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Abstract

The goal of this work is to provide a general framework to study singular limits of initial-value problems for first-order quasilinear 
hyperbolic systems with stiff source terms in several space variables. We propose structural stability conditions of the problem 
and construct an approximate solution by a formal asymptotic expansion with initial layer corrections. In general, the equations 
defining the approximate solution may come together with differential constraints, and so far there are no results for the existence of 
solutions. Therefore, sufficient conditions are shown so that these equations are parabolic without differential constraint. We justify 
rigorously the validity of the asymptotic expansion on a time interval independent of the parameter, in the case of the existence 
of approximate solutions. Applications of the result include Euler equations with damping and an Euler–Maxwell system with 
relaxation. The latter system was considered in [27,9] which contain ideas used in the present paper.
© 2015 
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1. Introduction

This work is concerned with singular limits of first-order quasilinear hyperbolic equations with stiff source terms 
of the form

∂tU + 1

ε

d∑
j=1

Aj(U)∂xj
U = Q(ε,U)

ε2
, (1.1)
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with initial conditions

U(0, x) = Ū (x, ε). (1.2)

Here U : R+
t × R

d
x −→ G ⊂ R

n is the unknown variable with x = (x1, · · · , xd), ε ∈ (0, 1] is a small parameter and 
Q : [0, 1] × G −→R

n is a smooth vector function. In physical models, ε often stands for a relaxation time. The set G
is called the state space and Aj (1 ≤ j ≤ d) are n × n smooth matrix functions defined on G. We suppose that (1.1) is 
symmetrizable hyperbolic (see [8]): i.e., there exists a symmetric positive definite matrix A0(U), called symmetrizer, 
such that for all U ∈ G,

(i) A0(U)ξ · ξ ≥ M0|ξ |2, for all ξ ∈R
n;

(ii) Ãj (U) 
def= A0(U)Aj (U) is symmetric for all 1 ≤ j ≤ d ,

where M0 > 0 is a constant, “·” is the inner product of Rn and | · | is the Euclidean norm of Rn. In general, Q only 
depends on U . The fact that it may also depend on ε is due to an Euler–Maxwell system with relaxation (see the last 
section).

In (1.1), the variable t should be understood as a slow time linked with the usual time t ′ by t = εt ′. Therefore, (1.1)
is equivalent to

∂t ′U +
d∑

j=1

Aj(U)∂xj
U = Q(ε,U)

ε
. (1.3)

System (1.3) is a general form of first-order quasilinear hyperbolic equations with stiff relaxation source terms. It was 
studied by many authors in the case where Q is a function of only U . Under stability conditions, the limit equations 
of (1.3) as ε → 0 are of first-order hyperbolic type. For mathematical results and physical examples of (1.3), we refer 
to [32,19,6,12,3,25,26,33,29,34] and references therein.

The aim of the present work is to study the limit of smooth solutions of (1.1)–(1.2) as ε → 0, in a d-dimensional 
torus Td = (R/Z)d . Then Ū is supposed to be smooth and periodic with respect to x. As usual for first-order hyper-
bolic problems with relaxation, we assume

Q(0,U) =
[

0
q(U)

]
, (1.4)

where q : G −→R
r is a smooth function, 1 ≤ r ≤ n. With the same partition, we denote

U =
[

u

v

]
, u ∈R

n−r , v ∈R
r .

More generally, a vector V ∈ R
n and an n × n matrix M will be denoted by 

[
V I

V II

]
and 

[
M11 M12

M21 M22

]
, respectively. 

In order to obtain a parabolic limit from (1.1), we further assume

q(U) = 0 ⇐⇒ v = 0, and ∂vq(u,0) is invertible for all u ∈ R
n−r . (1.5)

The singular limit problem ε → 0 for (1.1) was considered in [22,21,23] in the case of special models. See also 
[4] for the approximation of parabolic equations by diffusive BGK models. Contrarily to (1.3), in general the limit 
equations of (1.1) are of parabolic type. In [16], Lattanzio and Yong considered a first-order symmetrizable hyperbolic 
system of the form

∂tU + 1

ε

d∑
j=1

Aj(εU)∂xj
U +

d∑
j=1

Āj (U)∂xj
U = Q(U)

ε2
, (1.6)

with smooth and periodic initial data Ū given in (1.2). Assuming appropriate stability conditions and the existence 
of approximate solutions, they proved the convergence of the system to parabolic type equations on a time interval 
independent of ε. In this problem, the singular limit arises from Q(U)/ε2 and the term containing Aj(εU)/ε, and 
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there is no difficulty to treat the term containing Āj (U). The advantage of this system is that ∂xj
Aj (εU) is always a 

term of order O(ε). This is a very useful property in higher order energy estimates by using the Moser-type calculus 
inequalities.

When Aj (1 ≤ j ≤ d) are constant matrices and Āj = 0, system (1.6) is semilinear and was considered in [23] in 
one-dimensional case. The result in [23] can be applied to a linear wave equation of heat conduction and a generalized 
discrete two-velocity model. Now write (1.6) as

∂tU + 1

ε

d∑
j=1

Aj(0)∂xj
U +

d∑
j=1

(
Āj (U) + Aj(εU) − Aj(0)

ε

)
∂xj

U = Q(U)

ε2
.

Since 
(
Aj(εU) − Aj(0)

)
/ε is of order O(1), (1.6) is essentially an extension of semilinear problems in several space 

dimensions. Moreover, in the last section we will see that the result in [16] cannot be applied to the Euler equations 
with damping and the Euler–Maxwell system with relaxation, which are both quasilinear systems.

In order to study the singular limit ε → 0 for the quasilinear system (1.1), we propose stability conditions on the 
system. As in previous works for singular perturbation problems, we construct an approximate solution by a formal 
series asymptotic expansion with initial layer corrections. The novelty here is that the limit equations defining the 
approximate solution are generally combined by differential constraints. So far no general results are available for the 
existence of solutions to such limit equations even (1.1) is semilinear. Then sufficient conditions are shown so that 
these equations are parabolic without differential constraint. Further sufficient conditions can be investigated for the 
local existence of smooth solutions to the limit equations, but this is beyond the goal of the present paper. We justify 
rigorously the validity of the asymptotic expansion on a time interval independent of the parameter, in the case of 
the existence of approximate solutions. Applications of this result include the Euler equations with damping and the 
Euler–Maxwell system with relaxation mentioned above. For the latter system, there are differential constraints in the 
limit equations.

Since Ū is smooth and periodic in x, according to Kato (see [13]), for all integer s > d/2 + 1, there exists a 
maximal time Tε > 0 such that problem (1.1)–(1.2) admits a unique local-in-time smooth solution Uε satisfying

Uε ∈ C
([0, Tε),H

s(Td)
)∩ C1([0, Tε),H

s−1(Td)
)
. (1.7)

The central problem of the study is to show that Uε converges as ε → 0 and inf
0<ε≤1

Tε > 0. More precisely, for all 

integer m ∈ N and a constant Tm > 0 being independent of ε, we denote by Um
ε an approximate smooth solution to 

(1.1)–(1.2) defined on time interval [0, Tm]. The error of the approximation is defined by

Rε
m = ∂tU

m
ε + 1

ε

d∑
j=1

Aj(U
m
ε )∂xj

Um
ε − Q(ε,Um

ε )

ε2
. (1.8)

Then a necessary condition for Um
ε to be an approximate solution to (1.1)–(1.2) is that Rε

m → 0 as ε → 0.
In Section 4, we construct such an approximate solution by an asymptotic expansion with initial layer corrections 

of the form

Um
ε (t, x) =

m∑
k=0

εk
(
Uk(t, x) + Ik(τ, x)

)
, m ∈N, (1.9)

where τ = t/ε2 is a fast time. The properties of the approximate solution strongly depend on its leading profile 

U0 =
[

u0
v0

]
, which is a formal limit of Uε. From (1.1), (1.4)–(1.5) and (1.9), we have v0 = 0,

d∑
j=1

A11
j (u0,0)∂xj

u0 − ∂εQ
I (0, u0,0) = 0, (1.10)

∂tu0 +
d∑

A12
j (U0)∂xj

v1 +
d∑

A11
j (U0)∂xj

u1 + g0(u0,∇u0, v1) = 0, (1.11)

j=1 j=1
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and

v1 = ∂vq(u0,0)−1

⎡
⎣ d∑

j=1

A21
j (u0,0)∂xj

u0 − ∂εQ
II(0, u0,0)

⎤
⎦ , (1.12)

where

g0(u0,∇u0, v1) =
d∑

j=1

∂vA
11
j (U0)v1∂xj

u0 − ∂v∂εQ
I (0, u0,0)v1 − 1

2
∂2
ε QI (0, u0,0). (1.13)

Thus, the system for u0 is composed of (1.10)–(1.11). Comparing to the study in [16], Eq. (1.10) is quite new. It 
stands for a differential constraint for u0. For system (1.6), since Q is independent of ε, the corresponding differential 
constraint for u0 is

d∑
j=1

A11
j (0)∂xj

u0 = 0.

It is trivially satisfied under assumption A11
j (0) = 0 for all j , which was made in [16]. Thus, there is no differential 

constraint in the limit equation of (1.6).
Now we use a projection technique to eliminate u1 in (1.11). Let D be a constant square matrix of order n − r such 

that

DA11
j (u,0) = 0, ∀u ∈R

n−r , ∀1 ≤ j ≤ d. (1.14)

Applying D to (1.11), we obtain

D∂tu0 + D

d∑
j=1

A12
j (U0)∂xj

v1 + Dg0(u0,∇u0, v1) = 0. (1.15)

Then (1.11) can be written as

d∑
j=1

A11
j (U0)∂xj

u1 + (In−r − D)
(
∂tu0 +

d∑
j=1

A12
j (U0)∂xj

v1 + g0(u0,∇u0, v1)
)

= 0. (1.16)

When u0 is solved, v1 is given by (1.12). Hence, (1.16) is a constraint for u1. Substituting (1.12) into (1.15) gives

D∂tu0 + D

d∑
i,j=1

Aij (u0)∂
2
xixj

u0 + D

d∑
j=1

Bj (u0)∂xj
u0 + D

d∑
i,j=1

Cij (u0)∂xi
u0 ∂xj

u0 + Df0(u0) = 0, (1.17)

where

Aij (u0) = A12
i (u0,0)∂vq(u0,0)−1A21

j (u0,0), (1.18)

Bj (u0) = −A12
j (u0,0)∂u

[
∂vq(u0,0)−1∂εQ

II(0, u0,0)
]

− ∂vA
11
j (u0,0)∂vq(u0,0)−1∂εQ

II(0, u0,0)

− ∂v∂εQ
I (0, u0,0)∂vq(u0,0)−1A21

j (u0,0), (1.19)

Cij (u0) = A12
i (u0,0)∂u

[
∂vq(u0,0)−1A21

j (u0,0)
]+ ∂vA

11
j (u0,0)∂vq(u0,0)−1A21

i (u0,0), (1.20)

and

f0(u0) = −1

2
∂2
ε QI (0, u0,0) + ∂v∂εQ

I (0, u0,0)∂vq(u0,0)−1∂εQ
II(0, u0,0). (1.21)

We point out that u0 is a vector function and then (1.17) is a system of partial differential equations combined 
with the differential constraint (1.10). If D = In−r , the unit matrix of order n − r , solving u0 requires compatibility 
conditions between (1.17) and (1.10). In a simple case that
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A11
j (u,0) = 0 and ∂εQ

I (0, u,0) = 0, ∀u ∈R
n−r , ∀1 ≤ j ≤ d,

the differential constraint disappears. Then the principal part of the system (1.17) is governed by the second-order 
partial differential operator of evolution-type:

∂t +
d∑

i,j=1

Aij (u0)∂
2
xixj

.

