ur

r
(s, ·)

∥∥∥2

L∞ ds (3.7)

≥
t∫

0

f 2(s,0)ds + y0 − C	t. (3.8)

Now take y0 ≥ 4C
1
2
	 and T	 = 4

y0
≤ C

−1/2
	 , for t ∈ [0, T	], we have

f (t,0) ≥
t∫

0

f 2(s,0)ds + y0 − C	C
−1/2
	

≥
t∫
f 2(s,0)ds + 1

2
y0.
0
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Then F(t) =
t∫

0

f 2(s, 0)ds + 1

2
y0 satisfies the following inequality

F ′(t) ≥ F 2(t), t ∈ [0, T	],
F (0) = 1

2
y0.

Hence we have

F(t) ≥ y0

2 − ty0
.

This simply implies that

lim sup
t→t	

F (t) = ∞, lim sup
t→t	

f (t,0) = lim sup
t→t	

∂z�(t,0, φ(t,0)) = ∞,

where t	 = 2

y0
< T	.

As before, if we choose �0(0, 0) = J0 > 0, then

lim sup
t→t	

(�∂z�)(t,0, φ(t,0)) = ∞,

and also by (2.7), the velocity field will also blow up

lim sup
t→t	

(
∂t� + (ur∂r + uz∂z)�

)
(t,0, φ(t,0)) = ∞.

This contradicts to our assumption that (1.1) is globally well-posedness in some Sobolev space Hm(R3) for m >
7

2
. 

Hence the incompressible viscous Hall-MHD system without resistivity is not globally well-posedness in any Sobolev 

space Hm(R3) for m >
7

2
. This also yields two possibilities: either the system is locally ill-posed in Hm(R3), or it 

is locally well-posed, but there exists an initial data in Hm(R3), for which the Hm(R3) norm of solution blows-up in 

finite time if m >
7

2
. �

Remark 3.1. As one can see from the above proof, the convective term (ur∂r + uz∂z)� may prevent the shock 
formation. For the incompressible viscous Hall-MHD by restricting on the axis, we have good control on the gradient 
of ur and uz, showing that the smoothing effect of the convective term is not strong enough and cannot prevent the 
formation of shock-type singularity in the magnetic field.
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