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Abstract

We study a class of symmetric critical points in a variational 2D Landau–de Gennes model where the state of nematic liquid 
crystals is described by symmetric traceless 3 × 3 matrices. These critical points play the role of topological point defects carrying 
a degree k2 for a nonzero integer k. We prove existence and study the qualitative behavior of these symmetric solutions. Our main 
result is the instability of critical points when |k| ≥ 2.
© 2015 
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1. Introduction

1.1. Physical motivation

The defining feature of nematic liquid crystals is the local orientational ordering of the molecules. Its main macro-
scopic manifestation is the emergence of certain patterns, called defects (points, lines or surfaces) where the local 
ordering either disappears or changes abruptly. Defects determine a number of the most important features of liq-
uid crystals, underlying spectacular phenomena and new prospective technologies, e.g. knotted disinclination lines, 
bistable displays, control of nanoparticle suspensions (see [28]). These defects are often analyzed in comparison with 
topological singular phenomena appearing in other fields of condensed and soft matter physics, such as superconduc-
tivity, materials science, physics of polymers and even cosmology.
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There exist several competing continuum liquid crystal theories describing the local orientational ordering by 
a specific order parameter (see [8,12,13,15]). The most comprehensive and widely accepted continuum theory of 
nematic liquid crystals is the Landau–de Gennes theory [8]. It uses as an order parameter the so-called Q-tensor 
(a traceless, symmetric 3 × 3 matrix) so that the analysis is carried out in the five-dimensional space S0 of Q-tensors:

S0 =
{
Q ∈ R

3×3 : Q = Qt, tr(Q) = 0

}

=
{
s

(
n ⊗ n − 1

3
I3

)
+ r

(
m ⊗ m − 1

3
I3

)
: s, r ∈R, n,m ∈ S

2, n · m = 0

}
,

where S2 is the unit sphere in R3, I3 is the 3 × 3 identity matrix and 
(
n ⊗ n

)
ij

= ninj for 1 ≤ i, j ≤ 3.
The central object in the Landau–de Gennes theory is the free energy functional F (Q); in fact, stable equilibrium 

configurations of the liquid crystalline system in � ⊂ R
d (d = 2, 3) correspond to local minimizers of Landau–

de Gennes energy. In the simplest form, the free energy of a liquid crystal is given by

F (Q) =
∫
�

[1

2
|∇Q|2 + fbulk(Q)

]
dx, Q ∈ H 1

loc(�,S0). (1.1)

The simplest bulk potential fbulk(Q) that captures the main physical characteristics is taken to be of the form

fbulk(Q) = −a2

2
tr(Q2) − b2

3
tr(Q3) + c2

4

(
tr(Q2)

)2
,

where a2, b2, c2 > 0 are material constants. Note that the minimum set of the bulk potential fbulk(Q) is given by the 
set of uniaxial Q tensors (i.e., Q has two equal eigenvalues):

S∗ =
{
s+
(

n ⊗ n − 1

3
I3

)
: n ∈ S

2
}

(1.2)

with the constant order parameter s+ given by

s+ = b2 + √
b4 + 24a2c2

4c2
> 0. (1.3)

The critical points of the energy functional F (Q) satisfy the Euler–Lagrange equation:

�Q = −a2Q − b2[Q2 − 1

3
|Q|2I3] + c2|Q|2 Q in �, (1.4)

where 1
3 |Q|2 = 1

3 tr(Q2) is the Lagrange multiplier associated with the traceless constraint. It is known that any 
H 1

loc(�, S0)-solution of (1.4) is smooth in �. The solutions of (1.4) describe the defects patterns, the simplest and 
most common being the point defects (see [6,23,24]). The analytical investigation of their structure and profile gener-
ates very challenging nonlinear analysis problems.

The goal of this article is to investigate the profile and stability properties of point defects appearing for a certain 
type of symmetric solutions of (1.4) in the two-dimensional case

� =R
2.

The boundary conditions imposed for these solutions are taken to be:

Q(x) → Qk(x) := s+
(

n(x) ⊗ n(x) − 1

3
I3

)
as |x| → ∞, (1.5)

where the map n : � → S
2 is given in the polar coordinates by

n(x) = (
cos( k

2ϕ), sin( k
2ϕ),0

)
, r > 0, ϕ ∈ [0,2π), (1.6)

where k ∈ Z and x = (r cosϕ, r sinϕ). Note that if we consider Qk as an RP 1-valued map on R2 \ {0}, then it has 
degree k/2 about the origin. (For a definition of the degree for RP 1-valued maps, see for instance [4, pp. 685–686].) 
This model can be seen as the 2D reduction of the physical situation of a 3D cylindrical domain, with so-called 
“homeotropic” boundary conditions where the configurations are invariant in the vertical direction (see for in-
stance [2]).
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1.2. The k-radially symmetric solutions

We will focus on the following type of symmetric solutions of (1.4) in the two-dimensional domain � = R
2 that 

carry a topological information through the boundary condition (1.5).

Definition 1.1. For k ∈ Z \ {0}, we say that a Lebesgue measurable map Q : � → S0 is k-radially symmetric if the 
following conditions hold for almost every x = (x1, x2) ∈ �:

(H1) The vector e3 = (0, 0, 1) is an eigenvector of Q(x).
(H2) The following identity holds

Q

(
P2
(
R2(ψ)x̃

))=Rk(ψ)Q(x)Rt
k(ψ), for almost every ψ ∈R,

where x̃ = (x1, x2, 0), P2 :R3 → R
2 is the projection given by P2(x1, x2, x3) = (x1, x2) and

Rk(ψ) :=
⎛
⎝ cos( k

2ψ) − sin( k
2ψ) 0

sin( k
2ψ) cos( k

2ψ) 0
0 0 1

⎞
⎠ (1.7)

is the k2 -winding rotation around the vertical axis e3.

Remark 1.2. If k is an odd integer, then a map Q ∈ H 1(�, S0) satisfying (H2) automatically verifies (H1) (see 
Proposition 2.1).

We will show that the k-radially symmetric solutions of (1.4) have a simple structure:

Proposition 1.3. Let k ∈ Z \ {0}. If Q ∈ H 1
loc(R

2, S0) is a k-radially symmetric solution of the Euler–Lagrange 
equations (1.4) on � =R

2 satisfying the boundary conditions (1.5), then Q is smooth and has the following form for 
every x ∈R

2:

Q(x) = u(|x|)√2

(
n(x) ⊗ n(x) − 1

2
I2

)
+ v(|x|)

√
3

2

(
e3 ⊗ e3 − 1

3
I3

)
, (1.8)

where n is given in (1.6), I2 = I3 − e3 ⊗ e3, u ∈ C2([0, ∞)) ∩ C∞((0, ∞)), v ∈ C∞([0, ∞)) and u and v satisfy the 
following system of ODEs in (0, ∞):⎧⎪⎨

⎪⎩
u′′ + u′

r
− k2u

r2 = u

[
−a2 +

√
2
3b2v + c2

(
u2 + v2

)]
v′′ + v′

r
= v

[
−a2 − 1√

6
b2v + c2

(
u2 + v2

)]+ 1√
6
b2u2,

(1.9)

subject to boundary conditions:

u(0) = 0, v′(0) = 0, u(+∞) = 1√
2
s+, v(+∞) = − 1√

6
s+. (1.10)

Conversely, if u ∈ H 1
loc([0, ∞); rdr) ∩ L2

loc([0, ∞); dr
r

) and v ∈ H 1
loc([0, ∞); rdr) satisfy (1.9) with the boundary 

conditions u(+∞) = 1√
2
s+ and v(+∞) = − 1√

6
s+, then the tensor Q defined by (1.8) belongs to H 1

loc(R
2, S0) and 

is a k-radially symmetric smooth solution of (1.4)–(1.5).

Remark 1.4. It should be noted that k-radially symmetric maps are in general characterized by three functions (see 
Proposition 2.1). However, as shown in the above result, the Euler–Lagrange equation (1.4) automatically improves 
the symmetry: k-radially symmetric solutions are characterized by only two functions.

Analyzing the above ODE system, we construct solutions of (1.9)–(1.10) using variational methods that lead to 
k-radially symmetric solutions of the Euler–Lagrange equations (1.4) with the boundary conditions (1.5).