If this operator is parabolic, it is possible to solve (1.17) locally in time (see [15]). In particular, when n − r = 1, 
u0 satisfies a scalar parabolic equation, which can be solved by standard techniques. This is the case of the semilinear 
examples and the Euler equations with damping given in the last section. Another interesting case is that the equations 
and the differential constraint are separated. For example, let r1, r2 ∈ N, with r1 + r2 = n − r . If the first r1 lines of 
A11

j (U0) and ∂εQ
I (0, u0, 0) are zero, we take D = diag

(
Ir1, 0r2

)
, with 0r2 being the r2 × r2 zero matrix. Then (1.14)

holds and (1.17) means that only the first r1 components of u0 satisfy a second-order evolution system of partial 
differential equations together with r2 differential constraint conditions given by (1.10). A typical example of this 
situation is the Euler–Maxwell system with relaxation.

The main result of this paper is to prove that, for any fixed integer m ≥ 2, we have Tε > Tm and

sup
0≤t≤Tm

‖Uε(t, ·) − Um
ε (t, ·)‖s ≤ cεm,

where ‖ · ‖s stands for the norm of Hs(Td) and c > 0 is a constant independent of ε. It is stated in Theorem 2.1 in 
Section 2. The result implies that the convergence of system (1.3) is valid in [0, Tm/ε]. The proof of Theorem 2.1
is based on uniform energy estimates with respect to ε. However, usual energy estimates are not efficient for our 
problem. The main difficulty comes from the term ∂xj

Aj (U
ε) which is of order O(1) instead of order O(ε) for (1.6). 

To overcome this difficulty, we use a continuation argument as follows. Assume

‖Uε(0, ·) − Um
ε (0, ·)‖s ≤ cεm.

For all T 1
ε ∈ (0, Tε) ∩ (0, Tm], the function t �−→ ‖Uε(t, ·) − Um

ε (t, ·)‖s is continuous on [0, T 1
ε ]. It follows that, for 

any fixed integer m ≥ 2, if ε is sufficiently small, there exists a maximal time T 2
ε ∈ (0, Tε) ∩ (0, Tm], such that

sup
0≤t≤T 2

ε

‖Uε(t, ·) − Um
ε (t, ·)‖s ≤ ε.

This result is shown in Lemma 3.2. Therefore, it remains to prove

sup
0≤t≤T 2

ε

‖Uε(t, ·) − Um
ε (t, ·)‖s ≤ cεm.

Indeed, by a simple argument, the last inequality easily implies that T 2
ε = Tm. Hence, Tε > Tm. Besides, the continu-

ation argument allows to keep only the quadratic terms in energy estimates. Thus we avoid complicated calculus and 
the use of a nonlinear Gronwall-type inequality as in [33,16].

This paper is organized as follows. In the next section, we present the stability conditions for the singular limit of 
(1.1) and state Theorem 2.1. Section 3 is devoted to the proof of the theorem, which is achieved by a series of lemmas 
for energy estimates together with a Gronwall inequality with variable coefficients. In Section 4, we show the detailed 
derivation of the equations for Uk and Ik defined by (1.9). For small initial data, we prove that for all 0 ≤ k ≤ m, Ik

exists globally in time and decays exponentially fast to zero as τ → +∞. Finally, we give semilinear and quasilinear 
examples to which the approximate solutions can be rigorously constructed and thus the theorem can be applied.

2. Assumptions and main results

We first introduce the following notations. For a multi-index α = (α1, · · · , αd) ∈ N
d , we denote

∂α = ∂ |α|

∂x
α1 · · · ∂x

αd
with |α| = α1 + · · · + αd.
1 d



1108 Y.-J. Peng, V. Wasiolek / Ann. I. H. Poincaré – AN 33 (2016) 1103–1130
We denote by ‖ · ‖s the usual norm of the Sobolev space Hs def= Hs(Td), and by ‖ · ‖ and ‖ · ‖∞ the usual norms of 

L2 def= L2(Td) and L∞ def= L∞(Td), respectively. We also make a convention that ‖ · ‖ = ‖ · ‖0. Finally, 
〈 · , · 〉 stands 

for the inner product in L2(Td) and Im(V ) stands for the image of a function V . For two sets ω, � ∈ R
n, ω ⊂⊂ �

means that ω is relatively compact in �.
Throughout this paper, s > d/2 + 1 is an integer and c > 0 stands for a generic constant independent of ε. We 

assume there exists an approximate solution Um
ε to (1.1)–(1.2) defined on a time interval [0, Tm], with Tm > 0 in-

dependent of ε. Here Um
ε is not necessarily given by (1.9). Let U0 =

[
u0
v0

]
with v0 = 0 and u0 ∈ C([0, Tm], Hs+1)

being an arbitrary smooth solution of (1.17) and (1.10).
We make the following assumptions:

(H1) A11
j (u0, 0) and Ã11

j (u0, 0) are constant matrices and ∂uA
11
j (u0, 0) = 0 for all 1 ≤ j ≤ d ;

(H2) there is a constant c0 > 0, depending only on G, such that

A0(u,0)∂UQ(0, u,0)ξ · ξ ≤ −c0|ξ II |2, ∀(u,0) ∈ G, ∀ξ ∈ R
n;

(H3) ∂u∂εQ
I (0, u, 0) = 0 for all u ∈R

n−r ;
(H4) Ū ∈ Hs and there exists a convex open set G0 ⊂ G such that Im(Ū) ⊂⊂ G0;
(H5) for sufficiently small ε > 0, Um

ε satisfies Um
ε ∈ C([0, Tm], Hs+1) ∩ C1([0, Tm], Hs), Im(Um

ε ) ⊂⊂ G0,

‖Um
ε (0, ·) − Ū (·, ε)‖s ≤ cεm, (2.1)

and

‖∂tU
m
ε (t, ·)‖s ≤ c + cε−2e

− μt

ε2 , sup
0≤t≤Tm

‖Um
ε (t, ·) − U0(t, ·)‖s ≤ cε + ce

− μt

ε2 , (2.2)

where μ > 0 is a constant independent of ε;
(H6) the error Rε

m defined in (1.8) can be expressed as

Rε
m = εm−1

[
0
rm

]
+ εm−1Fε

m,

with rm ∈ C([0, Tm], Hs), Fε
m ∈ C([0, Tm], Hs) and

‖Fε
m(t)‖s ≤ cε + ce

− μt

ε2 .

Theorem 2.1. Let s > d/2 + 1 be an integer and Uε be the exact solution to (1.1)–(1.2) defined on the maximal time 
interval [0, Tε) satisfying (1.7). Let m ≥ 2 be any fixed integer and Um

ε be an approximate solution to (1.1)–(1.2)
defined on [0, Tm] with Tm > 0 being independent of ε. Assume (H1)–(H6) and (1.4)–(1.5) hold. Then there exists 
ε0 > 0 such that for all ε ∈ (0, ε0], we have Tε > Tm and

sup
0≤t≤Tm

‖Uε(t) − Um
ε (t)‖s ≤ cεm. (2.3)

Moreover,

Tm∫
0

‖vε(t) − vm
ε (t)‖2

s dt ≤ cε2(m+1). (2.4)

Now the following remark is necessary.

Remark 2.1.

• (H1)–(H3) together with (1.4)–(1.5) are structural stability conditions of the quasilinear system (1.1) and they can 
be checked for a given system and a given u0. In particular, they are satisfied with all examples given in the last 
section.
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• (H1) is used in the proofs of Lemmas 3.3–3.4 and 3.7. It replaces condition A11
j (0) = 0 for studying (1.6) in [16].

• (H1) is satisfied if A11
j (u, 0) and Ã11

j (u, 0) are constant matrices for all u and all 1 ≤ j ≤ d . This is the case of all 

examples given in the last section. In particular, (H1) is satisfied when u0 is a constant and ∂uA
11
j (u0, 0) = 0, or 

when (1.1) is semilinear, namely, Aj is a constant matrix for all 1 ≤ j ≤ d .
• (H2) stands for the partial dissipation property of (1.1). Together with (1.4)–(1.5), it gives a property on the 

symmetrizer that we need later (see Lemma 3.1). When r = n the dissipation is complete and U = v. This case is 
easier to treat comparing to the partial dissipation case 1 ≤ r ≤ n − 1.

• (H3) is a technical assumption to treat the source term Q and it is trivially satisfied when Q is a function of 
only U .

• (H4) is necessary to apply the existence theorem of Kato, see [20].
• In (H5), (2.1) is a natural condition on the initial data. It stands for initial errors. Condition (2.2) and (H6) can be 

checked in the construction of Um
ε in Section 4.

3. Justification of formal expansions

3.1. Preliminaries

Let m ≥ 2 be an integer and Um
ε be an approximate solution of (1.1)–(1.2) defined on [0, Tm], with Tm > 0 being 

independent of ε. Then, for all T 1
ε ∈ (0, Tε) ∩ (0, Tm], both the exact solution Uε and the approximate solution are 

defined on time interval [0, T 1
ε ], on which we define

Wε = Uε − Um
ε .

