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Abstract

We consider the global bifurcation problem for spatially periodic traveling waves for two-dimensional gravity–capillary vortex 
sheets. The two fluids have arbitrary constant, non-negative densities (not both zero), the gravity parameter can be positive, negative, 
or zero, and the surface tension parameter is positive. Thus, included in the parameter set are the cases of pure capillary water waves 
and gravity–capillary water waves. Our choice of coordinates allows for the possibility that the fluid interface is not a graph over 
the horizontal. We use a technical reformulation which converts the traveling wave equations into a system of the form “identity 
plus compact.” Rabinowitz’ global bifurcation theorem is applied and the final conclusion is the existence of either a closed loop 
of solutions, or an unbounded set of nontrivial traveling wave solutions which contains waves which may move arbitrarily fast, 
become arbitrarily long, form singularities in the vorticity or curvature, or whose interfaces self-intersect.
© 2015 
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1. Introduction

We consider the case of two two-dimensional fluids, of infinite vertical extent and periodic in the horizontal direc-
tion (of period M > 0) and separated by an interface which is free to move. Each fluid has a constant, non-negative 
density: ρ2 ≥ 0 in the upper fluid and ρ1 ≥ 0 in the lower. Of course, we do not allow both densities to be zero, but 
if one of the densities is zero, then it is known as the water wave case. The velocity of each fluid satisfies the in-
compressible, irrotational Euler equations. The restoring forces in the problem include non-zero surface tension (with 
surface tension constant τ > 0) on the interface and a gravitational body force (with acceleration g ∈ R, possibly 
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zero) which acts in the vertical direction. Since the fluids are irrotational, the interface is a vortex sheet, meaning 
that the vorticity in the problem is an amplitude times a Dirac mass supported on the interface. We call this problem 
“the two-dimensional gravity–capillary vortex sheet problem.” The average vortex strength on the interface is denoted 
by γ .

In [2], two of the authors and Akers established a new formulation for the traveling wave problem for parameterized 
curves, and applied it to the vortex sheet with surface tension (in case the two fluids have the same density). The curves 
in [2] may have multi-valued height. This is significant since it is known that there exist traveling waves in the presence 
of surface tension which do indeed have multi-valued height; the most famous such waves are the Crapper waves [14], 
and there are other, related waves known [24,4,15]. The results of [2] were both analytical and computational; the 
analytical conclusion was a local bifurcation theorem, demonstrating that there exist traveling vortex sheets with 
surface tension nearby to equilibrium. In the present work, we establish a global bifurcation theorem for the problem 
with general densities. We now state a somewhat informal version of this theorem:

Theorem 1 (Main theorem). For all choices of the constants τ > 0, M > 0, γ ∈ R, ρ1, ρ2 ≥ 0 (not both zero) and 
g ∈ R, there exist a countable number of connected sets of smooth4 non-trivial symmetric periodic traveling wave 
solutions, bifurcating from a quiescent equilibrium, for the two-dimensional gravity–capillary vortex sheet problem. 
If γ̄ �= 0 or ρ1 �= ρ2, then each of these connected sets has at least one of the following properties:

(a) it contains waves whose interfaces have lengths per period which are arbitrarily long;
(b) it contains waves whose interfaces have arbitrarily large curvature;
(c) it contains waves where the jump of the tangential component of the fluid velocity across the interface or its 

derivative is arbitrarily large;
(d) its closure contains a wave whose interface has a point of self-intersection;
(e) it contains a sequence of waves whose interfaces converge to a flat configuration but whose speeds contain at 

least two convergent subsequences whose limits differ.

In the case that γ̄ = 0 and ρ1 = ρ2, each connected set has at least one of the properties (a)–(f), where (f) is the 
following:

(f) it contains waves which have speeds which are arbitrarily large.

We mention that in the case of pure gravity waves, it has sometimes been possible to rule out the possibility of an 
outcome like (e) above; one such paper, for example, is [11]. The argument to eliminate such an outcome is typically 
a maximum principle argument, and this type of argument appears to be unavailable in the present setting because of 
the larger number of derivatives stemming from the presence of surface tension. In a forthcoming numerical work, 
computations will be presented which indicate that in some cases, outcome (e) can in fact occur for gravity–capillary 
waves [3].

Following [2], we start from the formulation of the problem introduced by Hou, Lowengrub, and Shelley, which 
uses geometric dependent variables and a normalized arclength parameterization of the free surface [19,20]. This 
formulation follows from the observation that the tangential velocity can be chosen arbitrarily, while only the normal 
velocity needs to be chosen in accordance with the physics of the problem. The tangential velocity can then be selected 
in a convenient fashion which allows us to specialize the equations of motion to the periodic traveling wave case in a 
way that does not require the interface to be a graph over the horizontal coordinate. The resulting equations are non-
local, nonlinear and involve the singular Birkhoff–Rott integral. Despite their complicated appearance, using several 
well-known properties of the Birkhoff–Rott integral we are able to recast the traveling wave equations in the form 
of “identity plus compact.” Consequently, we are able to use an abstract version of the Rabinowitz global-bifurcation 
theory [29] to prove our main result. An interesting feature of our formulation is that, unlike similar formulations that 
allow for overturning waves by using a conformal mapping, an extension of the present method to the case of 3D 
waves, using for instance ideas like those in [6], seems entirely possible.

4 Here and below, when we say a function is “smooth” we mean that its derivatives of all orders exist.
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The main theorem allows for both positive and negative gravity; equivalently, we could say we allow a heavier 
fluid above or below a lighter fluid. As remarked in [4], this is an effect that relies strongly on the presence of surface 
tension. In the case of pure gravity waves, there are some theorems in the literature demonstrating the nonexistence of 
traveling waves in the case of negative gravity [21,31].

A similar problem was treated by Amick and Turner [7]. As with the present paper they treat the global bifurcation 
of interfacial waves between two fluids. However, they require the non-stagnation condition that the horizontal velocity 
of the fluid is less than the wave speed (u < c). Thus their global connected set stops once u = c and there cannot be 
any overturning waves. Their paper has some other less important differences as well, namely it treats solitary waves 
and the top and bottom are fixed (0 < y < 1). Their methodology is very different from ours as well, since they handle 
the case of a smooth density first without using the Birkhoff–Rott formulation, and only later let the density approach 
a step function. Another paper [8] by the same authors only treats small solutions. Small-amplitude interfacial periodic 
traveling gravity and capillary–gravity waves on finite depth, now allowing vorticity in the fluid region, were proved 
to exist in [26]; this work does allow stagnation points.

Global bifurcation with ρ2 ≡ 0, that is, in the water wave case, has been studied by a variety of authors. In particular, 
global bifurcation that permits overturning waves in the case of constant vorticity is treated in [12]. Another recent 
paper is [16], in which a global bifurcation theorem is proved in the case ρ2 ≡ 0 for capillary–gravity waves on 
finite depth, also with constant vorticity. Both of these works allow for multi-valued waves by means of a conformal 
mapping. Walsh treats global bifurcation for capillary water waves with general non-constant vorticity in [32], with 
the requirement that the interface be a graph with respect to the horizontal coordinate. The methodologies of all of 
these papers are completely different from the present work.

Our reformulation of the traveling wave problem into the form “identity plus compact” uses the presence of surface 
tension in a fundamental way. In particular, the surface tension enters the problem through the curvature of the inter-
face, and the curvature involves derivatives of the free surface. By inverting these derivatives, we gain the requisite 
compactness. The paper [27] uses a similar idea to gain compactness in order to prove a global bifurcation theorem 
for capillary–gravity water waves with constant vorticity and single-valued height.

We mention that the current work finds examples of solutions for interfacial irrotational flow which exist for all 
time. The relevant initial value problems are known to be well-posed at short times [5], but behavior at large times 
is in general still an open question. Some works on existence or nonexistence of singularities for these problems are 
[10,17,13]. For small-amplitude, pure capillary water waves, global solutions are known to exist in general [18,22].