1134 R. Ignat et al. / Ann. I. H. Poincaré – AN 33 (2016) 1131–1152
Theorem 1.5. Let a2, b2, c2 > 0 be any fixed constants and k ∈ Z \ {0}. There exist k-radially symmetric solutions 
Q ∈ H 1

loc(R
2, S0) of (1.4)–(1.5) having the form (1.8). Moreover, the corresponding profiles (u, v) in (1.8) satisfy the 

ODE system (1.9)–(1.10) together with

u > 0 and v < 0 in (0,∞).

Remark 1.6. The case b2 = 0 was studied in [10] on bounded domains. They showed that on bounded domains, the 
ODE system has a unique solution under the assumption that u > 0 and v < 0. However, for infinite domain, the 
condition b2 > 0 is essential in Theorem 1.5: there is no solution to the ODE system on (0, ∞) with b2 = 0 which 
satisfies u > 0 and v < 0. See Appendix A.

Open problem 1.7. For b2 > 0, does the ODE system (1.9)–(1.10) have a unique solution? (See Proposition 3.5 for a 
statement to this effect in a special case.)

1.3. Instability of k-radially symmetric solutions for k ∈ Z \ {0, ±1}

Our main result concerns the local instability for all k-radially symmetric critical points of F subject to (1.5) when 
k ∈ Z \ {0, ±1}:

Theorem 1.8. Let a2, b2, c2 > 0 be any fixed constants and k ∈ Z \ {0, ±1}. Any k-radially symmetric critical point 
Q of (1.1) with � = R

2 satisfying the boundary conditions (1.5) is locally unstable, i.e. there is a perturbation 
P ∈ C∞

c (R2, S0), supported in a bounded disk BR , such that the second variation L [Q](P ) < 0, where

L [Q](P ) = 1

2

d2

dt2

∣∣∣
t=0

∫
R2

{1

2
|∇(Q + tP )|2 + fbulk(Q + tP ) − 1

2
|∇Q|2 − fbulk(Q)

}
dx

=
∫
R2

{1

2
|∇P |2 − a2

2
|P |2 − b2tr(P 2Q) + c2

2

(
|Q|2|P |2 + 2|tr(QP )|2

)}
dx. (1.11)

Open problem 1.9. Is it true that k-radially symmetric solutions of (1.4) in R2 subject to (1.5) are stable for k = ±1?

Remark 1.10. This instability behavior is drastically different from the case b2 = 0 on a bounded disk BR centered at 
the origin. In [10], it was shown that the functional F with a boundary condition similar to (1.5) has a unique global 
minimizer in H 1(BR, S0), and furthermore that minimizer is k-radially symmetric. The deeper reason for this seems 
to be related to the different structure of the minimum set of the potential fbulk, which for b2 = 0 is a 4D sphere while 
for b2 �= 0 is the 2D real projective plane.

There have been numerous numerical and analytical studies of two-dimensional point defects in the Landau–
de Gennes framework [1,5,7,10,14,16,18,25,26] (also in micromagnetics see e.g. [11,22]). Let us briefly mention a 
few papers that are directly related to this work. Our motivation came from the recent paper [10] where global mini-
mizers of Landau–de Gennes energy are investigated on finite two-dimensional balls in the extreme low-temperature 
regime (b2 = 0) under k-radially symmetric homeotropic boundary conditions. The authors show that there exists a 
unique global minimizer of the Landau–de Gennes energy which is k-radially symmetric and provide the description 
of the ground state profile of a point defect of index k/2 in terms of the system of two ordinary differential equations 
(see (1.9)). More general domains and boundary conditions were treated analytically (see [1,5,16]) and numerically 
(see [18]). In [1] the Landau–de Gennes energy was investigated in a restricted three-dimensional space of Q-tensors. 
The authors showed that in the case of small elastic constant the minimizers of Landau–de Gennes energy exhibit 
behaviors similar to those of Ginzburg–Landau energy [3], namely for boundary conditions of degree k/2 there are 
exactly k vortices of degree ±1/2. In [5,16] the minimizers of the full Landau–de Gennes energy were studied un-
der non-orientable boundary conditions (which in our setting amounts to k being odd). It was shown that in the low 
temperature regime and in the case of small elastic constant the minimizer has only one vortex.
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The paper is organized as follows: in the next section we provide the basic properties of the k-radially symmetric 
maps that we study on balls BR of radius R ∈ (0, ∞]. In Section 3 we investigate the ODE system (1.9) on bounded 
domains and prove certain fine qualitative properties of solutions that will be used later. In Section 4 we show the ex-
istence of a k-radially symmetric solution on the whole R2 and investigate its behavior at infinity. Finally, in Section 5
we investigate the stability of k-radially symmetric solutions and show Theorem 1.8. Several open questions are also 
stated, some of them will be addressed in a forthcoming paper.

2. Basic aspects of k-radially symmetric maps, k �= 0

In order to classify k-radially symmetric maps on disks BR ⊂R2 centered at the origin with R ∈ (0, ∞] and k �= 0
(see Definition 1.1 for � = BR), we introduce some notation. We define {ei}3

i=1 to be the standard basis in R3 and 
denote, for ϕ ∈ [0, 2π),

n = n(ϕ) = (
cos( k

2ϕ), sin( k
2ϕ),0

)
, m = m(ϕ) = (− sin( k

2ϕ), cos( k
2ϕ),0

)
.

We endow the space S0 of Q-tensors with the scalar product

Q · Q̃ = tr(QQ̃)

and for any ϕ ∈ [0, 2π), we define the following orthonormal basis in S0:

E0 =
√

3

2

(
e3 ⊗ e3 − 1

3
I3

)
, (2.1)

E1 = E1(ϕ) = √
2

(
n ⊗ n − 1

2
I2

)
, E2 = E2(ϕ) = 1√

2
(n ⊗ m + m ⊗ n) ,

E3 = 1√
2
(e1 ⊗ e3 + e3 ⊗ e1), E4 = 1√

2
(e2 ⊗ e3 + e3 ⊗ e2) . (2.2)

Obviously, only E1 and E2 depend on ϕ and we have

∂E1

∂ϕ
= kE2 and

∂E2

∂ϕ
= −kE1. (2.3)

We prove the following characterization of property (H2) for H 1(BR, S0)-maps.

Proposition 2.1. Let R ∈ (0, ∞), k �= 0 and Q ∈ H 1(BR, S0) be a map that satisfies (H2) in BR . Then Q can be 
represented for a.e. x = r(cosϕ, sinϕ) ∈ BR

1:

1. If k is odd, then

Q =
2∑

i=0

wi(r)Ei,

where w0 ∈ H 1((0, R); r dr) and w1, w2 ∈ H 1((0, R); r dr) ∩ L2
(
(0,R); 1

r
dr
)

.

2. If k is even, then

Q =
2∑

i=0

wi(r)Ei + (w̃(r) cos
k

2
ϕ + ŵ(r) sin

k

2
ϕ)E3 + (−ŵ(r) cos

k

2
ϕ + w̃(r) sin

k

2
ϕ)E4,

where w0 ∈ H 1((0, R); r dr) and w̃, ŵ, w1, w2 ∈ H 1((0, R); r dr) ∩ L2
(
(0,R); 1

r
dr
)

.

1 In these decompositions of Q(x), the angle ϕ defining E1 and E2 is given by the phase of x ∈ BR .
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Proof. Any Q ∈ H 1(BR, S0) can be represented as

Q(x) =
4∑

i=0

wi(x)Ei, x ∈ BR,

with wi = Q · Ei for i = 0, . . . , 4 and

|Q|2 =
4∑

i=0

w2
i and

|∇Q|2 =
4∑

i=0

|∇wi |2 + k2

r2
(w2

1 + w2
2) + 2k

r2
(w1

∂w2

∂ϕ
− w2

∂w1

∂ϕ
), (2.4)

where we used (2.3). Now we compute for ψ ∈R:

Rk(ψ)e1 = n(ψ), Rk(ψ)e2 = m(ψ), Rk(ψ)e3 = e3,

Rk(ψ)n(ϕ) = n(ϕ + ψ), Rk(ψ)m(ϕ) = m(ϕ + ψ), ϕ ∈ [0,2π),

so that we have for a.e. x = r(cosϕ, sinϕ) ∈ BR :

Rk(ψ)Q(x)Rt
k(ψ) = w0(x)E0 + w1(x)E1(ϕ + ψ) + w2(x)E2(ϕ + ψ)

+ w3(x)(cos
k

2
ψE3 + sin

k

2
ψE4) + w4(x)(− sin

k

2
ψE3 + cos

k

2
ψE4).

