
Available online at www.sciencedirect.com
ScienceDirect

Ann. I. H. Poincaré – AN 33 (2016) 1033–1067
www.elsevier.com/locate/anihpc

Phase field approximation of cohesive fracture models

S. Conti a, M. Focardi c, F. Iurlano a,b,∗

a IAM, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany
b HCM, Universität Bonn, Endenicher Allee 60, 53115 Bonn, Germany

c DiMaI “U. Dini”, Università degli Studi di Firenze, Viale Morgagni 67/A, 50134 Firenze, Italy

Received 27 May 2014; received in revised form 29 January 2015; accepted 27 February 2015

Available online 20 March 2015

Abstract

We obtain a cohesive fracture model as �-limit, as ε → 0, of scalar damage models in which the elastic coefficient is computed 
from the damage variable v through a function fε of the form fε(v) = min{1, ε

1
2 f (v)}, with f diverging for v close to the value 

describing undamaged material. The resulting fracture energy can be determined by solving a one-dimensional vectorial optimal 
profile problem. It is linear in the opening s at small values of s and has a finite limit as s → ∞. If in addition the function f is 
allowed to depend on the parameter ε, for specific choices we recover in the limit Dugdale’s and Griffith’s fracture models, and 
models with surface energy density having a power-law growth at small openings.
© 2015 
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1. Introduction

Variational models in Fracture Mechanics are effectively described through functional spaces with discontinuities. 
In case of antiplane shear, the corresponding energy functionals take the form∫

�

h(|∇u|)dx +
∫
Ju

g(|[u]|)dHn−1 + κ |Dcu|(�) (1.1)

and the displacement u : � → R is allowed to vary in the space of functions with bounded variation (for more details 
see [35,17,11,29]). The key ingredients in formula (1.1) are respectively a volume term, corresponding to the stored 
energy and depending on the approximate gradient ∇u, a surface term, modeling the fracture energy and depending 
on the opening [u] and on the jump set Ju, and a diffuse term which can be related to micro-cracking and depends on 
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the Cantor derivative Dcu. In this setting, which is appropriate for the study of monotone deformation processes, the 
functional (1.1) accounts for both stored energy and the work of dissipation.

Lower semicontinuity is a fundamental property of functionals in the calculus of variations. Problems which are not 
lower semicontinuous typically lack existence of minimizers and have minimizing sequences which develop fine-scale 
oscillations or other microstructures. In the case of (1.1), lower semicontinuity requires a relation between the energy 
densities h and g, and the constant κ . Roughly speaking, κ has to agree with the slope of g at 0 and with the slope 
of h at +∞, see [4,13].

The most renowned example of (1.1) is Griffith’s energy, where h is quadratic and g is constant. The semicontinuity 
condition compels κ to be +∞, so that Dcu necessarily vanishes and one can take u in the space of special functions 
with bounded variation. Analytically, the resulting energy coincides with the Mumford–Shah functional for image 
segmentation. From a physical point of view, the model describes a situation in which already for the smallest opening 
there is no interaction between the two sides of the crack (brittle fracture [35,17]).

In ductile materials crack proceeds rather through the opening of a series of voids separated by thin filaments, 
which produce a weak bound between the lips at moderate openings (cohesive fracture [11,29,33]). The mathematical 
rephrasing of the corresponding model again involves the functional (1.1), where now h is chosen quadratic near the 
origin and linear at +∞, g is concave, linear near the origin, and grows from g(0) = 0 to some finite value g(+∞), 
representing the energetic cost of total fracture. By semicontinuity the constant κ is thus finite and non-zero. A par-
ticular example is given by Dugdale’s energy, where the surface density is precisely g(s) := min {s,1}, s ∈ [0, +∞). 
Variants of (1.1) which lack lower semicontinuity have been used to study the formation of microcracks [27,28].

A large literature has been devoted to the derivation of models as (1.1) from more regular models, like damage or 
phase field models, mainly within the framework of �-convergence. These approximations can be interpreted both as 
microscopic physical models, so that the �-convergence justifies the macroscopic model (1.1), and as regularizations, 
therefore can be used for example in numerical simulations.

In the first work of this sort, Ambrosio and Tortorelli [9] (see also [8]) showed that the elliptic functional∫
�

(
(v2 + o(ε))|∇u|2 + (1 − v)2

4ε
+ ε|∇v|2

)
dx (1.2)

�-converges in L1(�)×L1(�) to the Mumford–Shah functional (normalizing the surface coefficient)∫
�

|∇u|2dx +Hn−1(Ju).

This result was extended in many directions, for example to vector-valued functions [30,31], to linearized elastic-
ity [23,24,39], to second-order problems [5], to vectorial problems [42], and to models with nonlinear injectivity 
constraints [37]; for numerical simulations we refer to [12,16,15,21,22]. There is also a large numerical literature on 
the application to computer vision, see for example [36,10] and references therein. Discrete models for fracture were 
studied for example in [19,20].

In [2], Alicandro, Braides, and Shah propose an approximation for functionals with more general dependence on 
the opening of the crack [u], including in particular Barenblatt’s cohesive energy (the vector-valued case has been 
studied in [3]). A key point here is that the regularizations they adopt depend on |∇u| through an asymptotically linear 
function. In particular, their approximating functionals are not lower semicontinuous, and minimizing sequences at 
fixed ε are expected to converge to a limit in BV×H 1. This limits their usefulness as regularizations of (1.1), since 
any numerical treatment of the regularized functional would need to treat directly functions with discontinuities, and 
therefore would not be much simpler than a direct simulation of (1.1). Here we show that (1.1) can be approximated by 
functionals of the type (1.2), which are quadratic in the gradients and possess a minimizer in the Sobolev space W 1,2. 
The quadratic growth of the elastic energy in ∇u is also classical in damage models, see for example [34,41] and 
references therein.

The only approximations with quadratic volume energy densities available so far in literature have been obtained 
for energies which are linear [38] or affine in [u] [7,26,32], and have in common that the profiles of u and v in the 
optimal-transition problem giving g(|[u]|) can be decoupled.

In this work we obtain a �-convergence result for Barenblatt’s cohesive energy with functionals quadratic in |∇u|. 
To be precise, we study a damage model similar to those considered in [40,41] (cp. Remark 3.2 below), namely,
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Fε(u, v) :=
∫
�

(
f 2

ε (v)|∇u|2 + (1 − v)2

4ε
+ ε|∇v|2

)
dx, (1.3)

with u, v ∈ H 1(�), 0 ≤ v ≤ 1 Ln-a.e. in �, and Fε(u, v) := ∞ otherwise, and show that it converges to a cohesive 
fracture model like (1.1), where g is a continuous, subadditive, bounded function with g(0) = 0, which is linear close 
to the origin. The potential fε : [0, 1) → [0, +∞] in (1.3) is defined by

fε(z) := 1 ∧ ε
1
2 f (z), (1.4)

where f ∈ C0([0, 1), [0, +∞)) is nondecreasing, f −1(0) = {0}, and it satisfies

lim
z→1

(1 − z)f (z) = �, � ∈ (0,+∞). (1.5)

Our main result describes the asymptotic of (Fε) as follows.

Theorem 1.1. Let � ⊂R
n be a bounded Lipschitz set, assume (1.3)–(1.5).

Then, the functionals Fε �-converge in L1(�)×L1(�) to the functional F defined by

F(u, v) :=

⎧⎪⎨⎪⎩
∫
�

h(|∇u|)dx +
∫
Ju

g(|[u]|)dHn−1 + �|Dcu|(�) if v = 1 Ln-a.e. in �, u ∈ GBV(�)

+∞ otherwise.

Here the volume energy density h is given by h(s) := s2 if s ≤ �/2 and as h(s) := �s − �2/4 otherwise, while the 
surface energy density g is given by

g(s) := inf

{ 1∫
0

|1 − β|
√

f 2(β)|α′|2 + |β ′|2 dt : (α,β) ∈ H 1((0,1)
)
,

α(0) = 0, α(1) = s, β(0) = β(1) = 1

}
. (1.6)

Let us motivate heuristically the choice of fε. First note that the truncation by 1 in (1.4) allows to obtain a bulk 
density in the limit functional which is quadratic near the origin. Indeed, when fε(v) = 1 it is convenient to take v = 1
and the bulk contribution is exactly |∇u|2. Instead when fε(v) < 1 and v is close to 1, it is convenient to optimize the 
contribution of the first two terms of (1.3) pointwise at given ∇u (neglecting the contribution of the last term of (1.3)). 
Supposing that f (z) = �

1−z
, we obtain

min
0≤z≤1

{
ε

�2

(1 − z)2
|∇u|2 + (1 − z)2

4ε

}
= �|∇u|.

The possibility of microstructure (mixtures of the two cases) leads to the convexified bulk density(
min{|ξ |2, �|ξ |}

)∗∗
,

that is, h(|ξ |).
The qualitative behavior of the surface density g can be easily related to the choice of f . Obviously one easily 

finds that g(0) = 0, since the pair (0, 1) is optimal. When s ∼ 0, one still expects that β ∼ 1. In this case we neglect 
the contribution of the second term in (1.6) and the integral reduces to s((1 − z)f (z))z=1 = �s. Therefore, the growth 
of f near 1 is instrumental to get a linear behavior for g near 0. When s � 0 the behavior of (α, β) is close to that 
of an optimal pair for the Ambrosio–Tortorelli approximation (and this is reasonable, since we expect that g(s) tends 
to a constant as s → +∞). Indeed, in this case one expects that |α′| is large, so that (1 − β)f (β) is compelled to be 
close to 0 and the first term in (1.6) can be neglected. Hence β agrees with a zero of f in the set where α′ is large (by 
assumption f is zero just in 0) and by the boundary conditions β ∼ 1 near the end points. This gives g(s) ∼ 1, so that 
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Fig. 1. Sketch of the function fε(z) for the prototypical case f (z) = z/(1 − z).

Fig. 2. Sketch of the function g(s) defined in (1.6), obtained by numerical minimization using f (z) = z/(1 − z) (cp. Proposition 4.1 and Re-
mark 4.2).

Fig. 3. Optimal profiles (α/s, β) obtained numerically from the minimization in the definition of g(s), see (1.6), for f (z) = z/(1 − z) and for 
s = 0.1, 0.3, 0.5, 1, and 1.5 (from top to bottom). All curves remain inside the square (0, 1) × (0, 1) except for the two endpoints.

a sort of interpolation with the function �s obtained for small s produces the final g. Figs. 1 and 2 show the behavior 
of fε and g in the case f (z) = z/(1 − z). Fig. 3 shows the optimal profiles α, β in (1.6) as s varies.

One crucial feature of the model we study is that the optimal profiles for the damage variable v and the elastic 
displacement u cannot be determined separately. They instead arise from a joint vectorial minimization problem 
which defines the cohesive energy g, specified in (1.6). This is analogous to the case analyzed in [2,3].

In closing this Introduction we briefly comment on the methodologies. Theorem 1.1, in the equivalent formulation 
given in Theorem 3.1 below, is proved first in the one-dimensional case in Section 5, relying on elementary arguments 
in which we estimate separately the diffuse and jump contributions, and then extended to the general n-dimensional 
setting in Section 6. This extension is obtained by means of several tools. A slicing technique and the above mentioned 
one-dimensional result are the key for the lower bound inequality. Instead, the upper bound inequality is proved 
through the direct methods of �-convergence on SBV, i.e. abstract compactness results and integral representation of 



S. Conti et al. / Ann. I. H. Poincaré – AN 33 (2016) 1033–1067 1037
the corresponding �-limits. The latter methods are complemented with an ad-hoc one-dimensional construction to 
match the lower bound on SBV and a relaxation procedure to prove the result on BV . Finally, the extension to GBV is 
obtained via a simple truncation argument.

The issues of equi-coercivity of Fε and the convergence of the related minima are dealt with in Theorem 3.3 and 
Corollary 3.4 below, respectively.

Qualitative properties of the surface energy density g defined in (1.6) are analyzed in Section 4. Its monotonicity, 
sublinearity, boundedness and linear behavior in the origin are established in Proposition 4.1. Proposition 4.3 char-
acterizes g by means of an asymptotic cell formula particularly convenient in the proof of the �-limsup inequality. 
Furthermore, the dependence of g on f is analyzed in details in Proposition 4.5. The latter results on the one hand 
show the variety of such a class of functions, and on the other hand are instrumental to handle the limits of sequences 
in which f depends itself on ε.

In Section 7 we discuss how the phase field approximation scheme can be used to approximate different fracture 
models. We first consider damage functions of the form

fε(z) := min{1, ε
1
2 max{f (z), aεz}}

and show that if aε → ∞ and aεε
1
2 → 0 then a similar result holds with the limiting surface energy g(s) = 1 ∧ (�s), 

so that (1.1) reduces to Dugdale’s fracture model (Theorem 7.1 in Section 7.1).
Secondly we consider a situation in which f diverges with exponent p > 1 close to z = 1, so that (1.5) is replaced 

by

lim
z→1

(1 − z)pf (z) = γ .

Also in this case the functionals �-converge to a problem of the form (1.1), in this case however the fracture energy g

turns out to be proportional to the opening s to the power 2/(p + 1) at small s. Correspondingly the coefficient κ
of the diffuse part is infinite, so that the limiting problem is framed in the space GSBV, see Theorem 7.4 in Sec-
tion 7.2.

Finally we show that if fε(z) diverges as �ε/(1 − z), with �ε → ∞, then Griffith’s fracture model is recovered in 
the limit, see Theorem 7.5 in Section 7.3 below.