From (1.1) and (1.8), we obtain

∂tW
ε + 1

ε

d∑
j=1

Aj(U
ε)∂xj

Wε = aε

ε
+ bε

ε2
− Rε

m, (3.1)

where

aε =
d∑

j=1

[
Aj(U

m
ε ) − Aj(U

ε)
]
∂xj

Um
ε (3.2)

and

bε = Q(ε,Uε) − Q(ε,Um
ε ). (3.3)

Let α ∈N
d with |α| ≤ s. Thanks to the symmetry of A0 and Ãj , we obtain an energy equality:

d

dt

〈
A0(U

ε)∂αWε, ∂αWε
〉= 〈

divε A(Uε)∂αWε, ∂αWε
〉+ 2

ε

〈
A0(U

ε)∂αaε, ∂αWε
〉

+ 2

ε2

〈
A0(U

ε)∂αbε, ∂αWε
〉− 2

〈
A0(U

ε)∂αRε
m, ∂αWε

〉
+ 2

ε

〈
A0(U

ε)f ε
α , ∂αWε

〉
,

where

divε A(V ) = ∂tA0(V ) + 1

ε

d∑
j=1

∂xj
Ãj (V ), (3.4)

and

f ε
α =

d∑
f ε

αj , f ε
αj = Aj(U

ε)∂xj
(∂αWε) − ∂α

(
Aj(U

ε)∂xj
Wε

)
. (3.5)
j=1
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We write this equality as follows:

d

dt

〈
A0(U

ε)∂αWε, ∂αWε
〉= Iα

1,ε + Iα
2,ε + Iα

3,ε + Iα
4,ε + Iα

5,ε,

with the natural correspondence for Iα
1,ε, · · · , Iα

5,ε .
We first give two preliminary results, which are useful in the proofs of results in Sections 3–4. The proof of 

Lemma 3.1 can be found in [33] with a minor variation.

Lemma 3.1. For any u ∈R
n−r , (H2) together with (1.4)–(1.5) implies that A12

0 (u, 0) = 0.

Lemma 3.2. Assume (H5) holds and m ≥ 2. If ε > 0 is sufficiently small, then there exists a maximal time T 2
ε ∈

(0, Tε) ∩ (0, Tm], such that

‖Wε(t)‖s ≤ ε, ∀t ∈ [0, T 2
ε ] (3.6)

and

either ‖Wε(T 2
ε )‖s = ε or T 2

ε = Tm. (3.7)

Moreover,

‖Uε(t) − U0(t)‖s ≤ cε + ce
− μt

ε2 , ‖Uε(t)‖s ≤ c, ∀t ∈ [0, T 2
ε ], (3.8)

Im(Uε(t, x)) ⊂⊂ G0, ∀(t, x) ∈ [0, T 2
ε ] ×T

d . (3.9)

Proof. For all T 1
ε ∈ (0, Tε) ∩ (0, Tm], since Wε ∈ C([0, T 1

ε ], Hs), the function t �−→ ‖Wε(t)‖s is continuous on 
[0, T 1

ε ]. Moreover, for any fixed integer m ≥ 2, any fixed constant c > 0 and sufficiently small ε > 0, we always have 
cεm < ε.

If Tm < Tε , then [0, Tε) ∩ [0, Tm] = [0, Tm], which is a bounded closed interval. It follows from (2.1) that there 
exists a maximal time T 2

ε ∈ (0, Tm], such that (3.6)–(3.7) hold. Otherwise, Tm ≥ Tε and [0, Tε) ∩ [0, Tm] = [0, Tε). 
Since Tε is the maximal existence time for Uε, we have

lim
t→T −

ε

‖Wε(t)‖s = +∞.

Hence, there still exists a maximal time T 2
ε ∈ (0, Tε), such that (3.6) holds and ‖Wε(T 2

ε )‖s = ε. This proves 
(3.6)–(3.7). Finally, (3.8) follows from (3.6) and (2.2), and (3.9) follows from (3.6), Im(Um

ε ) ⊂⊂ G0 and the con-
tinuous imbedding Hs ↪→ L∞. �
3.2. Energy estimates

In general we start the energy estimates by an L2-estimate for α = 0 followed by higher order estimates for 
|α| ≥ 1. These estimates are indeed similar for the non-conservative system. In order to avoid repeated calculations, 
we consider a general estimate of order |α| ≤ s which includes the L2-estimate as a particular case, by adopting a 
convention that ‖ · ‖−1 = 0.

In Lemmas 3.3–3.7 below, we establish the estimates for Iα
1,ε, · · · , Iα

5,ε on [0, T 2
ε ]. For this purpose, we always 

assume that the conditions of Theorem 2.1 hold and we will repeatedly use (3.6), (3.8) and the continuous imbedding 

Hs ↪→ W 1,∞ def= W 1,∞(Td). For simplicity, in what follows we drop ε in Wε and in Iα
1,ε, · · · , Iα

5,ε , and we introduce

νε(t) = e
− μt

ε2 . (3.10)

This function has already appeared in (H5)–(H6) and (3.8). We also write W =
[

WI

W II

]
. From (1.4) and (1.5) we have

∂UQ(0, u,0) =
[

0 0
0 ∂ q(u,0)

]
, ∂UQ(0, u,0)W =

[
0

∂ q(u,0)W II

]
, ∀u ∈R

n−r . (3.11)

v v
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The strategy of the proof is to control each Iα
i (i �= 3) by

δ

ε2
‖∂αW II(t)‖2 + c

ε2
‖W II(t)‖2|α|−1 + c

(
1 + 1

ε
νε(t) + 1

ε2
‖W II(t)‖s

)
‖W(t)‖2

s + cε2m, (3.12)

where δ > 0 stands for an arbitrary small constant (independent of ε) to be chosen later and c > 0 may depend on δ. 
The first term in (3.12) will be absorbed by Iα

3 due to the dissipation assumption (H2). Then the second term in (3.12)
can be treated by an induction argument on |α|. Finally, a Gronwall inequality yields the desired estimate.

Lemma 3.3. It holds

|Iα
1 (t)| ≤ δ

ε2
‖∂αW II(t)‖2 + c

(
1 + 1

ε
νε(t) + 1

ε2
‖W II(t)‖s

)
‖W(t)‖2

s , ∀t ∈ [0, T 2
ε ]. (3.13)

Proof. Recall that

Iα
1 = 〈

divε A(Uε)∂αW,∂αW
〉
,

where divε A(Uε) is defined in (3.4). We first prove that

∣∣〈∂tA0(U
ε)∂αW,∂αW

〉∣∣≤ c
(

1 + 1

ε
νε + 1

ε2
‖W II‖s

)
‖W‖2

s . (3.14)

Indeed, system (3.1) yields

∂tW = −1

ε

d∑
j=1

Aj(U
ε)∂xj

W + aε

ε
+ bε

ε2
− Rε

m.

In view of the given expressions, we have obviously

∥∥∥ d∑
j=1

Aj(U
ε)∂xj

W

∥∥∥∞ ≤ c‖W‖s ≤ cε,

and

‖aε‖∞ ≤ c‖W‖s ≤ cε.

From m ≥ 2 and (H6), we also have

‖Rε
m‖∞ ≤ εm−1‖rm‖∞ + εm−1‖Fε

m‖∞ ≤ c.

Now we write bε as

bε = Q(ε,Uε) − Q(ε,Um
ε )

= Q(ε,Uε) − Q(ε,Um
ε ) − ∂UQ(ε,Um

ε )W

+ (
∂UQ(ε,Um

ε ) − ∂UQ(ε,U0)
)
W + (

∂UQ(ε,U0) − ∂UQ(0,U0)
)
W + ∂UQ(0,U0)W.

Noting (3.11), we obtain from (H5), (3.6) and (3.8) that

‖bε‖∞ ≤ cε2 + cενε + c‖W II‖s ,

which implies that

‖∂tW‖∞ ≤ c + c

ε
νε + c

ε2
‖W II‖s .

Therefore, (3.14) follows from (H5) and

∂tA0(U
ε) = A′

0(U
ε)(∂tW + ∂tU

m
ε ).

Next, since Ãj (U
ε) is symmetric, we have



1112 Y.-J. Peng, V. Wasiolek / Ann. I. H. Poincaré – AN 33 (2016) 1103–1130
〈
∂xj

Ãj (U
ε)∂αW,∂αW

〉= 〈
∂xj

Ã11
j (Uε)∂αWI , ∂αWI

〉+ 2
〈
∂xj

Ã12
j (Uε)∂αW II, ∂αWI

〉
+ 〈

∂xj
Ã22

j (Uε)∂αW II, ∂αW II 〉.
The last two terms on the right-hand side are bounded by

c‖W‖s‖∂αW II‖ ≤ δ

ε
‖∂αW II‖2 + cε‖W‖2

s .

For the first term, we use (H1) to get∣∣〈∂xj
Ã11

j (Uε)∂αWI , ∂αWI
〉∣∣= ∣∣〈∂xj

(Ã11
j (Uε) − Ã11

j (U0))∂
αWI , ∂αWI

〉∣∣
≤ c‖∂xj

(Uε − U0)‖∞ ‖W‖2
s

≤ c(ε + νε)‖W‖2
s .

Hence,

1

ε

∣∣∣∣∣∣
〈

d∑
j=1

∂xj
Ãj (U

ε)∂αW,∂αW

〉∣∣∣∣∣∣≤ c
(

1 + 1

ε
νε

)
‖W‖2

s .

Together with (3.14), this yields (3.13). �
Lemma 3.4. It holds

|Iα
2 (t)| ≤ δ

ε2
‖∂αW II(t)‖2 + c

ε2
‖W II(t)‖2|α|−1 + c

(
1 + 1

ε
νε(t)

)
‖W(t)‖2

s , ∀t ∈ [0, T 2
ε ]. (3.15)

Proof. Recall that

Iα
2 = 2

ε

〈
A0(U

ε)∂αaε, ∂αW
〉

= 2

ε

〈 [
A0(U

ε) − A0(U0)
]
∂αaε, ∂αW

〉+ 2

ε

〈
A0(U0)∂

αaε, ∂αW
〉
, (3.16)

where aε is defined in (3.2). From (H5) and (3.6), it is clear that

‖∂αaε‖ ≤ ‖aε‖s ≤ c‖W‖s .

Similarly, (3.8) yields

‖A0(U
ε) − A0(U0)‖∞ ≤ c(ε + νε).