Therefore, hypothesis (H2) is equivalent (in polar coordinates) with:

wi(r,ϕ + ψ) = wi(r,ϕ), i = 0,1,2,

w3(r, ϕ + ψ) = w3(r, ϕ) cos
k

2
ψ − w4(r, ϕ) sin

k

2
ψ,

w4(r, ϕ + ψ) = w3(r, ϕ) sin
k

2
ψ + w4(r, ϕ) cos

k

2
ψ,

for a.e. r ∈ (0, R), ϕ ∈ (0, 2π), ψ ∈ R. Therefore, we deduce that wi are independent of the angular variable ϕ for 

i = 0, 1, 2. Since Q ∈ H 1(BR, S0), we obtain that w0 ∈ H 1((0, R); r dr), wi ∈ H 1((0, R); r dr) ∩L2
(
(0,R); 1

r
dr
)

, 

i = 1, 2 and w3, w4 ∈ H 1(BR). It remains to characterize w3 and w4. Let r ∈ (0, R) so that w3 and w4 are continuous 
on ∂Br . (This is true because w3, w4 ∈ H 1(∂Br) ⊂ C0, 1

2 (∂Br) for a.e. r ∈ (0, R).) Then the above equalities for w3

and w4 hold for every ϕ ∈ [0, 2π) and ψ ∈R. Setting w̃(r) = w3(r, 0) and ŵ(r) = −w4(r, 0), we get that

w3(r,ψ) = w̃(r) cos
k

2
ψ + ŵ(r) sin

k

2
ψ,

w4(r,ψ) = w̃(r) sin
k

2
ψ − ŵ(r) cos

k

2
ψ,

for every ψ ∈ R. If k is odd, the continuity of the 2π -periodic functions w3(r, ·) and w4(r, ·) implies that w̃(r) =
ŵ(r) = 0 for a.e. r ∈ (0, R). If k is even, then

w2
3(x) + w2

4(x) = w̃2(r) + ŵ2(r)

|∇w3|2(x) + |∇w4|2(x) = (w̃′)2(r) + (ŵ′)2(r) + k2

4r2
(w̃2(r) + ŵ2(r))

for a.e. x = r(cosϕ, sinϕ) ∈ BR . The proof is now completed. �
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As a consequence, we deduce the following characterization of k-radially symmetric maps defined on balls BR:

Corollary 2.2. Let R ∈ (0, ∞) and k �= 0. A map Q ∈ H 1(BR, S0) is k-radially symmetric if and only if Q can be 
represented as

Q =
2∑

i=0

wi(r)Ei, x = r(cosϕ, sinϕ) ∈ BR, (2.5)

where w0 ∈ H 1((0, R); r dr) and wi ∈ H 1((0, R); r dr) ∩ L2
(
(0,R); 1

r
dr
)

, i = 1, 2. Moreover, we have

F (Q)

2π
=

R∫
0

⎡
⎣1

2

(
2∑

i=0

(w′
i )

2 + k2

r2
(w2

1 + w2
2)

)
− a2

2

2∑
i=0

w2
i + c2

4

(
2∑

i=0

w2
i

)2⎤⎦ rdr

− b2

3
√

6

R∫
0

w0
[
w2

0 − 3(w2
1 + w2

2)] rdr.

Proof. Assume that Q is k-radially symmetric. If k is odd, (2.5) follows directly from Proposition 2.1. If k is even, 
by (H1), e3 is an eigenvector of Q and so the functions w̃ and ŵ obtained in Proposition 2.1 are zero almost everywhere 
in (0, R). In either case, we have proved (2.5). The converse implication is obvious. Now, we compute for Q given by 
(2.5):

tr(Q3) = 1√
6
w0
[
w2

0 − 3(w2
1 + w2

2)].

The expression of F immediately follows. �
We now provide the proof of Proposition 1.3 with the characterization of k-radially symmetric solutions of 

(1.4)–(1.5). The main issue is that these solutions will have vanishing E2 component (with respect to the decom-
position (2.5) in Corollary 2.2 for general k-radially symmetric maps) so that they have the form (1.8). In fact, we will 
prove the result for arbitrary balls BR with R ∈ (0, ∞]. The existence of such solutions is postponed to the next two 
sections.

Proposition 2.3. Let k �= 0 and R ∈ (0, ∞]. If Q ∈ H 1
loc(BR, S0) is a k-radially symmetric solution of the Euler–

Lagrange equations (1.4) for � = BR that satisfies the homeotropic boundary condition

Q(x) = s+
(

n(x) ⊗ n(x) − 1

3
I3

)
on ∂BR (2.6)

(with the convention (1.5) if R = ∞), then Q is smooth and

Q(x) = v(r)E0 + u(r)E1(ϕ) for every x = r(cosϕ, sinϕ) ∈ BR,

u ∈ C2([0, R)) ∩ C∞((0, R)), v ∈ C∞([0, R)) and the couple (u, v) satisfies the ODE system (1.9) and the boundary 
conditions u(0) = v′(0) = 0, u(R) = 1√

2
s+ and v(R) = − 1√

6
s+.

Conversely, if u ∈ H 1
loc([0, R); rdr) ∩ L2

loc([0, R); dr
r

) and v ∈ H 1
loc([0, R); rdr) satisfy (1.9) with the boundary 

condition u(R) = 1√
2
s+ and v(R) = − 1√

6
s+, then the tensor Q = v(r)E0 + u(r)E1(ϕ) belongs to H 1

loc(BR, S0) and 
is a k-radially symmetric solution of (1.4) and (2.6).

Proof. Assume that Q ∈ H 1
loc(BR, S0) is a k-radially symmetric solution of (1.4) and (2.6). Then Q can be expressed 

in the form (2.5). Standard elliptic regularity implies interior smoothness of any solution Q ∈ H 1
loc(BR) of (1.4) (see 

for instance [27]). In particular, wi = Q · Ei are smooth on (0, R). We prove the remaining claim in several steps:
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Step 1: We prove that w′
1w2 − w′

2w1 = 0 in (0, R). Fix 0 < r0 < R. Using (2.3) and Corollary 2.2 for Q that is a 
(smooth) k-radially symmetric map in Br0 , one computes that

∂ϕQ = k

2
(S0Q − QS0) in Br0,

where S0 = e2 ⊗ e1 − e1 ⊗ e2. Considering now the scalar product of S0Q − QS0 with both parts of (1.4), we obtain

�Q · (S0Q − QS0) = 0 in Br0 .

Integrating by parts over the ball Br0 leads to

0 =
∫

Br0

�Q · (S0Q − QS0) dx =
∫

∂Br0

∂rQ · (S0Q − QS0) dH1.

Using the above expression of ∂ϕQ, we deduce

2π∫
0

∂rQ(r0, ϕ) · ∂ϕQ(r0, ϕ) dϕ = 0, for every r0 ∈ (0,R).

Combining with (2.3) and (2.5), we conclude with Step 1.

Step 2: We prove that w2 = 0 in (0, R). First, note that the boundary conditions on Q read as w0(R) = − s+√
6

, w1(R) =
s+√

2
and w2(R) = 0 (which are understood as limits if R = ∞). Next, we show that there exists 0 < R1 < R such that 

w2(r) = 0 for all r ∈ (R1, R). Indeed, since w1 is continuous and w1(R) > 0, there exists an interval (R1, R) such 
that w1 > 0 on (R1, R). The equality in Step 1 implies that w2

w1
is constant on (R1, R) so that w2 = 0 on (R1, R). In 

order to prove that w2 vanishes in the whole interval (0, R), we write the Euler–Lagrange equations (1.4) within the 
decomposition (2.5):

w′′
0 + w′

0

r
= w0(−a2 + c2

2∑
i=0

w2
i − b2

√
6
w0) + b2

√
6
(w2

1 + w2
2),

w′′
1 + w′

1

r
− k2

r2
w1 = w1

(
− a2 + c2

2∑
i=0

w2
i + 2b2

√
6

w0

)
,

w′′
2 + w′

2

r
− k2

r2
w2 = w2

(
− a2 + c2

2∑
i=0

w2
i + 2b2

√
6

w0

)

in (0, R) where we used that Q2 − |Q|2
3 I3 = w2

0−w2
1−w2

2√
6

E0 −
√

2
3w0(w1E1 + w2E2). Then we apply the Cauchy–

Lipschitz theory for the 2nd order ODE in w2 (with smooth coefficients in (0, R)): since w2 vanishes in (R1, R), we 
deduce that w2 = 0 is the unique solution in (0, R). Therefore, Q = w0(r)E0 + w1(r)E1 in BR and (w1, w0) satisfies 
the system (1.9).