We finally summarize the structure of the paper. In Section 2 we introduce some notation, some preliminaries, and 
the functional setting of the problem. The main result of the paper is stated in Section 3, where we also discuss the 
convergence of related minimum problems and minimizers. Our �-convergence result relies on several properties of 
the surface energy density g that are established in Section 4. The proof is then given first in the one-dimensional 
case in Section 5 and then in n dimensions in Section 6. The three generalizations are discussed and proven in 
Section 7.

2. Notation and preliminaries

Let n ≥ 1 be a fixed integer. We denote the Lebesgue measure and the k-dimensional Hausdorff measure in Rn by 
Ln and Hk , respectively. Given � ⊂ Rn an open bounded set with Lipschitz boundary, we define A(�) as the set of 
all open subsets of �.

Throughout the paper c denotes a generic positive constant that can vary from line to line.

2.1. �- and �-convergence

Given an open set � ⊂ R
n and a sequence of functionals Fk : X × A(�) → [0, +∞], (X, d) a separable metric 

space, such that the set function Fk(u; ·) is nondecreasing on the family A(�) of open subsets of �, set

F ′(x;A) := �-lim inf
k→+∞Fk(x;A) := inf

{
lim inf
k→+∞Fk(xk;A) : xk → z in X

}
and analogously

F ′′(x;A) := �-lim supFk(x;A) := inf

{
lim supFk(zk;A) : xk → x in X

}

k→+∞ k→+∞
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for every A ∈ A(�). We write F (x) for F (x; �), and the same for the other functionals. The sequence Fk

�-converges to F (with respect to the metric d) if F = F ′ = F ′′. The functionals F ′, F ′′ are called respectively 
the �-lower, �-upper limit of the Fk’s.

Next we recall the notion of �-convergence, useful in particular to deal with the integral representation of �-limits 
of families of integral functionals. We say that (Fk) �-converges to F : X × A(�) → [0, +∞] if F is the inner 
regular envelope of both functionals F ′ and F ′′, i.e.,

F (u;A) = sup{F ′(u;A′) : A′ ∈A(�), A′ ⊂⊂ A} = sup{F ′′(u;A′) : A′ ∈A(�), A′ ⊂⊂ A},
for every (u, A) ∈ X × A(�). These definitions and main results concerning the �-convergence technique can be 
found in [25,18].

2.2. Functional setting of the problem

Our results are set in the spaces BV and SBV and in suitable generalizations. For the definitions, the notation and 
the main properties of such spaces we refer to the book [6]. We recall that SBV2(�) is defined by

SBV2(�) := {u ∈ SBV(�) : ∇u ∈ L2(�) and Hn−1(Ju) < +∞}.
A function u : � →R belongs to GBV(�) (respectively to GSBV(�)) if the truncations uM := −M ∨ (u ∧M) belong 
to BVloc(�) (respectively to SBVloc(�)), for every M > 0. For fine properties of GBV and GSBV again we refer to [6].

The prototype of the asymptotic result we shall prove in Sections 5, 6, and 7 concerns the Mumford–Shah functional 
of image segmentation

MS(u) :=

⎧⎪⎨⎪⎩
∫
�

|∇u|2dx +Hn−1(Ju) if u ∈ GSBV(�),

+∞ otherwise in L1(�).

(2.1)

Let ψ : [0, 1] → [0, 1] be any nondecreasing lower-semicontinuous function such that ψ−1(0) = 0 and ψ(1) = 1. 
Then the classical approximation by Ambrosio and Tortorelli (cp. [8,9], and also [30]) establishes that the two-field 
functionals ATψ

k : L1(�) × L1(�) → [0, +∞]

ATψ
k (u, v) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
�

(
ψ2(v)|∇u|2 + (1 − v)2

4εk

+ εk|∇v|2
)
dx if (u, v) ∈ H 1(�)×H 1(�)

and 0 ≤ v ≤ 1 Ln-a.e. in �,

+∞ otherwise

(2.2)

�-converge in L1(�)×L1(�) to

M̃S(u, v) :=
{

MS(u) if v = 1 Ln-a.e. in �,

+∞ otherwise,

that is equivalent to the Mumford–Shah functional MS for minimization purposes.
We finally introduce the notation related to slicing. Fixed ξ ∈ S

n−1 := {ξ ∈ R
n : |ξ | = 1}, let �ξ := {y ∈ R

n :
y · ξ = 0

}
, and for every subset A ⊂R

n set

Aξ
y := {t ∈R : y + tξ ∈ A

}
for y ∈ �ξ,

Aξ := {y ∈ �ξ : Aξ
y �=∅}.

For u : � →R we define the slices uξ
y : �ξ

y → R by uξ
y(t) := u(y + tξ ).

Observe that if uk, u ∈ L1(�) and uk → u in L1(�), then for every ξ ∈ S
n−1 there exists a subsequence (ukj

) such 
that

(ukj
)ξy → uξ

y in L1(�ξ
y) for Hn−1-a.e. y ∈ �ξ .
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3. The main results: approximation, compactness and convergence of minimizers

Given a bounded open set � ⊂R
n with Lipschitz boundary and an infinitesimal sequence εk > 0, we consider the 

sequence of functionals Fk: L1(�)×L1(�) → [0, +∞]

Fk(u, v) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
�

(
f 2

k (v)|∇u|2 + (1 − v)2

4εk

+ εk|∇v|2
)
dx if (u, v) ∈ H 1(�)×H 1(�)

and 0 ≤ v ≤ 1 Ln-a.e. in �,

+∞ otherwise,

(3.1)

where

fk(z) := 1 ∧ ε
1
2
k f (z) , fk(1) = 1 , (3.2)

and

f ∈ C0([0,1), [0,+∞)) is a nondecreasing function satisfying f −1(0) = {0} (3.3)

with

lim
z→1−(1 − z)f (z) = �, � ∈ (0,+∞). (3.4)

In particular, the function [0, 1) �→ (1 − z)f (z) can be continuously extended to z = 1 with value �. One can consider 
f (z) := z

1−z
as prototype.

It is also useful to introduce a localized version Fk(·; A) of Fk simply obtained by substituting the domain of 
integration � with any measurable subset A of � itself. In particular, to be consistent with (3.1), for A = � we shall 
not indicate the dependence on the domain of integration.

Let now : L1(�) → [0, +∞] be defined by

(u) :=

⎧⎪⎨⎪⎩
∫
�

h(|∇u|)dx +
∫
Ju

g(|[u]|)dHn−1 + �|Dcu|(�) if u ∈ GBV(�),

+∞ otherwise,

(3.5)

with h, g: [0, +∞) → [0, +∞) given by

h(s) :=
{

s2 if s ≤ �/2,

�s − �2/4 if s ≥ �/2,
(3.6)

and

g(s) := inf
(α,β)∈Us

1∫
0

|1 − β|
√

f 2(β)|α′|2 + |β ′|2 dt, (3.7)

where Us := Us(0, 1) and for all T > 0

Us(0, T ) := {α,β ∈ H 1((0, T )
) : 0 ≤ β ≤ 1, α(0) = 0, α(T ) = s, β(0) = β(T ) = 1}. (3.8)

At the points t with β(t) = 1 the integrand in (3.7) reduces to �|α′|(t), in agreement with (3.4).
Note that in the one-dimensional setting the functional  turns out to be finite on BV(�) (see Proposition 5.1).
Our main result is the following.

Theorem 3.1. Under the assumptions (3.1)–(3.8), the functionals Fk �-converge in L1(�)×L1(�) to the functional F

defined by

F(u, v) :=
{

(u) if v = 1 Ln-a.e. in �,

+∞ otherwise.
(3.9)
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Remark 3.2. The assumption that f −1(0) = 0 is not restrictive and changes only the detailed properties of g. Indeed, 
standing all the other assumptions, defining λ := sup{z ∈ [0, 1) : f (z) = 0} ∈ [0, 1), we would get that g(s) ≤ (1 −
λ)2 ∧ �s (cp. Proposition 4.1 below).

In addition, the potential (1 − z)2 in (3.1) can be replaced by any continuous, decreasing function d : [0, 1] →
[0, +∞) with d(1) = 0. In this case d

1
2 (z) and d

1
2 (β) appear in formulas (3.4) and (3.7) in place of 1 − z and 1 − β

respectively, and we obtain g(s) ≤ 2 
∫ 1

0 d
1
2 (z)dz ∧ �s (see again Proposition 4.1).

Furthermore, the definition of fk in (3.2) can be given in the following more general form fk := ψk ∧ε
1
2 f . Here the 

truncation of f is performed with any continuous nondecreasing function ψk : [0, 1] → [0, 1] satisfying ψk ≥ c > 0, 
and converging uniformly in a neighborhood of z = 1 to the value 1.

In conclusion, to highlight the roles of the different terms in the approximation we discuss an explicit example. 

Consider fk(z) := min{μ, ε
1
2
k f (z)}, f satisfying (3.3)–(3.4), and d(z) := ν2(1 − z)2, with μ and ν positive con-

stants. According to the discussion above, an elementary scaling argument yields the ensuing energy densities for the 
�-limit

hμ,ν(s) :=
{

μ2s2 if s ≤ ν�/(2μ2),

ν�s − ν2�2/(4μ2) if s > ν�/(2μ2),
gν(s) := ν g(s) for s ≥ 0.

We next address the issue of equi-coercivity for the Fk’s.

Theorem 3.3. Under the assumptions (3.1)–(3.8), if (uk, vk) ∈ H 1(�)×H 1(�) is such that

sup
k

(
Fk(uk, vk) + ||uk||L1(�)

)
< +∞,

then there exists a subsequence (uj , vj ) of (uk, vk) and a function u ∈ GBV ∩ L1(�) such that uj → u Ln-a.e. in �
and vj → 1 in L1(�).

We shall prove Theorem 3.1 in Sections 5 and 6, Theorem 3.3 shall be established in Section 6.
In the rest of this section instead we address the issue of convergence of minimum problems. Minimum problems 

related to the functional Fk could have no solution due to a lack of coercivity. Therefore we slightly perturb the fk’s to 
guarantee the existence of a minimum point for each Fk. This together with Theorems 3.1 and 3.3 shall in turn imply 
the convergence of minima and minimizers as k ↑ ∞.

Let ηk, εk be positive infinitesimal sequences such that ηk = o(εk) and let ζ ∈ Lq(�), with q > 1. Let us consider 
the sequence of functionals Gk: L1(�)×L1(�) → [0, +∞] defined by

Gk(u, v) := Fk(u, v) +
∫
�

(
ηk|∇u|2 + |u − ζ |q)dx

where Fk was defined in (3.1). Let now G : L1(�) → [0, +∞] be defined by

G (u) := (u) +
∫
�

|u − ζ |qdx

where  was defined in (3.5). Then, standard arguments yield the following corollary.

Corollary 3.4. For every k, let (uk, vk) ∈ H 1(�)×H 1(�) be a minimizer of the problem

min
(u,v)∈H 1(�)×H 1(�)

Gk(uk, vk). (3.10)

Then vk → 1 in L1(�) and a subsequence of uk converges in Lq(�) to a minimizer u of the problem

min
u∈GBV(�)

G (u).

Moreover the minimum values of (3.10) tend to the minimum value of the limit problem.
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4. Properties of the surface energy density

In this section we shall establish several properties of the surface energy density g defined in (3.7).
To this end we shall often exploit that, in computing g(s), s ≥ 0, we may assume that the admissible functions α

satisfy 0 ≤ α ≤ s by a truncation argument (whereas 0 ≤ β ≤ 1 by definition). Further, the integral appearing in the 
definition of g is invariant under reparametrizations of (α, β).

Proposition 4.1. Under the assumptions (3.2)–(3.4), the function g defined in (3.7)–(3.8) has the following proper-
ties:

(i) g(0) = 0, and g is subadditive, i.e., g(s1 + s2) ≤ g(s1) + g(s2), for every s1, s2 ∈ R
+;

(ii) g is nondecreasing, 0 ≤ g(s) ≤ 1 ∧ �s for all s ∈R
+, and g is Lipschitz continuous with Lipschitz constant �;

(iii) lim
s↑∞g(s) = 1; (4.1)

(iv) lim
s↓0

g(s)

s
= �. (4.2)

Proof. Proof of (i). The pair (α, β) = (0, 1) is admissible for the minimum problem defining g(0), so that g(0) = 0.
In order to prove that g is subadditive we fix s1, s2 ∈ R

+ and we consider the minimum problems for g(s1)

and g(s2), respectively. Let η > 0 and let (α1, β1), (α2, β2) be admissible pairs respectively for g(s1) and g(s2) such 
that for i = 1, 2

1∫
0

|1 − βi |
√

f 2(βi)|α′
i |2 + |β ′

i |2dt < g(si) + η. (4.3)

Next define α := α1 in [0, 1], α := α2(· − 1) + s1 in [1, 2], β := β1 in [0, 1], and β := β2(· − 1) in [1, 2]). An im-
mediate computation and the reparametrization property mentioned above entail the subadditivity of g since η is 
arbitrary.

Proof of (ii). In order to prove that g is nondecreasing we fix s1, s2 with s1 < s2 and η > 0, and we consider (α, β)

satisfying a condition analogous to (4.3) for g(s2). Then ( s1
s2

α, β) is admissible for g(s1), thus we infer

g(s1) ≤
1∫

0

|1 − β|
√( s1

s2

)2
f 2(β)|α′|2 + |β ′|2dt < g(s2) + η,

since s1/s2 < 1. As η → 0 we find g(s1) ≤ g(s2).
Next we prove that g(s) ≤ 1 ∧ �s. Indeed, inequality g ≤ 1 can be derived considering the competitor (α, β) given 

by α := 0 in (0, 1/3), α := s in (2/3, 1), and the linear interpolation in (1/3, 2/3), and β := 0 in (1/3, 2/3) and the 
linear interpolation to the boundary data 1 in (0, 1/3) and (2/3, 1). Moreover, g(s) ≤ �s for every s ≥ 0 since the pair 
(st, 1) is admissible for g(s).