Therefore,

2

ε

∣∣〈[A0(U
ε) − A0(U0)]∂αaε, ∂αW

〉∣∣≤ c

(
1 + 1

ε
νε

)
‖W‖2

s . (3.17)

For the second term in (3.16), by Lemma 3.1 we have A12
0 (U0) = 0. Then a straightforward calculation gives

〈
A0(U0)∂

αaε, ∂αW
〉= d∑

j=1

〈
A0(U0)∂

α
[
(Aj (U

m
ε ) − Aj(U

ε))∂xj
Um

ε

]
, ∂αW

〉

=
d∑

j=1

〈
A11

0 (U0)∂
α
[
(A11

j (Um
ε ) − A11

j (Uε))∂xj
um

ε

]
, ∂αWI

〉

+
d∑〈

A11
0 (U0)∂

α
[
(A12

j (Um
ε ) − A12

j (Uε))∂xj
vm
ε

]
, ∂αWI

〉

j=1
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+
d∑

j=1

〈
A22

0 (U0)∂
α
[
(A21

j (Um
ε ) − A21

j (Uε))∂xj
um

ε

]
, ∂αW II 〉

+
d∑

j=1

〈
A22

0 (U0)∂
α
[
(A22

j (Um
ε ) − A22

j (Uε))∂xj
vm
ε

]
, ∂αW II 〉. (3.18)

Obviously, the last two terms in (3.18) are bounded by

c‖W‖s‖∂αW II‖ ≤ δ

ε
‖∂αW II‖2 + cε‖W‖2

s .

Since v0 = 0, (H5) yields ‖vm
ε ‖s ≤ cε + cνε . Therefore,

∣∣∣ d∑
j=1

〈
A11

0 (U0)∂
α
[
(A12

j (Um
ε ) − A12

j (Uε))∂xj
vm
ε

]
, ∂αWI

〉∣∣∣≤ c (ε + νε)‖W‖2
s .

For the first term in (3.18), we have

A11
j (Um

ε ) − A11
j (Uε) = (

A11
j (um

ε , vm
ε ) − A11

j (uε, vm
ε )
)+ (

A11
j (uε, vm

ε ) − A11
j (uε, vε)

)

= −
1∫

0

∂uA
11
j (um

ε + θ(uε − um
ε ), vm

ε )WI dθ

−
1∫

0

∂vA
11
j (uε, vm

ε + θ(vε − vm
ε ))W II dθ.

The second integral above is easily estimated due to the appearance of W II. The first one can be treated due to 
condition ∂uA

11
j (u0, 0) = 0 in (H1). Precisely, we write

∂uA
11
j

(
um

ε + θ(uε − um
ε ), vm

ε

)
= [

∂uA
11
j

(
um

ε + θ(uε − um
ε ), vm

ε

)− ∂uA
11
j (u0, v

m
ε )
]+ [

∂uA
11
j (u0, v

m
ε ) − ∂uA

11
j (u0,0)

]

=
1∫

0

∂2
uuA

11
j

(
(1 − θ ′)u0 + θ ′(um

ε + θ(uε − um
ε )), vm

ε

)(
um

ε − u0 + θ(uε − um
ε )
)
dθ ′

+
1∫

0

∂2
uvA

11
j (u0, θ

′vm
ε )vm

ε dθ ′.

Hence,

−
1∫

0

∂uA
11
j

(
um

ε + θ(uε − um
ε ), vm

ε

)
WI dθ

= −
1∫

0

1∫
0

∂2
uuA

11
j

(
(1 − θ ′)u0 + θ ′((um

ε + θ(uε − um
ε )), vm

ε

)(
um

ε − u0 + θ(uε − um
ε ),WI

)
dθdθ ′

−
1∫

0

1∫
0

∂2
uvA

11
j (u0, θ

′vm
ε )(WI , vm

ε ) dθdθ ′.

Since ‖Um
ε ‖s ≤ cε + cνε , it follows that
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∣∣∣ d∑
j=1

〈
A11

0 (U0)∂
α
[
(A11

j (Um
ε ) − A11

j (Uε))∂xj
um

ε

]
, ∂αWI

〉∣∣∣
≤ δ

ε
‖∂αW II(t)‖2 + c

ε
‖W II(t)‖2|α|−1 + c (ε + νε)‖W‖2

s .

This proves

2

ε

∣∣〈A0(U0)∂
αaε, ∂αW

〉∣∣≤ δ

ε2
‖∂αW II(t)‖2 + c

ε2
‖W II(t)‖2|α|−1 + c

(
1 + 1

ε
νε

)
‖W‖2

s .

Together with (3.16)–(3.17) it yields (3.15). �
Lemma 3.5. It holds

Iα
3 (t) ≤ 4δ − 2c0

ε2
‖∂αW II(t)‖2 + c

ε2
‖W II(t)‖2|α|−1 + c

(
1 + 1

ε2
νε(t)

)
‖W(t)‖2

s , ∀t ∈ [0, T 2
ε ], (3.19)

where the positive constant c0 is given in (H2).

Proof. Recall that

Iα
3 = 2

ε2

〈
A0(U

ε)∂αbε, ∂αW
〉
,

where bε is defined in (3.3). We first write bε as

bε = ∂UQ(0,U0)W

+ ε∂U∂εQ(0,U0)W

+ [
Q(0,Uε) − Q(0,Um

ε ) − ∂UQ(0,U0)W
]

+ ε
[
∂εQ(0,Uε) − ∂εQ(0,Um

ε ) − ∂U∂εQ(0,U0)W
]

+ [
Q(ε,Uε) − Q(0,Uε) − ε∂εQ(0,Uε) − (

Q(ε,Um
ε ) − Q(0,Um

ε ) − ε∂εQ(0,Um
ε )
)]

,

which implies that

Iα
3 = Iα

31 + Iα
32 + Iα

33 + Iα
34 + Iα

35,

with the natural correspondence for Iα
31, · · · , Iα

35. Now we estimate each of these terms.
(i) For Iα

31 we write

A0(U
ε)∂α [∂UQ(0,U0)W ] = A0(U0)∂UQ(0,U0)∂

αW

+ A0(U0)
[
∂α (∂UQ(0,U0)W) − ∂UQ(0,U0)∂

αW
]

+ [
A0(U

ε) − A0(U0)
]
∂α [∂UQ(0,U0)W ] .

Then (H2) implies that〈
A0(U0)∂UQ(0,U0)∂

αW,∂αW
〉≤ −c0‖∂αW II‖2.

Noting (3.11) and A12
0 (U0) = 0, we obtain〈

A0(U0)[∂α(∂UQ(0,U0)W) − ∂UQ(0,U0)∂
αW ], ∂αW

〉
= 〈

A22
0 (U0)

[
∂α(∂vq(U0)W

II) − ∂vq(U0)∂
αW II], ∂αW II 〉.

This term vanishes when α = 0. Hence, for all |α| ≤ s, by the Moser-type calculus inequalities (see [14,20]), we 
always have〈

A0(U0)[∂α(∂UQ(0,U0)W) − ∂UQ(0,U0)∂
αW ], ∂αW

〉
≤ c‖W II‖|α|−1.‖∂αW II‖
≤ δ ‖∂αW II‖2 + c‖W II‖2|α|−1.
4
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For the last term in Iα
31, a similar calculation yields〈[A0(U

ε) − A0(U0)]∂α[∂UQ(0,U0)W ], ∂αW
〉

= 〈[
A12

0 (Uε) − A12
0 (U0)

]
∂α
[
∂vq(U0)W

II], ∂αWI
〉

+ 〈[
A22

0 (Uε) − A22
0 (U0)

]
∂α
[
∂vq(U0)W

II], ∂αW II 〉.
Since ‖A0(U

ε) − A0(U0)‖∞ ≤ cε + cνε and ν2
ε ≤ νε , it is clear that〈[

A0(U
ε) − A0(U0)

]
∂α [∂UQ(0,U0)W ] , ∂αW

〉
≤ c (ε + νε)‖W II‖|α|.‖W‖|α|

≤ δ

4
‖∂αW II‖2 + c‖W II‖2|α|−1 + c(ε2 + νε)‖W‖2

s .

This shows that

Iα
31 ≤ δ − 2c0

ε2
‖∂αW II‖2 + c

ε2
‖W II‖2|α|−1 + c

(
1 + 1

ε2
νε

)
‖W‖2

s .

(ii) For Iα
32, (H3) yields

∂U∂εQ(0,U0) =
[

0 ∂v∂εQ
I (0,U0)

∂u∂εQ
II(0,U0) ∂v∂εQ

II(0,U0)

]
.

Hence,

Iα
32 = 2

ε

〈
A11

0 (Uε)∂α
(
∂v∂εQ

I (0,U0)W
II), ∂αWI

〉
+ 2

ε

〈[
A12

0 (Uε) − A12
0 (U0)

]
∂α
(
∂u∂εQ

II(0,U0)W
I
)
, ∂αWI

〉
+ 2

ε

〈
A12

0 (Uε)∂α
(
∂v∂εQ

II(0,U0)W
II), ∂αWI

〉
+ 2

ε

〈
A21

0 (Uε)∂α
[
∂v∂εQ

I (0,U0)W
II], ∂αW II 〉

+ 2

ε

〈
A22

0 (Uε)∂α
[
∂u∂εQ

II(0,U0)W
I + ∂v∂εQ

II(0,U0)W
II], ∂αW II 〉,

in which each term is quadratic containing W II , except for the second one, which is obviously bounded by 

c
(

1 + 1
ε
νε

)
‖W‖2

s . Hence,

|Iα
32| ≤

δ

ε2
‖∂αW II‖2 + c

ε2
‖W II‖2|α|−1 + c

(
1 + 1

ε
νε

)
‖W‖2

s .

(iii) For Iα
33, since ∂uq(U0) = 0, we have (3.11) and ∂vq(U0)W

II = ∂Uq(U0)W . Hence,

Q(0,Uε) − Q(0,Um
ε ) − ∂UQ(0,U0)W

=
[

0
q(Uε) − q(Um

ε ) − ∂Uq(Um
ε )W

]
+
[

0
(∂Uq(Um

ε ) − ∂Uq(U0))W

]
.

By the Taylor formula, it is clear that

‖∂α
(
q(Uε) − q(Um

ε ) − ∂Uq(Um
ε )W

)‖ ≤ c‖W‖2
s ≤ cε‖W‖s

and

‖∂α
(
∂Uq(Um

ε ) − ∂Uq(U0))W
)‖ ≤ c(ε + νε)‖W‖s .