The plan of the paper is as follows: in Section 2, we describe the equations of motion for the relevant interfacial 
fluid flows. In Section 3, we detail our traveling wave formulation which uses the arclength formulation and which 
allows for waves with multi-valued height. In Section 4, we explore the consequences of the assumption of spatial 
periodicity for our traveling wave formulation. In Section 5, we continue to work with the traveling wave formulation, 
now reformulating into an equation of the form “identity plus compact.” This sets the stage for Section 6, in which we 
state a more detailed version of our main theorem and provide the proof.

2. The equations of motion

We consider two two-dimensional fluids separated by a one-dimensional sharp interface, (x(α, t), y(α, t)), with t
being time and α being the spatial parameter along the curve. We consider (x, y) to be horizontally periodic, and we 
consider both of the fluid regions to be of infinite vertical extent. In the interior of each fluid region, the fluid velocities 
satisfy the irrotational, incompressible Euler equations:

ut + u · ∇u = −∇p,

div(u) = 0,

u = ∇φ. (1)

Because of condition (1), which we reiterate holds in the interior of either fluid region, the vorticity of each fluid is 
zero in the interior of either fluid region. The vorticity is not identically zero, however, because the velocity can jump 
across the free surface; therefore, there is measure-valued vorticity present, supported on the free surface (x, y). In 
particular, the vorticity is equal to an amplitude γ (α, t) multiplied by the Dirac mass of the interface. The specific 
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jump conditions at the interface for the velocity and pressure are given below in (7) and (9). For a detailed discussion 
of the equations of motion, we refer the interested reader to [25] or [30].

If we make the canonical identification5 of R2 with the complex plane C, we may represent the free surface at 
time t , denoted by S(t), as the graph (with respect to the parameter α) of

z(α, t) = x(α, t) + iy(α, t).

The unit tangent and upward normal vectors to S are, respectively:

T = zα

|zα| and N = i
zα

|zα| . (2)

(A derivative with respect to α is denoted either as a subscript or as ∂α .) Thus we have uniquely defined real valued 
functions U(α, t) and V (α, t) such that

zt = UN + V T (3)

for all α and t . We call U the normal velocity of the interface and V the tangential velocity. The normal velocity U is 
determined from fluid mechanical considerations and is given by:

U = �(W ∗N) (4)

where

W ∗(α, t) := 1

2πi
PV

∫
R

γ (α′, t)
z(α, t) − z(α′, t)

dα′ (5)

is commonly referred to as the Birkhoff–Rott integral. (We use “∗” to denote complex conjugation.) Furthermore, the 
operator � : C → R is the so-called real-part operator, which for any (a, b) ∈ R2 satisfies �(a + ib) = a.

The real-valued quantity γ is called in [19] “the unnormalized vortex sheet-strength,” though in this document we 
will primarily refer to it as simply the “vortex sheet-strength.” It can be used to recover the Eulerian fluid velocity 
(denoted by u) in the bulk at time t and position w /∈ S(t) via

u(w, t) :=
⎡⎣ 1

2πi

∫
R

γ (α′, t)
w − z(α′, t)

dα′
⎤⎦∗

. (6)

The quantity γ is also related to the jump in the tangential velocity of the fluid. Specifically, using the Plemelj 
formulas [28], one finds that:

[[u]] := lim
w→z(α,t)+

u(w, t) − lim
w→z(α,t)−

u(w, t) = γ (α, t)

z∗
α(α, t)

. (7)

In the above, the “+” and “−” modifying z(α, t) mean that the limit is taken from “above” or “below” S(t), respec-
tively. If we let j (α, t) := �([[u]]∗T ) be the component of [[u]] which is tangent to S(t) at z(α, t), then the preceding 
formula shows:

γ (α, t) = j (α, t) |zα(α, t)|, (8)

which is to say that γ (α, t) is a scaled version of the jump in the tangential velocity of the fluid across the interface. 
For completeness, we mention that the jump in pressure across the boundary is given by the Laplace–Young condition,

[[p]] = τκ, (9)

where τ is the positive, constant coefficient of surface tension, and κ is the curvature of the interface. We mention that 
the boundary conditions for the velocity at vertical infinity can be computed from (6), namely, u → ±γ̄ /2, where γ̄
is the average value of γ over one period, as y goes to vertical infinity in either direction.

5 Throughout this paper we make this identification for any vector in R2.
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As shown in [5], γ evolves according to the equation

γt = τ
θαα

|zα| + ((V − �(W ∗T ))γ )α

|zα|
− 2A

(�(W ∗
t T )

|zα| + 1

8

(γ 2)α

|zα|2 + gyα − (V − �(W ∗T ))�(W ∗
αT )

)
. (10)

Here A is the Atwood number,

A := ρ1 − ρ2

ρ1 + ρ2
.

Note that A can be taken as any value in the interval [−1, 1]. Lastly, θ(α, t) is the tangent angle to S(t) at the point 
z(α, t). Specifically it is defined by the relation

zα = |zα|eiθ .

Observe that we have the following nice representations of the tangent and normal vectors in terms of θ :

T = eiθ and N = ieiθ . (11)

We further mention that part of the great utility of using θ as one of our dependent variables is its relationship with 
the curvature (this is relevant because of (9) above), κ = θα/|zα|.

As observed above, the tangential velocity V has no impact on the geometry of S(t). As such, we are free to make 
V anything we wish. In this way, one sees that Eqs. (3) and (10) form a closed dynamical system. In [19], the authors 
make use of the flexibility in the choice of V to design an efficient and non-stiff numerical method for the solution of 
the dynamical system. In the article [5], V is selected in a way which is helpful in making a priori energy estimates, 
and in completing a proof of local-in-time well-posedness of the initial value problem. We leave V arbitrary for now.

3. Traveling waves

We are interested in finding traveling wave solutions, which is to say solutions where both the interface and Eulerian 
fluid velocity propagate horizontally with no change in form and at constant speed. To be precise:

Definition 1. We say (z(α, t), γ (α, t)) is a traveling wave solution of (3) and (10) if there exists c ∈ R such that for 
all t ∈ R we have

S(t) = S(0) + ct (12)

and, for all w /∈ S(t),

u(w, t) = u(w − ct,0) (13)

where u is determined from (z(α, t), γ (α, t)) by way of (6).

Later on the speed c will serve as our bifurcation parameter. We have the following results concerning traveling 
wave solutions of (3) and (10).

Proposition 1 (Traveling wave ansatz). (i) Suppose that (z(α, t), γ (α, t)) solves (3) and (10) and, moreover, there 
exists c ∈ R such that

zt = c and γt = 0 (14)

hold for all α and t . Then (z(α, t), γ (α, t)) is a traveling wave solution with speed c.
(ii) If (ž, γ̌ ) is a traveling wave solution with speed c of (3) and (10) then there exists a reparameterization of S(t)

which maps (ž, γ̌ ) �→ (z, γ ) where (z, γ ) satisfies (14).
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Proof. First we prove (i). Since zt = c, we have z(α, t) = z(α, 0) + ct which immediately gives (12). Then, since 
γt = 0 we have γ (α, t) = γ (α, 0) and thus

u∗(w, t) = 1

2πi

∫
R

γ (α′, t)
w − z(α′, t)

dα′ = 1

2πi

∫
R

γ (α′,0)

w − (z(α′,0) + ct)
dα′ = u∗(w − ct,0). (15)

And so we have (13).
Now we prove (ii). Suppose (ž(β, t), ǧ(β, t)) gives a traveling wave solution. The reparameterization which yields 

(14) can be written explicitly. Specifically, condition (12) implies that z(α, t) := ž(α, 0) + ct is a parameterization 
of S(t). Clearly zt = c, and we have the first equation in (14).

Now let γ (α, t) be the corresponding vortex sheet-strength for the parameterization of S(t) given by z(α, t). (For 
concreteness, γ (α, t) can be computed directly from (8).) Since we have a traveling wave, we have (13). Define

m(w, t) =: 1

2πi

∫
R

γ (α′, t) − γ (α′,0)

w − ct − ž(α′,0)
dα′.