The Lipschitz continuity of g is an obvious consequence of the facts that g is nondecreasing, subadditive and 
g(s) ≤ �s for s ≥ 0.

Proof of (iii). Let sk , k ∈ N, be a sequence with sk → ∞ and let (αk, βk) be an admissible pair for g(sk) such 
that

1∫
0

|1 − βk|
√

f 2(βk)|α′
k|2 + |β ′

k|2dt < g(sk) + 1

k
. (4.4)

If inf(0,1) βk ≥ δ for some δ > 0 and for every k, then there exists a constant c(δ) > 0 such that f (βk)(1 − βk) > c(δ), 
since f (z)(1 − z) → 0 if and only if z → 0. Therefore by (4.4) one finds

c(δ)sk ≤ g(sk) + 1
,

k
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so that g(sk) → +∞ as k → +∞, this contradicts the fact that g ≤ 1. Therefore there exists a sequence xk ∈ (0, 1)

such that lim infk βk(xk) = 0. Since we have already shown that g ≤ 1, we conclude the proof of (4.1) noticing that 
(4.4) yields

(1 − βk(xk))
2 ≤

xk∫
0

|1 − βk||β ′
k|dt +

1∫
xk

|1 − βk||β ′
k|dt ≤ g(sk) + 1

k
. (4.5)

Proof of (iv). Let sk , k ∈ N, be an infinitesimal sequence and let (αk, βk) be an admissible pair for g(sk) satisfy-
ing (4.4) with sk/k in place of 1/k. If there exists δ > 0, a not relabeled subsequence of k, and a sequence xk ∈ [0, 1]
such that βk(xk) < 1 − δ, then the same computation as in (4.5) leads to

δ2 ≤ g(sk) + sk

k
.

As k → +∞ this contradicts the fact that g(s) ≤ �s. Therefore, βk converges uniformly to 1 and for any δ > 0

(� − δ)sk ≤
1∫

0

(1 − βk)f (βk)|α′
k|dt ≤ g(sk) + sk

k

holds for k sufficiently large, by (3.4). Formula (4.2) immediately follows dividing both sides of the last inequality 
by sk , taking first k → +∞ and then δ → 0, and using the fact that g(s) ≤ � s, for s ≥ 0. �
Remark 4.2. We can actually show that g does not coincide with the function 1 ∧ � s at least in the model case 
f (z) = �z

1−z
by slightly refining the construction used in (ii) above. With fixed s > 0, let λ ∈ [0, 1] and set α := 0

on [0, 1/3], α := s on [1/3, 2/3], and the linear interpolation of such values on [1/3, 2/3]; moreover, set βλ := λ on 
[1/3, 2/3] and the linear interpolation of the values 1 and λ on each interval [0, 1/3] and [2/3, 1] in order to match 
the boundary conditions. Straightforward calculations lead to

g(s) ≤ (1 − λ)2 + (1 − λ)f (λ) s.

Thus, minimizing over λ ∈ [0, 1] yields in turn

g(s) ≤ �s − (�s)2

4
< 1 ∧ �s for all s ∈ (0,2/�).

In what follows it will be convenient to provide an alternative representation of g by means of a cell formula more 
closely related to the one-dimensional version of the energies Fk’s.

To this end we introduce the function ĝ: [0, +∞) → [0, +∞) defined by

ĝ(s) := lim
T ↑∞ inf

(α,β)∈Us (0,T )

T∫
0

(
f 2(β)|α′|2 + |1 − β|2

4
+ |β ′|2

)
dt, (4.6)

where class Us(0, T ) was introduced in (3.8). We note that ĝ is well-defined as the minimum problems appearing in 
its definition are decreasing with respect to T .

Proposition 4.3. Under the assumptions (3.2)–(3.4) one has g = ĝ, where g was defined in (3.7)–(3.8) and ĝ in (4.6).

Proof. Let α, β ∈ H 1
(
(0, T )

)
, T > 0, be admissible functions in the definition of ĝ(s). By Cauchy’s inequality we 

obtain

|1 − β|
√

f 2(β)|α′|2 + |β ′|2 ≤ f 2(β)|α′|2 + |β ′|2 + (1 − β)2

4
and integrating

T∫
|1 − β|

√
f 2(β)|α′|2 + |β ′|2 dt ≤

T∫ (
f 2(β)|α′|2 + |1 − β|2

4
+ |β ′|2

)
dt .
0 0
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The first integral is one-homogeneous in the derivatives, therefore we can reparametrize from (0, T ) to (0, 1). Taking 
the infimum over all such α, β , and T we obtain g(s) ≤ ĝ(s).

To prove the converse inequality, we first show that α and β in the infimum problem defining g can be taken in 
W 1,∞((0, 1)

)
. Let η > 0 small and let α, β ∈ H 1

(
(0, 1)

)
be competitors for g(s) such that

1∫
0

|1 − β|
√

f 2(β)|α′|2 + |β ′|2 dt < g(s) + η. (4.7)

By density we find two sequences αj , βj ∈ W 1,∞((0, 1)
)

(actually in C∞([0, 1])) such that αj (0) = 0, αj (1) = s, 
βj (0) = βj (1) = 1, 0 ≤ βj ≤ 1, and converging respectively to α and β in H 1

(
(0, 1)

)
. Since the function (1 − z)f (z)

is uniformly continuous and βj → β also uniformly, we deduce that

1∫
0

|1 − βj |
√

f 2(βj )|α′
j |2 + |β ′

j |2 dt < g(s) + η

for j large, and this concludes the proof of the claim.
Let us prove now that ĝ ≤ g. We fix a small parameter η > 0 and consider competitors α, β ∈ W 1,∞((0, 1)

)
for 

g(s) satisfying (4.7). We define, for t ∈ [0, 1],

βη(t) := β(t) ∧ (1 − η) and ψη(t) :=
t∫

0

2

1 − βη

√
η + f 2(βη) |α′|2 + |(βη)′|2dt ′ .

The function ψη : [0, 1] → [0, Mη := ψη(1)] is bilipschitz and in particular invertible. We define ᾱη, β̄η ∈
W 1,∞((0, Mη)

)
by

ᾱη := α ◦ ψ−1
η and β̄η := βη ◦ ψ−1

η .

We compute, using the definition and the change of variables x = ψη(t),

Mη∫
0

(1 − β̄η)2

4
dx =

Mη∫
0

(1 − βη(ψ−1
η (x)))2

4
dx =

1∫
0

(1 − βη(t))2

4
ψ ′

η(t)dt

=
1∫

0

1 − βη

2

√
η + f 2(βη) |α′|2 + |(βη)′|2dt

≤ √
η +

1∫
0

1 − βη

2

√
f 2(βη) |α′|2 + |(βη)′|2dt ,

where we inserted ψ ′
η from the definition of ψη and used 

√
η + A ≤ √

η + √
A. Analogously,

Mη∫
0

(
f 2(β̄η)|(ᾱη)′|2 + |(β̄η)′|2

)
dx =

1∫
0

(
f 2(βη)|α′|2 + |(βη)′|2

) 1

ψ ′
η

dt

=
1∫

0

(
f 2(βη)|α′|2 + |(βη)′|2

) 1 − βη

2
√

η + f 2(βη) |α′|2 + |(βη)′|2 dt

≤
1∫

1 − βη

2

√
f 2(βη) |α′|2 + |(βη)′|2dt .
0



1044 S. Conti et al. / Ann. I. H. Poincaré – AN 33 (2016) 1033–1067
We extend ᾱη and β̄η to (−1, Mη + 1) setting ᾱη := 0 in (−1, 0), ᾱη := s in (Mη, Mη + 1), and β̄η the linear 
interpolation between 1 − η and 1 in each of the two intervals, so that they obey the required boundary conditions 
for ĝ in the larger interval. Collecting terms, we obtain

ĝ(s) ≤
Mη+1∫
−1

(
(1 − β̄η)2

4
+ f 2(β̄η)|ᾱ′

η|2 + |(̄βη)′|2
)

dx

≤ √
η + 3η2 +

1∫
0

(1 − βη)

√
f 2(βη) |α′|2 + |(βη)′|2dt , (4.8)

where the 3η2 term comes from an explicit computation on the two boundary intervals.
It remains to replace βη by β in the last integral. We observe that (βη)′ = 0 almost everywhere on the set where 

β �= βη (which coincides with the set {β > 1 − η}). Therefore∫
{β �=βη}

(1 − βη)

√
f 2(βη) |α′|2 + |(βη)′|2dt =

∫
{β �=βη}

(1 − βη)f (βη) |α′|dt

≤
∫

{β �=βη}
(1 − β)f (β) |α′|dt + ω(η)

1∫
0

|α′|dt

where ω(η) is the continuity modulus of (1 − z)f (z) near z = 1, and therefore

ĝ(s) ≤ √
η + 3η2 + ω(η)

1∫
0

|α′|dt +
1∫

0

(1 − β)

√
f 2(β) |α′|2 + |β ′|2dt .

Since the last integral is less than g(s) + η and η can be made arbitrarily small, this concludes the proof. �
For the proof of the lower bound we also need to introduce the auxiliary functions g(η): [0, +∞) → [0, +∞), for 

η > 0, defined by

g(η)(s) := inf
(α,β)∈U (η)

s

1∫
0

|1 − β|
√

f 2(β)|α′|2 + |β ′|2 dt, (4.9)

where

U (η)
s := {α,β ∈ H 1((0,1)

) : α(0) = 0, α(1) = s, β(0) = β(1) = 1 − η}.

Proposition 4.4. Under the assumptions (3.2)–(3.4) one has

|g(s) − g(η)(s)| ≤ η2 for all s ≥ 0 ,

where g was defined in (3.7)–(3.8) and g(η) in (4.9).

Proof. We consider the minimum problems for g and g(η) respectively in the intervals (−1, 2) and (0, 1). Let (αη, βη)

be an admissible pair for g(η)(s) and let α := 0 in (−1, 0), α := αη in (0, 1), and α := s in (1, 2); we also set β := βη

in (0, 1) and linearly linked to 1 in (−1, 0) and in (1, 2). Then an easy computation shows that

g(s) ≤
1∫
|1 − βη|

√
f 2(βη)|α′

η|2 + |β ′
η|2dt + η2.
0
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By taking the infimum on (αη, βη) we infer that

g(s) ≤ g(η)(s) + η2.

Reversing the roles of g and g(η) we conclude. �
Finally, we study the dependence of g on the function f in detail. The results in the next proposition provide a 

first insight on the class of functions g that arise as surface energy densities in our analysis. Moreover, they will be 
instrumental to get in the limit different energies by slightly changing the functionals Fk’s in (3.1) (cp. Theorems 7.1, 
7.4, and 7.5 below).

Proposition 4.5. Let (f (j)) be a sequence of functions satisfying (3.3) and (3.4). Denote by �j , gj the value of the 
limit in (3.4) and the function in (3.7) corresponding to f (j), respectively. Then,

(i) if �j = � for all j , f (j) ≥ f (j+1), and f (j)(z) ↓ 0 for all z ∈ [0, 1), then gj ≥ gj+1 and gj (s) ↓ 0 for all 
s ∈ [0, +∞);

(ii) if �j = � for all j , f (j) ≤ f (j+1), and f (j)(z) ↑ ∞ for all z ∈ (0, 1), then gj ≤ gj+1 and gj (s) ↑ 1 ∧ �s for all 
s ∈ [0, +∞);

(iii) if �j ↑ ∞, f (j) ≤ f (j+1), and f (j)(z) ↑ ∞ for all z ∈ (0, 1), then gj ≤ gj+1 and gj (s) → χ(0,+∞)(s) for all 
s ∈ [0, +∞).

Proof. To prove item (i) we note that the monotonicity of the sequence (f (j)) and the pointwise convergence to a 
continuous function on [0, 1) yield that the sequence (f (j)) actually converges uniformly on compact subsets of [0, 1)

to 0. Therefore, for all δ ∈ (0, 1) we have for some jδ

max
[0,1−δ]

f (j) ≤ δ for all j ≥ jδ.

Then, consider αj , βj defined as follows: αj (t) := 3s(t − 1/3) on [1/3, 2/3], αj := 0 on [0, 1/3], and αj := s on 
[2/3, 1]; βj := 1 − δ on [1/3, 2/3] and a linear interpolation between the values 1 and 1 − δ on each interval [0, 1/3]
and [2/3, 1]. Straightforward calculations give

gj (s) ≤ δ2 s + δ2 for all j ≥ jδ,

from which the conclusion follows by passing to the limit first in j ↑ +∞ and finally letting δ ↓ 0.
We now turn to item (ii). We first note that the sequence (gj) is nondecreasing and that

lim
j

gj (s) ≤ �s ∧ 1 (4.10)

in view of item (ii) in Proposition 4.1. Next we show the following: for all δ > 0

lim
j

min
z∈[δ,1](1 − z)f (j)(z) = �. (4.11)

Let zj ∈ argmin[δ,1](1 − z)f (j)(z), and denote by jk a subsequence such that

lim
k

min
z∈[δ,1](1 − z)f (jk)(z) = lim inf

j
min

z∈[δ,1](1 − z)f (j)(z).

Either lim supk zjk
< 1 or lim supk zjk

= 1. We exclude the former possibility: suppose that, up to further subsequences 
not relabeled, limk zjk

= z∞ ∈ [δ, 1), then for all i ∈ N

lim inf
k

(1 − zjk
)f (jk)(zjk

) = (1 − z∞) lim inf
k

f (jk)(zjk
) ≥ (1 − z∞)f (i)(z∞),

that gives a contradiction by letting i ↑ ∞ since by minimality of zj

(1 − zj )f
(j)(zj ) ≤ � for all j. (4.12)
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Therefore, lim supk zjk
= 1, and thus we get

lim inf
j

(1 − zj )f
(j)(zj ) ≥ lim inf

k
(1 − zjk

)f (1)(zjk
) = �.