Since A12(U0) = A21(U0) = 0, we have
0 0
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2

ε2

∣∣〈A0(U0)∂
α
(
Q(0,Uε) − Q(0,Um

ε ) − ∂UQ(0,U0)W
)
, ∂αW

〉∣∣
≤ 2

ε2

∣∣〈A22
0 (U0)∂

α
(
q(Uε) − q(Um

ε ) − ∂Uq(Um
ε )W

)
, ∂αW II 〉∣∣

+ 2

ε2

∣∣〈A22
0 (U0)∂

α
(
∂Uq(Um

ε ) − ∂Uq(U0))W
)
, ∂αW II 〉∣∣

≤ c

ε2
(ε + νε)‖W‖s‖∂αW II‖

≤ δ

2ε2
‖∂αW II‖2 + c

(
1 + 1

ε2
νε

)
‖W‖2

s .

Now

Iα
33 = 2

ε2

〈(
A0(U

ε) − A0(U0)
)
∂α
(
Q(0,Uε) − Q(0,Um

ε ) − ∂UQ(0,U0)W
)
, ∂αW

〉
+ 2

ε2

〈
A0(U0)∂

α
(
Q(0,Uε) − Q(0,Um

ε ) − ∂UQ(0,U0)W
)
, ∂αW

〉
.

The first term can be estimated as above by using ‖Uε − U0‖s ≤ c(ε + νε). Therefore,

|Iα
33| ≤

δ

ε2
‖∂αW II‖2 + c

(
1 + 1

ε2
νε

)
‖W‖2

s .

(iv) Similarly, we obtain

|Iα
34| = ε

∣∣〈A0(U
ε)∂α

(
∂εQ(0,Uε) − ∂εQ(0,Um

ε ) − ∂U∂εQ(0,U0)W
)
, ∂αW

〉∣∣
≤ δ

ε2
‖∂αW II‖2 + c

ε2
‖W II‖2|α|−1 + c

(
1 + 1

ε
νε

)
‖W‖2

s .

(v) For this last term in Iα
3 , we have

Q(ε,Uε) − Q(0,Uε) − ε∂εQ(0,Uε) − (
Q(ε,Um

ε ) − Q(0,Um
ε ) − ε∂εQ(0,Um

ε )
)

= ε2

1∫
0

1∫
0

∂U∂2
εεQ

(
θε, τUε + (1 − τ)Um

ε

)
Wdτdθ,

which implies that

|Iα
35| ≤

2

ε2
cε2‖W‖s‖W‖s ≤ c‖W‖2

s .

From the estimates in (i)–(v), we obtain (3.19). �
Lemma 3.6. It holds

|Iα
4 (t)| ≤ δ

ε2
‖∂αW II(t)‖2 + c

(
1 + 1

ε2
νε(t)

)
‖W(t)‖2

s + cε2m, ∀t ∈ [0, T 2
ε ]. (3.20)

Proof. We have

Iα
4 = −2

〈
A0(U

ε)∂αRε, ∂αW
〉

= −2
〈 [

A0(U
ε) − A0(U0)

]
∂αRε, ∂αW

〉− 2
〈
A0(U0)∂

αRε, ∂αW
〉
.

Since

‖A0(U
ε) − A0(U0)‖∞ ≤ c‖Uε − U0‖∞ ≤ ‖Uε − U0‖s ≤ c(ε + νε),

using (H6) and (3.6) we obtain
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∣∣〈 [A0(U
ε) − A0(U0)

]
∂αRε, ∂αW

〉∣∣≤ cεm

(
1 + 1

ε
νε

)
(‖rm‖s + ‖Fε

m‖s)‖W‖s

≤ c

(
1 + 1

ε2
νε

)
‖W‖2

s + cε2m.

For the second term in Iα
4 , we use A12

0 (U0) = A21
0 (U0) = 0 to get∣∣〈A0(U0)∂

αRε, ∂αW
〉∣∣= εm−1

∣∣〈A22
0 (U0)∂

αrm, ∂αW II 〉+ 〈
A0(U0)∂

αF ε
m, ∂αW

〉∣∣
≤ δ

2ε2
‖∂αW II‖2 + c

(
1 + 1

ε2
νε

)
‖W‖2

s + cε2m.

This proves (3.20). �
Lemma 3.7. It holds

|Iα
5 (t)| ≤ δ

ε2
‖∂αW II(t)‖2 + c

ε2
‖W II(t)‖2|α|−1 + c

(
1 + 1

ε
νε(t)

)
‖W(t)‖2

s , ∀t ∈ [0, T 2
ε ]. (3.21)

Proof. Recall that

Iα
5 = 2

ε

d∑
j=1

〈
A0(U

ε)f ε
αj , ∂

αW
〉
,

where f ε
αj is defined in (3.5). Then

A0(U
ε)f ε

αj = A0(U
ε)
[(

Aj(U
ε) − Aj(U0)

)
∂xj

(∂αW) − ∂α
((

Aj(U
ε) − Aj(U0)

)
∂xj

W
)]

+ (
A0(U

ε) − A0(U0)
)[

Aj(U0)∂xj
(∂αW) − ∂α

(
Aj(U0)∂xj

W
)]

+ A0(U0)
[
Aj(U0)∂xj

(∂αW) − ∂α
(
Aj(U0)∂xj

W
)]

.

Applying the Moser-type calculus inequalities together with

‖Aj(U
ε) − Aj(U0)‖s ≤ c(ε + νε), ‖A0(U

ε) − A0(U0)‖s ≤ c(ε + νε),

the first two terms in |Iα
5 | are bounded by c

(
1 + 1

ε
νε

)
‖W‖2

s .

For the last term in |Iα
5 |, we use again A12

0 (U0) = A21
0 (U0) = 0. Since A11

j (U0) is constant (thanks to (H1)), 
a straightforward calculation yields〈

A0(U0)
[
Aj(U0)∂xj

(∂αW) − ∂α
(
Aj(U0)∂xj

W
)]

, ∂αW
〉

= 〈
A11

0 (U0)
[
A12

j (U0)∂xj
(∂αW II) − ∂α

(
A12

j (U0)∂xj
W II)], ∂αWI

〉
+ 〈

A22
0 (U0)

[
A21

j (U0)∂xj
(∂αWI ) − ∂α

(
A21

j (U0)∂xj
WI

)]
, ∂αW II 〉

+ 〈
A22

0 (U0)
[
A22

j (U0)∂xj
(∂αW II) − ∂α

(
A22

j (U0)∂xj
W II)], ∂αW II 〉,

in which each term on the right-hand side contains W II . By the Moser-type calculus inequalities, it is easy to see that∣∣〈A0(U0)
[
Aj(U0)∂xj

(∂αW) − ∂α
(
Aj(U0)∂xj

W
)]

, ∂αW
〉∣∣

≤ c‖W II‖|α| ‖W‖s

≤ δ

2ε2
‖∂αW II‖2 + c

ε2
‖W II‖2|α|−1 + cε2‖W‖2

s .

This implies (3.21). �
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3.3. Proof of Theorem 2.1

Adding the estimates in Lemmas 3.3–3.7 and taking δ to be sufficiently small, we conclude the following result.

Lemma 3.8. There is a constant c1 ∈ (0, c0], independent of ε, such that for all t ∈ [0, T 2
ε ] and all α ∈N

d with |α| ≤ s, 
it holds

d

dt

〈
A0(U

ε)∂αW,∂αW
〉+ c1

ε2
‖∂αW II(t)‖2 ≤ c

ε2
‖W II(t)‖2|α|−1 + c

(
1 + 1

ε2
νε(t)

)
‖W(t)‖2

s

+ c

ε2
‖W II(t)‖s ‖W(t)‖2

s + cε2m. (3.22)

By an induction argument together with Lemma 3.8, we obtain the final energy estimate in Hs as follows.

Proposition 3.1. Under the assumptions of Theorem 2.1, it holds

‖W(t)‖2
s + 1

ε2

t∫
0

‖W II(t ′)‖2
s dt ′ ≤ cε2m, ∀t ∈ [0, T 2

ε ]. (3.23)

Proof. Recall ‖W II‖−1 = 0. Applying Lemma 3.8 with |α| = 1, we see that 
c

ε2
‖W II‖2 on the right-hand side of 

(3.22) can be controlled by 
c1

ε2
‖W II‖2 on the left-hand side of (3.22) with |α| = 0. More generally, let η ∈ (0, 1]. 

Multiplying (3.22) by η|α| and summing up the equalities for all index α ∈ N
d with |α| ≤ s yields

d

dt

∑
|α|≤s

η|α|〈A0(U
ε)∂αW,∂αW

〉+ c1

ε2

∑
|α|≤s

η|α|‖∂αW II(t)‖2

≤ c

ε2

∑
|α|≤s−1

η|α|+1‖W II(t)‖2|α| + c

(
1 + 1

ε2
νε(t)

)
‖W(t)‖2

s + c

ε2
‖W II(t)‖s ‖W(t)‖2

s + cε2m,

in which c is independent of η. Let η be suitably small. Then

c

ε2

∑
|α|≤s−1

η|α|+1‖W II(t)‖2|α| ≤
c1

2ε2

∑
|α|≤s

η|α|‖∂αW II(t)‖2

and

c1η
s

2ε2
‖W II(t)‖2

s ≤ c1

2ε2

∑
|α|≤s

η|α|‖∂αW II(t)‖2.

Therefore,

d

dt

∑
|α|≤s

η|α|〈A0(U
ε)∂αW,∂αW

〉+ c1η
s

2ε2
‖W II(t)‖2

s ≤ c

(
1 + 1

ε2
νε(t)

)
‖W(t)‖2

s

+ c

ε2
‖W II(t)‖s ‖W(t)‖2

s + cε2m.

By the Young inequality, we have

c‖W II(t)‖s ‖W(t)‖2
s ≤ c1η

s

4
‖W II(t)‖2

s + c2

c1ηs
‖W(t)‖4

s .