Step 3: We prove w′
0(0) = 0 and the regularity of w0. Since Q is smooth in BR , we obtain that w0 = Q · E0 is smooth 

in BR . In particular, w0 extends to an even (smooth) function on (−R, R). Therefore w0 ∈ C∞([0, R)) and w′
0(0) = 0.

Step 4: We prove that w1(0) = 0 and the regularity of w1. By Corollary 2.2, we know that w1 ∈ H 1((0, R); r dr) ∩
L2
(
(0,R); 1

r
dr
)

. Then w1 is continuous on (0, R) and we have for r1, r2 ∈ (0, R):

|w2
1(r2) − w2

1(r1)| = 2

∣∣∣∣
r2∫

r1

w1w
′
1 dr

∣∣∣∣≤ 2

( r2∫
r1

w2
1

dr

r

)1/2( r2∫
r1

(w′
1)

2 rdr

)1/2

.

Since the right hand side converges to zero as |r2 − r1| → 0, it follows that w1 is continuous up to r = 0. Combined 

again with w1 ∈ L2
(
(0,R); 1

r
dr
)

, we conclude that w1(0) = 0.
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For the regularity of w1, note that w1 satisfies

w′′
1 + w′

1

r
− k2w1

r2
= w1(r)g(r), r ∈ (0,R) (2.7)

where g is a continuous function in [0, R). Then we have (see [20, Proposition 2.2]) that the function

ζ(r) = w1(r)

r |k|

is continuously differentiable up to r = 0 with vanishing derivative ζ ′(0) = 0 at the origin. This implies that 
w′

1
r

− k2w1
r2

is continuous in [0, R). Returning to Eq. (2.7), we deduce that w1 ∈ C2([0, R)).
Conversely, assume that u ∈ H 1

loc([0, R); rdr) ∩ L2
loc([0, R); dr

r
) and v ∈ H 1

loc([0, R); rdr) satisfy (1.9) with the 
boundary conditions u(R) = 1√

2
s+ and v(R) = − 1√

6
s+. Then Q belongs to H 1

loc(BR, S0) (thanks to (2.4)) and 

satisfies (2.6). The system (1.9) implies that Q satisfies (1.4) in BR \ {0} (see Step 2 above). Since Q ∈ H 1
loc(BR, S0)

and a point has zero Newtonian capacity in two dimensions, Q satisfies (1.4) in BR . This finishes the proof. �
Proof of Proposition 1.3. It is a consequence of the above result. �
3. Study of the ODE system on finite domains

In this section we first show the existence of a smooth solution (u, v) of the system (1.9) on a finite domain (0, R)

with k ∈ Z \ {0} and a2, b2, c2 > 0 with the boundary conditions

u(0) = 0, v′(0) = 0, u(R) = s+√
2
, v(R) = − s+√

6
. (3.1)

This solution (u, v) has a sign invariance: u > 0 and v < 0 in (0, R). Second, we study the qualitative properties and 
provide appropriate upper and lower bounds on the constructed solution (u, v). These bounds will be extensively used 
in the next section when proving existence of the solution on the infinite domain.2

3.1. Existence of solutions with u > 0 and v < 0

Let R ∈ (0, ∞), k �= 0 and a2, b2, c2 > 0. In order to prove existence of a solution (u, v) of (1.9) on (0, R) satisfying 
(3.1) with the desired sign invariance, we will use a variational approach. First, note that a solution (u, v) of the ODE 
system (1.9) subject to u(R) = s+√

2
and v(R) = − s+√

6
is a critical point of the reduced energy functional3:

E (u, v) = ER(u, v) =
R∫

0

[
1

2

(
(u′)2 + (v′)2 + k2

r2
u2
)

− a2

2
(u2 + v2) + c2

4

(
u2 + v2

)2

− b2

3
√

6
v(v2 − 3u2)

]
rdr, (3.2)

defined on the admissible set

T =
{
(u, v) : [0,R] → R

2
∣∣∣√ru′,

√
rv′, u√

r
,
√

rv ∈ L2(0,R), u(R) = s+√
2
, v(R) = − s+√

6

}
. (3.3)

If (u, v) ∈ T , then u is continuous on [0, R] with u(0) = 0 (see Step 3 in the proof of Proposition 2.3).

2 A solution without the above sign invariance might be more easily obtained (on finite domains), e.g. by a global minimization scheme, but little 
is known about such solution, in particular its behaviors as R → ∞. See also Open problem 3.2.

3 If k �= 0 and R < ∞, we have that E (u, v) < ∞ if and only if v ∈ H 1((0, R); r dr) and u ∈ H 1((0, R); r dr) ∩ L2
(
(0,R); 1

r dr
)

. This is 
due to standard Sobolev embeddings and the fact that the bulk energy density is bounded from below (which can be seen from the inequality 
|v(v2 − 3u2)| ≤ (u2 + v2)3/2 for any u, v ∈ R).
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Proposition 3.1. For any 0 < R < ∞ and k �= 0, there exists a smooth local minimizer (u, v) ∈ T of E such that 
(3.1) holds together with u(r) > 0 on (0, R] and v(r) < 0 on [0, R]. Moreover, u ∈ C2([0, R]) with limr→0

u
r |k| > 0, 

v ∈ C2([0, R]) and
√

3v(r) + u(r) < 0, ∀r ∈ [0,R). (3.4)

Proof. We divide the proof in several steps:

Step 1: Existence of minimizers of E on

T− := {(u, v) ∈ T : v ≤ 0}. (3.5)

First, we know that E (u, v) is continuous and coercive in the convex closed set T− endowed with the strong topology (
H 1((0, R); r dr) ∩ L2

(
(0,R); 1

r
dr
))

× H 1((0, R); r dr) (see Footnote 3). Then the direct method of calculus of 

variations implies the existence of a global minimizer (u, v) of E on the subset T−. The couple (u, v) satisfies

u′′ + u′

r
− k2u

r2
= u

[
−a2 +

√
2

3
b2v + c2

(
u2 + v2

)]
,

v′′ + v′

r
≥ v

[
−a2 − 1√

6
b2v + c2

(
u2 + v2

)]
+ 1√

6
b2u2

distributionally in (0,R) (3.6)

with boundary conditions

u(0) = 0, u(R) = 1√
2
s+, v(R) = − 1√

6
s+. (3.7)

Since u and v are continuous in (0, R], we have by (3.6) that u ∈ C2((0, R]).
Since the energy E is invariant with respect to a change of sign of u and u(R) > 0, we deduce that (|u|, v) is also 

a global minimizer of E over T−. The strong maximum principle applied to the first equation in (3.6) (for (|u|, v)) 
implies

|u| > 0 in (0,R)

since u(R) > 0. Hence

u > 0 in (0,R).

Also note that on the open set {v < 0}, the inequality in (3.6) becomes equality and therefore, u, v ∈ C∞({v <

0} ∩ (0, R)).