Then for w /∈ S(t) we have

m(w, t) = 1

2πi

∫
R

γ (α′, t)
w − (ž(α′,0) + ct)

dα − 1

2πi

∫
R

γ (α′,0)

(w − ct) − ž(α′,0)
dα′

= u(w, t) − u(w − ct,0) = 0. (16)

However, for a point w0 = ž(α, 0) + ct ∈ S(t), the Plemelj formulas state that

lim
w→w±

0

m(w) = PV
1

2πi

∫
R

γ (α′, t) − γ (α′,0)

ž(α,0) − ž(α′,0)
dα ± 1

2

γ (α, t) − γ (α,0)

žα(α,0)

where the “+” and “−” signs modifying w0 in the limit indicate that the limit is taken from “above” or “below” S(t), 
respectively. But, of course, m is identically zero so that

1

2
(γ (α, t) − γ (α,0)) = ±žα(α,0)PV

1

2πi

∫
R

γ (α′, t) − γ (α′,0)

ž(α,0) − ž(α′,0)
dα,

which in turn implies γ (α, t) = γ (α, 0). Since this is true for any t and any α, we see that γt = 0, the second equation 
in (14). �
Remark 1. We additionally assume that S(t) is parameterized to be proportional to arclength, i.e.

|zα| = σ = constant > 0 (17)

for all (α, t). One may worry that the enforcement of the parameterization such that zt = c in (14) is at odds with 
this sort of arclength parameterization. However, notice that zt = c implies that zαt = 0 which in turn implies that zα

(and thus |zα|) does not depend on time. Then the parameterization of S(t) given by z̃(β(α), t) = z(α, t) where 
dβ/dα = |zα|/σ has |̃zβ | = σ . Thus it is merely a convenience to assume (17). We will select a convenient choice 
for σ later. Arguments parallel to the above show that zt = c implies that θt = 0 and thus we will view θ as being a 
function of α only.

Now we insert the ansatz (14) and the arclength parameterization (17) into the equations of motion (3) and (10). 
First, as observed in [2], we see that elementary trigonometry shows that zt = c and (3) are equivalent to

U = −c sin θ (18)

and

V = c cos θ. (19)
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Notice this last equation selects V in terms of the tangent angle θ . That is to say (19) should be viewed as the definition 
of V . On the other hand (18) should be viewed as one of the equations we wish to solve. Using (4), we rewrite it as

�(W ∗N) + c sin θ = 0. (20)

The above considerations transform (10) to:

0 = τ
θαα

σ
+ {(c cos θ − �(W ∗T ))γ }α

σ

− 2A

(
1

8

(γ 2)α

σ 2
+ g sin θ − (c cos θ − �(W ∗T ))�(W ∗

αT )

)
. (21)

The last part of this expression may be rewritten as follows. Observe that

−1

2
∂α{(c cos θ − �(W ∗T ))2} = (c cos θ − �(W ∗T ))

(
c sin θθα + �(W ∗Tα) + �(W ∗

αT )
)
. (22)

Using (11), we see that Tα = Nθα . Thus since θ is real valued and by virtue of (20), we have

c sin θθα + �(W ∗Tα) = (c sin θ + �(W ∗N))θα = 0.

So (22) simplifies to

−1

2
∂α(c cos θ − �(W ∗T ))2 = (c cos θ − �(W ∗T ))�(W ∗

αT ).

Hence

0 = τ
θαα

σ
+ {(c cos θ − �(W ∗T ))γ }α

σ

− 2A

(
1

8

(γ 2)α

σ 2
+ g sin θ + 1

2
∂α(c cos θ − �(W ∗T ))2

)
, (23)

which we rewrite as

−θαα = (θ,γ ; c, σ ) := 1

τ
(∂α{(c cos θ − �(W ∗T ))γ })

− A

τ

(
1

4σ
∂α(γ 2) + 2gσ sin θ + σ∂α{c cos θ − �(W ∗T ))2}

)
. (24)

Note that we have not specified z as one of the dependencies of . This may seem unusual, given the prominent 
role of z in computing the Birkhoff–Rott integral W ∗. However, given σ in (17) one can determine z(α, t) solely from 
the tangent angle θ(α), at least up to a rigid translation. Specifically, and without loss of generality, we have

z(α,0) = z(α, t) − ct = σ

α∫
0

eiθ(α′)dα′. (25)

In this way, we view W ∗ as being a function of θ , γ and σ .
In short, we have shown the following:

Lemma 2 (Traveling wave equations, general version). Given time independent functions θ and γ and constants 
c ∈ R and σ > 0, compute z(α, t) from (25), W ∗ from (5) and N and T from (11). If

�(W ∗N) + c sin θ = 0 and θαα + (θ,γ ; c, σ ) = 0 (26)

hold then (z, γ ) is a traveling wave solution with speed c for (3) and (10).

It happens that under the assumption that the traveling waves are spatially periodic, (26) can be reformulated as 
“identity plus compact” which, in turn will allow us to employ powerful abstract global bifurcation results. The next 
section deals with how to deal with spatial periodicity.
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4. Spatial periodicity

To be precise, by spatial periodicity we mean the following:

Definition 2. Suppose that (z(α, t), γ (α, t)) is a solution of (3) and (10) such that

S(t) = S(t) + M

and

u(w + M, t) = u(w, t)

for all t and w /∈ S(t), then the solution is said to be (horizontally) spatially periodic with period M .

It is clear if one has a spatially periodic curve S(t) then it can be parameterized in such a way that the param-
eterization is 2π -periodic in its dependence on the parameter. That is to say, the curve can be parameterized such 
that

z(α + 2π, t) = z(α, t) + M. (27)

It is here that we encounter a sticky issue. As described in Lemma 2, our goal is to find θ and γ such that (26) holds 
and additionally (27) holds. The issue is that, given a function θ(α) which is 2π -periodic with respect to α, it may 
not be the case that the curve z reconstructed from it via (25) satisfies (27). In fact, due to (17), the periodicity (27) is 
valid if and only if

2πcos θ :=
2π∫

0

cos(θ(α′))dα′ = M

σ
and 2πsin θ :=

2π∫
0

sin(θ(α′))dα′ = 0. (28)

We could impose (28) on θ . However, we follow another strategy which leaves θ free by modifying (26) so that (28)
holds.

Indeed, we first fix the spatial period M > 0. Suppose we are given a real 2π -periodic function θ(α) for which

cos θ �= 0 (29)

so that the period M of the curve will not vanish. Then we define the “renormalized curve” as

Z̃[θ ](α) = M

2πcos θ

⎧⎨⎩
α∫

0

eiθ(β)dβ − iα sin θ

⎫⎬⎭ . (30)

Of course, this function is one derivative smoother than θ . A direct calculation shows that

Z̃[θ ](α + 2π) = Z̃[θ ](α) + M. (31)

Thus w = Z̃[θ ] is the parameterization of a curve which satisfies

w(α + 2π) = w(α) + M for all α in R. (32)

Now ∂αZ̃[θ ] = M

2πcos θ
(exp(iθ[α]) − isin θ), and the tangent and normal vectors for Z̃[θ ] are given by:

T̃ [θ ] := ∂αZ̃[θ ]/|∂αZ̃[θ ]| and Ñ [θ ] := i∂αZ̃[θ ]/|∂αZ̃[θ ]|. (33)

These expressions are not equal to eiθ and ieiθ , as was the case for T and N in (11).
For a given real function γ (α) and parametrized curve w(α), define the Birkhoff–Rott integral

B[w]γ (α) := 1

2πi
PV

∫
γ (α′)

w(α) − w(α′)
dα′.
R
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Thus W ∗ = B[z]γ . If w satisfies (32), we can rewrite this integral as

B[w]γ (α) = 1

2iM
PV

2π∫
0

γ (α′) cot
( π

M
(w(α) − w(α′))

)
dα′ (34)

by means of Mittag–Leffler’s famous series expansion for the cotangent (see, e.g., Chapter 3 of [1]). Finally, for any 
real 2π -periodic functions θ and γ and any constant c ∈ R, define

̃(θ, γ ; c) := 1

τ
∂α{c cos θ − �(B[Z̃[θ ]]γ T̃ [θ ]))γ }

− A

τ

(
πcos θ

2M
∂α(γ 2) + gM

πcos θ

(
sin θ − sin θ

) + M

2πcos θ
∂α{(c cos θ − �(B[Z̃[θ ]]γ T̃ [θ ]))2}

)
.