It follows from ‖W(t)‖s ≤ cε for all t ∈ [0, T 2
ε ] that

d

dt

∑
η|α|〈A0(U

ε)∂αW,∂αW
〉+ c1η

s

4ε2
‖W II(t)‖2

s ≤ c

(
1 + 1

ηs
+ 1

ε2
νε(t)

)
‖W(t)‖2

s + cε2m.
|α|≤s
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Now we fix η > 0. Integrating this inequality over [0, t] with t ≤ T 2
ε and noting that 

∑
|α|≤s

η|α|〈A0(U
ε)∂αW, ∂αW

〉
is 

equivalent to ‖W‖2
s , we use (H5) to obtain

‖W(t)‖2
s + 1

ε2

t∫
0

‖W II(t ′)‖2
s dt ′ ≤ c

t∫
0

(
1 + 1

ε2
νε(t

′)
)

‖W(t ′)‖2
s dt ′ + cε2m, ∀t ∈ [0, T 2

ε ].

Finally, noting 

t∫
0

(
1 + 1

ε2
νε(t

′)
)

dt ′ ≤ const. for all t ≤ T 2
ε ≤ Tm, the Gronwall inequality implies (3.23). �

Proof of Theorem 2.1. In view of the estimate established in Proposition 3.1, it remains to prove T 2
ε = Tm, which 

implies that Tε > Tm. Recall from Lemma 3.2 that T 2
ε ∈ (0, Tε) ∩ (0, Tm] and [0, T 2

ε ] is the maximal time interval on 
which (3.6)–(3.7) hold. On the other hand, by Proposition 3.1, we have

‖W(t)‖s ≤ cεm, ∀t ∈ [0, T 2
ε ].

In particular, ‖W(T 2
ε )‖s ≤ cεm. When m ≥ 2 and ε is sufficiently small, we always have cεm < ε for any fixed 

constant c > 0. Thus, T 2
ε = Tm follows from (3.7). �

4. Formal asymptotic expansions

We are looking for an approximate solution to (1.1)–(1.2) of the form

+∞∑
k=0

εk
(
Uk(t, x) + Ik(τ, x)

)
, τ = t/τ 2, (4.1)

with profiles Ik that converge exponentially fast to zero when τ tends to infinity. In what follows, we present a detailed 
construction of Uk and Ik , and we show that Um

ε defined by (1.9) satisfies conditions (H5)–(H6) together with the 

definition of Rε
m in (1.8). Remark that for V =

+∞∑
k=0

εkVk and a sufficiently smooth function H , we have formally

H(V ) = H(V0) +
+∞∑
k=1

εk
[
∂V H(V0)Vk + C(H, k,V )

]
, (4.2)

where C(H, k,V ) only depends on H and the first k elements of V = (V0, V1, V2, · · ·), with C(H, 1,V ) = 0. The 

derivation of Uk and Ik is based on the fact that both series 
+∞∑
k=0

εkUk(t, x) and (4.1) are formal solutions of (1.1).

4.1. The equations for Uk

Putting 
+∞∑
k=0

εkUk(t, x) into (1.1), the identification of the powers of ε yields

ε−2: Q(0,U0) = 0, (4.3)

ε−1:
d∑

j=1

Aj(U0)∂xj
U0 − ∂εQ(0,U0) − ∂UQ(0,U0)U1 = 0, (4.4)

εk: ∂tUk +
d∑

Aj(U0)∂xj
Uk+1 +

k∑ d∑[
∂UAj (U0)Ul+1 + C(Aj , l + 1,U)

]
∂xj

Uk−l
j=1 l=0 j=1
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−
k+1∑
l=0

1

l!
[
∂U∂l

εQ(0,U0)Uk+2−l + C
(
∂l
εQ(0, ·), k + 2 − l,U

)]

− 1

(k + 2)!∂
k+2
ε Q(0,U0) = 0, ∀k ∈N. (4.5)

Eq. (4.3) gives v0 = 0 thanks to (1.5). Next, we separate (4.4) into two systems of n − r and r equations:

d∑
j=1

A11
j (u0,0)∂xj

u0 − ∂εQ
I (0, u0,0) = 0, (4.6)

d∑
j=1

A21
j (u0,0)∂xj

u0 − ∂εQ
II(0, u0,0) − ∂vq(u0,0)v1 = 0. (4.7)

System (4.6) is a differential constraint on u0 which has been discussed in the introduction. From (4.7) and (1.5), we 
have

v1 = ∂vq(u0,0)−1

⎡
⎣ d∑

j=1

A21
j (u0,0)∂xj

u0 − ∂εQ
II(0, u0,0)

⎤
⎦ . (4.8)

Similarly, for k ∈ N we separate (4.5) into two systems of n − r and r equations. Noting

∂uA
11
j (U0) = 0, ∂UQI (0,U0) = 0, C

(
QI(0, ·), k + 2,U

)= 0,

we obtain

∂tuk +
d∑

j=1

A12
j (U0)∂xj

vk+1 +
d∑

j=1

A11
j (U0)∂xj

uk+1 + gk

(
(Ui,∇Ui)0≤i≤k, vk+1

)= 0 (4.9)

and

∂tvk +
d∑

j=1

[
A21

j (U0)∂xj
uk+1 + A22

j (U0)∂xj
vk+1

]− 1

(k + 2)!∂
k+2
ε QII(0,U0)

+
k∑

l=0

d∑
j=1

[
(∂uA

21
j (U0)ul+1 + ∂vA

21
j (U0)vl+1).∂xj

uk−l

+ (
∂uA

22
j (U0)ul+1 + ∂vA

22
j (U0)vl+1

)
.∂xj

vk−l

]
+

k∑
l=0

d∑
j=1

[
C(A21

j , l + 1,U)∂xj
uk−l + C(A22

j , l + 1,U)∂xj
vk−l

]

−
k+1∑
l=0

1

l!
[
∂u∂

l
εQ

II(0,U0)uk+2−l + ∂v∂
l
εQ

II(0,U0)vk+2−l + C
(
∂l
εQ

II(0, ·), k + 2 − l,U
)]= 0, (4.10)

where

gk

(
(Ui,∇Ui)0≤i≤k, vk+1

)=
k∑

l=0

d∑
j=1

[
C(A11

j , l + 1,U)∂xj
uk−l + C(A12

j , l + 1,U)∂xj
vk−l

]

+
k∑

l=0

d∑
j=1

[
∂vA

11
j (U0)vl+1.∂xj

uk−l + (
∂uA

12
j (U0)ul+1 + ∂vA

12
j (U0)vl+1

)
.∂xj

vk−l

]

−
k+1∑ 1

l!
[
∂u∂

l
εQ

I (0,U0)uk+2−l + ∂v∂
l
εQ

I (0,U0)vk+2−l + C
(
∂l
εQ

I (0, ·), k + 2 − l,U
)]
l=1
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− 1

(k + 2)!∂
k+2
ε QI (0,U0). (4.11)

In the last summation of (4.10), from (1.5), we have

∂u∂
l
εQ

II(0,U0)uk+2−l + ∂v∂
l
εQ

II(0,U0)vk+2−l = ∂vq(U0)vk+2, for l = 0.

Hence, (4.10) allows to express vk+2 as:

vk+2 = ∂vq(u0,0)−1
d∑

j=1

A21
j (u0,0)∂xj

uk+1 + V 1
k+2 uk+1 + V 2

k+2, k ∈ N, (4.12)

where V 1
k+2 and V 2

k+2 may depend on U0, U1, · · · , Uk, vk+1 and their first-order derivatives, but are independent of 
uk+1. Remark that, due to (H3), uk+1 does not appear in (4.11).

Now let us make more details for these equations according to the value of k. For k = 0, system (4.9) becomes

∂tu0 +
d∑

j=1

A12
j (U0)∂xj

v1 +
d∑

j=1

A11
j (U0)∂xj

u1 + g0(u0,∇u0, v1) = 0, (4.13)

where g0 is defined in (1.13). In (4.13), v1 can be replaced by (4.8), but u1 is an independent unknown. From (H1), 
A11

j (U0) is a constant matrix for all 1 ≤ j ≤ d . In order to eliminate u1 in (4.13), we assume that there is a constant 

square matrix of order n − r , denoted by D, such that (1.14) holds, i.e., DA11
j (U0) = 0 for all 1 ≤ j ≤ d . Applying D

to (4.13) yields a nonlinear system of second-order partial differential equations for u0:

D∂tu0 + D

d∑
j=1

A12
j (U0)∂xj

v1 + Dg0(u0,∇u0, v1) = 0. (4.14)

Then (4.13) is a differential constraint for u1, which can be rewritten as

d∑
j=1

A11
j (U0)∂xj

u1 + (In−r − D)
(
∂tu0 +

d∑
j=1

A12
j (U0)∂xj

v1 + g0(u0,∇u0, v1)
)

= 0. (4.15)

Putting (4.8) into (4.14) yields a closed system for u0:

D∂tu0 + D

d∑
i,j=1

Aij (u0)∂
2
xixj

u0 + D

d∑
j=1

Bj (u0)∂xj
u0

+ D

d∑
i,j=1

Cij (u0)∂xi
u0 ∂xj

u0 + Df0(u0) = 0, (4.16)

where Aij , Bj , Cij and f0 are defined in (1.18), (1.19), (1.20) and (1.21), respectively.
System (4.16) and its differential constraint (4.6) are just the limit equations (1.17) and (1.10) given in the introduc-

tion. Assume that (4.16) and (4.6) admit a local smooth solution u0, defined on [0, T0] with T0 > 0 being independent 

of ε. Then we have constructed U0 =
[

u0
0

]
and v1, which is given by (4.8). Moreover, we still have a constraint (4.15)

on u1.
Now let k ≥ 1. By induction, assume that U0, U1, · · · , Uk−1 and vk are defined on [0, Tk−1] with Tk−1 ∈ (0, T0]

being independent of ε, and we have a differential constraint on uk of the same type as (4.15):

d∑
j=1

A11
j (u0,0)∂xj

uk + (In−r − D)
(
∂tuk−1 +

d∑
j=1

A12
j (U0)∂xj

vk

)

+ (In−r − D)gk−1
(
(Ui,∇Ui)0≤i≤k−1, vk

)= 0. (4.17)

Similarly to the case k = 0, applying D to (4.9) yields a linear system of partial differential equations for uk:
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D∂tuk + D

d∑
j=1

A12
j (U0)∂xj

vk+1 + Dgk

(
(Ui,∇Ui)0≤i≤k, vk+1

)= 0. (4.18)

Then (4.9) becomes a linear differential constraint for uk+1, which can be rewritten as

d∑
j=1

A11
j (u0,0)∂xj

uk+1 + (In−r − D)
(
∂tuk +

d∑
j=1

A12
j (U0)∂xj

vk+1

)

+ (In−r − D)gk

(
(Ui,∇Ui)0≤i≤k, vk+1

)= 0. (4.19)

Putting (4.12) with k + 1 instead of k + 2 into (4.18), we obtain the equations of uk:

D∂tuk + D

d∑
i,j=1

Aij (u0)∂
2
xixj

uk + D

d∑
j=1

Bk
j ∂xj

uk + D

d∑
j=1

Ck
j uk + Dfk = 0, (4.20)

where Bk
j , Ck

j and fk may depend on U0, U1, · · · , Uk−1 and their first-order derivatives, but are independent of uk.
Assume that (4.20) and (4.17) admit a local smooth solution uk defined on [0, Tk] with Tk ∈ (0, Tk−1] being 

independent of ε. Thus we have constructed Uk and vk+1, which is given by (4.12) with k + 1 instead of k + 2. 
Finally, we still have a constraint (4.19) on uk+1.