Step 2: We show that lim supr→0 v(r) < 0. Assume by contradiction that lim supr→0 v(r) = 0. By construction, we 
know that v is a global minimizer of E (u, ·) over the set T−. Note now that in E (u, v), the contribution of v to the 
bulk potential is

f (v)(r, v) = r

[
b2

√
6
u2(r)v + −a2 + c2u2(r)

2
v2 − b2

3
√

6
v3 + c2

4
v4
]
, r ∈ (0,R), v ≤ 0. (3.8)

Since u(r) > 0 for all r ∈ (0, R], we deduce the existence of δ ∈ (− 1√
6
s+, 0) such that f (v)(r, ·) is increasing in 

[δ, 0] for every r ∈ (0, R). (We highlight that δ depends only on a2, b2, c2 > 0 and ‖u‖L∞ and δ is independent 
of r > 0 due to the form of the linear and quadratic terms in f (v)(r, v).) By the above assumption, there exists an 
interval (R1, R2) ⊂ (0, R) such that v(R2) = δ, v > δ in (R1, R2) and either R1 = 0 or v(R1) = δ. Set ṽ = v in 
(0, R1) ∪ (R2, R) and v = δ in (R1, R2). Then E (u, ṽ) < E (u, v) which contradicts the minimality of v.

Step 3: We prove the following result: Let (u, v) be a solution of (3.6) and (3.7) such that u > 0 and v ≤ 0 in (0, R). 
Provided that lim supr→0 v(r) < 0, then (3.4) holds true (which implies v < 0). Consequently, if (u, v) is a minimizer 
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of E in T−, then (u, v) is a local minimizer of E in T . First, we define the function

w = v

u
+ 1√

3
in (0,R). (3.9)

Then one computes that

w′ = v′

u
− u′v

u2
, w′′ = v′′

u
− u′′v

u2
− 2u′v′

u2
+ 2(u′)2v

u3

that leads to

w′′ + w′

r
+ 2u′

u
w′ = 1

u

(
v′′ + v′

r

)
− v

u2

(
u′′ + u′

r

)
. (3.10)

Using the ODE system (3.6) in (3.10), we obtain

w′′ +
(

1

r
+ 2u′

u

)
w′ − 3b2u√

6
(−v

u
+ 1√

3
)︸ ︷︷ ︸

≥0

w ≥ −k2v

r2u︸ ︷︷ ︸
≥0

in (0,R). (3.11)

By definition of w, since lim supr→0 v(r) < 0, u(0) = 0 and u > 0 in (0, R), we have w < 0 in a neighborhood of 0. 
By (3.7), we also have w(R) = 0. Applying the strong maximum principle for (3.10) on (0, R), we deduce that w < 0
on (0, R) and (3.4) is now proved.

Step 4: We prove the regularity of u, v and limr→0
u

r |k| > 0. By Proposition 2.3, the tensor Q defined by (1.8) is a 
smooth k-radially symmetric solution of (1.4), and so by the same proposition, u, v ∈ C2([0, R]) and u(0) = v′(0) = 0. 
Now, let ζ = u

r |k| , then ζ is continuous up to the origin (see the paragraph following (2.7)) and satisfies

ζ ′′ + (1 + 2|k|)ζ
′

r
− g(r) ζ(r) = 0 in (0,R)

for some function g ∈ C([0, R)). Applying [20, Lemma B.2], we see that ζ(0) > 0, as desired. �
Open problem 3.2. By construction, the solution (u, v) in Proposition 3.1 is a local minimizer of E over T . Is (u, v)

a global minimizer?

Remark 3.3. The following upper bound and uniqueness result are standard and hold for any a2, b2, c2 > 0:

1. If R ∈ (0, ∞) and (u, v) is a solution of the ODE system (1.9) subject to (3.1), then the following upper bound 
holds:

u2 + v2 ≤ 2

3
s2+ in (0,R); (3.12)

this remains true even if b2 = 0 (see e.g. Proposition 3 in [27]).
2. There exists R0 > 0 (depending on a2, b2, c2) such that for any R ∈ (0, R0), there exists a unique solution (u, v)

of the ODE system (1.9) with (3.1). This is a consequence of the Poincaré inequality (see for instance in the 
related Ginzburg–Landau framework [3, Thm. VIII.7, p. 98]).

3.2. Upper and lower bounds for (u, v)

Now we are ready to prove upper and lower bounds for any solution (u, v) of the ODE system (1.9)–(3.1) with 
u > 0 and v < 0. These properties will be essential in proving the convergence of solutions on bounded domains to a 
solution on infinite domain. It turns out that these bounds strongly depend on the relation between material parameters 
a2, b2 and c2. In fact, we will distinguish regimes leading to different behavior of v (see Fig. 1):
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Fig. 1. Schematic graphs of u and v in different regimes of a2, b2 and c2.

• If b4 > 3a2c2 then v ≥ − s+√
6

.

• If b4 = 3a2c2 then v ≡ − s+√
6

.

• If b4 < 3a2c2 then v ≤ − s+√
6

.

The regime b4 = 3a2c2 can be considered as a special case of the other regimes. However, it has a distinctive 
feature that v = − s+√

6
is a local minimum of the v-relevant part of the bulk energy density (i.e. the function f (v)

defined in (3.8)). This allows us to establish stronger statements, for example the uniqueness result in Proposition 3.5
below.

3.2.1. The regime b4 ≥ 3a2c2

Throughout this subsection we always assume

b4 ≥ 3a2c2. (3.13)

Under this assumption, the following inequalities hold (see (1.3))√
2

3
s− ≥ − s+√

6
≥ − b2

√
6c2

, (3.14)

where

s− = b2 − √
b4 + 24a2c2

4c2
< 0. (3.15)

When the inequality in (3.13) is strict, the inequalities in (3.14) are also strict.
We prove the following bounds on u and v.

Proposition 3.4. Assume b4 ≥ 3a2c2 > 0, 0 < R < ∞, k �= 0 and let (u, v) ∈ T be any solution of (1.9)–(3.1) with 
u > 0 and v < 0 in (0, R). Then

− s+√
6

≤ v ≤
√

2

3
s− in (0,R) (3.16)

and
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uI ≤ u <
s+√

2
in (0,R) (3.17)

where uI (r) is the unique solution of the following problem

u′′
I + u′

I

r
− k2

r2
uI = uI

[
−a2 − b2

√
2

3
uI + 4c2

3
u2

I

]
, uI (0) = 0, uI (R) = s+√

2
. (3.18)

Proof. We divide the proof in several steps:

Step 1: We prove the upper bound v ≤
√

2
3 s− in (0, R). Assume by contradiction that the maximum of v is attained at 

some point r0 ∈ [0, R) where 0 > v(r0) >
√

2
3 s−. By Proposition 3.1, we apply the maximum principle for the PDE 

satisfied by v ∈ C2(BR):

�v(r0)︸ ︷︷ ︸
≤0

= v(r0)

[
−a2 − b2v(r0)√

6
+ c2v2(r0)

]
︸ ︷︷ ︸

>0

+
(

v(r0)c
2 + b2

√
6

)
u2(r0)︸ ︷︷ ︸

>0

which leads to a contradiction.

Step 2: We prove a weaker lower bound

v(r) ≥ − b2

√
6c2

in (0,R). (3.19)

Assume by contradiction that the minimum of v is achieved at r1 ∈ [0, R) with v(r1) < − b2√
6c2 . Then, as at Step 1, we 

obtain

�v(r1)︸ ︷︷ ︸
≥0

= v(r1)

[
−a2 − b2v(r1)√

6
+ c2v2(r1)

]
︸ ︷︷ ︸

<0

+
(

v(r0)c
2 + b2

√
6

)
u2(r0)︸ ︷︷ ︸

<0

which leads to a contradiction.

Step 3: We prove the optimal lower bound v(r) ≥ − s+√
6

in (0, R). Using (3.4) and (3.19) we obtain

�v = v

[
−a2 − b2v√

6
+ c2v2

]
+
(

vc2 + b2

√
6

)
u2

≤ v

[
−a2 − b2v√

6
+ c2v2

]
+
(

vc2 + b2

√
6

)
3v2

≤ v

[
−a2 + 2

b2v√
6

+ 4c2v2
]

in BR.

Applying the maximum principle as at Step 2, we obtain the desired lower bound.

Step 4: We prove u(r) < s+√
2

in (0, R). Indeed, this upper bound follows directly from inequalities (3.4) and (3.16).

Step 5: We prove the lower bound of u. By (3.4) and (3.19), we have

v − 1√
3
u ≥ 2v ≥ − 2b2

√
6c2

in (0,R).

Multiplying with v + u√
3

< 0, we obtain:√
2
b2v + c2v2 ≤ −

√
2
b2 u√ + c2u2

in (0,R).