Formula (4.11) follows straightforwardly by this and (4.12).
Clearly gj (0) = 0 for all j . Let then s ∈ (0, +∞) and (αj , βj ) ∈ Us be such that

gj (s) + 1

j
≥

1∫
0

|1 − βj |
√

(f (j))2(βj )|α′
j |2 + |β ′

j |2dt.

There are now two possibilities: either there exists δ > 0 and a subsequence jk such that inf[0,1] βjk
≥ δ, or 

inf[0,1] βj → 0. In the former case the subsequence satisfies

gjk
(s) + 1

jk

≥ ( min
z∈[δ,1](1 − z)f (jk)(z)

)
s.

Taking the lim supk and using (4.11) we obtain

lim sup
j

gj (s) ≥ �s . (4.13)

In the other case for every δ > 0 definitively it holds

gj (s) + 1

j
≥

1∫
0

(1 − βj )|β ′
j |dt ≥ (1 − δ)2. (4.14)

Taking again the lim sup we obtain

lim sup
j

gj (s) ≥ (1 − δ)2 . (4.15)

Since δ was arbitrary, from (4.13) and (4.15) we obtain lim supj gj (s) ≥ 1 ∧ �s and, recalling (4.10) and gj ≤ gj+1, 
conclude the proof of (ii).

Let us now prove item (iii). First we observe that gj(s) ≤ 1 for all j . To prove the lower bound, we notice that 
arguing similarly as in the proof of (4.11) one obtains

lim
j

min
z∈[δ,1](1 − z)f (j)(z) = +∞ for all δ > 0. (4.16)

For any s ∈ (0, +∞) we choose (αj , βj ) ∈ Us such that

gj (s) + 1

j
≥

1∫
0

|1 − βj |
√

(f (j))2(βj )|α′
j |2 + |β ′

j |2dt.

If there is δ > 0 such that infβj ≥ δ for infinitely many j then for the same indices

gj (s) + 1

j
≥ min

z∈[δ,1](1 − z)f (j)(z)s ,

which in view of (4.16) and the bound gj (s) ≤ 1 is impossible. Therefore inf[0,1] βj → 0, which in view of (4.14)
proves the assertion. �
Remark 4.6. The monotonicity assumption f (j) ≤ f (j+1) in items (ii) and (iii) above leads to simple proofs but it 
is actually not needed. The same convergence results for (gj ) would follow by using the uniform convergence on 
compact subsets of [0, 1) of (f (j)). The latter property is a consequence of the fact that each f (j) is nondecreasing 
and that f ∈ C0([0, 1)).
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5. Proof in the one-dimensional case

Let us study first the one-dimensional case n = 1. As usual, we will prove a �-liminf inequality and a �-limsup 
inequality. The following proposition gives the lower estimate.

Proposition 5.1 (Lower bound). Under the assumptions (3.1)–(3.8), for every (u, v) ∈ L1(�)×L1(�) it holds

F(u, v) ≤ F ′(u, v),

where F ′ denotes the �-liminf of the sequence Fk and F the functional defined in (3.9).

Proof. The conclusion is equivalent to the following fact: let (uk, vk) be a sequence such that

(uk, vk) → (u, v) in L1(�)×L1(�), (5.1)

sup
k

Fk(uk, vk) < +∞, (5.2)

then u ∈ BV(�), v = 1 L1-a.e. in �, and

(u) ≤ lim inf
k→∞ Fk(uk, vk). (5.3)

Since the left-hand side of (5.3) is σ -additive and the right-hand side is σ -superadditive with respect to �, it is enough 
to prove the result when � is an interval. For the sake of convenience in what follows we assume � = (0, 1).

By (5.2) one deduces that v = 1 Ln-a.e. in �. Up to subsequences one can assume that the lower limit in (5.3) is 
in fact a limit and that the convergences in (5.1) are also L1-a.e. in �.

For the first part of the proof we will use a discretization argument, following the lines of [2]. We fix δ ∈ (0, 1) and 
for any N ∈N divide � into N intervals

I
j
N :=

(j − 1

N
,

j

N

)
, j = 1, . . . ,N.

Up to subsequences we can assume that lim
k→+∞ inf

I
j
N

vk exists for every j = 1, . . . , N . We define

JN :=
{
j ∈ {1, . . . ,N} : lim

k→+∞ inf
I

j
N

vk ≤ 1 − δ
}
.

For a given j ∈ JN , we denote by xk and y two points in I j
N such that vk(xk) < 1 − δ/2 and vk(y) → 1. Then by 

Cauchy’s inequality we deduce for k large (assuming for instance xk ≤ y)

y∫
xk

( (1 − vk)
2

4εk

+ εk|v′
k|2
)
dx ≥ 1

2
((1 − vk(xk))

2 − (1 − vk(y))2) ≥ δ2

16
. (5.4)

The previous computation entails

sup
N

H0(JN) < +∞,

so that up to subsequences we can assume JN = {jN
1 , . . . , jN

L }, with L independent of N , and that all sequences jN
i /N

converge. We denote by S the set of limits of these sequences,

S = {t1, . . . , tL′ } = { lim
N→+∞

jN
i

N
, i = 1, . . . ,L

}⊂ �.

We claim now that there exists a modulus of continuity ω, i.e., ω(δ) → 0 as δ → 0, depending only on f , such that 
for all η sufficiently small (depending on δ) and k sufficiently large (depending on η) one has

(1 − ω(δ))

∫
�\S

h(|u′
k|)dx ≤ Fk(uk, vk,� \ Sη), (5.5)
η
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where Sη :=⋃L′
i=1(ti −η, ti +η). It suffices to prove (5.5) in the case that η is so small that the intervals (ti −η, ti +η)

are pairwise disjoint subsets of �.
In order to prove (5.5), we observe that by definition of fk in (3.2) and by Cauchy’s inequality we obtain

Fk(uk, vk;� \ Sη) ≥
∫

�\Sη

(
f 2

k (vk)|u′
k|2 + (1 − vk)

2

4εk

)
dx

≥
∫

�\Sη

(
|u′

k|2 ∧ (εkf
2(vk)|u′

k|2 + (1 − vk)
2

4εk

))
dx

≥
∫

�\Sη

|u′
k|2 ∧ ((1 − vk)f (vk)|u′

k|
)
dx. (5.6)

Let us note that vk > 1 − δ in � \ Sη for k large. By (3.4) there exists a modulus of continuity ω such that

|(1 − z)f (z) − �| ≤ �ω(δ), for z ≥ 1 − δ. (5.7)

Therefore by (5.6) and (5.7) we obtain

Fk(uk, vk;� \ Sη) ≥ (1 − ω(δ))

∫
�\Sη

|u′
k|2 ∧ �|u′

k|dx ≥ (1 − ω(δ))

∫
�\Sη

h(|u′
k|)dx. (5.8)

The last inequality holds true as h is the convex envelope of t �→ t2 ∧ �t . Formula (5.8) proves the claim in (5.5).
Notice that the boundedness assumption in (5.2) and formula (5.5) imply that

sup
η

sup
k

∫
�\Sη

|u′
k|dx < +∞.

Therefore u ∈ BV(� \ Sη), and actually the finiteness of S ensures that u ∈ BV(�). In addition, the L1-lower semi-
continuity of the functional  defined in (3.5) yields

(1 − ω(δ))(u;� \ Sη) ≤ lim inf
k

Fk(uk, vk;� \ Sη). (5.9)

We now estimate the energy contribution on Sη. To this end it is not restrictive to assume that S ⊆ Ju.
Let us fix i ∈ {1, . . . , L′} and consider I i

η := (ti − η, ti + η). We claim that

(1 − ω(δ))g(ess sup
I i
η

u − ess inf
I i
η

u) ≤ lim inf
k→+∞Fk(uk, vk; I i

η) + O(η). (5.10)

Let us introduce a small parameter μ > 0 and x1, x2 ∈ I i
η such that

vk(x1) → 1, vk(x2) → 1,

uk(x1) → u(x1), uk(x2) → u(x2), (5.11)

u(x1) > ess sup
I i
η

u − μ, u(x2) < ess inf
I i
η

u + μ. (5.12)

Assuming without loss of generality that x1 < x2, we define I := (x1, x2).
There are just finitely many connected components of the set

{x ∈ I : vk(x) < 1 − η}
where vk achieves the value 1 − δ, as a computation analogous to (5.4) easily shows (recall that η � δ). Precisely one 
finds up to subsequences that the number N of these components is

N ≤ c

2 2
,

δ − η



S. Conti et al. / Ann. I. H. Poincaré – AN 33 (2016) 1033–1067 1049
for some constant c > 0 independent of k. Let us now estimate the functional Fk over each component Cj
k of this 

type, j = 1, . . . , N . Since vk < 1 − η in Cj
k one finds for k large that fk(vk) = ε

1
2
k f (vk), so that for j = 1, . . . , N it 

follows

Fk(uk, vk;Cj
k ) ≥

∫
C

j
k

(
εkf

2(vk)|u′
k|2 + (1 − vk)

2

4εk

+ εk|v′
k|2
)
dx

≥ g(η)

⎛⎜⎜⎝
∣∣∣∣∣∣∣∣
∫
C

j
k

u′
kdx

∣∣∣∣∣∣∣∣
⎞⎟⎟⎠≥ g

⎛⎜⎜⎝
∣∣∣∣∣∣∣∣
∫
C

j
k

u′
kdx

∣∣∣∣∣∣∣∣
⎞⎟⎟⎠− η2, (5.13)

by Cauchy’s inequality and Proposition 4.4.
Outside the selected components Cj

k , j = 1, . . . , N , one has vk ≥ 1 − δ, so that estimate (5.8) holds with 

I \⋃N
j=1 C

j
k replacing � \ Sη. Therefore

Fk

⎛⎝uk, vk; I \
N⋃

j=1

C
j
k

⎞⎠≥ (1 − ω(δ))

∫
I\⋃N

j=1 C
j
k

h(|u′
k|)dx

≥ (1 − ω(δ))�

∫
I\⋃N

j=1 C
j
k

|u′
k|dx − (1 − ω(δ))

�2

4
L1(I \

N⋃
j=1

C
j
k )

≥ (1 − ω(δ))g
(∣∣∣ ∫

I\⋃N
j=1 C

j
k

u′
kdx

∣∣∣)− �2

2
η, (5.14)

where we have used the definition of h in (3.6) and Proposition 4.1(ii).
By (5.13), (5.14), and the subadditivity of g one finds

Fk(uk, vk; I ) + �2

2
η + c η2

δ2 − η2
≥ (1 − ω(δ))g

⎛⎝∣∣∣∣∣∣
∫
I

u′
kdx

∣∣∣∣∣∣
⎞⎠= (1 − ω(δ))g(|uk(x1) − uk(x2)|).

By property (5.11) and by the continuity of g, as k → +∞ one deduces

lim inf
k→+∞Fk(uk, vk; I i

η) + �2

2
η + cη2

δ2 − η2
≥ (1 − ω(δ))g(|u(x1) − u(x2)|).

Finally property (5.12) concludes the proof of (5.10) as μ → 0.
Summing (5.9) and (5.10) for i = 1, . . . , L and taking first η → 0 and finally δ → 0 concludes the proof. �

Proposition 5.2 (Upper bound). Under the assumptions (3.1)–(3.8), for every (u, v) ∈ L1(�)×L1(�) it holds

F ′′(u, v) ≤ F(u, v),

where F ′′ is the �-limsup of the sequence Fk and F the functional defined in (3.9).

Proof. Let us consider first the case when u ∈ SBV2(�). By a localization argument it is not restrictive to assume that 
Ju = {x0} and to take x0 = 0. We also assume for a while that u only takes the two values u±(0) in a neighborhood 
of 0.

With fixed η > 0, we consider Tη > 0 and αη, βη ∈ H 1
(
(0, Tη)

)
such that αη(0) = u−(0), αη(Tη) = u+(0), 0 ≤

βη ≤ 1, βη(0) = βη(Tη) = 1, and
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g
(|[u](0)|)+ η >

Tη∫
0

(
f 2(βη)|α′

η|2 + |1 − βη|2
4

+ |β ′
η|2
)

dt. (5.15)

This choice is possible in view of Proposition 4.3, up to a translation of the variable αη.

Let us define Ak := (− εkTη

2 , εkTη

2 ) and

uk(x) :=
⎧⎨⎩αη

(
x

εk

+ Tη

2

)
if x ∈ Ak,

u otherwise,

vk(x) :=
⎧⎨⎩βη

(
x

εk

+ Tη

2

)
if x ∈ Ak,

1 otherwise.

An easy computation shows that (uk, vk) → (u, 1) in L1(�)×L1(�), that uk, vk ∈ H 1(�) for k large, and that for the 
same k

Fk(uk, vk,� \ Ak) ≤
∫
�

|u′|2dx,

being fk ≤ 1. Moreover using that fk ≤ ε
1
2
k f and changing the variable x with y = x

εk
+ Tη

2 one has

Fk(uk, vk,Ak) ≤ g
(|[u](0)|)+ η,

where we have used (5.15). Therefore we find

F ′′(u,1) ≤
∫
�

|u′|2dx +
∫
Ju

(g(|[u]|) + η)dH0,

where F ′′ denotes the �-limsup of Fk according to Section 2.1, and then

F ′′(u,1) ≤ (u), (5.16)

since η is arbitrary.
Let us remove now the hypothesis that u is constant near 0. For a function u ∈ SBV2(�) with Ju = {0}, one can 

consider the sequence uj := u in � \ (−1/j, 1/j), with uj := u(−1/j) in (−1/j, 0) and uj = u(1/j) in (0, 1/j). 
Then uj → u in L1(�) and |u′

j | ≤ |u′| L1-a.e. in �, so that by the lower semicontinuity of F ′′ and by the absolute 
continuity of u on both sides of 0 we conclude as j → +∞ that u still satisfies (5.16).