(35)

In terms of these definitions the basic equations are rewritten as follows:

Proposition 2 (Traveling wave equations, spatially periodic version). If the 2π -periodic functions θ(α), γ (α) and the 
constant c �= 0 satisfy (29) and

�(B[Z̃[θ ]]γ Ñ [θ ]) + c sin θ = 0 and θαα + ̃(θ, γ ; c) = 0, (36)

then (Z̃[θ ](α) +ct, γ (α, t)) is a spatially periodic traveling wave solution with speed c and period M for (3) and (10).

Proof. Putting w = Z̃[θ ], from the definitions above we have Ñ[θ ] = iwα/|wα|. Thus by Lemma 3 below,

2π∫
0

�(B[Z̃[θ ]]γ Ñ [θ ]) dα = 0.

Together with the first equation in (36) and the fact c �= 0, this gives

sin θ = 0. (37)

Now we let σ = M/(2πcos θ) and compute z(α, t) from (25), W ∗ from (5), and N and T from (2). By (25) and (30)
we see that z(α, t) = Z̃[θ ](α) + ct . This in turn gives W ∗ = B[Z̃[θ ]]γ , N = Ñ [θ ] and T = T̃ [θ ]. Together with the 
fact that sin θ = 0, this shows that

̃(θ, γ ; c) = (θ,γ ; c, σ ).

Thus both equations in (36) coincide exactly their counterparts in (26). Proposition 2 then shows that z(α, t) is a 
traveling wave with speed c ∈ R. We know that z(α, t) is M-periodic since it was constructed from θ with Z̃. �
Lemma 3. If w(·) satisfies (32) and γ (·) is a 2π -periodic function, then

2π∫
0

�
(

B[w]γ (α)
iwα(α)

|wα(α)|
)

dα = 0.

Proof. This lemma says that the mean value of the normal component of B[w](γ ) is equal to zero. This follows from 
the fact that B[w](γ ) extends to a divergence-free field in the interior of the fluid region, and from the Divergence 
Theorem. �
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5. Reformulation as “identity plus compact”

5.1. Mapping properties

Let Hs
per := Hs

per[0, 2π ] be the usual Sobolev space of 2π -periodic functions from R to C whose first s ∈ N weak 
derivatives are square integrable. Likewise for intervals I ⊂ R, let Hs(I ) be the usual Sobolev space of functions from 
I to C whose first s ∈ N weak derivatives are square integrable. Finally, Hs

loc is the set of all functions from R to C
which are in Hs(I ) for all bounded intervals I ⊂ R.

By (31), Z̃[θ ](α) − Mα/2π is periodic. Let

Hs
M :=

{
w ∈Hs

loc : w(α) − Mα/2π ∈ Hs
per

}
.

Clearly Hs
M is a complete metric space with the metric of Hs

per We have the following lemma concerning the renor-

malized curve Z̃[θ ]:

Lemma 4. For s ≥ 1 and h ≥ 0 let

U s
h :=

⎧⎨⎩θ ∈Hs
per :

2π∫
0

cos(θ(α))dα > h

⎫⎬⎭ .

Then the map Z̃[θ ] defined in (30) is smooth from U s
h into Hs+1

M and the maps Ñ[θ ] and T̃ [θ ] given in (33) are smooth 
from U s

h into Hs
per. Moreover, for any h > 0, there exists C > 0 such that

‖T̃ [θ ]‖Hs
per

+ ‖Ñ [θ ]‖Hs
per

+ ‖Z̃[θ ]‖Hs+1(0,2π) +
∥∥∥∥ 1

∂αZ̃[θ ]
∥∥∥∥
Hs

per

≤ C(1 + ‖θ‖Hs
per

) (38)

for all θ ∈ U s
h .

Proof. As already mentioned, Z̃[θ ] is one derivative smoother than θ . A series of naive estimates leads to the bound 
on Z̃[θ ] in (38). Next, since θ belongs to U s

h,

sin θ + 1

100π2
h2 ≤ 1

2π

⎡⎢⎣ 2π∫
0

sin(θ(a))da + 1

50π

⎛⎝ 2π∫
0

cos(θ(a))da

⎞⎠2⎤⎥⎦ .

The Cauchy–Schwarz inequality on the cosine term leads to

sin θ + 1

100π
h2 ≤ 1

2π

2π∫
0

(
sin(θ(a)) + 1

25
cos2(θ(a))

)
da ≤ 1

since sin(x) + (1/25) cos2(x) ≤ 1. Thus

sin θ ≤ 1 − 1

100π2
h2.

For h > 0, this implies that eiθ − i sin θ cannot vanish. Hence 1/∂αZ̃[θ ] ∈ Hs
per and the remaining bounds in (38)

follow by routine estimates. The smooth dependence of Z̃, Ñ and T̃ on θ is a consequence of standard results on 
compositions. �

The most singular part of the Birkhoff–Rott operator B is essentially the periodic Hilbert transform H , which is 
defined as

Hγ (α) := 1

2π
PV

2π∫
γ (α′) cot

(
1

2
(α − α′)

)
dα′.
0
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It is well-known that for any s ≥ 0, H is a bounded linear map from Hs
per to Hs

per,0 (the subscript 0 here indicates 

that the average over a period vanishes). Moreover, H annihilates the constant functions and H 2γ = −γ + γ , where 

γ =: 1

2π

2π∫
0

γ (a)da. In order to conclude that the leading singularity of the function B[w]γ is given in terms of Hγ , 

we require a “chord-arc” condition, as stated in the following lemma.

Lemma 5. For b ≥ 0 and s ≥ 2, let the “chord-arc space” be

Cs
b :=

{
w(α) ∈Hs

M : inf
α,α′∈[0,2π]

∣∣∣∣w(α′) − w(α)

α′ − α

∣∣∣∣ > b

}
and the remainder operator K be

K[w]γ (α) := B[w]γ (α) − 1

2iwα(α)
Hγ (α).

Then (w, γ ) �→ K[w]γ is a smooth map from Cs
b × H1

per → Hs−1
per . If b > 0, then there exists a constant C > 0 such 

that for all w ∈ Cs
b and for all γ ∈ H1

per,

‖K[w]γ ‖Hs−1
per

≤ C‖γ ‖H1
per

exp
{
C‖w‖Hs (0,2π)

}
.

Proof. See Lemma 3.5 of [5]. We mention that related lemmas can be found elsewhere in the literature, such as 
in [9]. �

The set Cs
b is the open subset of Hs

M of functions whose graphs satisfy the “chord-arc” condition. This condition 
precludes self-intersection of the graph. Note that this is true even in the case where b = 0 since we have selected the 
strict inequality in the definition. Of course if b > 0, membership of w in this set Cs

b implies that |wα(α)| ≥ b for all α.
Note that Hγ is real because γ is real-valued. Also note that the definition of T̃ [θ ] implies that T̃ [θ ]/∂αZ̃[θ ] =

1/|∂αZ̃[θ ]| is also real. Thus

� (
(B[Z̃[θ ]]γ T̃ [θ ]) = � ((

K[Z̃[θ ]]γ )
T̃ [θ ]) + �

((
1

2i∂αZ̃[θ ]Hγ

)
T̃ [θ ]

)
= � ((

K[Z̃[θ ]]γ )
T̃ [θ ]) (39)

and similarly

�((B[Z̃[θ ]]γ Ñ [θ ]) = 1

2|∂αZ̃[θ ]|Hγ + �(K[Z̃[θ ]]γ Ñ [θ ]). (40)

Therefore, counting derivatives and applying Lemmas 4 and 5, we directly obtain the following regularity.