3 3 3 3
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By (1.9), the last inequality implies that u is a super-solution for (3.18), i.e.,

u′′ + u′

r
− k2

r2
u ≤ u

(
−a2 − b2

√
2

3
u + 4c2

3
u2

)
in (0,R).

By [17] (see also [20]), we know that there exists a unique solution uI of (3.18) that satisfies 0 < uI <
s+√

2
in (0, R); 

moreover, by [20, Proposition 2.2], we have that uI (r) = αr |k| +o(1) as r → 0 for some α ≥ 0. By Step 4 in the proof 
of Proposition 3.1, we deduce that u(r) = ᾱr |k| + o(1) as r → 0 with ᾱ > 0, we can apply the comparison principle 
(see [20, Proposition 3.5]) to obtain that u ≥ uI in (0, R). �

When b4 = 3a2c2, we have the following stronger result:

Proposition 3.5. Assume that b4 = 3a2c2 > 0, k �= 0, R ∈ (0, ∞) and let (u, v) ∈ T be any solution of (1.9)–(3.1)
with u > 0 and v < 0 in (0, R). Then v ≡ − s+√

6
and u is the unique solution uII of the following problem:

u′′
II + u′

II

r
− k2uII

r2
= c2uII(u

2
II − s2+

2
), in (0,R),

uII(0) = 0, uII(R) = s+√
2
. (3.20)

Moreover, uII is an increasing function with 0 < uII <
s+√

2
on (0, R).

Proof. Note that 
√

2
3 s− = − s+√

6
= − b2√

6c2 . Thus, by Proposition 3.4 (namely (3.16)), v ≡ − s+√
6

. Substituting this in 
(1.9), we obtain that u satisfies the problem (3.20). By [17] (see also [20, Theorem 1.3]), we know that the problem 
(3.20) admits a unique solution uII . Moreover, 0 < uII <

s+√
2

on (0, R). �
Remark 3.6. In the case R = ∞, we recall that problem (3.20) has a unique solution uII in (0, ∞) (see [20, Proposi-
tion 2.5]) and the behavior of uII at infinity is given by:

uII(r) = s+√
2

− β

r2
+ o

(
r−2

)
, as r → ∞,

where β = k2√
2b2 .

3.2.2. The regime b4 < 3a2c2

In this subsection we always assume

b4 < 3a2c2. (3.21)

Under this assumption, the following inequalities hold (see (1.3)):√
2

3
s− < − s+√

6
< − b2

√
6c2

. (3.22)

We prove the following bounds on u and v.

Proposition 3.7. Assume 0 < b4 < 3a2c2, 0 < R < ∞, k �= 0 and let (u, v) ∈ T be any solution of (1.9)–(3.1) with 
u > 0 and v < 0 in (0, R). Then√

2

3
s− ≤ v ≤ − s+√

6
(3.23)

and

uIII ≤ u <
s+√ in (0,R), (3.24)
2
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where uIII : (0, R) → R is the unique solution of

u′′
III + u′

III

r
− k2uIII

r2
= μc2uIII(u

2
III − s2+

2
), uIII(0) = 0, uIII(R) = s+√

2
(3.25)

with μ = b2√
b4+24a2c2

.

Proof. We follow the steps in the proof of Proposition 3.4:

Step 1: We prove the lower bound v ≥
√

2
3 s− in (0, R). Assume by contradiction that the minimum of v is achieved at 

some point r0 ∈ [0, R) with v(r0) <
√

2
3 s−. Then by (3.22), the PDE satisfied by v implies:

�v(r0)︸ ︷︷ ︸
≥0

= v(r0)[−a2 − b2v(r0)√
6

+ c2v2(r0)]︸ ︷︷ ︸
<0

+ (v(r0)c
2 + b2

√
6
)u2(r0)︸ ︷︷ ︸

<0

which leads to a contradiction.

Step 2: We prove the weaker upper bound v(r) ≤ − b2√
6c2 in (0, R). Assume by contradiction that the maximum of v

is achieved at r1 ∈ [0, R) with v(r1) > − b2√
6c2 . Similarly, we obtain

�v(r1)︸ ︷︷ ︸
≤0

= v(r1)[−a2 − b2v(r1)√
6

+ c2v2(r1)]︸ ︷︷ ︸
>0

+ (v(r0)c
2 + b2

√
6
)u2(r0)︸ ︷︷ ︸

>0

which leads to a contradiction.

Step 3: We prove the optimal upper bound v ≤ − s+√
6

in (0, R). By (3.4), Step 2 leads to

�v = v[−a2 − b2v√
6

+ c2v2] + (vc2 + b2

√
6
)u2

≥ v[−a2 − b2v√
6

+ c2v2] + (vc2 + b2

√
6
)3v2

≥ v[−a2 + 2
b2v√

6
+ 4c2v2].

As above, the maximum principle yields the desired upper bound.

Step 4: We prove the upper bound u < s+√
2

in (0, R). The inequality u ≤ s+√
2

in (0, R) follows directly from (3.12)
and Step 3. Also, by (3.23),

−a2 + 2b2

√
6

v + c2 v2 ≥ −1

2
c2 s2+

and so u satisfies

u′′ + 1

r
u′ − k2

r2
u ≥ c2u(u2 − 1

2
s2+).

Thus, as u ≤ s+√
2

and u(0) = 0, the strong maximum principle implies that u < s+√
2

in (0, R).

Step 5: We prove the lower bound of u. First, note that (3.12) yields

−a2 + 2b2

√ v + c2(u2 + v2) ≤ −a2 + 2b2

√ v + μc2(u2 + v2) + (1 − μ)c2 2
s2+, (3.26)
6 6 3



1146 R. Ignat et al. / Ann. I. H. Poincaré – AN 33 (2016) 1131–1152
where 0 < μ < 1 will be chosen so that the function

ξ(v) = 2b2

√
6

v + μc2v2

is maximized on [
√

2
3 s−, − s+√

6
] at the point − s+√

6
. For that, we need to ensure that ξ(− s+√

6
) > ξ(

√
2
3 s−) which is 

equivalent to

2b2

√
6

+ μc2(

√
2

3
s− − s+√

6
) > 0 i.e., (8 + μ)b2 − 3μ

√
b4 + 24a2c2 > 0

(here we used (1.3) and (3.15)). Thus, the choice μ = b2√
b4+24a2c2

∈ (0, 1) fulfills our objective and we conclude that

ξ(v(r)) ≤ ξ(− s+√
6
) = −b2

3
s+ + μc2

6
s2+, r ∈ (0,R).

Combined with (3.26), we obtain:

−a2 + 2b2

√
6

v + c2(u2 + v2) ≤ −a2 + μc2u2 − b2

3
s+ + μc2

6
s2+ + (1 − μ)c2 2

3
s2+. (3.27)

Together with (1.3), it yields

−a2 + 2b2

√
6

v + c2(u2 + v2) ≤ μc2(u2 − s2+
2

)

and by (3.6),

u′′ + u′

r
− k2

r2
u ≤ μc2u(u2 − s2+

2
), r ∈ (0,R). (3.28)

As in Step 5 in Proposition 3.4, we conclude to the desired lower bound using the comparison principle (see [20, 
Proposition 3.5]). �
4. Study of the ODE system on the infinite domain

In this section we study the ODE system (1.9) on the infinite domain (0, ∞) for k ∈ Z \ {0}. Using results of the 
previous section, we first prove the existence of a solution of (1.9) subject to (1.10). As a consequence, we prove 
existence of k-radially symmetric solutions of (1.4) on the whole R2 stated in Theorem 1.5. Next, we prove finer 
asymptotic behavior at infinity of any solution of (1.9) subject to (1.10).

We start by proving the following existence result on (0, ∞).

Proposition 4.1. Let a2, b2, c2 > 0 be fixed constants and k ∈ Z \ {0}. Then there exists a smooth solution4 (u, v) of 
(1.9) defined on (0, ∞) with boundary conditions (1.10). Moreover, we have 0 < u < s+√

2
, v < 0 in (0, ∞) and (u, v)

is locally minimizing in the following sense:

ER(u, v) ≤ ER(u + ξ, v + η) for any (ξ, η) ∈ C∞
c (0,R) with sup

(0,R)

|η| < min
( s+√

6
,

√
2

3
|s−|

)
,

for any R > 0, where ER is given by (3.2).