Remark that the second-order operator is the same in (4.16) and (4.20). If ∂εQ
I (0, u0, 0) = 0 and A11

j (u0, 0) = 0
for all 1 ≤ j ≤ d , then the constraints (4.6) and (4.17) are trivially satisfied with D = In−r . Hence, u0 and uk are 
determined by (4.16) and (4.20). In this case, we give below a sufficient condition for (4.16) and (4.20) to be parabolic. 
Its proof is quite similar to those proved in [16,33]. A typical example of this situation is the Euler equations with 
damping given in the last section.

Proposition 4.1. Let ω = (ω1, · · · , ωd) ∈ R
d \ {0} and A21(ω, u0) =

d∑
j=1

A21
j (u0, 0)ωj . Assume Ker

(
A21(ω, u0)

) =

{0}, i.e., r ≥ n − r and A21(ω, u0) is a full-rank matrix. Then, 
d∑

i,j=1

Aij (u0)ωiωj is a negative matrix. Consequently, 

if D = In−r , then both (4.16) and (4.20) are strictly parabolic.

4.2. The determination of Ik and the initial date of uk

Since t = ε2τ , we have formally

+∞∑
k=0

εkUk(t, x) =
+∞∑
k=0

εkPk(τ, x), (4.21)

with

Pk(τ, x) =
�k/2�∑
h=0

τh

h!
∂hUk−2h

∂th
(0, x).

Hence,

+∞∑
k=0

εk
(
Uk(t, x) + Ik(τ, x)

)=
+∞∑
k=0

εk
(
Pk(τ, x) + Ik(τ, x)

)
. (4.22)

Now write (1.1) in variables (τ, x). Putting (4.22) into (1.1) and repeatedly using (4.2) and the same techniques as 
above, we obtain
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τ (I0 + P0) = Q(0, I0 + P0),

∂τ (I1 + P1) = ∂UQ(0, I0 + P0)(I1 + P1) + ∂εQ(0, I0 + P0) −
d∑

j=1

Aj(I0 + P0)∂xj
(I0 + P0),

∂τ (Ik + Pk) = ∂UQ(0, I0 + P0)(Ik + Pk) +F(k, I + P), for all k ≥ 2,

where

F(k, I + P ) =
k−1∑
l=1

1

l!
[
∂U∂l

εQ(0, I0 + P0)(Ik−l + Pk−l ) + C
(
∂l
εQ(0, ·), k − l, I + P

)]

+ 1

k!∂
k
ε Q(0, I0 + P0) −

d∑
j=1

Aj(I0 + P0)∂xj
(Ik−1 + Pk−1)

−
d∑

j=1

k−2∑
l=0

[
∂UAj (I0 + P0)(Il+1 + Pl+1) + C(Aj , l + 1, I + P)

]
∂xj

(Ik−2−l + Pk−2−l )

depending only on the first k terms of I + P = (I0 + P0, I1 + P1, · · · , Ik−1 + Pk−1, · · ·).
On the other hand, due to (4.21), 

+∞∑
k=0

εkPk(τ, x) is also a solution of (1.1). Hence, we obtain as above

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂τP0 = Q(0,P0),

∂τP1 = ∂UQ(0,P0)P1 + ∂εQ(0, I0) −
d∑

j=1

Aj(P0)∂xj
P0,

∂τPk = ∂UQ(0,P0)Pk +F(k,P ), for all k ≥ 2.

It follows from P0(τ, x) = U0(0, x) and Q(0, P0) = 0 that{
∂τ I0 = Q(0, I0 + P0),

∂τ Ik = ∂UQ(0, I0 + P0)Ik + [
∂UQ(0, I0 + P0) − ∂UQ(0,P0)

]
Pk(τ, x) + G(k, τ, x), ∀k ≥ 1,

(4.23)

where

G(k, τ, x) =F(k, I + P ) −F(k,P ), ∀k ≥ 1,

with

F(1, I + P) = ∂εQ(0, I0 + P0) −
d∑

j=1

Aj(I0 + P0)∂xj
(I0 + P0).

Now we solve Ik and determine the initial conditions for uk . Let Ūk =
[

ūk

v̄k

]
be given smooth functions of x, 

obtained through a formal asymptotic expansion of the initial datum Ū :

Ū (x, ε) =
∞∑

k=0

εkŪk(x).

If 
+∞∑
k=0

εk
(
Uk(t, x) + Ik(τ, x)

)
is a solution of (1.1)–(1.2), we should have

Uk(0, x) + Ik(0, x) = Ūk(x),

or equivalently{
uk(0, x) + I I

k (0, x) = ūk(x),

v (0, x) + I II(0, x) = v̄ (x), ∀k ≥ 0.
(4.24)
k k k
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From QI(0, U) = 0 and the first equation of (4.23), we have ∂τ I
I
0 = 0, which means that there is no zero-th order 

initial layer for u. In this case, we may take I I
0 = 0. Together with v0 = 0, we obtain

u0(0, x) = ū0(x), I II
0 (0, x) = v̄0(x),

which are the initial conditions for u0 and I II
0 . Hence, the equation of I II

0 becomes

∂τ I
II
0 = q

(
ū0(x), I II

0

)
, x ∈ T

d .

Lemma 4.1. Let (ū0, v̄0) be sufficiently small and v̄0 be sufficiently close to zero. Then there exists a unique global 
smooth solution I0 satisfying

‖I0(τ, ·)‖s+m −→ 0, exponentially as τ → +∞. (4.25)

Proof. By Lemma 3.1, the condition in (H2) can be written in an equivalent way:

A22
0 (u,0)∂vq(u,0)ξ II · ξ II ≤ −c0|ξ II |2, ∀u ∈R

n−r , ξ II ∈R
r .

Since A0 is symmetric positive definite, so is A22
0 . It follows that each eigenvalue of ∂vq(u, 0) is negative uniformly 

with respect to u. Therefore, for sufficiently small data v̄0, there is a unique global solution I II
0 (τ, x) which decays 

exponentially fast to zero as τ → +∞ (see [1]). Next, by induction, for all α ∈ N
d with |α| ≤ s + m, ∂α

x I II
0 satisfies a 

linear ordinary differential equation of the form

∂τY = ∂vq
(
ū0(x), I II

0

)
Y + gα(τ, x), x ∈ T

d, (4.26)

with exponential decay of gα as τ → +∞. This implies (4.25). We refer to [33] for solving the linear equation 
of Y . �

By induction, for k ≥ 1 and for all i ≤ k − 1, assume that Ii exists globally in time and ‖Ii(τ, .)‖s+m−i decays 
exponentially fast to zero as τ goes to infinity. Then so does ‖G(k, τ, x)‖s+m−k , since

G(k, τ, x) =F(k, I + P) −F(k,P ),

and F only depends on those of (Ii, Pi) for i ≤ k − 1. The first n − r equations in (4.23) are

∂τ I
I
k = GI (k, τ, x).

Hence,

I I
k (τ, x) = I I

k (0, x) +
τ∫

0

GI (k, τ ′, x)dτ ′,

which admits a limit 0 as τ goes to infinity. Therefore,

I I
k (τ, x) = −

+∞∫
τ

GI (k, τ ′, x)dτ ′

and

‖I I
k (τ, ·)‖s+m−k −→ 0, exponentially as τ → +∞.

In particular,

I I
k (0, x) = −

+∞∫
0

GI (k, τ, x)dτ.

Together with (4.24) it determines the initial value of uk:
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uk(0, x) = ūI
k(x) +

+∞∫
0

GI (k, τ, x)dτ.

Finally, the last r equations in (4.23) imply that I II
k still satisfies a linear system of the form (4.26). Thus, I II

k exists 
globally in time and

‖I II
k (τ, ·)‖s+m−k −→ 0, exponentially as τ → +∞.

4.3. Error estimates

In the last two subsections we have constructed Uk and Ik on time interval [0, Tk] for all k ∈N, with 0 < Tk+1 ≤ Tk . 
Now we show that, for any fixed m ∈ N, the approximate solution Um

ε defined by (1.9) satisfies (H5)–(H6). Indeed, 
since I I

0 = 0,

∂t I
II
0 (t/ε2, ·) = ε−2∂τ I

II
0 (t/ε2, ·) = ε−2∂vq(ū0, I

II
0 ),

and I II
0 (τ, ·) decays exponentially fast to zero as τ → +∞, (H5) is obviously satisfied.

The following result (see [16]) implies that (H6) is also satisfied.

Proposition 4.2. Let Rε
m be defined by (1.8). Then

Rε
m = εm−1

[
0
rm

]
+ εm−1Fε

m,

where rm ∈ C([0, Tm], Hs) and Fε
m ∈ C([0, Tm], Hs) satisfying

‖Fε
m(t)‖s ≤ cε + ce

− μt

ε2 , ∀t ∈ [0, Tm].

5. Examples

5.1. Semilinear examples

We give two examples of semilinear equations of the form (1.1) with n = 2 and d = 1. Both were considered as 
applications of (1.6) in [16]. The first one concerns a wave equation of heat conduction and was studied by several 
authors (see [10,17] and references therein). It reads

ε2∂2
t tw − ∂2

xxw + ∂tw = 0, t > 0, x ∈R.

Let

u = ∂xw, v = −ε∂tw.

Then the system is written as⎧⎪⎨
⎪⎩

∂tu + 1

ε
∂xv = 0,

∂t v + 1

ε
∂xu = − v

ε2
.

It is of the form (1.1) with

U =
[

u

v

]
, A1 =

[
0 1
1 0

]
, Q(U) =

[
0

−v

]
.