The extension of (5.16) to each u ∈ SBV2(�) with H0(Ju) < +∞ is immediate and finally [13, Proposi-
tions 3.3–3.5] conclude the proof. �
6. Proof in the n-dimensional case

In this section we establish the �-convergence result in the n-dimensional setting.
We recover the lower bound estimate by using a slicing technique thus reducing ourselves to the one-dimensional 

setting of Proposition 5.1. Instead, the upper bound inequality follows by an abstract approach based on integral 
representation results (cp. Proposition 6.4 below).

Proposition 6.1. Under the assumptions (3.1)–(3.8), for every (u, v) ∈ L1(�)×L1(�) it holds

F(u, v) ≤ F ′(u, v),

where F ′ denotes the �-liminf of the sequence Fk and F the functional defined in (3.9).

Proof. Let us assume first that u ∈ L∞(�). We set M := ||u||L∞(�). Let (uk, vk) be a sequence such that (uk, vk) →
(u, v) in L1(�)×L1(�) and supFk(uk, vk) < +∞. Then it is straightforward that v = 1 Ln-a.e. in �. We are going 
to show that u ∈ BV(�) and that
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(u) ≤ lim inf
k→+∞Fk(uk, vk), (6.1)

that proves the thesis under the assumption of the boundedness of u.
Given ξ ∈ S

n−1, we consider a subsequence (ur, vr) of (uk, vk) satisfying

((ur)
ξ
y, (vr )

ξ
y) → (uξ

y,1) in L1(�ξ
y)×L1(�ξ

y) for Hn−1-a.e. y ∈ �ξ

and realizing the lower limit in (6.1) as a limit.
By Fubini’s theorem and Fatou’s lemma one deduces that

lim inf
r→∞

∫
�

ξ
y

(
f 2

r ((vr )
ξ
y)

∣∣∣∇((ur)
ξ
y)

∣∣∣2 + (1 − (vr )
ξ
y)

2

4εr

+ εr |∇((vr )
ξ
y)|2
)

dt < +∞

holds for Hn−1-a.e. y ∈ �ξ .
The one-dimensional result, Proposition 5.1, yields now that uξ

y ∈ BV(�
ξ
y) and that∫

�
ξ
y

h(|∇(uξ
y)|)dt +

∫
J
u
ξ
y

g(|[uξ
y]|)dH0 + �|Dcuξ

y |(�ξ
y) ≤

≤ lim inf
r→∞

∫
�

ξ
y

(
f 2

r ((vr )
ξ
y)

∣∣∣∇((ur)
ξ
y)

∣∣∣2 + (1 − (vr)
ξ
y)

2

4εr

+ εr |∇((vr )
ξ
y)|2
)

dt. (6.2)

We first check that (6.2) implies u ∈ BV(�) by estimating 
∫
�ξ |D(u

ξ
y)|(�ξ

y)dHn−1. We first notice that∫
�

ξ
y

|∇(uξ
y)|dt ≤ 1

�

∫
�

ξ
y

h(|∇(uξ
y)|)dt + �

4
L1(�ξ

y), (6.3)

being h(s) ≥ �s − �2/4.
Since g(s)/s → � as s → 0, with fixed η > 0 one has

g(s) > (� − η)s for s < δ, (6.4)

for some δ sufficiently small.
Therefore (6.3), (6.4), and the boundedness of u entail

|D(uξ
y)|(�ξ

y) ≤ 1

�

∫
�

ξ
y

h(|∇(uξ
y)|)dt + �

4
diam� + 1

� − η

∫
{t∈J

u
ξ
y
:|[uξ

y ]|<δ}

g(|[uξ
y]|)dH0

+ 2M

g(δ)

∫
{t∈J

u
ξ
y
:|[uξ

y ]|≥δ}

g(|[uξ
y]|)dH0 + |Dcuξ

y |(�ξ
y)

≤ c + c

⎛⎜⎜⎝∫
�

ξ
y

h(|∇(uξ
y)|)dt +

∫
J
u
ξ
y

g(|[uξ
y]|)dH0 + �|Dcuξ

y |(�ξ
y)

⎞⎟⎟⎠ ,

where diam� denotes the diameter of � and c := max{ 1
�
, �4 diam�, 1

�−η
, 2M

g(δ)
}. Integrating the last inequality on �ξ

one deduces by (6.2)∫
�ξ

|D(uξ
y)|(�ξ

y)dHn−1 ≤ cHn−1(�ξ ) + c sup
k

Fk(uk, vk).

Taking ξ = e1, . . . , en one obtains u ∈ BV(�).
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We now prove formula (6.1) using localization. The integration on �ξ of the one-dimensional estimate in (6.2)
gives ∫

�

h(|∇u · ξ |)dx +
∫
Ju

|νu · ξ |g(|[u]|)dHn−1 + �

∫
�

|γu · ξ |d|Dcu| ≤ lim inf
k→+∞Fk(uk, vk;�), (6.5)

where γu := dDcu
d|Dcu| denotes the density of Dcu with respect to |Dcu|. Let E ⊂ � be a Borel set such that Dau(E) = 0

and Dsu(� \ E) = 0, and let

λ := Ln � \ E +Hn−1 Ju + |Dcu| E \ Ju.

Let us consider a countable dense set D ⊂ S
n−1 and the functions

ψξ := h(|∇u · ξ |)χ�\E + |νu · ξ |g(|[u]|)χJu + �|γu · ξ |χE\Ju, ξ ∈ D.

Then (6.5) gives (ψξλ)(A) ≤ F ′(u, 1, A) for all open sets A ⊂ �. Since F ′(u, 1, ·) is superadditive, this implies 
((supξ ψξ )λ)(A) ≤ F ′(u, 1, A) (see [18, Lemma 15.2]) and therefore the conclusion.

In the general case, if u ∈ L1 \ L∞(�) one considers (uM
k , vk) and (uM, v), where uM := (−M ∨ u) ∧ M denotes 

the truncation at level M ∈ (0, +∞). Since the functional Fk decreases by truncation and uM
k → uM in L1(�), we 

deduce that uM ∈ BV(�) and

(uM) ≤ lim inf
k→+∞Fk(u

M
k , vk) ≤ lim inf

k→+∞Fk(uk, vk). (6.6)

Therefore u ∈ GBV(�) and (6.1) follows easily from (6.6) as M → +∞. �
To prove the limsup inequality we follow an abstract approach. We first show that the �-limit is a Borel mea-

sure. The only relevant property to be checked is the weak subadditivity of the �-limsup. This is a consequence of 
De Giorgi’s slicing and averaging argument as shown in the following lemma.

Lemma 6.2. Let (u, v) ∈ L1(�)×L1(�), let A′, A, B ∈ A(�) with A′ ⊂⊂ A, then

F ′′(u,1;A′ ∪ B) ≤ F ′′(u,1;A) + F ′′(u,1;B), (6.7)

where F ′′ is the �-limsup of the sequence Fk defined in (3.1).

Proof. We assume that the right-hand side of (6.7) is finite, so that u ∈ GBV(A ∪ B) and v = 1 Ln-a.e. in A ∪ B . 
We can reduce the problem to the case of functions u ∈ BV ∩ L∞(A ∪ B). This is a straightforward consequence of 
the fact that the energies Fk’s, and thus the �-limsup F ′′, are decreasing by truncations. Actually, thanks to L1 lower 
semicontinuity, they are continuous under such an operation.

Under this assumption, let (uA
k , vA

k ), (uB
k , vB

k ) be recovery sequences for (u, 1) on A and B respectively, that is,

(uA
k , vA

k ), (uB
k , vB

k ) → (u,1) in L1(�)×L1(�), (6.8)

and

lim sup
k→+∞

Fk(u
A
k , vA

k ;A) = F ′′(u,1;A), lim sup
k→+∞

Fk(u
B
k , vB

k ;B) = F ′′(u,1;B). (6.9)

Note that, again up to truncations, we may assume that

(uA
k , vA

k ), (uB
k , vB

k ) are bounded in L∞(�). (6.10)

To simplify the calculations below we introduce the functionals Gk : L1(�) ×A(�) → [0, +∞] given by

Gk(v;O) :=
∫
O

(
(1 − v)2

4εk

+ εk|∇v|2
)

dx, if v ∈ H 1(�),

+∞ otherwise. Notice that
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Fk(u, v;O) =
∫
O

f 2
k (v)|∇u|2dx + Gk(v;O).

Let δ := dist(A′, ∂A) > 0, and with fixed M ∈ N, we set for all i ∈ {1, . . . , M}

Ai :=
{
x ∈ � : dist(x,A′) <

δ

M
i

}
,

and A0 := A′. Clearly, we have Ai−1 ⊂⊂ Ai ⊂ A. Denote by ϕi ∈ C1
c (�) a cut-off function between Ai−1 and Ai , 

i.e., ϕi |Ai−1 = 1, ϕi |Ac
i
= 0, and ‖∇ϕi‖L∞(�) ≤ 2M

δ
. Then, set

ui
k := ϕi u

A
k + (1 − ϕi)u

B
k , (6.11)

and

vi
k :=

⎧⎪⎨⎪⎩
ϕi−1 vA

k + (1 − ϕi−1)(v
A
k ∧ vB

k ) on Ai−1

vA
k ∧ vB

k on Ai \ Ai−1

ϕi+1(v
A
k ∧ vB

k ) + (1 − ϕi+1) vB
k on � \ Ai.

(6.12)

With fixed i ∈ {2, . . . , M − 1}, (ui
k, v

i
k) ∈ H 1(�)×H 1(�) and their energy on A′ ∪ B can be estimated by

Fk(u
i
k, v

i
k;A′ ∪ B) ≤ Fk(u

A
k , vA

k ;Ai−2) + Fk(u
B
k , vB

k ;B \ Ai+1) + Fk(u
i
k, v

i
k;B ∩ (Ai+1 \ Ai−2)). (6.13)

Therefore, we need to bound only the last term. To this end we further split the contributions in each layer; in estimat-
ing each of such terms we shall repeatedly use the monotonicity of fk and the fact that it is bounded by 1. In addition, 
a positive constant, which may vary from line to line, will appear in the formulas below. Elementary computations 
and the definitions in (6.11) and (6.12) give, using vi

k ≤ vA
k ,

Fk(u
i
k, v

i
k;B ∩ (Ai−1 \ Ai−2)) ≤

∫
B∩(Ai−1\Ai−2)

f 2
k (vA

k )|∇uA
k |2 dx + Gk(v

i
k;B ∩ (Ai−1 \ Ai−2))

≤ c
(
Fk(u

A
k , vA

k ;B ∩ (Ai−1 \ Ai−2)) + Fk(u
B
k , vB

k ;B ∩ (Ai−1 \ Ai−2))
)

+ cM2εk

δ2

∫
B∩(Ai−1\Ai−2)

|vA
k − vB

k |2 dx,

Fk(u
i
k, v

i
k;B ∩ (Ai \ Ai−1))

≤ c

∫
B∩(Ai\Ai−1)

f 2
k (vA

k ∧ vB
k )

(
|∇uA

k |2 + |∇uB
k |2 + 4M2

δ2
|uA

k − uB
k |2
)

dx + Gk(v
A
k ∧ vB

k ;B ∩ (Ai \ Ai−1))

≤ c
(
Fk(u

A
k , vA

k ;B ∩ (Ai \ Ai−1)) + Fk(u
B
k , vB

k ;B ∩ (Ai \ Ai−1))
)

+ cM2

δ2

∫
B∩(Ai\Ai−1)

|uA
k − uB

k |2 dx,

and

Fk(u
i
k, v

i
k;B ∩ (Ai+1 \ Ai)) ≤

∫
B∩(Ai+1\Ai)

f 2
k (vB

k )|∇uB
k |2 dx + Gk(v

i
k;B ∩ (Ai+1 \ Ai))

≤ c
(
Fk(u

A
k , vA

k ;B ∩ (Ai+1 \ Ai)) + Fk(u
B
k , vB

k ;B ∩ (Ai+1 \ Ai))
)

+ cM2εk

δ2

∫
B∩(Ai+1\Ai)

|vA
k − vB

k |2 dx. (6.14)

By adding (6.13)–(6.14), we deduce that
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Fk(u
i
k, v

i
k;A′ ∪ B) ≤ Fk(u

A
k , vA

k ;A) + Fk(u
B
k , vB

k ;B)

+ c
(
Fk(u

A
k , vA

k ;B ∩ (Ai+1 \ Ai−2)) + Fk(u
B
k , vB

k ;B ∩ (Ai+1 \ Ai−2))
)

+ cM2

δ2

∫
B∩(Ai+1\Ai−2)

|uA
k − uB

k |2 dx + cM2εk

δ2

∫
B∩(Ai+1\Ai−2)

|vA
k − vB

k |2 dx.

Hence, by summing up on i ∈ {2, . . . , M − 1} and taking the average, for each k we may find an index ik in that range 
such that

Fk(u
ik
k , v

ik
k ;A′ ∪ B) ≤ Fk(u

A
k , vA

k ;A) + Fk(u
B
k , vB

k ;B)

+ c

M

(
Fk(u

A
k , vA

k ;B ∩ (A \ A′)) + Fk(u
B
k , vB

k ;B ∩ (A \ A′))
)

+ cM

δ2

∫
B∩(A\A′)

|uA
k − uB

k |2 dx + cMεk

δ2

∫
B∩(A\A′)

|vA
k − vB

k |2 dx.