Corollary 1. Let s, s1 ≥ 1, b > 0, h > 0 and

U s
b,h :=

{
θ ∈ U s

h : Z̃[θ ] ∈ Cs+1
b

}
.

Then the mappings (θ, γ ) → B[Z̃[θ ]]γ and (θ, γ ) → �(B[Z̃[θ ]]γ Ñ [θ ]) are smooth from U s
b,h ×Hs1

per into Hmin{s,s1}
per . 

Furthermore, �(B[Z̃[θ ]]γ T̃ [θ ]) is a smooth map from U s
b,h ×H1

per into Hs
per.

Corollary 2. ̃(θ, γ ; c) is a smooth map from U1
b,h ×H1

per × R into L2
per,0 := H0

per,0.

Proof. The fact that ̃(θ, γ ; c) is a smooth map from U1
b,h ×H1

per × R into L2
per follows from the previous corollary 

and the definition of ̃. Examination of the terms in ̃ shows that all but one is a perfect derivative, and thus will 
have mean value zero on [0, 2π ]. The remaining term is a constant times sinθ − sin θ , which also has mean zero. 
Thus ̃ ∈ L2 . �
per,0
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We introduce the “inverse” operator

∂−2
α f (α) :=

α∫
0

a∫
0

f (s)dsda − α

2π

2π∫
0

a∫
0

f (s)dsda,

which is bounded from Hs
per,0 to Hs+2

per . Indeed, it is obvious that ∂2
α(∂−2

α f ) = f , so we only need to demonstrate the 

periodicity of ∂−2
α f for any f ∈ Hs

per,0. To this end, we compute

∂−2
α f (α + 2π) =

α+2π∫
0

a∫
0

f (s)dsda − α + 2π

2π

2π∫
0

a∫
0

f (s)dsda

=
α+2π∫
2π

a∫
0

f (s)dsda − α

2π

2π∫
0

a∫
0

f (s)dsda

=
α∫

0

b∫
0

f (s)dsdb − α

2π

2π∫
0

a∫
0

f (s)dsda = ∂−2
α f (α).

5.2. Final reformulation

Using (40) in the first equation of (36) yields the equation

Hγ + 2
∣∣∂αZ̃[θ ]∣∣� (

(K[Z̃[θ ]]γ )Ñ [θ ]) + 2c
∣∣∂αZ̃[θ ]∣∣ sin θ = 0.

It will be helpful to break γ up into the sum of its average value and a mean zero piece, so we let

γ1 := γ − γ .

Applying H to both sides and using H 2γ = −γ + γ = −γ1, we obtain

γ1 − H
{
2
∣∣∂αZ̃[θ ]∣∣� (

(K[Z̃[θ ]](γ + γ1))Ñ [θ ]) + 2c
∣∣∂αZ̃[θ ]∣∣ sin θ

} = 0. (41)

It will turn out that we are free to specify γ in advance, and so henceforth we will view γ as a constant in the equations, 
akin to g, M , A or τ .

Now one of the equations we wish to solve is θαα + ̃(θ, γ ; c) = 0. We use ∂−2
α to “solve” this equation for θ . 

Keeping in mind that γ = γ + γ1, we define

�(θ,γ1; c) := −∂−2
α ̃(θ, γ + γ1; c). (42)

Then the second equation in (36) is equivalent to θ −�(θ, γ1; c) = 0. Knowing that θ = �, we are also free to rewrite 
(41) as γ1 − �(θ, γ1; c) = 0, where

�(θ, γ1; c) := 2H
{∣∣∂αZ̃[�(θ,γ1; c)]

∣∣� ((
K

[
Z̃[�(θ,γ1; c)]

]
(γ + γ1)

)
Ñ [�(θ,γ1; c)]

)
+ c

∣∣∂αZ̃[�(θ,γ1; c)]
∣∣ sin(�(θ, γ1; c))

}
. (43)

Summarizing, our equations now have the form

θ − �(θ,γ1; c) = 0, γ1 − �(θ, γ1; c) = 0. (44)

The set where the solutions will be situated is U = U0,0 where

Ub,h := {
(θ, γ1; c) ∈ H1

per ×H1
per,0 × R : θ is odd, γ1 is even, cos θ > h,

Z̃[θ ] ∈ C2
b and Z̃[�(θ,γ1; c)] ∈ C3

b

}
. (45)

These sets are given the topology of H1
per × H1

per,0 × R. Note that they are defined so that the functions have one 
derivative. The following theorem states that � and � gain an extra derivative.
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Theorem 6 (“Identity plus compact” formulation). For all b, h > 0, the pair (�, �) is a compact map from Ub,h into 
H2

per,odd × H2
per,0,even and is smooth from U into H2

per,odd × H2
per,0,even. If (θ, γ1; c) ∈ U solves (44), then the pair 

(Z̃[θ ](α) + ct, γ + γ1(α)) is a spatially periodic, symmetric traveling wave solution of (3) and (10) with speed c and 
period M .

Proof. Observe that from the results of the previous section, �(θ, γ1; c) is a smooth map from U1
b,h × H1

per,0 × R

into H2
per for any b, h > 0. Careful unraveling of the definitions shows that �(θ, γ1; c) is a smooth map from the 

set {(θ, γ1; c) ∈ U1
b,h × H1

per,0 × R : Z̃[�(θ, γ1; c)] ∈ C3
b} into H2

per,0. These facts, together with the uniform bound 
for fixed b > 0 on the remainder operator K in Lemma 5, imply that the mapping (�, �) is compact from Ub,h into 
H2

per,odd ×H2
per,0,even, since H2

per is compactly embedded in H1
per. We conclude that � and � are also smooth maps, 

but not necessarily compact, on the union of the previous sets over all b, h > 0, which is to say that (�, �) is smooth 
on U . The second statement in the theorem is obvious from the previous discussion. Finally, the subscripts “odd” and 
“even” in the target space for (�, �) above simply denote the subspaces which consist of odd and even functions. 
That (�, �) preserves this symmetry can be directly checked from its definition; the computation is not short, but 
neither is it difficult. So we omit it. �
6. Global bifurcation

6.1. General considerations

Our basic tool is the following global bifurcation theorem, which is based on the use of Leray–Schauder degree. It 
is fundamentally due to Rabinowitz [29] and was later generalized by Kielhöfer [23].

Theorem 7 (General bifurcation theorem). Let X be a Banach space and U be an open subset of X × R. Let F map 
U continuously into X. Assume that

(a) the Frechet derivative DξF(0, ·) belongs to C(R, L(X, X)),
(b) the mapping (ξ, c) → F(ξ, c) − ξ is compact from X × R into X, and
(c) F(0, c0) = 0 and DxF(0, c) has an odd crossing number at c = c0.

Let S denote the closure of the set of nontrivial solutions of F(ξ, c) = 0 in X × R. Let C denote the connected 
component of S to which (0, c0) belongs. Then one of the following alternatives is valid:

(i) C is unbounded; or
(ii) C contains a point (0, c1) where c0 �= c1; or

(iii) C contains a point on the boundary of U .

The crossing number is the number of eigenvalues of DxF(0, c) that pass through 0 as c passes through c0. In his 
original paper [29] Rabinowitz assumed that F has the form F(ξ, c) = ξ − cG(ξ). Kielhöffer’s book [23] permits the 
general form as above. Theorem II.3.3 of [23] states Theorem 7 in the case that U = X × R. The proof of Theorem 7
with an open set U is practically identical to that in [23].