Proof. For every n ∈ N
∗, let (un, vn) be the solution of (1.9) on the interval (0, n) subject to (3.1) constructed in 

Proposition 3.1. We extend un and vn to the infinite domain (0, ∞) by setting the functions (ūn, v̄n) : (0, ∞) → R
2

as follows:

4 Here, u and v are C2 up to r = 0.
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ūn =
{

un(r) r ∈ (0, n)
s+√

2
r ≥ n, v̄n =

{
vn(r) r ∈ (0, n)

− s+√
6

r ≥ n.

Since {(ūn, v̄n)}n≥1 are uniformly bounded in L∞(0, ∞), we have by standard regularity arguments that for any given 
compact interval J ⊂ (0, ∞) and for large enough n ≥ nJ , the couples {(ūn, v̄n)}n≥nJ

are uniformly bounded in 
C3(J ). Using the Arzela–Ascoli theorem, we deduce that ūn → u and v̄n → v in C2

loc(0, ∞) (up to a subsequence). 
Thus, (u, v) : (0, ∞) → R

2 satisfy (1.9) on (0, ∞), too. By Propositions 3.5, 3.4, 3.7, Step 3 in the proof of Proposi-
tion 3.1 and Remark 3.3, we have5

0 ≤ u <
s+√

6
,

min
(

− s+√
6
,

√
2

3
s−
)

≤ v ≤ max
(

− s+√
6
,

√
2

3
s−
)
,

u + √
3v < 0,

u2 + v2 ≤ 2

3
s2+.

Also, u > 0 in (0, ∞).
We next show that u ∈ H 1

loc([0, ∞); r dr) ∩ L2([0, ∞); dr
r

) and v ∈ H 1
loc([0, ∞); r dr). Thanks to the (uniform) 

bounds of un and vn, it suffices to show that Em(un, vn) is uniformly bounded for n > m ≥ 0. Indeed, if we let 
(ūm,n(r), v̄m,n(r)) be the extension of (um, vm) which equals to (un, vn) in the interval (m + 1, n) and is linear in 
[m, m + 1], then

0 ≥ En(un, vn) − En(ūm,n, v̄m,n)

= Em(un, vn) − Em(um,vm)

+
m+1∫
m

[
1

2
(|u′

n|2 + |v′
n|2 + k2

r2
|un|2) + fbulk(un, vn)

]
rdr

−
m+1∫
m

[
1

2
(|ū′

m,n|2 + |v̄′
m,n|2 + k2

r2
|ūm,n|2) + fbulk(ūm,n, v̄m,n)

]
rdr,

where (by a slight abuse of notation)

fbulk(x, y) = fbulk(xE1 + yE0) = −a2

2
(x2 + y2) + c2

4

(
x2 + y2

)2 − b2

3
√

6
y(y2 − 3x2).

As (un, vn) are uniformly bounded in (m, m + 1), (ūm,n(r), v̄m,n(r)) and its derivative are also uniformly bounded in 
(m, m + 1). It thus follows that 0 ≥ Em(un, vn) −Em(um, vm) −C for some constant C independent of n. This proves 
that Em(un, vn) is uniformly bounded.

The locally minimizing property of (u, v) follows from the bounds for vn and the minimizing property of (un, vn). 
It remains to show that (u, v) takes on the desired value at infinity (the boundary condition at the origin and the 
smoothness of u and v are consequences of Proposition 2.3).

Case 1: b4 = 3a2c2 > 0. By Proposition 3.5, we have that v = − s+√
6

. Moreover, since un is the unique solution of 

(3.20) in (0, n), we know by [20, Proposition 2.4] that un converges in C2
loc to the unique solution u = uII of (3.20) in 

(0, ∞), and so u(∞) = s+√
2

.

Case 2: b4 > 3a2c2 > 0. By Proposition 3.4, the same argument as above implies that − s+√
6

≤ v ≤
√

2
3 s− < 0 and 

0 < uI ≤ u ≤ s+√
2

in (0, ∞) where uI is the unique solution of (3.18) in (0, ∞), in particular, u(∞) = s+√
2

. For v(∞), 

5 For the strict upper bound of u, see Steps 4 in the proofs of Propositions 3.4 and 3.7.
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note on one hand that v ≥ − s+√
6

in (0, ∞) so that lim infr→∞ v ≥ − s+√
6

. On the other hand, by (3.4), we have that 

lim supr→∞ v ≤ − 1√
3

limr→∞ u = − s+√
6

. We thus have v(∞) = − s+√
6

.

Case 3: 0 < b4 < 3a2c2. Arguing as in the previous case (but using Proposition 3.7 instead of Proposition 3.4), we 
get u(∞) = s+√

2
. Next, since v ≤ − s+√

6
in (0, ∞), lim supr→∞ v ≤ − s+√

6
. On the other hand, by (3.12),

lim inf
r→∞ v ≥ −

√
2

3
s2+ − u(∞)2 = − s+√

6
.

We again obtain v(∞) = − s+√
6

as desired. �
We now prove the existence of k-radially symmetric solutions of (1.4) subject to (1.5):

Proof of Theorem 1.5. The assertion is a consequence of Propositions 1.3 and 4.1. �
In the proof of the instability result, we need some detailed behavior at ∞ of any solution (u, v) of the system (1.9)

subject to (1.10):

Lemma 4.2. Let u and v be any solution of (1.9) defined on (0, ∞) subject to (1.10). Then (u, v) has the following 
behavior as r → ∞:

u = s+√
2

−
√

2k2

2

2b2 + c2 s+
b2 (−b2 + 4c2 s+)

r−2 + O(r−4), (4.1)

v = − s+√
6

−
√

6k2

2

−b2 + c2 s+
b2 (−b2 + 4c2 s+)

r−2 + O(r−4). (4.2)

The proof of this result uses the following lemma:

Lemma 4.3. Let BR ⊂Rn with 0 < R < ∞. Assume for some constant C > 1 that

1

C
≤ h(x) ≤ C in R

n \ BR.

If u ∈ C2(Rn \ BR) satisfies

−�u + h(x)u = O(|x|−α)

for some α > 0 and if u(x) → 0 as |x| → ∞, then u = O(|x|−α), where the big “O” notation is meant for large |x|.

Proof. Let L = −� + h(x). We have

L(|x|−α) = α(α − n + 2)|x|−α−2 + h(x) |x|−α.

Hence, by our assumption on h(x),

1

C
|x|−α ≤ L(|x|−α) ≤ C |x|−α in R

n \ B2R.

It thus follows that, there is some large radius R′ > 2R and some C1 > 0 such that

L(u − C1|x|−α) ≤ 0 ≤ L(u + C1 |x|−α) in R
n \ B̄R′ .

Replacing C1 by a larger constant if necessary, we can also assume that

u − C1|x|−α ≤ 0 ≤ u + C1|x|−α on ∂BR′ .

The assertion follows from the maximum principle. �



R. Ignat et al. / Ann. I. H. Poincaré – AN 33 (2016) 1131–1152 1149
Proof of Lemma 4.2. Let û = u − u(∞) and v̂ = v − v(∞). We have

û′′ + 1

r
û′ =

(
c1 + O(|û| + |v̂| + r−2)

)
û +

(
c2 + O(|û| + |v̂|)

)
v̂ + k2 s+√

2r2
, (4.3)

v̂′′ + 1

r
v̂′ =

(
c2 + O(|û| + |v̂|)

)
û +

(
c3 + O(|û| + |v̂|)

)
v̂. (4.4)

where c1 = c2 s2+, c2 = −
√

3
3 (c2 s2+ − b2 s+), and c3 = 1

3 (2b2 s+ + c2 s2+).

Introducing X = û + √
3v̂ and Y = √

3û − v̂, we obtain

X′′ + 1

r
X′ =

(
b2 s+ + O(|û| + |v̂| + r−2)

)
X + k2s+√

2r2
,

Y ′′ + 1

r
Y ′ = 1

3

(
4c2 s2+ − b2 s+ + O(|û| + |v̂| + r−2)

)
Y +

√
3k2 s+√

2r2
.