By (6.8) we deduce that (uik
k , vik

k ) → (u, 1) in L1(�)×L1(�), and actually in Lq(�)×Lq(�) for all q ∈ [1, +∞)

thanks to the uniform boundedness assumption in (6.10). Therefore, in view of (6.9) and the definition of �-limsup 
we infer that

F ′′(u,1;A′ ∪ B) ≤
(

1 + c

M

)(
F ′′(u,1;A) + F ′′(u,1;B)

)
.

The conclusion then follows by passing to the limit on M ↑ ∞. �
We next prove that F ′′(u, 1; ·) is controlled in terms of the Mumford–Shah functional MS, whose definition is given 

in (2.1). This result gives a first rough estimate for the upper bound inequality. We shall improve on the jump part in 
Proposition 6.4 below and finally we shall conclude the proof of the �-limsup inequality using a relaxation argument.

Lemma 6.3. For all u ∈ L1(�) and A ∈A(�) it holds

F ′′(u,1;A) ≤ MS(u;A),

where F ′′ is the �-limsup of the sequence Fk defined in (3.1) and MS is introduced in (2.1).

Proof. Denote by ψ : [0, 1] → [0, 1] any nondecreasing lower-semicontinuous function such that ψ−1(0) = 0, 
ψ(1) = 1 and

sup
k

fk(z) ≤ ψ(z) for all z ∈ [0,1],
for instance ψ = χ(0,1] satisfies all the conditions written above. Consider the corresponding functionals

ATψ
k : L1(�) × L1(�) → [0, +∞] defined in (2.2), and note that Fk ≤ ATψ

k for every k. The upper bound inequality 
for (Fk) then follows at once from the classical results by Ambrosio and Tortorelli (cp. [9], and see also [30]). �

We are now ready to prove the upper bound inequality.

Proposition 6.4. Let F be the functional introduced in (3.9). For every (u, v) ∈ L1(�)×L1(�) it holds

F ′′(u, v) ≤ F(u, v),

where F ′′ is the �-limsup of the sequence Fk defined in (3.1).

Proof. Since L1 is separable, given any subsequence (Fkj
) of (Fk) we may extract a further subsequence, not rela-

beled for convenience, �-converging to some F̂ (see [25, Theorem 16.9]).
The functional F̂ (u, v; ·) is by definition increasing and inner regular. Since Fk(u, v; ·) is additive, one easily 

deduces that F ′ is superadditive and from this that its inner regular envelope F̂ = (F ′)− is superadditive (see [25, 
Proposition 14.18 or Proposition 16.12]).
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Using Lemma 6.2 one can show that F̂ = (F ′′)− is subadditive (see [25, Lemma 14.20 and the proof of Proposi-
tion 18.4]). Therefore F̂ is the restriction to open sets of the Borel measure

F∗(u, v;E) = inf{F̂ (u, v;A) : A ∈A(�);E ⊂ A} ,

see [25, Theorem 14.23], in the following we identify F̂ and F∗.
If u ∈ L1(�) is such that MS(u; �) < +∞, then by Lemma 6.3 we obtain F ′′(u, 1; ·) ≤ MS(u; ·) < +∞ on all open 

sets, and by the regularity properties of Radon measures F ′′ coincides with its inner envelope. Indeed, for a given open 
set A and ε > 0, choose open sets A′, A′′ and C with A′ ⊂⊂ A′′ ⊂⊂ A and A \ A′ ⊂ C such that MS(u; C) ≤ ε. Then 
use Lemmas 6.2 and 6.3 to estimate F ′′(u, 1; A) ≤ F ′′(u, 1; A′ ∪ C) ≤ F ′′(u, 1; A′′) + MS(u; C) ≤ F ′′(u, 1; A′′) + ε. 
In other words, F̂ (u, 1) is the �-limit of Fkj

for all u such that MS(u) < +∞.
For all u ∈ SBV2(�) in particular the estimate in Lemma 6.3 implies that

F̂ (u,1;� \ Ju) ≤
∫
�

|∇u|2dx. (6.15)

We provide below for the same u the estimate

F̂ (u,1;Ju) ≤
∫
Ju

g(|[u]|) dHn−1. (6.16)

Given this for granted we conclude as follows: we consider the functional F∞ : BV(�) → [0, +∞]

F∞(u) :=

⎧⎪⎨⎪⎩
∫
�

|∇u|2dx +
∫
Ju

g(|[u]|) dHn−1 if u ∈ SBV2(�)

+∞ otherwise on BV(�).

Further, note that by [13, Theorem 3.1 and Propositions 3.3–3.5] its relaxation w.r.t. the w ∗ -BV topology is given 
on BV(�) by F(·, 1). By (6.15) and (6.16) we have that F̂ ≤ F∞, and since F̂ (·, 1) is L1-lower semicontinuous, we 
infer that

F̂ (u,1) ≤ F(u,1) for all u ∈ BV(�).

We conclude that the same inequality is true for all u ∈ GBV ∩ L1(�) by the usual truncation argument. Finally, 
combining the latter estimate with the lower estimate of Proposition 6.1 allows us to deduce that the �-limit does 
not depend on the chosen subsequence and it is equal to F . Hence, by Urysohn’s property the whole family (Fk)

�-converges to F (cp. [25, Proposition 8.3]).
Let us now prove formula (6.16). To this end, fixed λ > 0 we introduce the perturbed functional

F̂λ(u,1) := F̂ (u,1) + λ
(∫

�

|∇u|2dx +
∫
Ju

(1 + |[u]|)dHn−1
)

for all u ∈ SBV2(�). We may apply to F̂λ the integral representation result [14, Theorem 1] to infer that for Hn−1-a.e. 
x ∈ Ju

dF̂λ(u,1; ·)
d(Hn−1 Ju)

(x) = lim sup
δ↓0

1

δn−1
inf
{
F̂λ(w,1;x + δ Qνu(x)) : w ∈ SBV2(x + δ Qνu(x)

)
,

w = ux on a neighborhood of x + δ ∂Qνu(x)

}
, (6.17)

where

ux(y) :=
{

u+(x) if 〈y − x, νu(x)〉 > 0

u−(x) if 〈y − x, νu(x)〉 < 0

and Qνu(x) denotes any cube of side 1 centered in the origin and with a face orthogonal to νu(x). Hence, it is enough 
to show that for Hn−1-a.e. x ∈ Ju
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lim sup
δ↓0

1

δn−1
F̂ (ux,1;x + δ Qνu(x)) ≤ g(|[u](x)|), (6.18)

since by taking ux itself as test function in (6.17) we get

dF̂λ(u,1; ·)
d(Hn−1 Ju)

(x) ≤ lim sup
δ↓0

1

δn−1
F̂ (ux,1;x + δ Qνu(x)) + λ(1 + |[u](x)|),

in turn implying

F̂ (u,1;Ju) ≤ F̂λ(u,1;Ju) ≤
∫
Ju

(
g(|[u](x)|) + λ + λ|[u](x)|)dHn−1.

Finally, (6.16) follows at once by letting λ ↓ 0.
Formula (6.18) easily follows by repeating the one-dimensional construction of Proposition 5.2. More precisely, 

assume x = 0 and νu(x) = en for simplicity. With fixed η > 0, let Tη > 0 and αη, βη ∈ H 1
(
(0, Tη)

)
be such that 

αη(0) = u−(0), αη(Tη) = u+(0), βη(0) = βη(Tη) = 1, u−(0) ≤ αη ≤ u+(0), 0 ≤ βη ≤ 1, and

Tη∫
0

(
f 2(βη)|α′

η|2 + (1 − βη)
2

4
+ |β ′

η|2
)

dt ≤ g
(|[u](0)|)+ η.

Let Aj := (− εkj
Tη

2 , 
εkj

Tη

2 ), and set

uj (y) :=

⎧⎪⎨⎪⎩αη

(
yn

εkj

+ Tη

2

)
if yn ∈ Aj

u0 otherwise,

vj (y) :=

⎧⎪⎨⎪⎩βη

(
yn

εkj

+ Tη

2

)
if yn ∈ Aj

1 otherwise.

Clearly, (uj , vj ) → (u0, 1) in L1(Qen) × L1(Qen), and if Q′
en

= Qen ∩ (Rn−1 × {0}), a change of variable yields

Fkj
(uj , vj ; δ Qen) = Fkj

(
uj , vj , δ Q′

en
× Aj

)
≤ δn−1

Tη∫
0

(
f 2(βη)|α′

η|2 + (1 − βη)
2

4
+ |β ′

η|2
)

dt ≤ δn−1(g
(|[u](0)|)+ η).

Therefore, by the very definition of F̂ we infer that

F̂ (u0,1; δ Qen) ≤ δn−1(g
(|[u](0)|)+ η),

and estimate (6.18) follows at once dividing by δn−1, taking the superior limit as δ ↓ 0, and finally by letting η ↓ 0 in 
the formula above. �

The proof of the compactness result, Theorem 3.3, follows the lines of [26, Theorem 7.4], so we just sketch the 
relevant arguments and refer to [26] for more details.

Proof of Theorem 3.3. Let us start assuming that n = 1 and M := supk ||uk||L∞(�) < +∞, � = (0, 1). Repeating 
the proof of Theorem 5.1 one finds that vk → 1 in L1(�) and that for every δ > 0 there exists a finite subset S ⊂ �

for which

(1 − ω(δ))

∫
�\S

h(|u′
k|)dx ≤ Fk(uk, vk,� \ Sη)
η
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holds for η > 0 small (dependently on δ) and for k large (dependently on η), where ω(δ) → 0 for δ → 0, and Sη :=⋃L
i=1(ti − η, ti + η). This implies that uk is bounded in BV(� \ Sη) uniformly with respect to k and η. Hence up 

to subsequences uk converges to a function u ∈ BV(� \ Sη) L1-a.e. in � \ Sη. The boundedness hypothesis and 
a diagonalization argument yield that u in fact belongs to BV(�) and that uk → u in L1(�).

For n > 1, we fix ξ ∈ S
n−1 and δ > 0 and introduce the sequence wk whose slices satisfy

(wk)
ξ
y :=

{
(uk)

ξ
y if y ∈ Ak,

0 otherwise,

Ak := {y ∈ �ξ : F 1
k ((uk)

ξ
y, (vk)

ξ
y) ≤ M/δ2},

where F 1
k denotes the one-dimensional counterpart of the functional Fk. Then wk is bounded in L∞(�), uk is in 

a δ-neighborhood of wk in L1(�), and the n = 1 case shows that (wk)
ξ
y is pre-compact in L1(�). Then the pre-

compactness of uk in L1(�) is ensured by [1, Theorem 6.6] as ξ varies in a basis of Rn.
Finally, the unbounded case is done by truncation as in [26, Theorem 7.4]. �

7. Further results

In this section we build upon the results in Sections 3–6 to obtain in the limit different models by slightly changing 
the approximating energies Fk’s. More precisely, we shall approximate a cohesive model with Dugdale’s surface 
density, a cohesive model with power-law growth at small openings, and a model in Griffith’s brittle fracture.

This task will be accomplished by letting the function f vary as in item (ii) of Proposition 4.5 in the first instance, 
as in item (iii) in the third, and suitably in the second (cp. (iii) of Proposition 7.3 below), respectively. More precisely, 
we consider a sequence of functions (f (j)) satisfying (3.3) and (3.4) and for all j, k ∈N introduce the energies

F
(j)
k (u, v) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∫
�

(
(f

(j)
k )2(v)|∇u|2 + (1 − v)2

4εk

+ εk|∇v|2
)
dx if (u, v) ∈ H 1(�)×H 1(�)

and 0 ≤ v ≤ 1 Ln-a.e. in �,

+∞ otherwise,

(7.1)

where f (j)
k (z) := 1 ∧ ε

1
2
k f (j)(z).

In each of Theorems 7.1, 7.4, and 7.5 below we shall further specify the nature of the sequence (f (j)).

7.1. Dugdale’s cohesive model

In order to approximate Dugdale’s model D : L1(�) → [0, +∞]

D(u) :=

⎧⎪⎨⎪⎩
∫
�

h(|∇u|)dx +
∫
Ju

(
1 ∧ �|[u]|)dHn−1 + �|Dcu|(�) if u ∈ GBV(�),

+∞ otherwise,

with h as in (3.6), we shall consider the specific choice

f (j)(z) := (aj z) ∨ f (z) (7.2)

with f satisfying (3.3) and (3.4), and

(aj ) nondecreasing, aj ↑ ∞ and such that aj ε
1
2
j ↓ 0. (7.3)

Theorem 7.1. Suppose that (f (j)) is as in (7.2) and (7.3) above.
Then, the functionals F (k)

k from (7.1) �-converge in L1(�)×L1(�) to the functional D̃ defined as follows

D̃(u, v) :=
{

D(u) if v = 1 Ln-a.e. in �,

+∞ otherwise.
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Proof. The definitions in (3.1) and (7.1) give F (j)
k ≤ F

(k)
k for j ≤ k, being (f (j)) nondecreasing by assumption. 

Hence, by Theorem 3.1 we deduce

�-lim inf
k

F
(k)
k (u, v) ≥ F (j)(u, v), (7.4)

where F (j) is defined as F in (3.9) with f substituted by f (j) in formulas (3.4) and (3.6) defining the volume density, 
and (3.7) defining the surface density.