We apply this theorem to our problem by fixing b, h > 0 and setting U = Ub,h, X = H1
per,odd × H1

per,0,even, ξ =
(θ, γ1), and F(ξ, c) = ξ − (�(ξ, c), �(ξ, c)). Then the problem laid out in Theorem 6 fits into the framework of this 
theorem. All we need to do is to choose c0 so that the linearization has an odd crossing number when c = c0. In fact, 
the simplest case with crossing number one will suffice.

6.2. Computation of the crossing number

This calculation is difficult primarily due to the large number of terms we must differentiate. Thus we introduce 
some notation which will help to compress the calculations. For any map μ(θ, γ1; c), we use (θ̆ , γ̆ ) to denote the 
direction of differentiation. To wit, we define:
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μ0 := μ(0,0; c) and

Dμ := Dθ,γ1μ(θ, γ1; c)
∣∣
(0,0;c)(θ̆ , γ̆ ) := lim

ε→0

1

ε

(
μ(εθ̆, εγ̆ ; c) − μ(0,0; c)

)
. (46)

We let Q(θ, γ1) := (γ + γ1)
2, Y(θ) = sin θ , �(θ) = M/(2πcos θ), and W̃∗[θ, γ1] := B[Z̃[θ ]](γ + γ1). It is to be 

understood that by sin and cos we mean the maps θ → sin θ and θ → cos θ , respectively. We will first compute the 
linearizations of � and � while ignoring the restrictions to symmetric (even/odd) functions; of course, computation 
of the full linearization will restrict in a natural way to the linearization of the symmetric problem.

The following quantities and derivatives thereof are elementary:

sin0 = 0, cos0 = 1, Q0 = γ 2, Y0 = 0, �0 = 1, Z̃0 = M

2π
α,

(∂αZ̃)0 = ∣∣∂αZ̃
∣∣
0 = M

2π
, T̃0 = 1, Ñ0 = i and W̃∗

0 = 0.

D sin = θ̆ , D cos = 0, DQ = 2γ γ̆ , DY = 1

2π

2π∫
0

θ̆ (a)da, D� = 0,

DZ̃ = iM

2π

⎛⎝ α∫
0

θ̆ (a)da − α

2π

2π∫
0

θ̆ (a)da

⎞⎠ , D∂αZ̃ = iM

2π

⎛⎝θ̆ − 1

2π

2π∫
0

θ̆ (a)da

⎞⎠ ,

D
∣∣∂αZ̃

∣∣ = 0, DT̃ = i

⎛⎝θ̆ − 1

2π

2π∫
0

θ̆ (a)da

⎞⎠ and DÑ = −θ̆ + 1

2π

2π∫
0

θ̆ (a)da.

The computation of DW̃∗ is somewhat more complicated. By the product and chain rules,

DW̃∗ = D
[
B[Z̃[θ ]](γ + γ1)

]
(θ̆ , γ̆ )

= 1

2iM
PV

2π∫
0

D
[
(γ + γ1(α

′)) cot
( π

M

(
Z̃[θ ](α) − Z̃[θ ](α′)

))]
dα′

= 1

2iM
PV

2π∫
0

γ̆ (α′) cot
( π

M

(
Z̃0(α) − Z̃0(α

′)
))

dα′

− π

2iM2
PV

2π∫
0

γ csc2
( π

M

(
Z̃0(α) − Z̃0(α

′)
)) (

DZ̃(α) − DZ̃(α′)
)
(θ̆) dα′. (47)

Now we use the fact that Z̃0(α) = M/2πα and the definition of H to see that the first of the two terms above is exactly 
(π/iM)Hγ̆ . The second term T2 is

− πγ

2iM2
PV

2π∫
0

csc2
(

1

2

(
α − α′))(

DZ̃(α) − DZ̃(α′)
)
dα′

= − πγ

iM2
PV

2π∫
0

cot

(
1

2

(
α − α′)) ∂

∂α′ DZ̃(α′)dα′ = −2π2γ

iM2
H

(
∂αDZ̃

)
. (48)

But,

∂αDZ̃ = iM

2π

⎛⎝θ̆ (α′) − 1

2π

2π∫
θ̆ (a)da

⎞⎠ .
0
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Since H annihilates constants, the second term T2 is equal to −(πγ /M)Hθ̆ . Thus

DW̃∗ = π

iM
Hγ̆ − πγ

M
Hθ̆. (49)

In order to evaluate D�, we have �0 = 0 and

D� = − 1

τ
∂−2
α ∂αD

[
(c cos−�(W̃∗T̃ ))(γ + γ1)

]
+ A

τ
∂−2
α D

[
∂αQ

4�
+ 2g� (sin−Y) + �∂α(c cos−�(W̃∗T̃ ))2

]
. (50)

Carrying out D, we have

D� = − 1

τ
∂−2
α ∂α

[
(cD cos−�((DW̃∗)T̃0) − �(W̃∗

0(DT̃ )))γ + (c cos0 −�(W̃∗
0T̃0))γ̆

]
+ A

τ
∂−2
α

[
�0∂αDQ − ∂α(Q0)D�

4�2
0

+ 2g�0 (D sin−DY) + 2gD� (sin0 −Y0)

]

+ A

τ
∂−2
α

[
(D�)∂α(c cos0 −�(W̃∗

0T̃0))
2
]

+ A

τ
∂−2
α

[
2�0∂α[(c cos0 −�(W̃∗

0T̃0))(cD cos−�((DW̃∗)T̃0) − �(W̃∗
0(DT̃ )))]] .

When we use the expressions at the start of this section, this quantity reduces to

D� = − 1

τ
∂−2
α ∂α

[−γ�(DW̃∗) + cγ̆
]

+ A

τ
∂−2
α

[
γ ∂αγ̆

2(M/2π)
+ gM

π
P θ̆

]
+ A

τ
∂−2
α

[
M

π
∂α[−c�(DW̃∗)]

]
, (51)

where

P θ̆ := θ̆ − 1

2π

2π∫
0

θ̆ (a)da.

Using (49) in this expression, we get

D� = −πγ

M

(
γ

τ
− cAM

πτ

)
∂−2
α ∂αH θ̆ + AgM

πτ
∂−2
α P θ̆ +

(
Aγπ

τM
− c

τ

)
∂−2
α ∂αγ̆ . (52)

Lastly, to compute D�, we have �0 = 0 and by (40) and (43),

� = 2H

(∣∣∂αZ̃[�]∣∣� (
W̃ ∗ [

�,γ + γ1
]
Ñ [�]

) − 1

2
Hγ1

)
+ 2cH

(∣∣∂αZ̃[�]∣∣ sin(�)
)
.

Differentiating, we get

D� = 2H
{
D

∣∣∂αZ̃
∣∣ ◦ D� � (

W̃∗
0Ñ0

) + ∣∣∂αZ̃0
∣∣� (

D
(
W̃ [�,γ + γ1]

)
Ñ0

)
+ ∣∣∂αZ̃0

∣∣� (
W̃∗

0 DÑ ◦ D�
) − 1

2
Hγ̆

}
+ 2cH

{
D

∣∣∂αZ̃
∣∣ ◦ D� sin0 + ∣∣∂αZ̃0

∣∣D sin◦D�
}

= γ̆ + M

π
H� (

iD
(
W̃[�,γ + γ1]

)) + cM

π
HD� (53)

because D|∂αZ̃| = 0 and W̃ ∗
0 = 0. By (49), we have D

(
W̃ [�,γ + γ1]

) = π

iM
Hγ̆ − πγ

M
HD�, so that

D� = γ̆ − �(γ̆ − iγD�) + cM
HD� = cM

HD�. (54)

π π
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Combining (49), (52) and (54), we see that the linearization of the mapping (θ, γ1) → (θ − �, γ1 − �) at (0, 0; c)
is

Lc

[
θ̆

γ̆

]
:=

[
θ̆ − D�

γ̆ − D�

]

=
⎡⎢⎣ 1 + πγ

M

(
γ
τ

− cAM
πτ

)
∂−2
α ∂αH − AgM

πτ
∂−2
α P −

(
Aγπ
τM

− c
τ

)
∂−2
α ∂α

γ c
(

γ
τ

− cAM
πτ

)
H∂−2

α ∂αH − cM2Ag

π2τ
H∂−2

α P 1 − c
(

Aγ
τ

− cM
πτ

)
H∂−2

α ∂α

⎤⎥⎦[
θ̆

γ̆

]
. (55)

Our goal is to find those values of c such that Lc has a one-dimensional nullspace. Because we are working with 
2π -periodic functions, we may expand them as

θ̆ (α) =
∑
k∈Z

̂̆
θ(k)eikα and γ̆ (α) =

∑
k∈Z′

̂̆γ (k)eikα.