Since both b2 s+ and 4c2 s2+ − b2 s+ are positive and since O(|û| + |v̂|) = o(1) as r → ∞, Lemma 4.3 implies that 
|X| ≤ C r−2 and |Y | ≤ C r−2. It follows that the above equations of X and Y can be rewritten as

X′′ + 1

r
X′ = b2 s+X + k2s+√

2r2
+ O(r−4),

Y ′′ + 1

r
Y ′ = 1

3
(4c2 s2+ − b2 s+)Y +

√
3k2 s+√

2r2
+ O(r−4).

Thus, the functions X̄ = X + k2√
2b2 r−2 and Ȳ = Y + 3

√
3k2√

2(4c2 s+−b2)
r−2 satisfy

X̄′′ + 1

r
X̄′ = b2 s+X̄ + O(r−4),

Ȳ ′′ + 1

r
Ȳ ′ = 1

3
(4c2 s2+ − b2 s+) Ȳ + O(r−4).

Again, Lemma 4.3 implies that |X̄| +|Ȳ | ≤ C r−4. Returning to the variables u and v, we obtain the desired asymptotic 
expansion. �
5. Instability of k-radially symmetric solutions

In this section we prove the instability of radially k-symmetric solutions of (1.4) on the whole R2 for |k| > 1. Note 
that for any Q ∈ H 1

loc(R
2, S0) satisfying (1.5), one has F (Q) = ∞. We thus adopt a second variation at Q in a local 

sense as defined in (1.11).

Proof of Theorem 1.8. We follow the ideas from [19,21] (see also [9] for a related idea in the Ginzburg–Landau 
context). For |k| > 1, let Q be a k-radially symmetric solution of (1.4) on R2 subjected to (1.5). Then Q has the form 
(1.8) with (u, v) satisfying (1.9)–(1.10).

Let ε > 0 be a small parameter. Since u(∞) = s+√
2

, there exists R > 0 such that

(1 − ε)u(∞) ≤ u ≤ (1 + ε)u(∞) in (R,∞). (5.1)

We take

P = w(r)h(ϕ)
1√
2
(n ⊗ e3 + e3 ⊗ n)

where n is as defined in (1.6), w ∈ C∞
c (R, ∞) and

h(ϕ) =
{

sin(
ϕ
2 ) if k is odd,

1√ if k is even.

2
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Then P ∈ C∞
c (R2, S0). We have

∂P

∂r
= w′h 1√

2
(n ⊗ e3 + e3 ⊗ n) ,

∂P

∂ϕ
= wh′ 1√

2
(n ⊗ e3 + e3 ⊗ n) + wh

k

2
√

2
(m ⊗ e3 + e3 ⊗ m)

so

|∇P |2
2

= |∂rP |2
2

+ |∂ϕP |2
2r2

= (w′h)2

2
+ w2(h′)2

2r2
+ w2k2h2

8r2
.

We also have:

2π∫
0

h2(ϕ) dϕ = π,

4

π

2π∫
0

(h′(ϕ))2 dϕ = 1

2
(1 + (−1)k+1) =: ck,

P 2 = w2h2

2
(n ⊗ n + e3 ⊗ e3), tr(P 2Q) = w2h2

2
(

u√
2

+ v√
6
),

|P |2 = w2h2, |Q|2 = u2 + v2, tr(PQ) = 0, (5.2)

hence (1.11) becomes:

2

π
L [Q](P ) =

∞∫
0

{
|w′|2 + k2 + ck

4r2
w2 +

(
−a2 + 2√

6
b2v + c2(u2 + v2)

)
w2

− b2

√
2

(
u + √

3v
)

w2
}
r dr,

where ck is defined in (5.2). We now use the Hardy decomposition trick as in [19,21] (also [9] in the Ginzburg–Landau 
context) by setting w = uξ with ξ ∈ C∞

c (R, ∞). Then:

2

π
L [Q](P ) =

∞∫
0

{
|u′ξ |2 + |uξ ′|2 + 2uu′ξξ ′ + k2 + ck

4r2
u2ξ2 + (u′′ + u′

r
− 4k2u2

4r2
)uξ2

− b2

√
2

(
u + √

3v
)

u2ξ2
}
r dr

=
∞∫

0

{
|ξ ′|2 − 3k2 − ck

4r2
ξ2 − b2

√
2

(
u + √

3v
)

ξ2
}

u2r dr,

where for the first equality we used Eq. (1.9) for u and for the second equality we integrated by parts the term ∫∞
0 u′′uξ2r dr . From Lemma 4.2 we know

u + √
3v = − k2

√
2b2r2

+ O(r−4) as r → ∞.

Therefore, by replacing R by a larger constant if necessary, we can assume that

b2

√
(
u + √

3v
)

≥ −11k2 + ck

2
in (R,∞).
2 20r
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Hence, for any ξ ∈ C∞
c (R, ∞), we deduce by (5.1) and k2 − ck ≥ 3:

2

π
L [Yk](P ) ≤

∞∫
R

{
|ξ ′|2 − k2 − ck

5r2
ξ2
}

u2r dr ≤ (1 + ε)2u(∞)2

∞∫
R

{
|ξ ′|2 − 1

2r2
ξ2
}

r dr.

It is not difficult to find a test function ξ0 ∈ C∞
c (R, ∞) such that6

∞∫
R

{
|ξ ′

0|2 − 1

2r2
ξ2

0

}
r dr < 0.

The result follows immediately. �
Remark 5.1. Theorem 1.8 and its proof provide an insight into the stability of the k-radially solution on finite domains 
BR(0) for R small, respectively R large.

• Case 1: if R is small (i.e., R ≤ R0(a
2, b2, c2)) then one can use the Poincaré inequality to show that the solution of 

the PDE system (1.4) with boundary conditions (2.6) is unique (see for instance in the related Ginzburg–Landau 
framework [3, Thm. VIII.7, p. 98]). This unique solution must necessarily be the global minimizer of F on 
� = BR subject to (2.6). Therefore, it coincides with the k-radially solution of Proposition 2.3 and it is stable as 
a global minimizer of F .

• Case 2: if R is large (i.e., R ≥ R1(a
2, b2, c2)) then for |k| > 1 the k-radially solutions obtained in Proposition 3.1

are expected to be unstable, since the solutions (uR, vR) of the ODE system on the finite domain [0, R] will 
suitably approximate the solution in the whole space obtained in Proposition 4.1.
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Appendix A. Remarks on the case b2 = 0

In this appendix, we collect some known results regarding the case b2 = 0 and k ∈ Z \ {0}.
In [10], it was shown that on a finite disk the system (1.9) and (3.1) has a unique solution (u, v) with the sign invari-

ance u > 0 and v < 0. Furthermore, Q = u E1 + v E0 is the unique global minimizer of the full Landau–de Gennes 
energy F subjected to the boundary condition (2.6).

For infinite domain, the situation is different. We have:

Theorem A.1. Assume that b2 = 0, a2 > 0, c2 > 0 and k �= 0. There is no solution of the boundary value problem
(1.9)–(1.10) which satisfies u > 0 and v < 0 in (0, ∞).

Proof. Indeed, assume by contradiction that there exists a solution (u, v) of (1.9) on (0, ∞) subject to (1.10) with 
v < 0 in (0, ∞). By (3.12) and (1.3), we have that −a2 +c2(u2 +v2) ≤ 0 in (0, ∞). Hence, Eq. (1.9) for v ≤ 0 implies 
(rv′)′ ≥ 0 for every r > 0. Since v′(0) = 0, we deduce r �→ rv′(r) is a nonnegative and nondecreasing function. It 

6 For example, take ξ0 to be a smoothing of sin( ln r
2 ) 1(exp(2nπ),exp(2(n+1)π)) for some n sufficiently large.
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follows that, for any s > r > 0, v(s) ≥ v(r) + rv′(r) ln s
r
. Fixing r and taking a limit s → ∞ it is clear that starting 

from some point s0 function v(s) becomes positive. Since v is negative in (0, ∞), this implies that v′ ≡ 0 in (0, ∞). 
By (1.10), we thus have v ≡ − s+√

6
in (0, ∞). Using the second equation in (1.9), we obtain −a2 + c2(u2 + v2) = 0, 

and so, by (1.10), u ≡ s+√
2

is constant. This contradicts the first equation in (1.9). �
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