In particular, being �j = � for all j , the corresponding volume density hj equals the function h in (3.6). More-
over, the surface energy densities gj are dominated by the constant 1, and by item (ii) in Proposition 4.5 we have 
limj gj (s) = 1 ∧ �s for all s ∈ [0, +∞). In conclusion, if �-lim infk F

(k)
k (u, v) < +∞, we infer that v = 1 Ln-a.e. 

in �, u ∈ GBV(�), and

�-lim inf
k

F
(k)
k (u,1) ≥ D(u),

by the dominated convergence theorem, as j ↑ ∞ in (7.4).
The upper bound inequality follows by arguing as in Proposition 6.4. Indeed, we first note that by a careful in-

spection of the proofs, Lemmas 6.2 and 6.3 are still valid in this generalized framework. More precisely, Lemma 6.2

continue to hold true as we have only used that each function fk = 1 ∧ ε
1
2
k f in (3.2) is nondecreasing and bounded 

by χ(0,1], properties enjoyed by f (k)
k as well.

In conclusion, as a first step we establish the estimate

lim sup
δ↓0

1

δn−1
F̂ (ux,1;x + δ Qνu(x)) ≤ 1 ∧ �|[u](x)|, (7.5)

for u ∈ SBV2(�) and for Hn−1-a.e. x ∈ Ju, where F̂ is the �-limit of a properly chosen subsequence (F
(kj )

kj
) of (F (k)

k )

(cp. Proposition 6.4).
Given (7.5), the derivation of the upper bound inequality in general follows exactly as in Proposition 6.4.
Let us now prove (7.5) by means of a one-dimensional construction. For the sake of simplicity we assume x = 0

and νu(x) = en. Actually, in view of the estimate in Lemma 6.3 we need only to discuss the case |[u](0)| < �−1. To 
this end, set

zj := sup{z ∈ [0,1) : akj
z = f (j)(z)},

it is easy to check that zj is actually a maximum, i.e., akj
zj = f (j)(zj ), and that zj ≤ zj+1 < 1 with zj ↑ 1. Let 

now

Tj := |[u](0)| f (zj )

1 − zj

,

then Tj ↑ ∞. Define αj (t) := u−(0) on [−Tj − 1, −Tj ], αj (t) := [u](0) · ( t
2Tj

+ 1
2 ) + u−(0) on [−Tj , Tj ], αj (t) :=

u+(0) on [Tj , Tj + 1], and βj (t) := zj on [−Tj , Tj ], βj (t) := (1 − zj )(|t | − Tj ) + zj otherwise in [−Tj − 1, Tj + 1].
Setting Aj := (−εkj

(Tj + 1), εkj
(Tj + 1)), we have that L1(Aj ) → 0 as j ↑ ∞ by (7.3). Indeed, in view of (3.4)

and the definition of zj it is easy to deduce that (1 − zj )akj
→ � as j ↑ ∞, so that εkj

Tj ∼ εkj
a2
kj

→ 0 as j ↑ ∞
thanks to (7.3). Therefore, if

uj (y) :=

⎧⎪⎨⎪⎩αj

(
yn

εkj

)
if yn ∈ Aj

u0 otherwise,

vj (y) :=

⎧⎪⎨⎪⎩βj

(
yn

εkj

)
if yn ∈ Aj

1 otherwise,

then (uj , vj ) → (u0, 1) on L1(Qen) × L1(Qen), where u0 = u−(0)χ{yn≤0} + u+(0)χ{yn>0}.
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Moreover, if Q′
en

= Qen ∩ (Rn−1 × {0}), then a change of variable yields

F
(kj )

kj
(uj , vj ; δ Qen)

= F
(kj )

kj

(
uj , vj ; δ Q′

en
× Aj

)
≤ δn−1

⎛⎜⎝ Tj∫
−Tj

(
f 2(βj )|∇αj |2 + (1 − βj )

2

4

)
dt + 2

Tj +1∫
Tj

(
|1 − βj |2

4
+ |β ′

j |2
)

dt

⎞⎟⎠
= δn−1

⎛⎜⎝(f 2(zj )
|[u](0)|2

2Tj

+ 2Tj

(1 − zj )
2

4

)
+ 2(1 − zj )

2

Tj +1∫
Tj

(t − (Tj + 1))2

4
dt + 2(1 − zj )

2

⎞⎟⎠
= δn−1

(
(1 − zj )f (zj )|[u](0)| + 13

6
(1 − zj )

2
)

= δn−1(�|[u](0)| + o(1)
)

as j ↑ ∞.

Therefore, being |[u](0)| < �−1, by the definition of F̂ we infer that

F̂ (u0,1; δ Qen) ≤ δn−1(1 ∧ �|[u](0)|),
and estimate (7.5) follows at once. �
Remark 7.2. The analysis in the general case of a diverging sequence f (k) is much more intricate because of the 

combination of several effects: the speed of divergence of the f (k)’s compared with the scaling ε
1
2
k in the definition 

of f
(k)
k , and even more the behavior of each f (k) close to 1. In this remark we limit ourselves to consider those families 

of functions f (k) satisfying item (ii) in Proposition 4.5, another instance shall be discussed in Remark 7.6 below.

Assume for example that f (z) = �z
1−z

, and that f (k) is defined as in (7.2) above, with ak = ε
− 1

2
k , thus violating the 

last condition in (7.3). Then, one can show that the �-limit is given by the Mumford–Shah energy introduced in (2.1). 
Indeed, with this choice

f
(k)
k (z) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
z 0 ≤ z ≤ 1 − � ε

1
2
k

ε
1
2
k

�z

1 − z
1 − � ε

1
2
k ≤ z ≤ (1 + � ε

1
2
k )−1

1 (1 + � ε
1
2
k )−1 ≤ z ≤ 1,

so that f (k)
k (z) ≥ z for all z ∈ [0, 1], and actually (f (k)

k ) converges uniformly to the identity on [0, 1]. Therefore, 

ATId
k ≤ F

(k)
k ≤ ATψ

k , with ψ(z) = χ(0,1](z) (cp. with (2.2) for the definition of ATψ
k ), and the assertion follows at once 

from Ambrosio and Tortorelli classical results (cp. [9], see also [30]).

A similar argument works also in the regime akε
1
2
k ↑ ∞, in which

f
(k)
k (z) =

⎧⎨⎩akε
1
2
k z 0 ≤ z ≤ a−1

k ε
− 1

2
k

1 a−1
k ε

− 1
2

k ≤ z ≤ 1,

for k sufficiently large, so that f (k)
k (z) → χ(0,1](z) for all z ∈ [0, 1], and again we get the Mumford–Shah energy in 

the �-limit arguing as above.
Finally, note that for ak as in (7.3), we have

f
(k)
k (z) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
akε

1
2
k z 0 ≤ z ≤ 1 − �a−1

k

ε
1
2
k

�z
1−z

1 − �a−1
k ≤ z ≤ (1 + �ε

1
2
k )−1

1 (1 + �ε
1
2
k )−1 ≤ z ≤ 1

so that f (k)
(z) → χ{1}(z) in [0, 1].
k
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7.2. A model with power-law growth at small openings

In Theorem 7.4 below we approximate a model with sublinear surface density in the origin and quadratic growth 
for the volume term. To this end, let p > 1 and consider a function ψp satisfying condition (3.3) and

lim
z→1−(1 − z)pψp(z) = γ, γ ∈ (0,+∞). (7.6)

Clearly, one can take ψp(z) := γ z
(1−z)p

as prototype. The surface energy density ϑp : [0, +∞) → [0, +∞) is defined 
as g in (3.7) by

ϑp(s) := inf
(α,β)∈Us

1∫
0

|1 − β|
√

ψ2
p(β)|α′|2 + |β ′|2 dt, (7.7)

where Us has been introduced in (3.8). In this case the integral is finite only if β < 1 almost everywhere on the set 
{α′ �= 0}. We next prove some properties of ϑp in analogy to Propositions 4.1, 4.3 and 4.5. In what follows, we keep 
the same notation introduced there. We also note that given any curve (α, β), the integral to be minimized in the 
definition of ϑp is invariant under reparametrizations of (α, β).

Proposition 7.3. Let ψp satisfy (3.3) and (7.6), let ϑp : [0, +∞) → [0, +∞) be the corresponding surface energy 
in (7.7). Then:

(i) ϑp(0) = 0, ϑp is nondecreasing, subadditive, and

0 ≤ ϑp(s) ≤ 1 ∧ c s
2

p+1 , for all s ≥ 0, (7.8)

where c = c(ψp) > 0. Moreover, ϑp ∈ C
0, 2

p+1
([0, +∞)

)
and

γ
2

p+1 ≤ lim
s↓0

ϑp(s)

s
2

p+1

≤ c γ
2

p+1 (7.9)

where c = c(p) > 0;
(ii) ϑp = ϑ̂p , where

ϑ̂p(s) := lim
T ↑∞ inf

(α,β)∈Us (0,T )

T∫
0

(
ψ2

p(β)|α′|2 + (1 − β)2

4
+ |β ′|2

)
dt;

(iii) the functions

f (j)(z) := j z

1 − z
∧ ψp(z), (7.10)

satisfy (3.3) and (3.4). If gj denotes the corresponding surface energy in (3.7), then gj ≤ gj+1 and

lim
j→∞gj (s) = ϑp(s) for all s ≥ 0. (7.11)

Proof. We prove (i). The facts that ϑp(0) = 0 and that ϑp is nondecreasing follow easily from the definition. The 
subadditivity follows as in Proposition 4.1(i). Moreover, 0 ≤ ϑp ≤ 1 arguing as in (ii) of Proposition 4.1.

To show (7.8) and the upper bound in (7.9), let s, λ > 0 and consider α := 0 in [0, 1/3], α := s in [2/3, 1] and set α

to be the linear interpolation of the values 0 and s on [1/3, 2/3]; βλ := 1 − (λ s)
1

p+1 in [1/3, 2/3] and set βλ to be the 
linear interpolation of that value to 1 on [0, 1/3] ∪ [2/3, 1].

Then, clearly (α, βλ) ∈ Us and a simple computation shows that

ϑp(s) ≤
1∫
|1 − βλ|

√
ψ2

p(βλ)|α′|2 + |β ′
λ|2 dt = (λ s)

1
p+1 ψp

(
1 − (λ s)

1
p+1
)
s + (λ s)

2
p+1 . (7.12)
0
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By taking λ = 1, since (1 − z)pψp(z) ≤ c for some constant c = c(ψp) > 0 and for all z ∈ [0, 1], we deduce that

ϑp(s) ≤ (c + 1) s
2

p+1 ,

from which inequality (7.8) follows as 0 ≤ ϑp ≤ 1.
The Hölder continuity of ϑp then follows easily from (7.8) and its subadditivity and monotonicity.
Further, by (7.12) we infer

lim sup
s↓0

ϑp(s)

s
2

p+1

≤ γ λ
− p−1

p+1 + λ
2

p+1 ,

minimizing the latter inequality over λ ∈ (0, ∞) yields the upper bound in (7.9).
We now prove the lower bound in (7.9). Let sk → 0, sk > 0, and up to subsequences let the liminf in (7.9) be a 

limit. Let αk, βk be competitors for ϑp(sk) such that

1∫
0

|1 − βk|
√

ψ2
p(βk)|α′

k|2 + |β ′
k|2 dt ≤ ϑp(sk) + sk.

If, after taking a subsequence, there is a sequence xj ∈ [0, 1] such that

1 − βj (xj ) ≥ (γ sj )
1

p+1 for all j,

then

ϑp(sj ) + sj ≥ (1 − βj (xj ))
2 ≥ (γ sj )

2
p+1 . (7.13)

Otherwise, for all k large enough

1 − βk ≤ (γ sk)
1

p+1

must hold uniformly, so that βk → 1 uniformly and by (7.6) for any ε > 0

(1 − βk)
pψp(βk) ≥ γ − ε uniformly, for k large enough.

Therefore

ϑp(sk) + sk ≥
1∫

0

ψp(βk)(1 − βk)|α′
k|dt ≥

1∫
0

ψp(βk)(1 − βk)
p

(1 − βk)p−1
|α′

k|dt ≥ γ − ε

γ (p−1)/(p+1)
s

2/(p+1)
k .

Since ε was arbitrary this and (7.13) give the lower bound in (7.9).
Finally we prove that the limit in (7.9) exists. We fix a sequence sj ↓ 0 and choose αj , βj ∈ Usj such that

1∫
0

|1 − βj |
√

ψ2
p(βj )|α′

j |2 + |β ′
j |2 dt ≤ ϑp(sj ) + 1

j
s

2/(p+1)
j .

By the computation above we obtain βj → 1 uniformly. For k ≥ j we define αk, βk ∈ Usk by

αk = sk

sj
αj and βk = 1 −

( sk

sj

)1/(p+1)

(1 − βj ) .

After a straightforward computation, using these test functions in the definition of ϑp(sk) leads to

ϑp(sk) ≤
( sk

sj

)2/(p+1)

⎡⎣ 1∫
0

|1 − βj |
√

ψ2
p(βj )|α′

j |2 + |β ′
j |2 dt

⎤⎦ sup
{ ψp(z)(1 − z)p

ψp(z′)(1 − z′)p
: minβj ≤ z, z′ < 1

}
.

Since βj → 1 uniformly as j → ∞, and ψp(z)(1 − z)p has a finite limit as z → 1, the sup converges to 1 as j → ∞. 
Therefore we obtain that for every ε > 0 if j is sufficiently large, then
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ϑp(sk)

s
2/(p+1)
k

≤ (1 + ε)
ϑp(sj )

s
2/(p+1)
j

+ 1

j
for all k ≥ j .