We have denoted Z′ := Z/ {0}. We can eliminate the k = 0 coefficient for γ̆ since it has zero mean. The operators ∂α , 
H , P and ∂−2

α can be represented on the Fourier side in the usual way:

∂̂αμ(k) = ikμ̂(k), Ĥμ(k) = −i sgn(k)μ̂(k),

P̂μ(k) = (1 − δ0(k))μ̂(k) and ̂

∂−2
α μ(k) = − 1

k2
μ̂(k),

where δ0(k) = 1 for k = 0 and is otherwise zero. Thus Lc is represented on the frequency side as the Fourier multiplier

̂

Lc

[
θ̆

γ̆

]
(k) = L̂c(k)

[ ̂̆
θ(k)̂̆γ (k)

]
(56)

where, for k �= 0

L̂c(k) =
⎡⎣ 1 − πγ

M

(
γ
τ

− cAM
πτ

)
|k|−1 + AgM

πτ
k−2 i

(
Aγπ
τM

− c
τ

)
k−1

iγ c
(

γ
τ

− cAM
πτ

)
k−1 − i

cM2Ag

π2τ
sgn(k)k−2 1 + c

(
Aγ
τ

− cM
πτ

)
|k|−1

⎤⎦ (57)

and L̂c(0) is the identity.
Now we can easily compute the point spectrum of Lc. In particular, λ ∈ C is an eigenvalue of Lc if and only if λ is 

an eigenvalue of L̂c(k) for some integer k. For any nonzero integer k, an elementary computation shows that the two 
eigenvalues of L̂c(k) are 1 and

λk(c) := 1 + 2γ cAMπ − M2c2 − γ 2π2

Mπτ
|k|−1 + gAM

πτ
|k|−2 .

Since this expression is even in k, every eigenvalue of Lc has even multiplicity. So any crossing number for Lc will 

necessarily be even. However, the eigenvector of L̂c(k) associated to this eigenvalue is 
[

sgn(k)iπ/cM

1

]
which in 

turn implies that[
iπ/cM

1

]
eikα and

[ −iπ/cM

1

]
e−ikα

are the corresponding eigenfunctions for Lc with eigenvalue λk(c). Of course, we can break these up into real an 
imaginary parts to get an equivalent basis for the eigenspace, namely,[ −(π/cM) sin(kα)

cos(kα)

]
and

[
(π/cM) cos(kα)

sin(kα)

]
.

Only the first of these satisfies the symmetry properties (θ odd, γ1 even) required by our function space (45). Thus 
when we take account of the symmetry, the dimension of the eigenspace equals one. We summarize the spectral 
analysis as follows.
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Proposition 3 (Spectrum of Lc). Let Lc be the linearization of the mapping (θ, γ, c) ∈ U → (θ − �, γ − �) ∈
H2

per ×H2
per,0 at (0, 0; c). The spectrum of Lc consists of 1 and the point spectrum

σpt :=
{
λk(c) := 1 + 2γ cAMπ − M2c2 − γ 2π2

Mπτ
k−1 + gAM

πτ
k−2 : k ∈ N

}
.

Moreover, each eigenvalue λ has geometric and algebraic multiplicity Nλ(c) where

Nλ(c) := |{k ∈ N such that λk(c) = λ}| .
The eigenspace for λ is

Eλ(c) := span

{[ −(π/cM) sin(kα)

cos(kα)

]
: k ∈ N such that λk(c) = λ

}
.

Corollary 3. Fix A, g, γ ∈ R and τ, M > 0. Let

K :=
{
k ∈ Z : π2γ 2A2k2 + πτk3M − π2k2γ 2 + kAgM2 > 0 and AgM/πτk /∈ N \ {k}

}
.

For k ∈ N, let

c±(k) := πγA

M
± 1

kM

√
π2γ 2A2k2 + πτk3M − π2k2γ 2 + kAgM2.

Then |K| = ∞ and Lc has crossing number equal to one at a real value c = c±(k) if and only if k ∈K. If A = 0, then 
K = Z.

Proof. Fix k ∈ N. We are looking for the real values of c ∈ R for which λk = 0. There are at most two roots. A routine 
calculation shows that λk(c) = 0 if and only if c = c±(k). The first condition in the definition of K shows that c±(k)

is a real number. Thus λ = 0 is an eigenvalue. We must compute its crossing number and the first step is to calculate 
its multiplicity, denoted N0(c±(k)). Thus, given c = c±(k), we must find all l ∈ N such that λl(c±(k)) = 0. Clearly 
l = k works. A small amount of algebra shows that the only other possible solution of λl(c±(k)) = 0 is

l = lk := AgM/πτk.

Another calculation shows that

λk(c±(k) + ε) = ∓2
√

π2γ 2A2k2 + πτk3M − π2k2γ 2 + kAgM2

k2πτ
ε − M

τkπ
ε2

and

λlk (c±(k) + ε) = ∓2
√

π2γ 2A2k2 + πτk3M − π2k2γ 2 + kAgM2

AgM
ε − k

Ag
ε2.

Now assume that k ∈ K. The second condition in the definition of K shows that lk /∈ N \{k} and thus N0(c±(k)) = 1. 
The first condition guarantees that coefficient of ε in the expansion of λk(c±(k) + ε) is non-zero. Thus we see λ±(c)

changes sign as c passes through c±(k): the crossing number is equal to one and thus is odd. Thus we have shown the 
“if” direction in the corollary. The “only if” direction follows by showing that the crossing number is either two or 
zero when one of the conditions is not met. The details are simple so we omit them.

To show that |K| = ∞, observe that, since τ, M > 0, we have

lim
k→∞

(
π2γ 2A2k2 + πτk3M − π2k2γ 2 + kAgM2

)
= ∞.

Therefore the first condition in the definition of K is met for all k sufficiently large. Likewise, no matter the choices 
of the parameters A, g, M and τ , lim

k→∞AgM/πτk = 0 and the second condition holds for k sufficiently large. Thus 

|K| contains all k > k0 for some finite k0 ∈ N. �
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6.3. Application of the abstract theorem

An appeal to Theorem 7 has the following consequence.

Theorem 8 (Global bifurcation). Let the surface tension τ > 0, period M > 0, Atwood number A ∈ R, and average 
vortex strength γ ∈ R be given. Let U , K and c±(k) be defined as above. Let S ⊂ U be the closure (in H1

per ×
H1

per,0 × R) of the set of all solutions of (44) for which either θ �= 0 or γ1 �= 0. Given k ∈ K, let C±(k) be the 
connected component of S which contains (0, 0; c±(k)).

Then

(I) either C±(k) is unbounded;
(II) or C±(k) = C+(l) or C±(k) = C−(l) for some l ∈K with l �= k;

(III) or C±(k) contains a point on the boundary of U .

Proof. We saw in Theorem 6 that the mapping (�, �) was compact on Ub,h for all b, h > 0 and we saw that there 
are always choices of c which result in an odd crossing number in Corollary 3. Thus Theorem 7 can be applied with 
outcomes which coincide with the outcomes (I )–(III) in Theorem 8 except with the replacement of U with the Ub,h

in (III). Since U = ∪b,h>0Ub,h an easy topological argument gives (III) as above. �
This general statement leads in turn to our main conclusion.