Let A0 = I2 and r = 1. It is easy to check that the system is symmetrizable hyperbolic and satisfies (1.4)–(1.5) and 
(H1)–(H3), with A0∂UQ(u, 0) = diag(0, −1). The corresponding limit equations for U0 are v0 = 0 and the one-
dimensional heat equation
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∂tu0 − ∂2
xu0 = 0.

The second example concerns a generalized discrete two-velocity model in a slow time:{
∂tf + ε−1∂xf = ε−2(f + g)γ (g − f ),

∂tg − ε−1∂xg = ε−2(f + g)γ (f − g), t > 0, x ∈R,

where γ is a real number and f + g > 0. It was studied in [31,28,18]. With a change of variables u = f + g and 
v = f − g, the system is written as⎧⎪⎨

⎪⎩
∂tu + 1

ε
∂xv = 0,

∂t v + 1

ε
∂xu = −2uγ v

ε2
.

Let A0 = I2, r = 1 and

U =
[

u

v

]
, A1 =

[
0 1
1 0

]
, Q(U) =

[
0

−2uγ v

]
.

For u ≥ const. > 0, the system is symmetrizable hyperbolic and satisfies (1.4)–(1.5) and (H1)–(H3), with 
A0∂UQ(u, 0) = diag(0, −2uγ ). The corresponding limit equations for U0 are v0 = 0 and

∂tu0 − 1

2
∂x

(
u

−γ

0 ∂xu0
)= 0.

For both semilinear examples above, we have A11
1 = 0 and Q only depends on U . Then the differential constraints 

disappear and D = 1. It is easy to check that their approximate solutions Um
ε can be constructed for all m ∈ N and 

thus Theorem 2.1 can be applied.

5.2. Euler equations with damping

The equations take the form (see [22,21,11,30,7] etc.){
∂t ′ρ + div(ρv) = 0,

∂t ′(ρv) + div(ρv ⊗ v) + ∇p(ρ) = −ρv

ε
, t ′ > 0, x ∈R

d,

where ρ > 0, v, p and ε > 0 stand for the fluid density, the velocity, the pressure and the relaxation time, respectively. 
As usual, we assume p′(ρ) > 0 for all ρ > 0. For smooth solutions, the system is equivalent to⎧⎪⎨

⎪⎩
∂tρ + 1

ε
div(ρv) = 0,

∂t v + 1

ε
[(v.∇)v + ∇h(ρ)] = − v

ε2
, t > 0, x ∈ R

d,

where t = εt ′ is the slow time and h′(ρ) = p′(ρ)
ρ

. Let

u = ρ, U =
[

ρ

v

]
, Aj (U) =

[
vj ρeT

j

h′(ρ)ej vj Id

]
, j = 1,2, · · · , d,

and

Q(U) =
[

0
−v

]
, q(U) = −v,

where vj is the j -th component of v, ej is the j -th vector of the canonical basis in Rd , and the superscript T stands for 
the transpose. Let n = d +1 and r = d . Since ρ > 0 and h′(ρ) > 0, with symmetrizer A0(U) = diag

(
ρ−1, h′(ρ)−1Id

)
, 

it is straightforward that the system is symmetrizable hyperbolic and satisfies (1.4)–(1.5) and (H1)–(H3).
It is important to point out that the system cannot be put in the form (1.6). Hence, the result in [16] cannot be 

applied.
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The leading profile (ρ0, v0) satisfies v0 = 0 and a porous medium equation

∂tρ0 − �p(ρ0) = 0,

which is strictly parabolic since p is a strictly increasing function. Hence, it admits a local smooth solution. It is easy 

to see that v1 = −∇h(ρ0). The leading initial layer profile I0 =
[

ρ̃0
ṽ0

]
satisfies

∂τ ρ̃0 = 0, ∂τ ṽ0 = −ṽ0.

Thus, it is clear that I0 exists globally in time and decays exponentially fast to zero as τ → +∞, even for large initial 
data.

Similarly, by induction we can construct higher order profiles ρk, Ik =
[

ρ̃k

ṽk

]
and vk+1 for k ≥ 1. More precisely, 

the equations for ρk and Ik are

∂tρk − p′(ρ0)�ρk + bk = 0,

∂τ ρ̃k = gI
k (τ, x), ∂τ ṽk = −ṽk + gII

k (τ, x),

where bk only depends on (ρi, vi) for 0 ≤ i ≤ k and their first-order derivatives, gI
k and gII

k decay exponentially fast 
to zero as τ → +∞. Finally, vk+1 is given by expression (4.12). Thus, the approximate solution Um

ε is constructed 
for all m ∈N and Theorem 2.1 can be applied.

Finally, for this system, we have A11
j (ρ, v) = vj . Since A11

j (ρ, 0) = 0 and Q is a function of only U , there is no 
differential constraint and thus D = 1 for all k ∈N.

5.3. An Euler–Maxwell system with relaxation

The system reads (see [2,5]):⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂t ′ρ + div(ρv) = 0,

∂t ′(ρv) + div(ρv ⊗ v) + ∇p(ρ) = −ρ(E + v × B) − ρv

ε
,

∂t ′E − rotB = ρv, divE = b(x) − ρ,

∂t ′B + rotE = 0, divB = 0, t ′ > 0, x ∈R
3.

Here E and B are the electric field and the magnetic induction, b is a given time-independent function, ρ, v, h and ε
have the same physical interpretations as in the previous example. The differential constraint equations

divE = b(x) − ρ, divB = 0

are time invariant. This is a system of 10 equations. In the slow time t = εt ′, it becomes⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tρ + 1

ε
div(ρv) = 0,

∂tB + 1

ε
rotE = 0, divB = 0,

∂tE − 1

ε
rotB = ρv

ε
, divE = b(x) − ρ,

∂tv + 1

ε
(v.∇)v + 1

ε
∇h(ρ) = − 1

ε2
(εE + εv × B + v).

Let

U =
⎡
⎢⎣

ρ

B

E

v

⎤
⎥⎦ , u =

[
ρ

B

E

]
, Aj (U) =

⎡
⎢⎢⎣

vj 0 0 ρeT
j

0 0 Jj 0
0 J T

j 0 0

h′(ρ)ej 0 0 vj I3

⎤
⎥⎥⎦ , j = 1,2,3,

and
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Q(ε,U) =
⎡
⎢⎣

0
0

ερv

−v − εE − εv × B

⎤
⎥⎦ , QI (ε,U) =

[ 0
0

ερv

]
, q(U) = −v,

where

J1 =
[0 0 0

0 0 −1
0 1 0

]
, J2 =

[ 0 0 1
0 0 0

−1 0 0

]
, J3 =

[0 −1 0
1 0 0
0 0 0

]
.

Then the system is written in the form (1.1). By choosing a symmetrizer

A0(U) = diag
(
ρ−1, I3, I3, h

′(ρ)−1I3
)
,

we easily check that the system is symmetrizable hyperbolic and satisfies (1.4)–(1.5) and (H1)–(H3) with n = 10 and 
r = 3. See [27,9] for the derivation and the justification of the limit, of which the present paper is inspired.

Similarly as above, this system cannot be put in the form (1.6) and hence the result in [16] cannot be applied.
Moreover, we have

A11
j (u,0) =

[0 0 0
0 0 Jj

0 J T
j 0

]
�= 0, ∂εQ

I (0, u,0) = 0.

Hence, there are differential constraints for the leading profile, which are given by

0 =
3∑

j=1

[0 0 0
0 0 Jj

0 J T
j 0

]
∂xj

u0 =
[ 0

rotE0
− rotB0

]
,

namely,

rotB0 = rotE0 = 0.

Together with the constraints of the Maxwell equations:

divB0 = 0, divE0 = b − ρ0,

we deduce that B0 is a constant and there is a potential function φ0 such that E0 = ∇φ0. Finally, v0 = 0 and the 
equation for ρ0 is

∂tρ0 + div(ρ0v1) = 0, v1 = −∇(h(ρ0) + φ0
)
.

Therefore, (ρ0, φ0) satisfies the drift–diffusion system:{
∂tρ0 − div

(
ρ0∇(h(ρ0) + φ0)

)= 0,

�φ0 = b − ρ0, E0 = ∇φ0.

It is well-known that this system admits a local smooth solution (see [24]). Thus, we have constructed U0 and v1. It is 
easy to check that the differential constraints of u1 are

rotE1 + ∂tB0 = 0, − rotB1 + ∂tE0 − ρ0v1 = 0.

The leading initial layer profile I0 =
⎡
⎢⎣

ρ̃0
B̃0
Ẽ0
ṽ0

⎤
⎥⎦ satisfies

∂τ ρ̃0 = 0, ∂τ B̃0 = ∂τ Ẽ0 = 0, ∂τ ṽ0 = −ṽ0.

Thus, as above I0 exists globally in time and decays exponentially fast to zero as τ → +∞.
Similarly, by induction and together with the differential constraints of uk, we can construct higher order profiles 

uk , Ik and vk+1 for k ≥ 1. In particular, (ρk, φk) solves a linear drift–diffusion system:
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{
∂tρk − div

(
ρ0∇(h′(ρ0)ρk + φk)

)+ div(ρkv1) = αk,

�φk = −ρk + βk,

Bk solves a linear div–rot system:

divBk = 0, − rotBk + ∂tEk−1 + ζk−1 = 0,

and

Ek = ∇φk − ∂tψk−1, vk+1 = −∇(h′(ρ0)ρk + φk) + ∂tψk−1 + γk,

where αk , βk and γk only depend on Ui and ψi for 0 ≤ i ≤ k − 1, and

Bk−1 = rotψk−1, ζk−1 = −
k−1∑
i=0

ρivk−i , k ≥ 1.

Moreover, we still have differential constraints for uk+1:

rotEk+1 + ∂tBk = 0, − rotBk+1 + ∂tEk + ζk = 0.

The initial layer profile Ik satisfies a linear system of ordinary differential equations with the same principal part as I0
and a source term decaying exponentially fast to zero. Thus, the approximate solution Um

ε is constructed for all m ∈N

and Theorem 2.1 can be applied. In this example, the corresponding choice is

D = diag
(
1,06

)
, g0(u0,∇u0, v1) =

[
v1.∇ρ0

0
−ρ0v1

]
,

and

gk

(
(Ui,∇Ui)0≤i≤k, vk+1

)=
[

vk+1.∇ρ0 + div(ρkv1) − αk

0
ζk

]
, k ≥ 1.
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