This implies that the sequence converges. Since the decreasing sequence sj was arbitrary, the limit in (7.9) exists.
To establish (ii), we note first that by Cauchy’s inequality ϑp ≤ ϑ̂p . In order to prove the converse inequality, we 

first claim that α and β in the infimum problem defining ϑp can be taken in W 1,∞((0, 1)
)
. Let η > 0 small and let 

α, β ∈ H 1
(
(1/3, 2/3)

)
be competitors for ϑp(s) such that

2/3∫
1/3

|1 − β|
√

ψ2
p(β)|α′|2 + |β ′|2 dt ≤ ϑp(s) + η. (7.14)

We define βη(t) := β(t) ∧ (1 − η) in [1/3, 2/3]. Since (1 − z)pψp(z) has a finite nonzero limit at 1, there is a 
function ω, with ω(η) → 0 as η → 0, such that

(1 − z′)pψp(z′) ≤ (1 + ω(η))(1 − z)pψp(z) for all z, z′ ∈ [1 − η,1) . (7.15)

In particular, if 1 − η < β(t) < 1, then

ηψp(1 − η) ≤ η1−p(1 + ω(η))(1 − β(t))pψp(β(t)) ≤ (1 + ω(η))(1 − β(t))ψp(β(t)) . (7.16)

We observe that βη = 1 − η and (βη)′ = 0 almost everywhere on the set {β �= βη} and compute∫
{β �=βη}

(1 − βη)

√
ψ2

p(βη) |α′|2 + |(βη)′|2dt =
∫

{β �=βη}
ηψp(1 − η) |α′|dt

≤ (1 + ω(η))

∫
{β �=βη}

(1 − β)ψp(β)|α′|dt, (7.17)

so that by (7.14) it follows

2/3∫
1/3

|1 − βη|
√

ψ2
p(βη)|α′|2 + |(βη)′|2 dt ≤ ϑp(s) + η + ω(η) + ηω(η).

By density we are able to find two sequences αj, β
η
j ∈ W 1,∞((1/3, 2/3)

)
(actually in C∞([1/3, 2/3])) such that 

αj (1/3) = 0, αj (2/3) = s, βη
j (1/3) = β

η
j (2/3) = 1 − η, 0 ≤ β ≤ 1 − η, and converging respectively to α and βη

in H 1
(
(1/3, 2/3)

)
. Since the function (1 − z)pψp(z) is uniformly continuous in [0, 1 − η] and since βη

j → βη also 
uniformly, we deduce that for j large it holds

2/3∫
1/3

|1 − β
η
j |
√

ψ2
p(β

η
j )|α′

j |2 + |(βη
j )′|2 dt ≤ ϑp(s) + 2η + ω(η) + ηω(η).

Finally we extend αj and βη
j in [0, 1] defining αj := 0 in [0, 1/3], αj := s in [2/3, 1], and βη

j as a linear interpolation 
of the values 1 − η and 1. Now αj and βη

j are competitors for ϑp(s) and for j large they satisfy

1∫
0

|1 − β
η
j |
√

ψ2
p(β

η
j )|α′

j |2 + |(βη
j )′|2 dt ≤ ϑp(s) + 2η + ω(η) + ηω(η) + η2

and this concludes the proof of the claim.
Let us prove now that ϑ̂p(s) ≤ ϑp(s). We argue exactly as in Proposition 4.3 until estimate (4.8). In doing this we 

point out that f , g and ĝ have to be substituted by ψp, ϑp and ϑ̂p , respectively.
By keeping the same notation introduced there, we repeat the computations in (7.15)–(7.17) and we conclude 

that
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ϑ̂p(s) ≤ √
η + 3η2 + (1 + ω(η))

1∫
0

(1 − β)

√
ψ2

p(β) |α′|2 + |β ′|2dt .

Since the last integral is less than ϑp(s) + η and η can be made arbitrarily small the inequality ϑ̂p ≤ ϑp follows at 
once.

We now prove (iii). It is easy to check that f (j) ≤ f (j+1), and that f (j)(z) → ψp(z) for all z ∈ [0, 1). Hence, the 
sequence (gj ) is nondecreasing and gj (s) ≤ ϑp(s) for all s ≥ 0. To prove (7.11), with fixed s ∈ (0, +∞), consider 
αj , βj ∈ W 1,∞((1/3, 2/3)

)
such that αj (1/3) = 0, αj (2/3) = s, βj (1/3) = βj (2/3) = 1, and

2/3∫
1/3

|1 − βj |
√

(f (j))2(βj )|α′
j |2 + |β ′

j |2 dt ≤ gj (s) + 1

j
. (7.18)

Let η > 0 and assume first that infβjk
≤ η for a subsequence jk ↑ ∞. In this case, (7.18) yields

gjk
(s) + 1

jk

≥
2/3∫

1/3

|1 − βj ||β ′
j |dt ≥ (1 − η)2,

so that limj gj (s) = limk gjk
(s) ≥ 1 ≥ ϑp(s), which provides the conclusion.

Assume now that for all j ’s sufficiently large infβj > η, and note that f (j) = ψp on [η, 1 − η] for all j ≥ jη > 0. 
As we have already noticed in (7.16), if βj(t) > 1 − η we have

(1 − βj (t))ψp(βj (t)) ≥ 1

1 + ω(η)
ηψp(1 − η), (7.19)

for some modulus of continuity ω of (1 − z)pψp(z) in 1. Moreover, setting cj (η) := j
(1−η)

ηψp(1−η)
∧ 1, then

jβj (t) > j (1 − η) ≥ cj (η)ηψp(1 − η). (7.20)

Note that cj (η) → 1 as j ↑ ∞. Therefore, to compute the integral in (7.18) we separate the contributions on the sets 
{βj ≤ 1 − η}, {βj > 1 − η} ∩ {f j = ψp}, and {βj > 1 − η} ∩ {f (j) < ψp} to get

gj (s) + 1

j
≥
( 1

1 + ω(η)
∧ cj (η)

) 2/3∫
1/3

|1 − β
η
j |
√

ψ2
p(β

η
j )|α′

j |2 + |(βη
j )′|2,

where we have used (7.19), (7.20), and the fact that f (j) = ψp on [η, 1 −η]. As before, we have employed the notation 
β

η
j := βj ∧ (1 − η). Extending now αj and βη

j to the interval (0, 1) as in the previous step, the energy increases by η2. 
Hence, for all j sufficiently large it holds

gj (s) + 1

j
≥
( 1

1 + ω(η)
∧ cj (η)

)
(ϑp(s) − η2),

and letting first j ↑ ∞ and then η ↓ 0 we conclude (7.11). �
The functionals F (k)

k corresponding to the sequence (f (j)) in (7.10) of Proposition 7.3 provide an approximation 
of p : L1(�) → [0, +∞] defined by

p(u) :=

⎧⎪⎨⎪⎩
∫
�

|∇u|2dx +
∫
Ju

ϑp(|[u]|)dHn−1 if u ∈ GSBV(�),

+∞ otherwise,

with ϑp defined in formula (7.7).



1064 S. Conti et al. / Ann. I. H. Poincaré – AN 33 (2016) 1033–1067
Theorem 7.4. Suppose that (f (j)) is as in (7.10) above.
Then, the functionals F (k)

k defined in (7.1) �-converge in L1(�)×L1(�) to ̃p , where

̃p(u, v) :=
{

p(u) if v = 1 Ln-a.e. in �,

+∞ otherwise.

Proof. By monotonicity of the sequence (f (j)
k ) we have that F (k)

k ≥ F
(j)
k for k ≥ j , so that by Theorem 3.1 if 

�-lim infk F
(k)
k (u, v) < +∞ then u ∈ GBV(�), v = 1 Ln-a.e. on � and for all j ∈ N

�-lim inf
k

F
(k)
k (u,1) ≥ �-lim

k
F

(j)
k (u,1) =

∫
�

hj (|∇u|)dx +
∫
Ju

gj (|[u]|)dHn−1 + j |Dcu|(�),

where hj and gj are defined, respectively, by (3.6) and (3.7) with f (j) in place of f . By letting j ↑ ∞, we get that

hj (s) ↑ s2, and gj (s) ↑ ϑp(s) for all s ≥ 0.

Indeed, the former convergence follows from the explicit formula hj(s) = s2 for s ∈ [0, j/2] and hj (s) = js − j2/4
for s ∈ [j/2, +∞), while the latter in view of (iii) in Proposition 7.3. Therefore, by Beppo-Levi’s theorem we conclude 
that u ∈ GSBV(�) with

�-lim inf
k

F
(k)
k (u,1) ≥ ̃p(u,1).

To prove the upper bound inequality we note that Lemmas 6.2 and 6.3 still hold true in this setting as there we have 

only used that each function fk = 1 ∧ ε
1
2
k f in (3.2) is nondecreasing and bounded by 1 from above, properties enjoyed 

by f (k)
k as well (cp. also Theorem 7.1).

Hence, we may argue again as in Proposition 6.4 and reduce ourselves to prove the estimate

lim sup
δ↓0

1

δn−1
F̂ (ux,1;x + δ Qνu(x)) ≤ ϑp(|[u](x)|), (7.21)

for u ∈ SBV2(�) and for Hn−1-a.e. x ∈ Ju, where F̂ is the �̄-limit of a properly chosen subsequence (F
(kj )

kj
) of (F (k)

k ). 

Given (7.21), we deduce the upper bound estimate as follows: we employ first [13, Propositions 3.3–3.5] to get the 
estimate F̂ (·, 1) ≤ ̃p(·, 1) on the full SBV space, by relaxing the functional ∞ : BV(�) → [0, +∞]

∞(u) :=

⎧⎪⎨⎪⎩
∫
�

|∇u|2dx +
∫
Ju

ϑp(|[u](x)|) dHn−1 if u ∈ SBV2(�)

+∞ otherwise on BV(�),

w.r.t. the weak-∗-BV topology on BV(�). This implies F̂ (·, 1) ≤ p on BV(�). We get the required estimate on the 
whole GSBV ∩ L1(�) by the usual truncation argument. We then argue as in Proposition 6.4 to show that the whole 
family (F (k)

k ) �-converges to ̃p .
The proof of (7.21) is identical to the proof of (6.18) in Proposition 6.4 and therefore not repeated. �

7.3. Griffith’s brittle fracture

Finally, we show how to approximate the Mumford–Shah functional by means of any sequence 
(
f (j)

)
satisfying 

item (iii) in Proposition 4.5. Thus, we recover the original approximation scheme of Ambrosio and Tortorelli [8,9]
(see also [30]).

Theorem 7.5. Suppose that (f (j)) satisfies f (j) ≤ f (j+1), �j ↑ ∞ and f (j)(z) ↑ ∞ pointwise in (0, 1). Then, the 
functionals F (k)

k �-converge in L1(�)×L1(�) to the functional M̃S defined as follows

M̃S(u, v) :=
{

MS(u) if v = 1 Ln-a.e. in �,

+∞ otherwise.



S. Conti et al. / Ann. I. H. Poincaré – AN 33 (2016) 1033–1067 1065
Proof. As in the proof of Theorem 7.1 we first note that F (j)
k ≤ F

(k)
k for j ≤ k. Thus, by Theorem 3.1 we deduce

�-lim inf
k

F
(k)
k (u, v) ≥ F (j)(u, v), (7.22)

where F (j) is defined as F in (3.9) with f substituted by f (j) in formulas (3.6) defining hj , and (3.7) defining gj . In 
particular, the corresponding volume density is given by

hj (s) =
⎧⎨⎩ s2 s ≤ �j

2

�j s − �2
j

4 s ≥ �j

2 ,

where �j is the value of the limit in (3.4) and it satisfies �j ↑ ∞. Thus hj (s) ≤ s2 and limj hj (s) = s2 for all 
s ∈ [0, +∞). Moreover, the surface energy densities gj are dominated by the constant 1, and by item (iii) in Proposi-

tion 4.5 we have limj gj (s) = χ(0,+∞)(s) for all s ∈ [0, +∞). In conclusion, if �-lim infk F
(k)
k (u, v) < +∞, by letting 

j ↑ ∞ in (7.22) we infer that v = 1 Ln-a.e. in �, u ∈ GSBV(�) and by Beppo-Levi’s theorem we get

�-lim inf
k

F
(k)
k (u, v) ≥ M̃S(u).

Finally, we establish the limsup inequality. Set ψ := χ(0,1], we observe once more that F (k)
k ≤ ATψ

k for every k, 

where ATψ
k has been defined in (2.2). Therefore the conclusion follows by the Ambrosio and Tortorelli result [9] (see 

also [30]). �
Remark 7.6. In Remark 7.2 we have shown that both the divergence of the fk’s and the scaling with ε

1
2
k in the 

definition of f (k)
k are influencing the asymptotic behavior of the related sequence (F (k)

k ). Here, we show that also the 
sequence of values of the limits in 1 of the functions (1 −z)f (k)(z), i.e. �k , is playing a role. In particular, we highlight 
that the pointwise limit of (f (k)

k ) alone does not determine the asymptotics of (F (k)
k ).

Indeed, if f (k)(z) := ak
z

1−z
, where ak ↑ ∞, then

f
(k)
k (z) =

⎧⎨⎩akε
1
2
k

z
1−z

0 ≤ z ≤ (1 + akε
1
2
k )−1

1 (1 + akε
1
2
k )−1 ≤ z ≤ 1,

and by letting k ↑ ∞ we infer that

f
(k)
k (z) →

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χ{1}(z) if akε

1
2
k ↓ 0

γ z
1−z

∧ 1 if akε
1
2
k → γ ∈ (0,+∞)

χ(0,1](z) if akε
1
2
k ↑ ∞.

Hence, by taking also into account the examples in Remark 7.2, we have built two sequences of functions both 
converging to χ{1} but giving rise in the �-limit on one hand to Dugdale’s cohesive energy and on the other hand to 
Griffith’s type energy. In the first example �k are constant, in the second �k diverge.
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