Proof of Theorem 1. By Proposition 6, a solution (θ, γ1; c) of (44) gives rise to symmetric periodic traveling wave 
solutions of the two dimensional gravity–capillary vortex sheet problem by taking z(α, t) = ct + Z̃[θ ](α) and γ =
γ + γ1. (Note that, as in the proof of Proposition 2, this implies that N = Ñ [θ ] and T = T̃ [θ ]. We will use the 
two equivalent notations interchangeably in what follows.) Note that in the statement of Theorem 1 it is stated that 
the traveling wave solutions are smooth, whereas the solutions given in Theorem 8 are stated to merely belong to 
H1

per ×H1
per,0. However, the maps � and � in (44) are smoothing. Therefore a simple bootstrap argument shows that 

θ and γ1 are in Hs
per for any s and thus in C∞. The corresponding traveling waves are likewise smooth; the details are 

routine and omitted.
Each of the outcomes (a)–(f) in Theorem 1 corresponds to one of the alternatives (I)–(III) of Theorem 8. Fix k ∈ K. 

It is straightforward to see that alternative (II) in Theorem 8 is interpreted as outcome (e) in Theorem 1.
Now consider alternative (III). If (θ, γ1; c) ∈ C±(k) is on the boundary of U , then inspection of the definition of U

shows that

either cos θ = 0 or Z̃[θ ] = Z̃[�] /∈ C3
0 . (58)

The reconstruction of the curve S(t) from θ via Z̃ (recalling that sin θ = 0 for solutions) shows that the length of S(t)

per period is given by

L[θ ] :=
2π∫

0

∣∣∂αZ̃[θ ](a)
∣∣da = M

cos θ
.

In case cos θ = 0, the length of the curve reconstructed from (θ, γ1; c) is formally infinite. Since (θ, γ1; c) is in the 
closure of the set of nontrivial traveling wave solutions, the more precise statement is that there is sequence of solutions 
whose lengths diverge, which is outcome (a).

Now suppose we have the other alternative in (58), namely, that Z̃[θ ] /∈ C3
0 . Since h = 0 in this space, it means that

inf
α,α′∈[0,2π]

ζ = 0, where ζ(α,α′) :=
∣∣∣∣ Z̃[θ ](α′) − Z̃[θ ](α)

α′ − α

∣∣∣∣ .
Moreover,

lim′ ζ(α,α′) = ∣∣∂αZ̃[θ ](α)
∣∣ = M = L[θ ] ≥ 1. (59)
α →α 2πcos θ 2π
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But clearly (Z̃[θ ](α′) − Z̃[θ ](α))/(α′ − α) is a continuous function of (α, α′) for α �= α′. Thus its infimum, which 
vanishes, is attained at some pair of values (α�, α′

�) where α� �= α′
�. Hence ζ(α∗, α′∗) = 0, which in turn implies that∣∣Z̃[θ ](α′

�) − Z̃[θ ](α�)
∣∣ = 0.

This means that the curve reconstructed from θ intersects itself, outcome (d).
Now consider alternative (I). Then C±(k) contains a sequence of solutions 

{
(θn, γ1,n; cn)

}
for which

lim
n→∞

(
|cn| + ‖θn‖H1

per
+ ‖γ1,n‖H1

per

)
= ∞,

so that at least one of the three terms on the left diverges.
By combining (28), (30), and (37), we see that |∂αZ̃[θn]| = σn, and the length of one period of the interface is thus 

proportional to σn. If σn → ∞, then outcome (a) has occurred; thus, we may assume that σn remains bounded above 
independently of n. Since the length of one period of the curve may not vanish (by periodicity), we also see that σn

is bounded below (away from zero) independently of n. Considering again (28), we see that σn being bounded above 
implies that cos θn is bounded away from zero.

Suppose first that |cn| → ∞ but ‖θn‖H1
per

+ ‖γ1,n‖H1
per

is bounded. We see from (20) that

‖cn sin θn‖H 1 = ‖�(W ∗
n Nn)‖H 1 .

Since W ∗
n = B[Z̃[θn]]γn, this implies

‖cn sin θn‖H 1 = ‖�(B[Z̃[θn]]γn Nn)‖H 1 .

We then use (40) to write this as

‖cn sin θn‖H 1 =
∥∥∥∥ 1

2σn

Hγn + �(K[Z̃[θn]]γn Nn)

∥∥∥∥
H 1

.

We have remarked above that 1
σn

is bounded independently of n, and we see that Hγn is uniformly bounded in H 1

since γn is. Applying Lemma 5 gives an estimate for the operator K , and we find the following:

‖cn sin θn‖H 1 ≤ C‖γn‖H 1 + C exp{C‖Z̃[θn]‖H 1}‖γn‖H 1‖Nn‖H 1 .

Since θn is, by assumption, bounded in H 1, we see from (30) and (33) that Z̃[θn] and Nn are as well. We conclude 
that cn sin θn is bounded in H1

per, independently of n.
Therefore ‖ sin θn‖H1

per
→ 0, and by Sobolev embedding, sinθn → 0 uniformly. This implies that θn converges to 

a multiple of π ; the uniform convergence and the continuity and oddness of θn make it is straightforward to see that 
this multiple must be zero. Note also, then, that | cosθn| → 1, uniformly. Continuing, we integrate (23) once, finding 
that the quantity

(cn cos θn − �(W ∗
n Tn))γn − 2A

⎛⎝1

8

γ 2
n

σn

+ gσn

α∫
sin θn dα + σn

2
{cn cos θn − �(W ∗

n Tn)}2

⎞⎠ (60)

is bounded in L2
per.

Recalling again that W ∗
n = B[Z̃(θn)]γn, we see that (39) gives a formula for �(W ∗

n Tn). Similarly to our previous 
use of Lemma 5, we see that Lemma 5 then implies that �(W ∗

n Tn) is bounded in H1
per. If A = 0, we then deduce that 

cnγn cos θn is bounded in L2
per and therefore γn → 0 in L2

per. Thus the average, which is a constant, must satisfy γ = 0. 
If we have γ̄ �= 0, then this is a contradiction.

Now assume that A �= 0. Dividing (60) by c2
n, we see that all the terms then go to zero as n → ∞ except σn

2 (cos θn)
2. 

This then implies that σn

2 (cos θn)
2 goes to zero, which is a contradiction since cosθn → 1 uniformly.

If γ̄ = 0 and A = 0, then we do not rule out |cn| → ∞; this is possibility (f) of the theorem.
If ‖θn‖H1

per
diverges, then either θn or ∂αθn diverges in L2

per. Since θ is the tangent angle to S(t), the curvature 

is exactly κ(α) = ∂αθ(α)/σ . Inspection of (28) indicates that if σn → 0, then cos θn → ∞. This clearly cannot be 
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the case, however, and thus σn cannot go to zero. Recall that we assume that σn is bounded above. If it is ∂αθn that 
diverges, then we see that the curvature diverges, which is to say that we have outcome (b). On the other hand, suppose 
that it is θn that diverges in L2

per. Since θn is odd and periodic, θn(0) = θn(2π) = 0. If the L2
per-norm of θn diverges then 

of course its L∞-norm also diverges and so does ∂αθn. This means that the curvature for the reconstructed interface 
is diverging. Thus ‖θn‖H1

per
diverging implies outcome (b).

If ‖γ1,n‖H1
per

diverges, then either γ1,n or ∂αγ1,n diverges in L2
per. Suppose that it is the former. From Section 2, the 

jump in the tangential velocity across the interface is related to γ by (8). By the reconstruction method and the length L

above, it implies that j (α, t) = 2π(γ +γ1(α, t))/L[θ ]. If L[θn] remains bounded, then clearly the jump j given above 
diverges in L2

per, which is outcome (c). If L[θn] diverges, we have outcome (a). Likewise, if ∂αγ1,n diverges in L2
per, 

then either the derivative of the jump diverges, outcome (c), or else the length diverges, outcome (a). �
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